

Sikeston Power Station 2023 Annual Groundwater Monitoring Report for Bottom Ash Pond For Compliance with USEPA 40 CFR 257.90(e)

Prepared for:

Mr. Luke St. Mary Sikeston Power Station 1551 West Wakefield Avenue Sikeston, Missouri 63801

January 2024

Telephone (573) 659-9078 www.ger-inc.biz

1505 East High Street Jefferson City, Missouri 65101-4826

Sikeston Power Station 2023 Annual Groundwater Monitoring Report for Bottom Ash Pond For Compliance with USEPA 40 CFR 257.90(e)

<u>Prepared for:</u> Sikeston Board of Municipal Utilities 1551 West Wakefield Avenue Sikeston, Missouri 63801

January 2024

Prepared by: GREDELL Engineering Resources, Inc. 1505 East High Street Jefferson City, Missouri 65101 Phone: (573) 659-9078 www.ger-inc.biz

Sikeston Power Station 2023 Annual Groundwater Monitoring Report for Bottom Ash Pond For Compliance with USEPA 40 CFR 257.90(e)

January 2024

Table of Contents

1.0	EXECUTIVE SUMMARY	1
2.0	INTRODUCTION	3
3.0 3.1	GROUNDWATER MONITORING SYSTEM Installation or Decommissioning of Monitoring Wells	
4.0 4.1	DETECTION MONITORING SAMPLING SUMMARY Field Quality Assurance/Quality Control	
5.0 5.1 5.2 5.3 5.4	ANALYTICAL SUMMARY Laboratory Quality Control Precision and Accuracy Representativeness Comparability	9 9 10
5.5	Completeness	
	STATISTICAL ANALYSIS Detection Monitoring Statistical Procedures .1.1 November 2022 (11 th) Event Statistical Procedures .1.2 April 2023 (12th) and October 2023 (13th) Events Statistical	12
P 6.2 6	Procedures Exploratory Data Analysis and Detection Data Screening 2.1 Detection Data Outlier Screening 2.2 Detection Data Trend Screening	13 14 15
7.0	LIMITATIONS	17
8.0	REFERENCES	18

List of Figures

Figure 1 – Groundwater Contour Map – November 1, 2022	
Figure 2 – Groundwater Contour Map – April 18, 2023	

Figure 3 – Groundwater Contour Map – October 11, 2023

List of Tables

- Table 1 2023 Bottom Ash Pond Groundwater Sampling Summary
- Table 2 Groundwater Monitoring Network Summary
- Table 3 Historical Groundwater Level Summary
- Table 4 Water Level and Field Parameter Summary
- Table 5 Groundwater Monitoring Constituents
- Table 6 Relative Percent Difference Summary
- Table 7 Alternate Data Sets
- Table 8 Intra-Well Prediction Limit Summary

List of Appendices

Appendix 1 – Field Sampling Notes

- Appendix 2 Laboratory Analytical Results and Quality Assurance/Quality Control Data
- Appendix 3 Groundwater Quality Database
- Appendix 4 Statistical Power Curve
- Appendix 5 Time Series Plots
- Appendix 6 Box and Whiskers Plots
- Appendix 7 Prediction Limit Charts
- Appendix 8 Alternate Source Demonstration

1.0 EXECUTIVE SUMMARY

This report has been developed to fulfill the requirements of the United States Environmental Protection Agency (USEPA) 40 CFR 257 Subpart A – Classification of Solid Waste Disposal Facilities and Practices, which requires owners or operators to provide an Annual Groundwater Monitoring Report. Sikeston Board of Municipal Utilities (SBMU) provides this report of groundwater monitoring activities completed during 2023 for the Bottom Ash Pond (BAP) at the Sikeston Power Station (SPS).

The BAP at the SPS remained in Detection Monitoring status during 2023. The 11th semiannual Detection Monitoring groundwater sampling events was initiated in November 2022, but data review and statistical analysis were not completed until early 2023. Consequently, the results of the 11th sampling event are presented in this report along with the two semiannual sampling events conducted in 2023 at the SPS BAP. Table 1 below summarizes the BAP groundwater sampling for 2023.

Event Name and Purpose	Event Start	Final Data Received from Laboratory	Constituents Sampled	Verified SSIs	Verified SSLs	Statistical Analysis Results Completed				
11 th CCR Compliance Sampling Event (2 nd 2022 Semi- annual Detection Monitoring Event)	11/1/2022	11/22/2022	Appendix III Constituents							
and Verification Sampling	12/13/2022	1/3/2023	TDS & pH at MW-5, CI, TDS, & Ca at MW-6 pH at MW-3, MW-4, & MW-8	None	e None	2/3/2023				
12 th CCR Compliance Sampling Event (1 st 2023 Semi-annual Detection Monitoring Event)	4/18/2023	5/5/2023	Appendix III Constituents	None None		None None 7		None None 7/14/2	None None 7/14/20	7/14/2023
and Verification Sampling	5/23/2023	6/14/2023	pH at MW-8, Chloride at MW-6							
13 th CCR Compliance Sampling Event (2 nd 2023 Semi- annual Detection Monitoring Event)	10/11/2023	10/23/2023	Appendix III Constituents	None	None	11/20/2023				

Table 1	2022 Battom	Ach Dond	Croundwater	Compling	Cummon.
	2023 Bottom	ASII PONU	Groundwater	Sampling	Summary

The two 2023 semiannual Detection Monitoring events conducted in 2023 are the 12th and 13th groundwater sampling events conducted at the SPS-BAP. The 12th event was initiated in April 2023. The 13th event was initiated in October 2023.

Detection Monitoring statistical evaluations were completed after each sampling event to assess apparent significant increases relative to background data. Initial results during the April 2023 event suggested that Chloride concentrations in MW-6 had increased relative to background data. However, the increases were demonstrated to be the result of an alternate source located hydraulically upgradient of the SPS. As a result, the BAP remained in Detection Monitoring status during 2023.

2.0 INTRODUCTION

The Sikeston Power Station (SPS), owned and operated by the Sikeston Board of Municipal Utilities (SBMU), is an electric power producer and distributor located within the western city limits of Sikeston, in southern Scott County, Missouri. The SBMU-SPS began operation in 1981 and produces approximately 235 megawatts. Coal combustion residuals (approximately 10,000 tons per annum) are currently sold for reuse/recycling but were historically placed in the facility's Bottom Ash Pond (BAP) (approximately 61 acres in size). SBMU-SPS successfully completed a conversion to dry-handling methods of disposal as of May 1, 2023 and the BAP is now in the process of closure.

Pursuant to USEPA's 40 CFR Part 257 (§257) Federal Criteria for Classification of Solid Waste Disposal Facilities and Practices, Subpart D – Standards for Disposal of Coal Combustion Residuals (CCR) in Landfills and Surface Impoundments (ponds), the establishment of a groundwater monitoring system and routine detection sampling and reporting is required at all coal ash surface impoundments. The purpose of a monitoring well system is to evaluate the quality of groundwater as it passes beneath the waste mass within an impoundment. Groundwater samples are collected and analyzed on a semi-annual basis in accordance with §257.93, or as otherwise detailed in a site-specific Groundwater Monitoring and Sampling Plan (GMSAP). Statistical analyses of the resulting data are conducted in accordance with §257.90(e). If results suggest a statistically significant increase (SSI) in one or more constituents for detection monitoring listed in Appendix III of §257, a written demonstration is required to determine if the SSI is attributable to an ash pond release or to other causative factors. If a successful demonstration is not made, an assessment monitoring program must be initiated as required under §257.95.

Baseline data sets for each well are updated in accordance with Unified Guidance. The most recent update included previous sampling data through the eleventh round of detection monitoring (last 2022 sampling event). The next background update may follow the fifteenth detection sampling event scheduled to take place in the fall of 2024. A collection of statistical tools, including time series plots, box and whiskers plots, histograms, probability plots, outlier analysis, trend analysis, and analysis of variation, was used to explore, understand, and prepare the data sets for statistical analysis. This analysis allowed for censoring of outliers and data set detrending. Prediction limits were then calculated with the revised data sets described above for comparison to detection monitoring results compiled after 2022. The statistical analysis was performed in accordance with §257.93(f) using the appropriate statistical analysis method as filed in the SBMU-SPS operating record on October 17, 2017.

This report describes the results of the 11th, 12th, and 13th semiannual detection groundwater sampling events conducted at the SPS BAP beginning on November 1, 2022, April 18, 2023, and October 11, 2023, respectively. Included are descriptions of the sampling events, groundwater

elevations, water table surfaces, summaries of field activities, analytical results, and statistical analysis results. Field sampling and reporting activities were conducted in accordance with the site-specific GMSAP (Gredell Engineering, 2021).

3.0 GROUNDWATER MONITORING SYSTEM

The groundwater monitoring system for the BAP consists of five monitoring wells. The wells are identified as MW-3, MW-4, MW-5, MW-6, and MW-8. Monitoring wells MW-3 and MW-6 are located hydraulically upgradient of the BAP, whereas MW-4, MW-5 and MW-8 are hydraulically downgradient of the BAP. MW-3 through MW-6 were installed during characterization of the site in May 2016 (Gredell Engineering, 2017). MW-8 was installed in April 2017 to serve as an additional downgradient monitoring well. Well construction activities were performed under the direction of a Registered Geologist in the State of Missouri. Well design and installation techniques were completed in accordance with 10 CSR 23-4, which is consistent with the standards summarized in 40 CFR 257.91(e). All five wells monitor uppermost groundwater, which is within the alluvial aquifer at the BAP site. Each well is between 34 and 36 feet deep as measured from ground surface and yields a sufficient quantity of water for the purposes of sampling and analysis.

Table 2 presents a construction summary of the wells comprising the BAP groundwater monitoring system. Figures 1, 2, and 3 depict well locations and groundwater contour maps of the uppermost aquifer for the 11th, 12th, and 13th semi-annual sampling events. These maps and the historical piezometric data summarized in Table 3 confirm that water in the uppermost aquifer continues to move in a west-southwesterly direction, consistent with the conclusions of the Site Characterization Report (Gredell Engineering, 2017). All groundwater wells are equipped with dedicated tubing for use with a peristaltic pump. This system has been used for chemical sampling since the inception of groundwater sampling with the BAP monitoring system. The BAP monitoring system is described in more detail in the site-specific GMSAP for this facility (Gredell Engineering, 2021).

3.1 Installation or Decommissioning of Monitoring Wells

No monitoring wells were installed or decommissioned for the BAP detection groundwater monitoring system in 2023 (Gredell Engineering, 2023).

4.0 DETECTION MONITORING SAMPLING SUMMARY

SPS environmental staff initiated the 11th BAP semi-annual detection groundwater sampling event on November 1, 2022. Following this initial sampling event, it was noted that the pH for samples MW-3, MW-4, MW-5, and MW-8 were outside of their respective prediction limits. Total Dissolved Solids (TDS) concentrations in MW-5 and MW-6 and Chloride and Calcium concentrations in MW-6 were also greater than their respective prediction limits. In accordance with the statistical analysis program, these well constituent pairs were resampled on December 13, 2022. The resample data demonstrated that results for each of the aforementioned constituent well pairs did not exceed their respective prediction limits, and therefore did not confirm the apparent SSIs for the 11th semi-annual detection groundwater sampling event with the exception of Chloride in MW-6.

Potential alternate sources were investigated to assess the increase in Chloride concentration in MW-6. An Alternate Source Demonstration (ASD) was successfully completed, and the increase in Chloride in this upgradient well was attributed to an alternate source up gradient of the ash pond. This ASD is provided in Appendix 8.

SPS environmental staff initiated the 12th semi-annual detection groundwater sampling event on April 18, 2023. Following this initial sampling event, it was noted that the Chloride concentration for MW-6 and the pH for sample MW-8 were greater than their respective prediction limits. In accordance with the statistical analysis program, these well constituent pairs were resampled on May 23, 2023. The resample data for demonstrated that results for each of the aforementioned constituent well pairs did not exceed their respective prediction limits, and therefore confirmed SSIs are not reported for the 12th semi-annual detection groundwater sampling event.

SPS environmental staff initiated the 13th semi-annual detection groundwater sampling event on October 11, 2023. Following this sampling event it was noted that the semi-annual detection results for each of the monitored constituents did not exceed their respective prediction limits. Therefore, confirmed SSIs are not reported for the 13th semi-annual detection groundwater sampling event.

Sampling procedures for the sampling events were consistent with the GMSAP. Groundwater samples were collected using low-flow sampling techniques and dedicated sampling equipment. Field tests of indicator parameters were performed using an In-Situ, Inc. Aqua TROLL 400 Multiparameter Probe with flow cell unit and HF Scientific MicroTPI field portable turbidimeter. Each groundwater sample was subsequently analyzed for the constituents listed in §257 Appendix III. All monitoring wells produced sufficient volumes of groundwater for full analysis.

SPS environmental staff inspected each monitoring well upon arrival. Wells were reported to be in satisfactory condition and had locks in place. Staff initially gauged water levels in the monitoring wells using a standard electronic water level meter graduated in increments of 0.01 feet. Static

water levels were recorded on forms provided in the GMSAP. Each well was then purged while staff monitored water quality until indicator parameters (pH and specific conductance) stabilized in accordance with the criteria in the GMSAP. Additional parameters (turbidity, temperature, dissolved oxygen, and oxidation/reduction potential) were also monitored for stability prior to groundwater sample collection. Following stabilization of indicator parameters, final field data were recorded, and groundwater samples were then collected.

Field notes documenting the sampling events and copies of the chain-of-custody forms are presented in Appendix 1. Field sampling notes are also summarized in Table 4, including initial and final water level measurements, purge volumes, and pH. Laboratory analytical reports for the sampling events, including the field blanks and sample duplicates, and Quality Assurance/Quality Control (QA/QC) documentation are presented in Appendix 2. A summary of background and detection monitoring analytical data, including field parameters, is presented in Appendix 3.

4.1 Field Quality Assurance/Quality Control

Field QA/QC during the November 1, 2022, (11th) sampling event included the collection of one field blank and one field duplicate. The duplicate was collected from MW-8 (Table 6). Rinsate blanks were not collected because dedicated sampling equipment was used. Samples were shipped to Pace Analytical Services, LLC's (Pace) facility located in Peoria, Illinois using standard chain-of-custody documentation procedures. Samples collected during this sampling event were received by Pace on November 4, 2022, and subsequently analyzed for the six detection monitoring constituents listed in §257 Appendix III and required under §257.94(b) (Table 5). Results for these six detection monitoring constituents and field-measured pH are provided in the final analytical report, which was received from Pace on November 22, 2022 (Appendix 2).

Following the November 1st sampling event, samples from the verification sampling event conducted on December 13, 2022, were shipped to Pace's facility located in Peoria, Illinois using standard chain-of-custody documentation procedures. The samples collected during this resampling event were received by Pace on December 15, 2022, and subsequently analyzed for the requested constituents. The results are provided in the final analytical report, which was received from Pace on December 30, 2022 (Appendix 2).

Field QA/QC during the 12th semi-annual sampling event, initiated on April 18, 2023, included the collection of one field blank and one field duplicate. The duplicate was collected from MW-4 (Table 6). Rinsate blanks were not collected because dedicated sampling equipment was used. Samples were shipped to Pace Analytical Services, LLC facility located in Peoria, Illinois using standard chain-of-custody documentation procedures. Samples collected during this sampling event were received by Pace on April 20, 2023, and subsequently analyzed for the six detection monitoring constituents listed in §257 Appendix III and required under §257.94(b) (Table 5). Results for these six detection monitoring constituents and field-measured pH are provided in the final analytical reports, which were received from Pace on May 5, 2023 (Appendix 2).

Following the initial 12th semi-annual sampling event, analytical services were provided by Teklab, Inc. (Teklab). Accordingly, the sample from the verification sampling event conducted on May 23, 2023, was shipped to Teklab's facility located in Collinsville, Illinois using standard chain-ofcustody documentation procedures. The sample collected during this event was received by Teklab on May 26, 2023, and subsequently analyzed for Chloride. The result is provided in the final analytical report, which was received from Teklab on June 14, 2023 (Appendix 2).

Field QA/QC during the 13th semi-annual sampling event, initiated on October 11, 2023, included collection of one field blank and one field duplicate. The duplicate was collected from MW-8 (Table 6). Rinsate blanks were not collected because dedicated sampling equipment was used. Samples were shipped to Teklab's facility located in Collinsville, Illinois using standard chain-of-custody documentation procedures. Samples collected during this sampling event were received by Teklab on October 13, 2023, and subsequently analyzed for the six detection monitoring constituents listed in §257 Appendix III and required under §257.94(b) (Table 5). Results for these six detection monitoring constituents and field-measured pH are provided in the final analytical reports, which were received from Teklab on October 23, 2023 (Appendix 2).

5.0 ANALYTICAL SUMMARY

Analytical data summary reports for each monitoring well sampled during the 11th, 12th, and 13th detection monitoring events are provided in Appendix 2. The data pertains to water quality results from the uppermost aquifer beneath the BAP, along with sample duplicates and field blank results.

5.1 Laboratory Quality Control

Laboratory analyses of all groundwater samples collected during the 11th and 12th detection monitoring events were completed by Pace Analytical Services, LLC of Peoria, Illinois. However, beginning with the verification sampling event on May 23, 2023 for the 12th detection monitoring event, analytical services were provided by Teklab Inc. The results for each sampling event are accompanied by appropriate QA/QC documentation. That documentation is presented in Appendix 2.

5.2 **Precision and Accuracy**

Precision is a measure of the reproducibility of analytical results, generally expressed as a *Relative Percent Difference (RPD)*. Laboratory quality control procedures to measure precision consist of laboratory control sample (LCS) analysis and analysis of matrix spike/matrix spike duplicates (MS/MSD). These analyses are used to define analytical variability. Accuracy is defined as the degree of agreement between the measured amount of a species and the amount actually known to be present, expressed as a percentage. It is generally determined by calculating the percent recoveries for analyses of surrogate compounds, laboratory control samples, continuing calibration check standards and matrix spike samples. Acceptable percent recoveries are established for SW-846 and USEPA methods. Field and laboratory blank analyses are also used to address measurement bias.

The analyses of the samples collected during the 11th detection monitoring event and the subsequent verification sampling event were performed within appropriate hold times except for TDS in MW-3. Both initial and continuing calibrations met acceptance criteria for all analyses. Similarly, method blanks and LCS analyses met acceptance criteria, except the TDS verification result for MW-5-duplicate sample, which was qualified with an "M" flag indicating that the analyte did not meet the acceptance criteria for duplicate analysis. The case narratives for the 11th sampling event and the subsequent verification sampling indicate that all testing was performed according to the lab's TNI accreditations.

The analyses of samples collected during the 12th detection monitoring event were also performed within appropriate hold times. Both initial and continuing calibrations met acceptance criteria for all analyses. Similarly, method blanks and LCS analyses met acceptance criteria. The case narrative for this sampling event indicates that all testing was performed according to the lab's TNI accreditations. However, TDS failed to meet the required acceptance criteria for duplicate

analysis and the result was qualified in the analytical report. The analysis of the sample collected during the May 23rd verification sampling event was also performed within appropriate hold times and both initial and continuing calibrations met acceptance criteria for all analyses.

The analyses of the samples collected during the 13th detection monitoring event were also performed within appropriate hold times. Both initial and continuing calibrations met acceptance criteria for all analyses. Similarly, method blanks and LCS analyses met acceptance criteria. The case narrative for this sampling event indicates that all testing was performed according to the lab's NELAP accreditation. However, the sample/spike ratio for Calcium in MW-6 failed to meet the matrix spike control limits and the result was qualified in the analytical report.

Additional QA/QC comments for these sampling events include the following:

- Field Duplicates: Analyses of duplicate samples are used to define the total variability of the sampling/analytical system as a whole. One field duplicate was collected during each of the sampling events. RPDs were calculated for all detected chemical parameters, and a summary table showing the results of the RPD calculations is included as Table 6. Using a tolerance level of <u>+</u>20 percent, all calculated RPDs were within acceptable ranges for each parameter.
- *Field Blank:* One field blank was incorporated into the data set for each sampling event. The field blank analytical results for the 11th and 13th events indicate TDS concentrations of 37 mg/L and 28 mg/L, respectively. The field blank analytical results for the 12th event indicate a low concentration of Boron (11 ug/L).
- *Laboratory Blanks:* Method blanks, artificial, and matrix-less samples are analyzed to monitor the laboratory system for interferences and contamination from glassware, reagents, etc. Method blanks are taken throughout the entire sample preparation process. They are included with each batch of extractions or digestions prepared, or with each 20 samples, whichever is more frequent. Reference to Appendix 2 should be made for comments related to these and other laboratory control samples.

5.3 Representativeness

Representativeness expresses the degree to which sample data accurately and precisely reflect site conditions. Representativeness of the data is determined by comparing actual sampling procedures to those delineated in the field sampling plan, comparing results from field duplicate samples and reviewing the results of field blanks.

Approved sampling procedures are described in the GMSAP. Procedures specified in that plan have been followed. Approved sampling procedures should be reviewed annually. Groundwater monitoring data is evaluated using an intrawell statistical analysis methodology and is conducted separately for each constituent in each monitoring well using prediction limits in accordance with §257.93(f)(3) and the performance standards in §257.93(g). The stated statistical approach,

along with supporting documentation and engineering certification, are available in the SBMU-SPS On-Site Operating Record.

5.4 Comparability

Comparability expresses the confidence with which one data set can be compared to another data set measuring the same property. Comparability is ensured by using established and approved sample collection techniques and analytical methods, consistent basis of analysis, consistent reporting units, and analyzing standard reference materials.

5.5 Completeness

Completeness is a measure of the amount of valid data obtained from a measurement system compared to the amount expected under controlled laboratory conditions. Completeness is defined as the valid data percentage of the total tests requested. Valid data are defined as those where the sample arrived at the laboratory intact, properly preserved, in sufficient quantity to perform the requested analyses, and accompanied by a completed chain-of-custody form (Appendix 2). Furthermore, the sample must have been analyzed within the specified holding time and in such a manner that analytical QC acceptance criteria are met.

6.0 STATISTICAL ANALYSIS

The BAP remained in detection monitoring status in 2023. The statistical analysis method used to evaluate detection monitoring data within the uppermost aquifer for the BAP monitoring system at SBMU-SPS consists of intra-well analysis using prediction limits. Groundwater sampling data are evaluated using appropriate statistical analysis methodologies and is conducted separately for each constituent in each of the five monitoring wells in accordance with §257.93(f) and the performance standards in §257.93(g).

6.1 Detection Monitoring Statistical Procedures

A complete background data set has been obtained for groundwater, representing the uppermost aquifer, moving below the BAP at the SPS Data from each event is compared to a comprehensive background data set resulting from previous sampling events. Updates to the background data set are permitted every two years, but SSIs will not be included in background unless they are unconfirmed in accordance with Unified Guidance (USEPA, 2009). A background update was conducted following the 11th groundwater compliance sampling event. The next background update may be conducted in 2025 following the fifteenth groundwater compliance sampling event.

Statistical analysis is performed in accordance with §257.93 using Sanitas[©] for Ground Water. The groundwater analytical results from the eleventh, twelfth, and thirteenth detection monitoring events are compared to the respective intra-well prediction limits at the 99 percent confidence level (Table 8) to determine if SSIs over background exist in the data sets.

If the number of reportable concentrations of a given constituent in a database for a given well is not sufficient to permit parametric analysis, non-parametric prediction interval analysis is conducted. Both parametric and non-parametric prediction limit analysis were performed for the BAP groundwater monitoring well network data. Following review of baseline data for outliers and trends, prediction intervals are computed based on the reviewed and screened background monitoring data sets (Appendix 3), including values reported as less than detection limits.

6.1.1 November 2022 (11th) Event Statistical Procedures

The background data used to evaluate the 11th groundwater compliance sampling event groundwater quality in MW-3, MW-4, MW-5, and MW-6 is based on 18 rounds of groundwater sampling spanning November 2016 to October 2020. The MW-8 background data is based on 18 rounds of groundwater sampling spanning May 2017 to October 2020. In general, all background data were used for each well constituent pair. However, data trend removal and screening of outliers reduced the background sample population for some well constituent pairs (Appendix 3). The background may be updated every two years in accordance

with Unified Guidance (USEPA, 2009), and accordingly, background was updated following the 11th compliance sampling event, and verification sampling event.

Statistical analysis was performed in accordance with §257.93 using Sanitas© for Ground Water. The groundwater analytical results from the eleventh semiannual detection groundwater sampling event were compared to the prediction limits (Table 8) to determine if SSIs over background were apparent.

6.1.2 April 2023 (12th) and October 2023 (13th) Events Statistical Procedures

The background data set used to evaluate the 12th and 13th groundwater compliance sampling events groundwater quality in MW-3, MW-4, MW-5, and MW-6 is based on 22 rounds of groundwater sampling spanning November 2016 to November 2022. The MW-8 background data is based on 22 rounds of groundwater sampling spanning May 2017 to November 2022. In general, all background data were used for each well constituent pair. However, data trend removal and screening of outliers reduced the background sample population for some well constituent pairs (Appendix 3). The background may be updated every two years in accordance with Unified Guidance (USEPA, 2009). Accordingly, the background may be updated again in 2025 following the fifteenth compliance sampling event.

Statistical analysis was performed in accordance with §257.93 using Sanitas© for Ground Water. The groundwater analytical results from the 12th and 13th semiannual detection groundwater sampling events were compared to the prediction limits (Table 8) to determine if SSIs over background were apparent.

6.2 Exploratory Data Analysis and Detection Data Screening

Exploratory Data Analysis (EDA) of the data refers to a collection of descriptive and graphical statistical tools used to explore and understand a data set (ITRC, 2013). Generally, EDA includes a numerical summary and graphical displays such as Time Series Plots, Box and Whisker Plots, Histograms and Probability Plots that are reviewed during a background data update to help identify trends or outliers. EDA methods are supplemented with outlier and trend analysis tools included with Sanitas© software to screen the detection data during each background update. EDA and Data Screening were completed following the 11th groundwater compliance sampling event.

6.2.1 Detection Data Outlier Screening

The background monitoring data were evaluated for possible outliers using EDA with Sanitas©, time-series plots, box and whiskers plots, histograms, and probability plots following the 11th groundwater compliance sampling event. This evaluation, data screening, and background update is described below. Previous evaluation, data screening, and background updates used for statistical evaluation of the 1st through 11th groundwater compliance sampling events are described in previous groundwater monitoring annual reports.

The following procedure provides the basis for the 'statistical' evaluation of possible outliers contained in the database of the 22 groundwater compliance sampling events completed prior to 2023:

1. The data well/constituent pairs sample populations were analyzed for outliers using the Sanitas[©] program by initially screening for possible outliers with the EPA 1989 Outlier Test (Grubb's Test).

2. The data points within the sample populations were normality tested using the Shapiro-Wilk Test. The purpose of normality testing is to determine whether the sample populations are normally distributed.

3. Data that is normally distributed or can be normalized through transformation by the Ladder of Powers methods were then further analyzed for possible outliers using Dixon's Test, which is a parametric statistical outlier identification test. If the sample populations cannot be normalized by the Shapiro-Wilk test or through Ladder of Powers transformation, Dixon's Test method is halted.

4. Some possible outliers selected during the EDA evaluation were not identified by the above procedures because the sample population was not normalizable. These possible outliers were further tested (continued even if the distribution remained not normalizable) to determine if they could be confirmed. Several of these possible outliers were confirmed with additional testing. However, it is noted that these additional outliers are not recognized as 'statistical' outliers since the sample population distribution was not normalizable.

5. Similar to the above, possible outliers selected during the EDA evaluation that were not identified by the above procedures were reanalyzed using Tukey's method for outlier analysis, which indicates possible 'extreme' low or high outliers (Tukey, 1977; Unified Guidance, 2009), if the outlier concentrations exceed three times the interquartile range (IQR) on the Box and Whisker Plots.

Using the above-mentioned outlier analysis procedures, 12 outliers were screened from the 770 data points (5 wells x 7 constituents x 22 background sampling events). The outliers are identified with shaded cells in Appendix 3 and were

screened from the background data prior to conducting additional statistical analysis. Subsequent outlier testing was performed to identify additional outliers that may have been masked by the initial outliers, but additional outliers were not identified. In total, these 12 outliers represent less than two percent of the 770 data points.

6.2.2 Detection Data Trend Screening

Trend analysis was also conducted on the screened background data sets to be included in the update (to include observations through November 2022) using Sanitas©. Data sets were modified where constituent-well pairs were significantly trending upward (or downward in the case of pH). Modifications generally consist of removing earlier data and retaining the most recent observations. The resulting alternate data sets are summarized in Table 7 and in Appendix 3.

The confirmed outliers were censored from the background data sets, as appropriate, prior to trend testing. The Sen's Slope/Mann-Kendall (non-parametric) trend test within Sanitas© was selected to identify statistically significant downward or upward trends in the detection monitoring background data. Trend testing identified several trends in the data. Significant increasing trends in constituent concentrations, and both decreasing and increasing significant trends in pH are of primary interest for detection monitoring at this site.

Sanitas identified a decreasing trend of pH in upgradient well MW-3 and increasing trends in Calcium and Boron in MW-6, and Calcium and TDS in MW-8 at the 98 percent confidence level. These trends are identified by Sanitas© as significant. Following Trend analysis, trend correction was performed for these constituent-well pairs. Trend elimination was accomplished by removing earlier results from the data set. Removed values are indicated in Appendix 3, and the data range for the resulting alternate data sets are summarized in Table 7. The resulting alternate data sets were tested using Sanitas© to verify successful trend elimination.

6.3 Detection Monitoring Statistical Summary

The results of the statistical analysis for the 11th, 12th, and 13th semiannual detection groundwater sampling events are described in this report. A complete database summarizing the sample results, dates of sampling, and the purpose of sampling event, as per §257.90(e)(3), is provided in Appendix 3. A statistical power curve, based on the background data, is provided in Appendix 4. Time series plots of background data for all detection monitoring constituents are presented in Appendix 5. Box and whiskers plots of background data are presented in Appendix 6. Prediction limit charts are provided in Appendix 7.

The results of the statistical analysis for the 11th, 12th, and 13th semiannual detection groundwater sampling events did not suggest the presence of confirmed SSIs associated with a release from the BAP at the Sikeston Power Station. Consequently, semi-annual detection monitoring should continue in 2024 as specified in §257.94(b).

7.0 LIMITATIONS

This report has been prepared for the exclusive use of the client and GREDELL Engineering Resources, Inc. for the specific project discussed in accordance with generally accepted environmental practices common to this locale at this time. The report is applicable only to this specific project and identified site conditions as they existed at the time of report preparation. The use of this report by others to develop independent interpretations of data or conclusions not explicitly stated in this report are the sole responsibility of those firms or individuals.

This report is not a guarantee of subsurface conditions. Variations in subsurface conditions may be present that were not identified during this or previous investigations. Interpretations of data and recommendations made in this report are based on observations of data that were available and referred to in this report unless otherwise noted. No other warranties, expressed or implied, are provided.

8.0 **REFERENCES**

GREDELL Engineering Resources, Inc., 2017, *Sikeston Power Station Site Characterization for Compliance with Missouri State Operating Permit #MO-0095575*, dated May 2017.

GREDELL Engineering Resources, Inc., 2019, Sikeston Power Station, 2018 Annual Groundwater Monitoring and Corrective Action Report for Bottom Ash Pond for Compliance with USEPA 40 CFR 257.90(e), dated January 30, 2019.

GREDELL Engineering Resources, Inc., 2020, Sikeston Power Station, 2019 Annual Groundwater Monitoring Report for Bottom Ash Pond for Compliance with USEPA 40 CFR 257.90(e), dated January 30, 2020.

GREDELL Engineering Resources, Inc., 2021, Sikeston Power Station, Groundwater Monitoring and Sampling Plan For Compliance with Missouri State Operating Permit #MO-0095575. Revised November 1, 2021.

Sanitas Statistical Software, © 1992-2021 SANITAS TECHNOLOGIES, Alamosa Colorado 81101-0012.

U.S. Environmental Protection Agency, March 2009, Statistical Analysis of Groundwater Monitoring *Data at RCRA Facilities Unified Guidance*: USEPA 530/R-09-007, Office of Resource Conservation and Recovery, Program Implementation and Information Division, Washington, D.C.

GREDELL Engineering Resources, Inc., 2022, Sikeston Power Station, 2022 Annual Groundwater Monitoring Report for Bottom Ash Pond for Compliance with USEPA 40 CFR 257.90(e), dated January 31, 2023.

GREDELL Engineering Resources, Inc., 2023, Sikeston Board of Municipal Utilities Sikeston Power Station Detection Monitoring Program for Bottom Ash Pond – Chloride in MW-6 Alternate Source Demonstration, dated March 2023.

FIGURES

WELL I MW-3 MW-4 MW-5 MW-6 MW-8

LEGEND PROPERTY LINE GROUNDWATER CONTOUR MONITORING WELL MW UP GRADIENT MONITORING LOCATION UG DOWN GRADIENT MONITORING LOCATION DG GENERAL FLOW DIRECTION -

- NOTES:

 IMAGE PROVIDED BY BING MAPS.
 MONITORING WELL LOCATIONS, CASING ELEVATIONS & UNDERGROUND CULVERT ELEVATIONS SURVEYED BY BOWEN ENGINEERING & SURVEYING.
 GROUNDWATER ELEVATIONS MEASURED BY SIKESTON POWER STATION STAFF ON NOVEMBER 1, 2022.
 MAP DEVELOPMENT BASED ON CONTOURS GENERATED BY SURFER® SOFTWARE.
 RANGE OF HYDRAULIC GRADIENT AS DETERMINED BY SURFER® SOFTWARE

. ID	GROUNDWATER ELEVATION	CASING ELEVATION	NORTHING	EASTING
-3	295.25	308.55	381130.00	1079946.62
-4	293.19	305.61	380804.62	1077766.95
-5	293.68	305.91	379858.94	1078477.85
-6	294.41	307.72	379874.77	1079384.36
-8	293.27	304.77	380311.20	1077940.08

THE GEOLOGIST WHO REVIEWED AND APPROVED THIS REPORT ASSUMES RESPONSIBILITY ONLY FOR GEOLOGIC INTERPRETATIONS OF DATA APPEARING ON THE PAGE AND DISCLAIMS PURSUANT TO SECTION 256.456 RSMO ANY RESPONSIBILITY FOR ALL OTHER PLANS, SPECIFICATIONS, ESTIMATES, REPORTS OR OTHER PLANS, SPECIFICATIONS, ESTIMATES, REPORTS OR OTHER DOCUMENTS OR INSTRUMENTS NOT PREPARED UNDER THE SUPERVISION OF THE GEOLOGIST	THE ALL THE PROJECT TO WHICH THIS FIGURE REFERS.
FIGURE 1 NOVEMBER 1 2022 GROUNDWATER CONTOUR MAP	PROJECT NAME FILE NAME SHEET # PROJECT GW CONT MAP BAP 10-2022 1 OF XX
SIKESTON POWER STATION BOTTOM ASH POND 2023 ANNUAL GROUNDWATER MONITORING & REPORT	SURVEYED DESIGNED DRAWN CHECKED APPROVED DATE SCALE N/A KE CM KE MCC 11/2023 1"=400'
ENDER CONTRACTOR RESOURCES ENGINEERING RESOURCES ENLIGETESTHIGNERING RESOURCES ENCLOSE TEST FOR THE STATE SCIENCES TEST FOR THE SCIE	EERING LICENSE NO. E-2001001669D

WELL I MW-3 MW-4 MW-5 MW-6 MW-8

LEGEND PROPERTY LINE GROUNDWATER CONTOUR MONITORING WELL MW UP GRADIENT MONITORING LOCATION UG DOWN GRADIENT MONITORING LOCATION DG GENERAL FLOW DIRECTION -

- NOTES:
 IMAGE PROVIDED BY BING MAPS.
 MONITORING WELL LOCATIONS, CASING ELEVATIONS & UNDERGROUND CULVERT ELEVATIONS SURVEYED BY BOWEN ENGINEERING & SURVEYING.
 GROUNDWATER ELEVATIONS MEASURED BY SIKESTON POWER STATION STAFF ON APRIL 18, 2023.

. ID	GROUNDWATER ELEVATION	CASING ELEVATION	NORTHING	EASTING
-3	297.50	308.55	381130.00	1079946.62
-4	295.50	305.61	380804.62	1077766.95
-5	295.88	305.91	379858.94	1078477.85
-6	296.70	307.72	379874.77	1079384.36
-8	295.46	304.77	380311.20	1077940.08
•	200110		000011110	201101000

THE GEOLOGIST WHO REVIEWED AND APPROVED THIS REPORT ASSUMES RESPONSIBILITY ONLY FOR GEOLOGIC INTERPRETATIONS OF DATA APPEARING ON THE PAGE AND DISCLAMS PURSUANT TO SECTION 256-456 RSMO ANY RESPONSIBILITY FOR ALL OTHER PLANS. SPECIFICATIONS, ESTIMATES, REPORTS OR OTHER POCUMENTS OR INSTRUMENTS NOT PREPARED UNDER THE SUPERVISION OF THE GEOLOGIST	RELATING TO OK INTENDED TO BE USED FOR ANT PAKT OK PARTS OF THE PROJECT TO WHICH THIS FIGURE REFERS.
FIGURE 2 APRIL 18 2023 GROUNDWATER CONTOUR MAP	PROJECT NAME FILE NAME SHEET # SHEET # PROJECT GW CONT MAP BAP 04-2023 2 OF XX
SIKESTON POWER STATION BOTTOM ASH POND 2023 ANNUAL GROUNDWATER MONITORING & REPORT	SURVEYED DESIGNED DRAWN CHECKED APPROVED DATE SCALE N/A KE CM KE MCC 11/2023 1" = 400'
A Contract C	EERING LICENSE

LEGEND PROPERTY LINE GROUNDWATER CONTOUR MONITORING WELL MW UP GRADIENT MONITORING LOCATION UG DOWN GRADIENT MONITORING LOCATION DG GENERAL FLOW DIRECTION

- NOTES:

 1. IMAGE PROVIDED BY BING MAPS.

 2. MONITORING WELL LOCATIONS, CASING ELEVATIONS & UNDERGROUND CULVERT ELEVATIONS SURVEYED BY BOWEN ENGINEERING & SURVEYING.

 3. GROUNDWATER ELEVATIONS MEASURED BY SIKESTON POWER STATION STAFF ON OCTOBER 11, 2023.

 4. MAP DEVELOPMENT BASED ON CONTOURS GENERATED BY SURFER® SOFTWARE.

 5. RANGE OF HYDRAULIC GRADIENT AS DETERMINED BY SURFER® SOFTWARE

 6. RANGE OF HYDRAULIC GRADIENT AS DETERMINED BY SURFER® SOFTWARE

WELL ID	GROUNDWATER ELEVATION	CASING ELEVATION	NORTHING	EASTING
MW-3	296.13	308.55	381130.00	1079946.62
MW-4	293.91	305.61	380804.62	1077766.95
MW-5	294.52	305.91	379858.94	1078477.85
MW-6	295.30	307.72	379874.77	1079384.36
MW-8	294.07	304.77	380311.20	1077940.08

THE GEOLOGIST WHO REVIEWED AND APPROVED THIS REPORT ASSUMES RESPONSIBILITY ONLY FOR GEOLOGIC INTERPRETATIONS OF DATA APPEARING ON THE PAGE AND DISCLAMS PURSUANT TO SECTION 256.456 RSMO ANY RESPONSIBILITY FOR ALL OTHER PLANS. SPECIFICATIONS. ESTIMATES, REPORTS OR OTHER POCUMENTS OR INSTRUMENTS NOT PREPARED UNDER THE SUPERVISION OF THE GEOLOGIST	PARTS OF THE PROJECT TO WHICH THIS FIGURE REFERS.
FIGURE 3 OCTOBER 11 2023 GROUNDWATER CONTOUR MAP	PROJECT NAME FILE NAME PROJECT AME GW CONT MAP BAP 10-2023 3 0F XX
SIKESTON POWER STATION BOTTOM ASH POND 2023 ANNUAL GROUNDWATER MONITORING & REPORT	SURVEYED DESIGNED DRAWN CHECKED APPROVED DATE SCALE N/A KE CM KE MCC 11/2023 1" = 400'
ENCLOSE CONTRACTOR CON	EERING LICENSE I

TABLES

Table 2Groundwater Monitoring Network Summary

Monitoring Well ID ^{1,2}	Northing Location ^{3,4}	Easting Location ^{3,4}	Ground Surface Elevation ^{3,4} (feet)	Top of Riser Elevation ^{3,4} (feet)	Well Depth ⁵ (feet)	Base of Well Elevation ⁶ (feet)	Screen Length ⁷ (feet)	Top of Screen Elevation (feet)
MW-3	381130.00	1079946.62	306.11	308.55	37.21	271.34	10	281.5
MW-4	380804.62	1077766.95	303.26	305.61	37.55	268.06	10	278.3
MW-5	379858.94	1078477.85	303.57	305.91	37.17	268.74	10	278.9
MW-6	379874.77	1079384.36	305.37	307.72	38.03	269.69	10	279.9
MW-8	380311.20	1077940.08	302.37	304.77	37.41	267.36	10	277.6

NOTES:

1. Refer to Figure 1 for monitoring well locations.

2. Refer to Sikeston Power Station On-Site Operating Record for well construction diagrams.

3. Monitoring well survey data provided by Bowen Engineering & Surveying, Inc.

4. Horizontal Datum: Missouri State Plane Coordinates - NAD 83 (Feet), Vertical Datum: NAVD 88 (Feet).

5. Depth measurements relative to surveyed point on top of well casing.

6. Sump installed at base of screen (0.2 feet length).

7. Actual screen length (9.7 feet) is the machine-slotted section of the 10-foot length of Schedule 40 PVC pipe.

Table 3 Historical Groundwater Level Summary

Well ID	MW-3	MW-4	MW-5	MW-6	MW-8
Date		Groundwa	ater Elevation ((feet MSL)	
05/12/16	298.13	296.01	296.68	297.41	NM
06/28/16	297.58	294.75	295.51	296.57	NM
07/15/16	297.37	294.77	295.53	296.44	NM
08/08/16	297.05	294.66	294.87	295.77	NM
09/08/16	296.76	294.40	294.96	295.84	NM
10/05/16	296.40	294.02	294.70	295.57	NM
11/01/16	296.10	293.99	294.49	295.24	NM
11/30/16	296.03	294.26	294.80	295.37	NM
01/24/17	296.35	294.73	295.19	295.77	NM
01/26/17	296.35	294.73	295.19	295.77	NM
02/22/17	296.00	294.40	294.81	295.41	NM
02/24/17	296.00	294.40	294.81	295.41	NM
03/20/17	296.45	295.10	295.46	295.97	NM
04/19/17	296.35	294.73	295.19	295.81	NM
04/27/17	296.72	295.41	295.78	296.20	NM
05/17/17	297.81	295.76	296.31	297.11	NM
06/08/17	297.81	295.64	296.17	296.96	NM
07/13/17	296.98	294.60	295.22	296.06	294.70
10/31/17	295.22	293.11	293.65	294.41	293.20
06/13/18	297.33	294.93	295.60	296.47	295.02
11/26/18	295.63	293.76	294.27	294.91	293.88
12/26/18	296.04	294.19	294.64	295.36	294.31
01/08/19	296.38	294.62	295.17	295.77	294.73
02/05/19	296.73	294.99	295.46	296.06	295.07
02/22/19	298.35	296.58	297.33	297.94	296.79
03/27/19	298.51	296.05	296.72	297.69	296.15
04/16/19	298.93	296.58	297.31	298.22	296.67
05/14/19	299.25	296.36	297.10	298.21	296.45
05/28/19	298.95	296.01	296.80	297.91	296.16
06/12/19	298.82	296.00	296.71	297.82	296.10
07/17/19	298.38	295.84	296.46	297.44	295.97
07/24/19	298.41	295.97	296.66	297.57	296.13
08/14/19	297.80	295.03	295.70	296.76	295.12
08/28/19	297.55	294.81	295.47	296.51	294.91
09/16/19	297.22	294.51	295.20	296.20	294.63
10/10/19	296.84	294.29	294.89	295.85	294.36
10/22/19	296.80	294.40	295.00	295.88	294.50
11/04/19	297.34	295.24	295.80	296.57	295.32
02/18/20	299.00	296.50	297.28	298.22	296.66
03/30/20	300.09	297.66	298.48	299.40	297.81
07/21/20	298.35	295.16	295.98	297.19	295.32
10/20/20	297.08	294.53	295.29	296.17	294.77
04/16/21	298.03	295.55	296.08	297.06	295.55
11/01/21	295.95	293.74	294.31	295.11	293.86
08/03/22	296.52	293.79	294.40	295.47	293.87
11/01/22	295.25	293.19	293.68	294.41	293.27
12/13/23	295.02	293.08	293.60	294.24	293.22
04/18/23	297.50	295.50	295.88	296.70	295.46
05/23/23	297.44	295.23	295.64	296.50	295.21
10/11/23	296.13	293.91	294.52	295.30	294.07

NOTES:

1. Refer to Figure 1 for monitoring well locations.

2. Refer to Sikeston Power Station On-Site Operating Record for well construction diagrams.

3. NM - Not Measured.

4. Maximum and minimum groundwater elevations are shaded.

Prepared by: GREDELL Engineering Resources, Inc.

Table 4 Water Level and Field Parameter Summary November 1, 2022

Monitoring Well I.D.	Hydraulic Position	Initial Water Level (ft, BTOC ²)	Final Water Level (ft, BTOC ²)	Minimum ³ Purge Vol. (mL ⁴)	Actual Purge Vol. (mL ⁴)	pH (S.U.⁵)
MW-3	Upgradient	13.30	13.30	300	4,700	6.83
MW-4	Downgradient	12.42	12.43	300	4,550	7.56
MW-5	Downgradient	12.23	12.23	300	7,160	7.08
MW-6	Upgradient	13.31	13.31	300	9,800	6.85
MW-8	Downgradient	11.50	11.50	300	3,640	7.34

April 18, 2023

Monitoring Well I.D.	Hydraulic Position	Initial Water Level (ft, BTOC ²)	Final Water Level (ft, BTOC ²)	Minimum ³ Purge Vol. (mL ⁴)	Actual Purge Vol. (mL ⁴)	pH (S.U.⁵)
MW-3	Upgradient	11.05	11.05	300	4,960	6.45
MW-4	Downgradient	10.11	10.11	300	14,920	7.49
MW-5	Downgradient	10.03	10.03	300	3,500	6.85
MW-6	Upgradient	11.02	11.04	300	9,460	6.91
MW-8	Downgradient	9.31	9.32	300	9,360	7.28

October 11, 2023

Monitoring Well I.D.	Hydraulic Position	Initial Water Level (ft, BTOC ²)	Final Water Level (ft, BTOC ²)	Minimum ³ Purge Vol. (mL⁴)	Actual Purge Vol. (mL ⁴)	pH (S.U.⁵)
MW-3	Upgradient	12.42	12.43	300	5,580	6.49
MW-4	Downgradient	11.70	11.70	300	3,400	7.25
MW-5	Downgradient	11.39	11.39	300	3,240	6.83
MW-6	Upgradient	12.42	12.42	300	4,780	6.80
MW-8	Downgradient	10.70	10.71	300	3,280	7.07

NOTES:

1. Sequence of sampling is MW-3, MW-6, MW-5, MW-8, MW-4.

2. BTOC: Below Top of Casing

3. Purge calculations based on 1/4" ID tubing and complete evacuation of single tubing volume.

4. mL: milliliter

5. S.U.: Standard Unit.

Prepared by: KAE Checked by: JTF Approved by: MCC

Table 5Groundwater Monitoring Constituents

	U	SEPA 40 CFR 257	
Appendix III	-	Appendix IV -	
Constituents for Detection	n Monitoring	Constituents for Assessment	Monitoring
Chemical Constituent	Method	Chemical Constituent	Method
pH (S.U.)	Field	Antimony (µg/L)	SW 6020
Boron (µg/L)	SW 6020	Arsenic (µg/L)	SW 6020
Calcium (mg/L)	SW 6020	Barium (μg/L)	SW 6020
Chloride (mg/L)	EPA 300.0	Beryllium (µg/L)	SW 6020
Fluoride (mg/L)	EPA 300.0	Cadmium (µg/L)	SW 6020
Sulfate (mg/L)	EPA 300.0	Chromium (µg/L)	SW 6020
Total Dissolved Solids (mg/L)	SM 2540C	Cobalt (µg/L)	SW 6020
		Fluoride (mg/L)	EPA 300
		Lead (µg/L)	SW 6020
		Lithium (µg/L)	SW 6020
		Mercury (µg/L)	SW 6020
		Molybdenum (µg/L)	SW 6020
		Selenium (μg/L)	SW 6020
		Thallium (μg/L)	SW 6020
		Radium 226 and 228 combined (pCi/L)	EPA 903.1 & 904.0

NOTES:

- 1. S.U. = Standard Unit.
- 2. μ g/L = micrograms per liter.
- 3. mg/L = milligrams per liter.
- 4. pCi/L = picocurie per liter.

Prepared by: KAE Checked by: JMC Approved by: MCC

Table 6Relative Percent Difference Summary -November 1, 2022

Chemical Parameter	Units	MW-8	DUP	Relative Percent Difference
рН	S.U.	7.05	7.05	0.00
Boron	µg/L	440	450	2.25
Calcium	mg/L	110	110	0.00
Chloride	mg/L	51	51	0.00
Fluoride	mg/L	N/A	N/A	N/A
Sulfate	mg/L	130	120	8.00
Total Dissolved Solids	mg/L	500	520	3.92

Relative Percent Difference Summary -

April 18, 2023

Chemical Parameter	Units	MW-4	DUP	Relative Percent Difference
рН	S.U.	7.49	7.49	0.00
Boron	µg/L	680	700	2.90
Calcium	mg/L	72	72	0.00
Chloride	mg/L	10	11	9.52
Fluoride	mg/L	N/A	N/A	N/A
Sulfate	mg/L	76	66	14.08
Total Dissolved Solids	mg/L	330	300	9.52

Relative Percent Difference Summary -

October 11, 2023

Chemical Parameter	Units	MW-8	DUP	Relative Percent Difference
рН	S.U.	7.07	7.07	0.00
Boron	µg/L	423	423	0.00
Calcium	mg/L	96.5	97.2	0.72
Chloride	mg/L	44	44	0.00
Fluoride	mg/L	N/A	N/A	N/A
Sulfate	mg/L	102	103	0.98
Total Dissolved Solids	mg/L	455	460	1.09

NOTES:

- 1. S.U. = Standard Unit.
- 2. μ g/L = micrograms per liter.
- 3. mg/L = milligrams per liter.
- 4. Relative Percent Difference tolerance = 20%.

Prepared by: GREDELL Engineering Resources, Inc.

Table 7

Alternate Data Sets - Eleventh Detection Sampling Event

Constitue	ent-Well Pair ¹	Alternate Background Data Base	Background
Well ID	Constituent	(to eliminate trending data) ²	set size (n)
MW-3	рН	June 2017 through October 2020	12
MW-6	pН	January 2017 through October 2020	17
	Boron	November 2018 through October 2020	8
	Calcium	November 2018 through October 2020	8
MW-8	Chloride	June 2018 through October 2020	8
	Total Dissolved Solids	November 2018 through October 2020	8

Notes:

1. Trending constituent-well pairs identified based on Mann-Kendall Sen's Slope Trend Analysis of data.

2. Alternate background data sets proposed to eliminate significant increasing (or decreasing for pH) trends in data sets.

Alternate Data Sets - Twelfth and Thirteenth Detection Sampling Events

Constitue	ent-Well Pair ¹	Alternate Background Data Base	Background set size (n)			
Well ID	Constituent	Constituent (to eliminate trending data) ²				
MW-3	pН	June 2017 through November 2022	16			
MW-6	Calcium	February 2019 through November 2022	11			
Boron		June 2018 through November 2022	13			
MW-8	Calcium	September 2017 through November 2022	16			
IAI AA -O	Total Dissolved Solids	September 2017 through November 2022	16			

NOTES:

1. Trending constituent-well pairs identified based on Mann-Kendall Sen's Slope Trend Analysis of data.

2. Alternate background data sets eliminate significant increasing (or decreasing for pH) trends in data sets.

40 CFR 257 Appendix III Constituents for Detection Monitoring	Units	MW-3	MW-4	MW-5	MW-6	MW-8
pH Upper	S.U.	6.772	7.516	7.011	7.00	7.242
pH Lower	S.U.	6.254	7.221	6.68	6.67	7.038
Chloride	mg/L	2.43	19.57	19.46	2.954	78.74
Fluoride	mg/L	0.438	0.259	0.272	0.338	0.26
Sulfate	mg/L	29.71	144.5	267.4	40.3	149.9
Total Dissolved Solids	mg/L	183.4	414.6	545.9	251.5	547.4
Boron	µg/L	52.07	1549	537.2	58.99	577.9
Calcium	mg/L	23.56	97.16	132.9	48.81	120

Table 8 Intra-Well Prediction Limit Summary - Eleventh Detection Sampling Event

Notes:

1. Prediction limits for MW-3 through MW-6 based on data spanning November 2016 to October 2020, except as noted in Table 7.

2. Prediction limits for MW-8 based on data spanning May 2017 to October 2020, except as noted in Table 7.

3. Shaded cells indicate where alternate data sets (Table 7) were used to calculated Prediction Limits after trend removal.

Intra-Well Prediction Limit Summary - Twelfth and Thirteenth Detection Sampling Events

40 CFR 257 Appendix III Constituents for Detection Monitoring	Units	MW-3	MW-4	MW-5	MW-6	MW-8
pH Upper	S.U.	6.771	7.499	6.996	7.00	7.241
pH Lower	S.U.	6.308	7.225	6.699	6.67	7.033
Chloride	mg/L	2.354	19.7	17.47	4.382	67.53
Fluoride	mg/L	0.438	0.259	0.272	0.338	0.26
Sulfate	mg/L	29.65	138.1	269	38.7	151.9
Total Dissolved Solids	mg/L	184	415.2	545.3	253	521.7
Boron	µg/L	47.74	1511	518	60.06	571.3
Calcium	mg/L	23	95.44	137.6	50.19	120.6

Notes:

1. Prediction limits for MW-3 through MW-6 based on data spanning November 2016 to November 2022, except as noted in Table 7.

2. Prediction limits for MW-8 based on data spanning May 2017 to November 2022, except as noted in Table 7.

3. Shaded cells indicate where alternate data sets (Table 7) were used to calculated Prediction Limits after trend removal.

Appendix 1

Field Sampling Notes

Appendix 1a

Field Sampling Notes – November 1, 2022 (Second 2022 Semi-annual Event)

	Facility:		MU NG Ash Ponde - Ger			Instrumen	tation Calibra		Log	A02,3	2 Pa	tec_		
	Field Inst	uments:	In-Situ SmarTROLL	MP or In-Situ	AquaTROLL 40	io •	·······	ŀ	IF scientific, in	ic. Micro TPI Fie	d Portable Tu	rbidimeter		
		5/N#:	893502		<u></u>		4	201607366						
	Date	Time	pH Standards (S.U.)	pH Measure- ments (S.U./mV)	Specific Conductance Standerd (µS/cm)	Specifi Conducta Measuren (µS/cm	nce Reduction rent Potential		Oxidation Reduction Potential leasurement (mV)	Dissolved (%		Turbidity Standards (NTU)	Turbidity Measurements (NTU)	
oration			4.00 @ 25.00°C Standard is	4.01	1413 @25.00°C		220 mV at 25.00°C			Temperature (°C)	= 19.83	0.02	= 0,02	
Beginning of Day Calibration	11-1- 2022	0630	7.00 @25.00°C Standard is 7 @25°C	<u>7.02</u> -35.4		= 1414	6 Standard is	- ~	29.1				= [0,0	
Beginning			10.00 @25.00°c Standard is	10.00 -208.1	\$ 25.00 %					Barometric Pressure (mm/Hg) Measurement	= 756.60 = 00.097	1000	= 1 000,6	
			4.00 @ 25.00°C Standard is 4 @ €5 °C	4.07	1413 @25.00°C		220 mV al				= -21.77	0.02	= 0,02	
End of Day Check	2072	1300	7.00 @25.00°C Standard is 7 @ 25°C	7.12 NA		1378	25.00°C	= à	las. C	Tap Water Source	Sikeshi City	10.0	- 9.86	
Endo			10.00 @25.00°C Standard is 10 @ 5 · C	10.08 NA			Standard is mV @			Barometric Pressure (mm/Hg) Measurement	= 37.2. = 96.50	1000	- 986.00	

The in-Situ SmarTROLL MP Field Meter and In-Situ AquaTROLL 400 measure Temperature, Specific Conductance, Dissolved Oxygen, pH, and Oxideteen Reduction Potential. Notes: The HF scientific, inc. Micro TPI Field Portable Turbidimeter measures Turbidity.

Dissolved oxygen is calibrated via % saturation method; however, field measurements are recorded as mg/L.

I certify that the aforementioned meters were calibrated within the manufacturers specifications.

Date: 11-01-2022

By:

Rev: February 14, 2022

SBMU

Field Instrumentation Calibration Log

Facility: Minuten RIEC Ash-Dougls - Groundwater Monitoring

AST. 22 Paper Calibrated by:

	Field Instr	uments:	In-Situ SmarTROLL	-Situ SmarTROLL MP or In-Situ AquaTROLL 400						HF scientific, inc. Micro TPi Field Portable Turbidimeter								
		S/N #:	893507	13507						201607366								
	Date	Time	pH Standards (S.U.)	pH Measure- ments (S.U./mV)	Specific Conductance Standard (µS/cm)	•	Specific Conductance Measurement (#S/cm)	Oxidation Reduction Potential Standard (m		Oxidation Reduction Potential Measurement (mV)	Dissolved (%		ygen	Turbidity Standards (NTU)	1	Turbidity Measurements (NTU)		
tion			4.00 @ 25.00°C	4.0)	1413			220 mV at			Temperature (°C)	=	21.85	0.02	=			
Beginning of Day Calibration			420250	139.57	@25.00°C			25.00°C			Tap Water		Keste			0.0R		
Oay C	11-2- 2072	0630	7.00 @25.00°C Standard is =	7.02		22	1413.7		-	0.0	Source		City	10.0	=	10,0		
jjo đi	CT MICL		7.0@29°	-37.4			-	Standard is	is 229,1	Barometric _	Ŧ	70210						
glnnir			10.00 @25.00°c	10.03			•	29 mV @			Pressure (mm/Hg)		762.19	1000	=	1000.0		
			13 025 °C	-207.2							Measurement	×	120,017					
			4.00 @ 25.00°C Standard is =	4.04	1413						Temperature (°C)		74.49	0.02	,Ħ	0.01		
eck.	11-2-		©°C	NA	@25.00°C			220 mV at 25.00°C			Tap Water	-	1/1254					
End of Day Check	2022	1315	7.00 @25.00°C Standard is =	7.17			1418.8		_	228.4	Source	-	(ity)	10.0	ļ	9.96		
of D:	aroda			NA			-			440.4	Barometric		7	i		1.10		
End			10.00 @25.00°C	10.07				Standard is			Pressure (mm/Ha)	=	739.84	1000	=	993.3		
			Standard is =*C	NA				5570			Measurement	=	96.89	1000		775.5		

The In-Situ SmarTROLL MP Field Meter and In-Situ AquaTROLL 400 measure Temperature, Specific Conductance, Dissolved Oxygen, pH, and Oxidation Reduction Potential Notes: The HF scientific, mc. Micro TPI Field Portable Turbidimeter measures Turbidity.

Dissolved oxygen is calibrated via % saturation method; however, field measurements are recorded as mg/L.

8y

I certify that the aforementioned meters were calibrated within the manufacturers specifications Shith Pase

Date 11-02-2022

Facility: <u>SBMU SPS - CCR Groundwater Monitoring</u> Monitoring Well ID: <u>MW3</u> Name (Field Staff): <u>A PQ +LI T Lowes</u> <u>A DUester</u> Date: <u>II - (- 2022</u>
Access: Accessibility: Good Fair Poor Poor Well clear of weeds and/or debris?: Yes Mo Well identification clearly visible?: Yes No Remarks:
Concrete Pad: Good Inadequate Condition of Concrete Pad: Good Inadequate Depressions or standing water around well?: Yes No Remarks: No
Protective Outer Casing: Material = 4" x 4" Steel Hinged Casing with Hasp Condition of Protective Casing: Good Damaged Condition of Locking Cap: Good Damaged Condition of Lock: Good Damaged Condition of Veep Hole: Good Damaged Remarks: Good Damaged
Condition of Riser: Good Damaged Condition of Riser Cap: Good Damaged Measurement Reference Point: Yes No Remarks: Kenarks: Kenarks:
Dedicated Purging/Sampling Device: Type = ½ " ID Semi-Rigid Polyethylene & 0.170" ID Flexible Silicone Tubing Silicone Tubing Condition: Good Damaged Missing Remarks: Monitoring Well Locked/Secured Post Sampling?: Yes / No Remarks: No
Field Certification for for for Leadman 11-1-20 Signed Title Date

	Monito	ring Well ID	MW	3 Fac	ility: SBM	J Sikeston P	ower Statio	n - Groundw	ater Monito	ring	· · ·
	Initial Wate	er Level (fee	t btoc):	13.30)		Date: 1	1+1	2022		<u></u>
	Initial Grou	ndwater Ele	vation (NAVE	088):	4		Air Pressu	re in Well?	Y		
		FORMATIO									
			2022		12	(+					
	Name (Sar	nple Collect	tor):	Lone	25			_			
	Method of	Well Purge:	Low Flov	Perstaltic I	^o ump	De	icated Tub	ing? (Y) / N		
	Time Purgi	ng initiated:	0	731		On	e (1) Well V	/olume (mL)	:	NA	
	Beginning	Water Level	l (feet btoc):	13.	30	Tot	al Volume l	Purged (mL)		47	00
			er Elevation (N				.) Il Purged T	o Dryness?	12	Y / 🚯	
			btoc):	_			•	-	g (feet btoc):		30
): 2" Sch 40					e., pump is c		,,	
	Casily Dia		. 2 001 4			Tin	ne Sampling	g Completed	1:	07.	56
	PURGE ST		ON DATA		AP			Outdotter			
	Time	Purge Rate	Cumulative Volume	Temp	- Opeoliis Conductance	Dissolved Oxygen	pН	Oxidation Reduction	Turbidity	Water Level	Notes (e.g., opacity,
\setminus		(mL/min)	(mL)	(°C)	(µS/cm)	(mg/L)	(S.U.)	Potential (mV)	(NTU)	(feet btoc)	color, odor)
	0733		390	16.74	11.80	2.02	7.22	72.2	9.32	13.30	White Pa
	0735	215	-820 1300	16.18	6.94	1.98	7.22	71.4	7.17	13.30	White AD
	0739	230	1760	16.03	6.10	1.78	7.04	51.1	5.81	13.30	clear, no olor
	0741	290	2340	15.80	4.86	1.60	6.90	57.1	5.81	13.30	clear, ho dor
	0743		2720	15.75	5.31	1.73	6.87	56.0	3.64	13.30	
	2745	-	3200	15.76	7.35	1.82	6.78	58.7	3.21	13.30	14 PP
	0747	240	3680	15.71	3.22	1:62	6.81	53.2		13.30	ı ()
	0751	260	4700	15.73	3.53	1.25	6.83	53.4	3.60	13.30	1. 19

			Field San	npling Log			
Facility:	SBMU Sikeston	Power Station -	CCR Groundwa	ater Monitoring	Monitoring We	IIID:A	AW 3
Sampling Informa	ation:						
Method of Samplin	ig: Low Flow -	Perstaltic Pump	& Tubing	······		Dedicated:	(Y) / N
Water Level @ Sa	mpling (feet btoc)	: /3.3	2				
Monitoring Event:	Annual ()	Semi-Annual	Quarte	erly () Mo	onthly ()	Other ()	
Final Purge Stabilz	ation Sampling D	ata:				Oxidation	
<u>Date</u> Sample Time	Sample Rate (mL/min)	Temp (°C)	Specific Conductance (µS/cm)	Dissolved Oxygen (mg/L)	рН (S.U.)	Reduction Potential (mV)	Turbidity (NTU)
11-1.2022	250	15.70	3.53	1.29	6.83	53.4	3.60
Instrument Calibr See instrument cal 1 - In-Situ SmarTr 2 - HF scientific, in	ibration log of dai oll Multi-Probe Fi	eld Meter (Temp	erature, Specifi	ing instruments: ic Conductance, Dissolv	ed Oxygen, pH	, Oxidation Red	uction Potentia
General Informati	ion:		. I				
Weather Condition	is @ time of sam	oling: <u>C10</u>	vely, F	0997			
Sample Character	istics: <u> </u>	lear, C	olones	5. Gdorles			
Samplé Collection		Moton	within	50 feet	2	. 24	<u> </u>
C Partic							
		tung v	alves a	k reported	is longe	CHVITY &	or 41(
data in	1 TOR						
					<u> </u>		
· <u> </u>					<u></u>		,
l certify that sampl	ing procedures w	ere in accordanc	ce with applicat	ble EPA and State proto	cols.		

Date: 11-1-22 By: por p- Title: (25 Learnin

Page 2 of 2

Facility: SBMU SPS – CCR Groundwater Monitoring Monitoring Well ID: <u>MW6</u>
Name (Field Staff): J Lowes A Pake A Duester
Date: 11-1-2022
Access:
Accessibility: Good Fair Poor
Well clear of weeds and/or debris?: Yes No
Well identification clearly visible?: Yes Mo No
Remarks:
Concrete Pad: Good Inadequate
Depressions or standing water around well?: Yes No
Remarks:
Protective Outer Casing: Material = <u>4" x 4" Steel Hinged Casing with Hasp</u>
Condition of Protective Casing: Good Damaged
Condition of Locking Cap: Good L Damaged
Condition of Lock: Good Damaged
Condition of Weep Hole: Good Damaged
Remarks:
Well Riser: Material = 2" Diameter, Schedule 40 PVC, Flush Threaded
Condition of Riser. Good Damaged
Condition of Riser Cap: Good 🗠 Damaged
Measurement Reference Point: Yes _/ No
Remarks:
Dedicated Purging/Sampling Device: Type = 1/4 " ID Semi-Rigid Polyethylene & 0.170" ID Flexible Silicone Tubing
Condition: Good Damaged Missing
Remarks:
Monitoring Well Locked/Secured Post Sampling?: Yes No
Remarks:
Field Certification Min (as Lewiman 11-1-202)
Field Certification Image: March Mar

Monito	ring Well ID:	_ <u></u> M	r 6 Fac	ility: <u>SBML</u>	J Sikeston P	ower Statio	n - Groundw	rater Monitor	ing	
Initial Wate	er Level (fee	t btoc):	3.31			Date:	11-1-	202.2		
Initial Grou	ndwater Ele	vation (NAVE)88):			Air Pressur	e in Well?	Y ID		
PURGE IN	FORMATIO	N								
Date:		-202.	2						· · · · · · · · · · · · · · · · · · ·	
Name (Sar	nple Collect	or):	I Lo	mes	······					
Method of	Well Purge:	Low Flow	v Perstaltic I	oump	Dec	licated Tub	ing? (Υ) / N		
Time Purgi	ing Initiated;	D	807		On	e (1) Well V	olume (mL):	:	NA	
	Water Level		13	.31	Tot	ai Volume F	^o urged (mL)	:	9800	<u> </u>
Beginning	Groundwate	r Elevation (N	AVD88):	19 ^{AP}	We	II Purged To	o Dryness?		Y / 🕅	
Well Total	Depth (feet	btoc):	37.75		Wa			g (feet btoc):	13.3	3/
Casing Dia	meter (feet)	: <u>2" Sch 40</u>	0 PVC				e., pump is c		081	17
				AP	I KT	ie Sampling	g Completed			10
PURGE S	TABILIZATIO						Oxidation			
Time	Purge Rate (mL/min)	Cumulative Volume (mL)	Temp (°C)	Bposific Conductance (µS/cm)	Dissolved Oxygen (mg/L)	рН (S.U.)	Reduction Potential	Turbidity (NTU)	Water Levei (feet btoc)	Notes (e.g., opacity, color, odor)
2700	(Indensity		10 70		3.4	6.90	(mV) 45.4	5.89	13.31	Clear A.2
0809	000	520	15.76	18.51	3.27	6.80	and the second s		13.31	11 11
0811	260	1040	15.95	22.50	-		655	13.22		BIOCA NO
0813	275	15-80	16.07	15.34	2.76	6.80	52.9	22.41	(3.31	
0219		2145	16.12	20.71	2.69	6.97	52.7	12.71	13.31	BILLER AZ
0817	273	2680	16.17	16.09	1.87	6.91	49.6	14.22	13.31	Clear, As dor
0819	260	3200	16.17	16.66	1.74	6.84	48.9	15.93	13.31	1. n
0821	2-80	3760	16.22	21.52	1.53	6.90	54.8	14.23	13.31	11 12
0823	272	4300	16 24	33.29	1.74	6.86	51.5	15.02	13.31	43 P
2825	230		16.26		1.48	6.86	62.5	11.90	13.31	
0827	272	5400	16.29	42.46	1.42	6.75	55.4	9.91	13.31	et 17
0824	293	5980	16.29	13.45	1.35	6,80	52.7	7.98	13.31	· · · ·
0831	260	6900	16.29	26.37	1.45	6.82	60.3	6.17	13.31	n //
0833	280	7060	16.31	16.54	1.09	6.91	465	G.79	13.31	
0835	275	7610	16.30	11.52	1.10	6.89	61.8	5.80	13.31	K 77
0887	265	8140		13.50	1.07	6.85	50.3	7.60	13.3/	11 11
0239	260	8610	16.24	13.46	0.69	6.91	52.9	5.21	13.31	54 17
0841	270	9220	16.34	9.52	0.21	6.84	61.0	5.83	13.30	4 P
0343	290	9800	16.37	6.89	0.75	6.85	44.5	5.60	13.31	1 17

			Field Sam	npling Log			
Facility:	SBMU Sikeston	Power Station -	CCR Groundwa	ter Monitoring	Monitoring We	HID:	w G
Sampling Informa	ition:						
Method of Samplin	g: Low Flow -	Perstaltic Pump	& Tubing		<u> </u>	Dedicated:	(Y) / N
Water Level @ Sa	mpling (feet btoc)	13.31	<u>. </u>				
Monitoring Event:	Annual ()	Semi-Annua	Quarte	rly () Ma	onthly ()	Other ()	
Final Purge Stabliz	ation Sampling C	Data:		,			
<u>Date</u> Sample Time	Sample Rate (mL/min)	Temp (°C)	Specific Conductance (µS/cm)	Dissolved Oxygen (mg/L)	рН (S.U.)	Oxidation Reduction Potential (mV)	Turbidity (NTU)
<u>11-1-2022</u> 0843	290	16.37	6. 89	3.75	6.35	44,5	5.60
2 - HF scientific, ir	libration log of da roll Multi-Probe Fi nc. Micro TPI Fiel	eld Meter (Temp	erature, Specifi	ing instruments: ic Conductance, Dissolv	red Oxygen, pH	, Oxidation Red	uction Potentia
General Informati	-	~					
Weather Condition		pling: <u>>v</u>	<u>nny</u>	<u> </u>			
Sample Character	istics: <u>CL</u>	201:02	aless C	olaless	•		
Sample Collection	Order:	Per SAP		, <u> </u>		5 II.	•
Comments and Ot		ance Val	ve are	reparked as	Conduct	inity fo	rail
deite in	1035		•		* 5		
		ŝ •.					
		#X		<u></u>			
		* *					k
	ii.						
	Χ		<u>i</u>			•	
	à	• •		à Ø			
			al .) 			
I certify that sampl	ing procedures w	vere in accordan	ce with applicat	ble EPA and State proto	cols.		

Date: 11-1-2022 By: Ashing Catel Title: Cab Lendman

Page 2 of 2

Facility: <u>SBMU SPS - CCR Groundwater Monitoring</u> Monitoring Well ID: <u>MWS</u> Name (Field Staff): <u>A fcitu J Lowes</u> A Dvester Date: <u>[]-1-22</u>
Access: Accessibility: Good Fair Poor
Well clear of weeds and/or debris?: Yes No
Well identification clearly visible?: Yes No
Remarks:
Concrete Pad: Good Inadequate
Depressions or standing water around well?: Yes No
Remarks:
Protective Outer Casing: Material = <u>4" x 4" Steel Hinged Casing with Hasp</u>
Condition of Protective Casing: Good Damaged
Condition of Locking Cap: Good L Damaged
Condition of Lock: Good 🗾 Damaged
Condition of Weep Hole: Good 📈 Damaged
Remarks:
Well Riser: Material = <u>2" Diameter, Schedule 40 PVC, Flush Threaded</u>
Condition of Riser: Good Damaged
Condition of Riser Cap: Good 🖵 Damaged
Measurement Reference Point: Yes No
Remarks:
Dedicated Purging/Sampling Device: Type = 1/4 " ID Semi-Rigid Polyethylene & 0.170" ID Flexible Silicone Tubing
Condition: Good Damaged Missing
Remarks:
Monitoring Well Locked/Secured Post Sampling?: Yes V No
Remarks:
Field Certification And Aca Cas Leadman 1-1-2022 Signed Title Date

Monito	ring Well ID	Mn	<u>(</u> 5 Fac	sility: SBMU	J Sikeston P	ower Statio	n - Groundw	vater Monitor	ring	
Initial Wate	er Level (fee	t bloc):	12.2	3	······································	Date:	(-1-0	2072	· · ·	
Initial Grou	indwater Ele	vation (NAVE)88):			Air Pressu	e in Well?	Y / 0		
PURGE IN	IFORMATIC	N								
Ĩ		- 2000					· · · · · · · · · · · · · · · · · · ·			
		or):	JL	mes						
	Well Purge:			Pump	De	dicated Tub	ing? (
Time Purg	ing Initiated:		0942		 	o (4) Molt V	/olume (mL)		МА	
	-								<u>NA</u>	60
Beginning	Water Level	(feet btoc);	(ox	. 23	Tot	al Volume I	Purged (mL)			0
		r Elevation (N		<u></u>	We	I Purged T	o Dryness?		Y /O	
Well Total	Depth (feet	btoc):	37.	15	Wa			g (feet btoc):	12.1	a <u>3</u>
Casing Dia	ameter (feet)	: 2" Sch 4					e., pump is c	·	late	
					Tim	ne Sampling	g Completed	:	015	
PURGE S	TABILIZATIO	ON DATA					(Delidentine)			
Time	Purge Rate	Cumulative Volume	Temp	Specific Conductance	Dissolved Oxygen	pН	Oxidation Reduction	Turbidity	Water Level	Notes (e.g., opacity,
	(mL/min)	(mL)	(°C)	(µS/cm)	(mg/L)	(S.U.)	Potential (mV)	(NTU)	(feet btoc)	color, odor)
0944		480	17.10	18.45	2.03	6.40	58.2	14.66	12.23	FICKE ONG
0946	260	(05)	17.03	5.74	1.75	6.63	53.4	12.55	12.23	14 D
<u>29</u> 48	220	1440	16.88		2.37	6.84	-60.1	9.79	(2.23	K U
0950	250	1943	16.65	864.24	0.71	7.00	-63.7	11.46	12.25	clear, where
2962	260	2460	16.53	873.28	0.74	7.04	-70.7	11.15	12.23	vi 4
02.54	250	2960	16.51	884.30	0.75	705	-72.7	7.22	12.23	(i))
095	263	343	16.52	877.74	0.72	7.07	-73.6	12.96	12.23	11 4
0953	260	4000	16.56	852.65	0.70	7.57	-723	6.93	(2.22	4 11
09-100	° 250	4500	16.55	833.07	0.68	7.07	-73,2	5.88	12.23	ι ί ψ
1002	273	5040	16.65	833.57 833.57 759.17	0.65	7.07	-72.(6.20	12.23	<u> </u>
1004	273			860.62		7.08	-73.9	5.20	12.23	is y
1006	250	6080	16.65	859.13	92.0	7.57	-72,6	4.73	12.25	"
1008	260	6600	16.74	844.12	0.56	7.38	-72.5	4.97	12.23	V 31
1010	220	7160	16.74	802.17		7.02	-73.0	4.59	12.25	54 U
							-			

			Field San	npling Log			
Facility:	SBMU Sikeston	Power Station -	CCR Groundwa	ter Monitoring	Monitoring We	11 ID: <u> </u>	nw 5
Sampling Informa	tion:						
Method of Sampling	g: Low Flow -	Perstaltic Pump	& Tubing			Dedicated:	(Y) / N
Water Level @ San	npling (feet btoc)		23				
Monitoring Event:	Annual ()	Semi-Annua	I (D Quarte	ndy() Mo	onthly ()	Other ()	
Final Purge Stablize	ation Sampling D)ata:					
<u>Date</u> Sample Time	Sample Rate (mL/min)	Temp (°C)	Specific Conductance (µS/cm)	Dissolved Oxygen (mg/L)	рН (S.U.)	Oxidation Reduction Potential (mV)	Turbidity (NTU)
11-1-200	२४०	16.74	822.17	0.54	7.08	-73.0	4.59
2 - HF scientific, in General Information Weather Conditions 	c. Micro TPI Fiel	d Portable Turbi pling:	dimeter	c Conductance, Dissolv			24.21
1	3						
First tho	Values a	st specifi	ic condu	chance are 1	eronez a	s Condu	chivity:
P							A
		10 					
		Г <u>.</u>		· · · · · ·	*		ŭ
8		P.		· <u> </u>		1	(c)
· · · · · · · · · · · · · · · · · · ·							png

I certify that sampling procedures were in accordance with applicable EPA and State protocols.

Date: 11-1-2022 By: Ashin Pasel Title:

Title: Les Cenzman

Page 2 of 2

Facility: <u>SBMU SPS - CCR Groundwater Monitoring</u> Monitoring Well ID: <u>MW 8</u> Name (Field Staff): <u>A Patel J Lowes A Devster</u> - Date: <u>11-1-2021</u>
Access: Good Fair Poor Well clear of weeds and/or debris?: Yes No
Concrete Pad: Good Inadequate Condition of Concrete Pad: Good Inadequate Depressions or standing water around well?: Yes No Remarks: No
Protective Outer Casing: Material = 4" x 4" Steel Hinged Casing with Hasp Condition of Protective Casing: Good Damaged Condition of Locking Cap: Good Damaged Condition of Lock: Good Damaged Condition of Weep Hole: Good Damaged Remarks: Bood Damaged
Well Riser: Material = 2" Diameter, Schedule 40 PVC, Flush Threaded Condition of Riser: Good Damaged Condition of Riser Cap: Good Damaged Measurement Reference Point: Yes No Remarks: No
Nemano: Dedicated Purging/Sampling Device: Type = ½ " ID Semi-Rigid Polyethylene & 0.170" ID Flexible Silicone Tubing Condition: Good Damaged Missing Remarks: Monitoring Well Locked/Secured Post Sampling?: Yes No Remarks:
Field Certification M. M. Las Levelmen 11-1-2022 Signed Title Date

Monito	ring Well ID	: <u>Mh</u>	Fac	cility: <u>SBM</u>	U Sikeston P	ower Static	on - Groundv	vater Monito	ring						
Initial Wate	Initial Water Level (feet bloc): 11.50 .Date: 11-1-2022														
Initial Grou	indwater Ele	vation (NAVE)88): 			Air Pressu	re in Well?	Y / 🖸)						
PURGE IN	PURGE INFORMATION														
Date:															
Name (Sa	Name (Sample Collector): J Loves														
Method of Well Purge: Low Flow Perstaltic Pump Dedicated Tubing?															
Time Purging Initiated: 1027 One (1) Well Volume (mL): NA															
Beginning	Water Leve	I (feet btoc):	11	.93	Tot	al Volume	Purged (mL)	:	361	10					
Beginning	Groundwate	er Elevation (M	NAVD88):		We	ा Il Purged T	o Dryness?		YIN						
Well Total	Depth (feet	btoc):	37,10	I	Wa				AP 3-	5 /1.SO					
Casing Dia	ımeter (feet)	: <u>2" Sch 4</u>	D PVC			•	e., pump is d		100						
					l trr	ie Samplin	g Completed	l;	105						
PURGE S	ABILIZATI				Disselved		Oxidation								
Time	Purge Rate (mL/min)	Cumulative Volume (mL)	Temp (°C)	Specific Conductance (µS/cm)	Dissolved Oxygen (mg/L)	рН (S.U.)	Reduction Potential (mV)	Turbidity (NTU)	Water Level (feet btoc)	Notes (e.g., opacity, color, odor)					
1029		400	19.36	792.61	0.70	7.28	+11-2.0	3.18	11.50	VEILOW AS					
1031	230	860	18.71	792.84		7.30	-109.9	3.77	11.50	ut IP					
1033	220	1300	18.50	790.15	0,35	7.32	-1091	3.73	11.50	<u>u</u> 17					
10.35	240	1780	18.53	78521	0.26	7.33	-108,8	4.68	11.50	<u> </u>					
1037		2220	18.57	793.57	0,23	7.33	-108.7	3,40	11. So	N //					
1039		2(3)	18.61	781.75	0.21	7.33	-108.1	4.00	11.55	Clear, oder					
1001	240	3160	18.63	778.67	0.20	7.34	-157.9	3.72	11.50	14 17					
(043	240	3640	18.65	776.07	0,19	7.34	-107.5	3.25	11.50	34					
							1								
									1						

			Field San	npling Log			
Facility:	SBMU Sikeston	Power Station -	CCR Groundwa	ater Monitoring	Monitoring We		w7
Sampling Informa	ation:						
Method of Samplin	ig: Low Flow -	Perstaltic Pum	& Tubing		<u></u>	Dedicated:	(Y) / N
Water Level @ Sa	mpling (feet btoc):11.,	<u>so</u>				
Monitoring Event:	Annual ()	Semi-Annua	Quarte	nty() Mi	onthly ()	Other ()	
Final Purge Stabliz	ation Sampling D)ata:				O stalling	
<u>Date</u> Sample Time	Sample Rate (mL/min)	Temp (°C)	Specific Conductance (µS/cm)	Dissolved Oxygen (mg/L)	рН (S.U.)	Oxidation Reduction Potential (mV)	Turbidity (NTU)
<u>11-1-20</u> 22 10763	240	18.65	776.07	0.19	7.34	-107.5	3.20
See instrument cal 1 - In-Situ SmarTr 2 - HF scientific, ir General Informati Weather Condition 70 ° F	oll Multi-Probe Fi nc. Micro TPI Fiel on: s @ time of sam	eld Meter (Temp d Portable Turbi	erature, Specifi	ng instruments: c Conductance, Dissoly	ved Oxygen, pH	, Oxidation Redu	iction Potentia
Sample Characteri	stics: C	Lear, C	anes	5, odorle	35	•	*
Sample Collection	Order:	Per SAP					
Comments and Ob		eiz 0	velicut	و			
•				•			
· · · ·							

I certify that sampling procedures were in accordance with applicable EPA and State protocols.

_ Title: Leb Lerdman - Acon Date: 11-1-2022 By:) Mar _____

Page 2 of 2

Facility: <u>SBMU SPS - CCR Groundwater Monitoring</u> Monitoring Well ID: <u>MW 4</u> Name (Field Staff): <u>A Pater J Lowes A OWSTEP</u>
Date: 11-1-2.52-2
Access: Accessibility: Good <u>Fair</u> Poor
Well clear of weeds and/or debris?: Yes No
Well identification clearly visible?: Yes 🖵 No
Remarks:
Concrete Pâd: Good // Inadequate
Depressions or standing water around well?: Yes No
Remarks:
Protective Outer Casing: Material = <u>4" x 4" Steel Hinged Casing with Hasp</u>
Condition of Protective Casing: Good Damaged
Condition of Locking Cap: Good L Damaged
Condition of Lock: Good V Damaged
Condition of Weep Hole: Good <u>Damaged</u>
Remarks:
Well Riser: Material = 2" Diameter, Schedule 40 PVC, Flush Threaded
Condition of Riser: Good Damaged
Condition of Riser Cap: Good - Damaged
Measurement Reference Point: Yes No
Remarks:
Dedicated Purging/Sampling Device: Type = 1/4 " ID Semi-Rigid Polyethylene & 0.170" ID Flexible Silicone Tubing
Condition: Good Damaged Missing
Remarks:
Monitoring Well Locked/Secured Post Sampling?: Yes Ko
Remarks:
Field Certification Algh Paser las Leatman 11-1-2022
Signed Title Date

Field	Sam	pling	Log
-------	-----	-------	-----

Monito	ring Well ID	MW	- 4 Fac	cility: SBM	U Sikeston P	ower Static	xn - Groundw	vater Monito	ring		
Initial Wate	er Level (fee	t btoc):	12.6	12	· · · · · ·	Date:	1 - 1 -	रज्यन		•	
Initial Grou	Indwater Ele	vation (NAVI)88);			Air Pressu	re in Well?	Y / 🕅			
PURGE IN	FORMATIC	DN									
Date:	11-1.	202-	2		<u></u>						
Name (Sa	mple Collect	tor): 7	Lowo	8							
Method of	Well Purge:	Low Flow	v Perstaltic	Pump	De	dicated Tut	oing? (Ƴ/ N			
Time Purg	ing Initiated:		103		On	e (1) Well \	/olume (mL)	:	NA		
Beginning	Water Leve	l (feet btoc):		2,42	Tot	tal Volume I	Purged (mL)	:	<u>45</u>	50	
Beginning	Groundwate	er Elevation (I	NAVD88):		We	all Purged T	o Dryness?		Y / D		
Well Total	Depth (feet	btoc):	37.	20	Wa		fter Samplin	* *	12.	k3	
Casing Dia	ameter (feet)): <u>2" Sch 4</u>	0 PVC		_	`	e., pump is c	•	114	6	
					1 961	ne Samplini	g Completed	l.		<u> </u>	—
PURGES	TABILIZATI Purge	ON DATA		Creatific	Dissolved		Oxidation		Water	No	tes
Time	Rate (mL/min)	Volume (mL)	Temp (°C)	Specific Conductance (µS/cm)		рН (S.U.)	Reduction Potential	Turbidity (NTU)	Level (feet btoc)	(e.g., c	
1105	(200	20.17	536.68	1.44	7.52	(mV) -133.4	2 2/	12.43		na jar
1107	293	780	19.32	543.06	1.48	7.54	-129.7			YEIDW	n.2
109	265	1310		527.77	1.22	7.54	- (29.4		12.45	u Citaka	
4111	265	1840	18.18	542.08	1.15	7.56	- 129.0	3.05		Clear,	10.01
1113	275	2390	18.93	516.00	1.02	7.57	-129.7		12.43	W.	4
1115		2920	18.88	542.36	1.50	1.57	-122.1		12.45		19
1117	285	3490		541.32	3.98	7.5	-127.2		12.43	14	
1119	255	4000	18.18	535.41	2.96	7.57	-128.7	2.87	12.43	15	19
112(275	4550	12.90	539.46	2.43	7.56	-127.6	3.19	12.45	15	13
	_										
					<u> </u>				<u> </u>		
							ļ				
							1				
I						<u> </u>			ļ	ļ	
				ļ						L	
	[1				1	1	1	

Field	Sam	pling	l og
LIQM	Saili	hmiñ	LUY

Facility:	SBMU Sikeston	Power Station -	CCR Groundwa	ater Monitoring	Monitoring We	MIID: M	WY
Sampling Information	tion:	\$C					
Method of Sampling	g: Low Flow	Perstaltic Pump	& Tubing			Dedicated:	(Y / N
Water Level @ San	npling (feet btoc): _[२.प	3				-
Monitoring Event:	Annual ()	Seml-Annua	Quarte	erly () N	Ionthly ()	Other ()	
Final Purge Stabliza	ation Sampling [Data:					
<u>Date</u> Sample Time	Sample Rate (mL/min)	Temp (°C)	Specific Conductance (µS/cm)	Dissolved Oxygen (mg/L)	рН (S.U.)	Oxidation Reduction Potential (mV)	Turbidity (NTU)
$\frac{ - -2022}{ 2 }$	275	18.90	539.46	09.90	7.56	-127.6	3.19
General Information		. c.					
71°F			I MAGS	Mart adat	8 × C	#.T	
Sample Characteris	tics:	ear, Co		and odor	uss	я.т. ,	
	rtics:			म्सू जरेना	<u>uss</u>	я , т 	
Sample Characteris	rtics:	ear, Co		Mart odor	<u>uss</u>	я , т ,	
Sample Characteris	stics: Drder: servations;	Per SAP		Mart odor	<u>uss</u>	р	
Sample Characteris	stics: Drder: servations;	Per SAP	1 Mess,	Mart odor	<u>uss</u>	р 	, , , , , , , , , , , , , , , , , , ,
Sample Characteris	stics: Drder: servations;	Per SAP	1 Mess,	Mari odori	<u>uss</u>	a	, , , , , , , , , , , , , , , , , , ,
Sample Characteris	stics: Drder: servations;	Per SAP	1 Mess,	Mari odori	<u>uss</u>	р (т. с.	
Sample Characteris	stics: Drder: servations;	Per SAP	1 Mess,	And odor	<u>uss</u>	A	
Sample Characteris	stics: Drder: servations;	Per SAP	1 Mess,	And odor	235	A	

t certify that sampling procedures were in accordance with applicable EPA and State protocols.

Paser Date: 11-1-2022 98131 By:

Title: Les Lendman

Page 2 of 2

Pace

PACE ANALYTICAL SERVICES

REGULATORY PROGRAM (CIRCLE):	NPDES
MORBCA	RCRA
CCDD	TACO: RES OR IND/COMM

CHAIN OF CUSTODY RECORD^{*}

STATE WHERE SAMPLE COLLECTED MO

a

		ALL HIGH	LIGHTED ARE	AS <u>MUST</u> E	BE COMPLI	ETED BY CI	IENT (PLEA	SE PRINT)							
CLIENT			NUMBER		JECT LOC		PURCHAS	E ORDER #	6	ANA	LYSIS F	EQUES	TED	(FOR LAB USE O	NLY)
SIKESTON BMU POWER S	TATION			B	OTTOM #	ASH				/					
ADDRESS	1	PHONE			E-MAIL		DATE S	HIPPED	:					LOGIN #	
1551 W WAKEFIELD		573-47	5-3131											LOGGED BY:	
							ALL TON	TWDE P.						CLIENT: SIKESTON BMU,	SIKESTON
CITY		SAMPLER (PLEASE PRINT	ny -	25			MATRIX www-wastewat							POWER STATION	
STAT SIKESTON, MO 63801	· · · ·	Tust	in La	1We	S		DW- DRINKING W GW- GROUND W WWSL- SLUDGE NAS- NON AQUE	ATER	S					PROJECT: SIKESTON BO 2022	TTOM ASH
		SAMPLER'S					1 I CHITJ FACHATE	OUS SOLID	P		1				
CONTACT PERSON MR LUKE ST MARY		SIGNATURE	1				OK-OK SO-SOL SOL-SOLID		4		1			PROJ. MGR.: GJ SCHIND	LER
MIN LONE OF MART			ante o	" Jon			SOL-SOLIO		S04,						
		0		1000					L 🖬	4					
SAMPLE DESCRIPTION		DATE	TIME	GRAB		MATRIX	BOTTLE	PRES] ਹੱ	U				REMARKS	
(2) (UNIQUE DESCRIPTION AS IT WILL APPEAR ON THE ANALYTICAL	LREPORT)	COLLECTED	COLLECTED	GRAB	COMP	TIPE	COONT	FROVIDED	0	B					
<u> </u>		11-1-22	0751	V		GW	2	3,6	X	x					
MW-3				X	-	GW	4	3,0	1			-	+ +		
MW-4		11-1-22	1121	X		GW	2	3,6	X	X					
		11-1-22	tola	v		GW	2	3,6	x	x					
MW-5				X		Gvv	4		1				-		
MW-6		11-1-22	0843	X		GW	2	3,6	X	X	_				
MW-8		11-1-12	1043	X		GW	2	3,6	X	X	_	_	_		
DUPLICATE		11-1-22		X		GW	2	3,6	X	X					
		11-1-22	1010	V		Di	2	3,6	x	x					
FIELD BLANK			1010	X			4	5,0	1^				1		
CHEMICAL PRESERVATION CODES: I-HCL 2	- H2SO4 3 -	HNO3 4-NA	0H 5-NA	25203	6 UNPF	RESERVED	7 – OTHER								
TURNAROUND TIME REQUESTED (PLEASE CIN		AL RUSH		DATE RES		6	lunderstand	f that by initi	aling th	s box I	give the	lab per	mission (to proceed with analysis, even the	ugh it may
						\bigcirc	4 A all	assumption as and		a mauis	amonte	ac dafir	od in the	e receiving facility's Sample Accep acceptable to report to all regulate	Stanice
RUSH RESULTS VIA (PLEASE CIRCLE) EMAIL	PHONE	- 2						WITH ANALY							
EMAIL IF DIFFERENT FROM ABOVE: PHONE # IF DIFF	ERENT FROM ABOVI						PROCEED			JOOAL	IFT KES	OLIS.		NTS: (FOR LAB USE ONLY)	
RELINQUISHED BY: (SIGNATURE)	QATE -1	,-22	RECEIV	ED BY: (SIG	SNATURE)			DAT	E		6		COMME	NTS: (FOR ERB USE UNLT)	
Mail Pate	TIME							TIME			19	/ -			
	DATE	700	RECEIV	ED BY: (SIG	NATURE)			DAT	E		-	-			
RELINQUISHED BY: (SIGNATURE)	DATE		REVER								SAM	PLE TE	MPERAT	FURE UPON RECEIPT	°c
	TIME							TIME	-		CHIL	LPRO	CESS ST	ARTED PRIOR TO RECEIPT	Y OR N Y OR N
RELINQUISHED BY: (SIGNATURE)	DATE		RECEIV	ED BY: (SIG	SNATURE)			DAT	E		SAM	PLE AC	CEPTAN	ED ON ICE NCE NONCONFORMANT	
	THAT							TIME	-		1		NEEDED		Y OR N
	TIME										DAT	EAND	TIME TAP	KEN FROM SAMPLE BOTTLE	

Appendix 1b

Field Sampling Notes – December 13, 2022 (Re-sample)

Field Instrumentation Calibration Log

Facility: SBMU - Sikeston Power Station Ash Ponds - Groundwater Monitoring

Calibrated by:

ASL, 72 Padel

	Field Instru	iments:	In-Situ SmarTROL	MP or In-Situ		HF scientific, inc. Micro TPI Field Portable Turbidimeter										
		S/N #:	893500					2	0	1607366						
	Date	Time	pH Standards (S.U.)	pH Measure- ments (S.U./mV)	Specific Conductance Standard (µS/cm)	Ð	Specific Conductance Measurement (µS/cm)	Oxidation Reduction Potential Standard (mV)		Oxidation Reduction Potential Measurement (mV)	Dissolved (%)		ygen	Turbidity Standards (NTU)		Turbidity Measurements (NTU)
Calibration			4.00 @ 25.00°C	4.00	1413 @25.00℃			220 mV at 25.00°C			(-0)	_	20.84	0.02	=	୦.୦ର୍
	12-13- 22	0810	7.00 @25.00°C	TOU	41.3	н	1411.9	= Standard is	-	229.0	Tap Water Source		Sillo Sta Cily	10.0	=	10.0
Beginning of Day	ad		10.00 @25.00°c	10,00	6 25.00			279 mV @ 25 °C			Barometric Pressure (mm/Hg) Measurement	_	753.36	1000	=	1000,0
			4.00 @ 25.00°C	404	1413 @25.00°C			220 mV at			Temperature (°C)	=	20.64	0.02	=	0,03
End of Day Check	62-15- 22	0330	7.00 @25.00°C	1.05	1413	=	1393.6	25.00°C	-	229.1	Tap Water Source		લંખ.	10.0	=	13.09
End o			10.00 @25.00°C	1 <u>2.04</u> NA				Standard is 229 mV @ 25 °C			Barometric Pressure (mm/Hg) Measurement		7 4 9.37 99.737	1000	=	996.9

The In-Situ SmarTROLL MP Field Meter and In-Situ AquaTROLL 400 measure Temperature, Specific Conductance, Dissolved Oxygen, pH, and Oxidation Reduction Potential. Notes: The HF scientific, inc. Micro TPI Field Portable Turbidimeter measures Turbidity.

Date: 12-13-22 By: PB-

Dissolved oxygen is calibrated via % saturation method; however, field measurements are recorded as mg/L.

Facility: <u>SBMU SPS – CCR Groundwater Monitoring</u> Monitoring Well ID: <u>MW 3</u> Name (Field Staff): <u>A Parci A Deus HV</u>
Date: 12-13-22
Accessibility: Good Fair Poor
Well clear of weeds and/or debris?: Yes No
Well identification clearly visible?: Yes No
Remarks:
Concrete Pad: Condition of Concrete Pad: Good Marceleeed
Depressions or standing water around well?: Yes No
Remarks:
<u>Protective Outer Casing</u> : Material = $4" \times 4"$ Steel Hinged Casing with Hasp
Condition of Protective Casing: Good L Damaged
Condition of Locking Cap: Good <u>C</u> Damaged
Condition of Lock: Good Condition Damaged
Condition of Weep Hole: Good Condition Damaged
Remarks:
Well Riser: Material = 2" Diameter, Schedule 40 PVC, Flush Threaded
Condition of Riser: Good L/ Damaged
Condition of Riser Cap: Good 🗠 Damaged
Measurement Reference Point: Yes No
Remarks:
Dedicated Purging/Sampling Device: Type = <u>1/4</u> " ID Semi-Rigid Polyethylene & 0.170" ID Flexible Silicone Tubing
Condition: Good L Damaged Missing
Remarks:
Monitoring Well Locked/Secured Post Sampling?: Yes No
Remarks:
Field Certification fell and los Tech 12-13-22 Signed Title Date

Prepared by: GREDELL Engineering Resources, Inc.

January 2017

				Fiel	d Sampli	ng Log				
Monito	ring Well ID:	Mw	<u>3</u> Fac	ility: SBMU	J Sikeston P	ower Statio	n - Groundw	ater Monitor	ing	
Initial Wate	er Level (feel	t btoc):	3.53			Date: 16	?-13	20		
Initial Grou	ndwater Ele	vation (NAVD			_	Air Pressur	e in Well?	Y / Ň		
PURGE IN	FORMATIO	N								
Date:	12-13	-22		5						
Name (Sar	nple Collect	or): <u>A</u>	Devs	kr						
Method of	Well Purge:	Low Flow	Perstaltic F	⁵ ump	Dec	dicated Tub	ing?	Y) / N		
Time Purgi	ng Initiated:	00	717		On	e (1) Well V	/olume (mL):		NA	
Beginning	Water Level	(feet btoc):	13	.53	Tot	al Volume I	Purged (mL)	:	66 a	>
		r Elevation (N	AVD88):		We	I Purged T	o Dryness?		Y / 🕅	
		btoc):3	-		 Wa	ter Level af	ter Sampling	g (feet btoc):	13.5	3
						(i.e	e., pump is c	off)	_	
Casing Dia	imeter (feet)	: 2" Sch 40	JPVC		Tim	ne Sampling	g Completed	l: "	MA	
PURGE S	TABILIZATIO	ON DATA								
Time	Purge	Cumulative	Temp	Specific	Dissolved	pН	Oxidation Reduction	Turbidity	Water	Notes
	Rate (mL/min)	Volume (mL)	(°C)	Conductance (µS/cm)	Oxygen (mg/L)	(S.U.)	Potential (mV)	(NTU)	Level (feet btoc)	(e.g., opacity, color, odor)
0919		390	15.60	188.76	59.0	6.48	55.8	120.7	13.53	Yellow Moyo
0921	210	810	15.53	187.46	0.93	6.50	54.4	122.0	13.53	N 1/
0923	240	1290	15.49	1 25.37	0.87	6.51	523	95.87	13.53	• •/
0925	250	1792	15.52		0.85	6.52	48.3	21.29	13.53	L\
0927	209	2200	15.57	180.96		6.54	63.0	13.95	13.53	u n
0929	245	2692	15.51	174.57	3.74	6.56	51.5	12.06	13.53	A ()
		011/0	$\sim \infty$	172 27	0.73	6.57	47.6	7.03	13.53	clear, ado
5933	153	3680	15.53	174.41 172.53 167.33 167.13 157.33 168.11	0.68	6.61	43.9	5.37	13.53	N 1
0935	250	4183	15.57	170.50	2.56	6.60	42.6	5.99 5.49 5.45 6.20	13.53	11 (
0937	250	4683	15.58	167.30	0.54	6.61	37.4	S.US	13.53	N 1
0939	240	5160	15.60	169.13	0.54	6.63	35.3	5.20	13.53	ti /
oqui	250	5660	15.64	157.30	2.53	6.64	33.0	3.97	13.53	1° (
0943	250	6160	15.64	168.11	3.52	6.64	34.7	3.97	13.53	Q /
09 US	220	6600	15.67	166.92	0.50	6.65	35.1	3.43	13.53	с .
-										

Facility:	SBMU Sikeston I	Power Station - (ter Monitoring	Monitoring Wel	IID: ///	<u>N 3</u>	
Sampling Informa	tion:						
Method of Samplin	g: Low Flow -	Perstaltic Pump	& Tubing		²	Dedicated:	(Y) / N
Water Level @ Sai		: 13.5	53			Resal Other	MPID
Monitoring Event:	Annual ()	Semi-Annua	I() Quarte	rly() Mo	onthly ()	Other	The second secon
Final Purge Stabliz		ata:			T		<u> </u>
Date Sample Time	Sample Rate (mL/min)	Temp (°C)	Specific Conductance (µS/cm)	Dissolved Oxygen (mg/L)	рН (S.U.)	Oxidation Reduction Potential (mV)	Turbidity (NTU)
12-13-22	223	15.67	166.92	J. 50	6.65	35.1	3, 43
Instrument Calibo See instrument ca 1 - In-Situ SmarTo 2 - HF scientific, i General Informat	libration log of da roll Multi-Probe F nc. Micro TPI Fie	ield Meter (Temj ld Portable Turb	oerature, Specif idimeter	ing instruments: ic Conductance, Dissol	ved Oxygen, p⊦	I, Oxidation Red	uction Potentia
Weather Condition			ovey				
Sample Character	ristics:	ear, co	101 (23)	, odorres	<u>} </u>	· · · · · ·	
Sample Collection	o Order:	Per SAP			•. · ·		
Comments and O	bservations:	Was	7.09			5a 2	51
		*					
NO S	amples	JUS-	+ data	i			
а <u>и</u>		·					
		· · · ·		•			
	, n	a)					
C		20 - C		54 20			
·				·	£)		
				LL. EDA and State pro	tocols		

I certify that sampling procedures were in accordance with applicable EPA and State protocols.

Title: Leng Tech Date: 12-13-22 By: Ashish R.201

Page 2 of 2

A.L. /

Facility: SBMU SPS – CCR Groundwater Monitoring
Monitoring Well ID: <u>MW G</u> Name (Field Staff): <u>A Part A Dev S</u> Rr
Date: 12-13-22
Accessibility: Good Fair Poor
Well clear of weeds and/or debris?: Yes No
Well identification clearly visible?: Yes No
Remarks:
Concrete Pad: Good Inadequate
Depressions or standing water around well?: Yes No
Remarks:
<u>Protective Outer Casing</u> : Material = $4" \times 4"$ Steel Hinged Casing with Hasp
Condition of Protective Casing: Good Damaged
Condition of Locking Cap: Good // Damaged
Condition of Lock: Good <u>C</u> Damaged
Condition of Weep Hole: Good Damaged
Remarks:
Well Riser: Material = 2" Diameter, Schedule 40 PVC, Flush Threaded
Condition of Riser: Good Damaged
Condition of Riser Cap: Good <u>Damaged</u>
Measurement Reference Point: Yes No
Remarks:
Dedicated Purging/Sampling Device: Type = 1/4 " ID Semi-Rigid Polyethylene & 0.170" ID Flexible Silicone Tubing
Condition: Good Damaged Missing
Remarks:
Monitoring Well Locked/Secured Post Sampling?: Yes Mo
Remarks:
Field Certification Brown R Las Them 12-13-22
Signed Title Date

Monitor	ing Well ID:	Mn	Fac	ility: SBM	J Sikeston P	ower Statio	on - Groundw	ater Monitor	ing	
Initial Wate	r Level (feel	t btoc):	13.4	8		Date: /	2-13-	22		
Initial Grou	ndwater Ele	vation (NAVE)88):			Air Pressu	re in Well?	y /Q		
PURGE IN	FORMATIO									
Date:	2-1	3-22	A (
Name (San	nple Collect	or):	AL	Luster						
Method of V	Well Purge:	Low Flow	v Perstaltic I	Pump	De	dicated Tub	oing? (Y) / N		
Time Purgi	ng Initiated:		038		On	e (1) Well \	/olume (mL)	:	NA	
Beginning	Water Level	(feet btoc):	_13	. 48	Tot	al Volume	Purged (mL)	:	38	60
Beginning	Groundwate	er Elevation (N	NAVD88):		We	ell Purged T	o Dryness?		Y / 🕅	
Well Total	Depth (feet	btoc): <u>3</u>	7.50		Wa		fter Samplin		13.	49
Casing Dia	meter (feet)	: <u>2" Sch 40</u>	0 PVC				e., pump is o		110	
					Tin	ne Samplin	g Completed	12		×
PURGE ST	ABILIZATIO	ON DATA	r				Oxidation			
Time	Purge Rate (mL/min)	Cumulative Volume (mL)	Temp (°C)	Specific Conductance (µS/cm)	Dissolved Oxygen (mg/L)	рН (S.U.)	Reduction Potential (mV)	Turbidity (NTU)	Water Level (feet btoc)	Notes (e.g., opacity, color, odor)
IDUD		500	15.93	441.79	0.83	6.77	-79.6	12.76	13.49	Clear, ador
1042	250	100 D	15.94	441.24	2.79	6.17	-85.6	12.16	13.49	et tr
13:44	240	1480	15.95	441.55	2.79	6.78	-રૂપ.ર	8.04		et 11
1046	230	1942		442.36		6.79	-84.4	8.95	13.49	1 · · · · · · · · · · · · · · · · · · ·
1048	220	2380	15.96	443.18	3.71	6.80	-83.8	3.82		14 Pi
1050	245	286୦	16.00	44023	0.70		-83.0	8.98		ee r/
1052	240	3342	16.02	439.41	0.67	6.79	-81.2	8.63	13.49	14 P/
1054	280	3800	16.02	438.68	0.66	6.78	-81.6	8.15	13.49	u 1,
										l

Facility:	SBMU Sikeston	Power Station -	CCR Groundwa	ter Monitoring	Monitoring We		NG
Sampling Informa	ation:						
Method of Samplin	ig: Low Flow -	Perstaltic Pump	& Tubing			Dedicated:	(Y) / N
Water Level @ Sa	mpling (feet btoc)	: 13.U	9				
Monitoring Event:	Annual ()	Semi-Annua	I() Quarte	rly() Me	onthly ()	Other 🗸	
Final Purge Stabliz	ation Sampling E	Data:					
<u>Date</u> Sample Time	Sample Rate (mL/min)	Temp (°C)	Specific Conductance (µS/cm)	Dissolved Oxygen (mg/L)	рН (S.U.)	Oxidation Reduction Potential (mV)	Turbidity (NTU)
12-13-22	230	16.02	U38.68	0.66	6.78	-81.6	8.1S
Instrument Calibr See instrument cal 1 - In-Situ SmarTr 2 - HF scientific, in	libration log of da oll Multi-Probe Fi	ield Meter (Temp	perature, Specifi	ng instruments: c Conductance, Dissol	ved Oxygen, p⊦	I, Oxidation Red	uction Potentia
General Informat	ion:	5220 I 8 I					
Weather Condition	ns @ time of sam	pling: C/C	azy				
Sample Character	iștics:	lear, a	sones	S, DZorles	5		
Sample Collection		Per SAP		a 			
Comments and Ot	buffer	is 7.1)	се — — — — — — — — — — — — — — — — — — —	• % :3	ж К Б	27	
COL 10010		1 01		· · · · ·	- (m.) 	3	
COILECTE	c rie	19 1810		<u>^</u>		2	
I certify that samp	ling procedures w	vere in accordan	ce with applicat	ble EPA and State proto	ocols.		
Date: 12-13-	22 ву: _/	Ashish	fise	C Title	196	Tech	
			Pag	e 2 of 2			

Facility: <u>SBMU SPS – CCR Groundwater Monitoring</u> Monitoring Well ID: <u>MW 5</u> Name (Field Staff): <u>A Pate I A Devster</u> Date: <u>12-13-22</u>
Accessibility: Good <u>Fair</u> Poor
Well clear of weeds and/or debris?: Yes <u></u> No
Well identification clearly visible?: Yes / No
Remarks:
Concrete Pad: Condition of Concrete Pad: Good Inadequate
Depressions or standing water around well?: Yes No
Remarks:
<u>Protective Outer Casing</u> : Material = $\frac{4^{\circ} \times 4^{\circ}}{100}$ Steel Hinged Casing with Hasp
Condition of Protective Casing: Good Damaged
Condition of Locking Cap: Good Damaged
Condition of Lock: Good <i>L</i> Damaged
Condition of Weep Hole: Good L Damaged
Remarks:
Well Riser: Material = 2" Diameter, Schedule 40 PVC, Flush Threaded
Condition of Riser: Good <i>L</i> Damaged
Condition of Riser Cap: Good 🗠 Damaged
Measurement Reference Point: Yes No
Remarks:
Dedicated Purging/Sampling Device: Type = 1/4 " ID Semi-Rigid Polyethylene & 0.170" ID Flexible Silicone Tubing
Condition: Good L Damaged Missing
Remarks:
Monitoring Well Locked/Secured Post Sampling?: Yes Mo No
Remarks:
Field Certification Ashible Rate Level Tech 12-13-22 Signed Title Date

				Field	Samplin	g Log					
Monitoring W		N 5	Facility	y: SBMU S	Sikeston Pov				9		
nitial Water Leve	el (feet btoc):	10	2.31				-13-0	-			
initial Groundwate	er Elevation (NAVD88)	-		A	ir Pressure	in Well?	Y			
PURGE INFORM											
Date: 12.	-13-2	2	Der	101-							
Name (Sample C	Collector):	A	Ver	A)/ N			
Method of Well F	Purge: Lo	w Flow Pe	erstaltic Pu	ump		cated Tubir					
Time Purging Ini	tiated:	120	25		One	(1) Well Vo	olume (mL):		436	0	-
Beginning Wate	r Level (feet b	otoc):	12.	31	Tota	I Volume P	urged (mL):			<u> </u>	-
Beginning Grou			/D88): _		Wel	Purged To	Dryness?		Y / ()_	21	
Well Total Dept			37.19	7	Wat	er Level aft	er Sampling ., pump is o	(feiet btoc):	12	.3)	-
Casing Diamete			VC			-			1251		
Casing Diamote					Tim	e Sampling	Completed		1.01		-
PURGE STABI	LIZATION DA	TA			Discoluted		Oxidation		Water	Not	
		ulative ume	Temp	Specific Conductance	Dissolved Oxygen	рН (S.U.)	Reduction Potential	Turbidity (NTU)	Level (feet btoc)	(e.g., o color,	
	∟/min) (n	nL)	(°C)	(µS/cm)	(mg/L)		(mV) -72.9	2.00	12.31	(lear,	
1227	50	1 01	6.62	<i>30</i> 4.16 797.16	0.51 0.54	6.79 6.79	-76.2	2,21	12.31	15	4
The second se	50 10		6.58		0.53	6.80	-76.9	2.43	12.31		1
			6.55	0 4	0.53	6.80	-76.7	1.80	12.31	T	11
1225 2	20 24	100 1	6.56	780.03	0.55	G.79		2.00	12.31	11	17
(237 2.	70 29	40 1	6.52	797.20	3.53	6.80	-76.8	1.86		11	"/
the second			6.49	803.76	0.54	6.80	-77.2	1.45	12.31	17	4
		360	16.47	801.29	0.51	6.81	-77.4	1.27	12.31	"	
1243 5	(30 9	260	10							-	
										_	

Facility:	SBMU Sikeston F	Power Station - C	CR Groundwat	er Monitoring	Monitoring We	IID: Mh	15	
Sampling Informa	tion:						~	
Method of Sampling		Perstaltic Pump	& Tubing			Dedicated:	(Y) / N	
Water Level @ Sa		10 11				Rescalle Other 6		
Monitoring Event:	Annual ()	Semi-Annual	() Quarter	rly() Mo	nthly ()	Other (
Final Purge Stabliz	ation Sampling D)ata:				Oxidation		
<u>Date</u> Sample Time	Sample Rate (mL/min)	Temp (°C)	Specific Conductance (µS/cm)	Dissolved Oxygen (mg/L)	рН (S.U.)	Reduction Potential (mV)	Turbidity (NTU)	
12-13-22 12U3	230	16.47	821.29	0.51	6.81	-77.4	1.27	
Instrument Calib See instrument ca 1 - In-Situ SmarT 2 - HF scientific, i General Informa	alibration log of da roll Multi-Probe F inc. Micro TPI Fie	ield Meter (Tem) Id Portable Turb	idimeter	ing instruments: fic Conductance, Dissol	ved Oxygen, p	H, Oxidation Rec	luction Potentia	
Weather Conditio		npling: <u>C</u>	10/9x					
Sample Characte	eristics: <u>Cb</u>		aless,	odorless		(k) k)	8 	
Sample Collectio	n Order:	Per SAP	т. 1. «	÷ •		*		
Comments and C	Observations:	is 71	Ő	- s		<u>n</u>	385	
				i.				
2 1								
Collees	ed Fie	19 Dr	Pliced	he				
2 <u></u>								
I certify that sar	npling procedures	s were in accord	ance with applic	cable EPA and State pro	otocols.			
Date: 2-13	-22 ву:	15hog	Kuje	<u>ک</u> Tir	ile: Les	Tech		

Page 2 of 2

Facility: <u>SBMU SPS - CCR Groundwater Monitoring</u> Monitoring Well ID: <u>MW 8</u> Name (Field Staff): <u>A Patel A Devster</u>
Date: 12-13-22
Access: Accessibility: Good L Fair Poor
Well clear of weeds and/or debris?: Yes No
Well identification clearly visible?: Yes <u>No</u>
Remarks:
Concrete Pad: Good Inadequate
Depressions or standing water around well?: Yes No
Remarks:
<u>Protective Outer Casing</u> : Material = $\underline{4" \times 4"}$ Steel Hinged Casing with Hasp
Condition of Protective Casing: Good L Damaged
Condition of Locking Cap: Good <u>Condition</u> Damaged
Condition of Lock: Good Damaged
Condition of Weep Hole: Good L Damaged
Remarks:
Well Riser: Material = 2" Diameter, Schedule 40 PVC, Flush Threaded
Condition of Riser: Good L Damaged
Condition of Riser Cap: Good L Damaged
Measurement Reference Point: Yes No
Remarks:
Dedicated Purging/Sampling Device: Type = <u>1/4</u> " ID Semi-Rigid Polyethylene & 0.170" ID Flexible Silicone Tubing
Condition: Good L Damaged Missing
Remarks:
Monitoring Well Locked/Secured Post Sampling?: Yes No
Remarks:
Field Certification Ashie Con 12-13-22 Signed Title Date

Monitorir	ng Well ID:	MW	Facili	ty: <u>SBMU</u>			- Groundwat		g		
Initial Water	Level (feet l	otoc):	11.55	7	D	ate: 12	-13-0	22			
		ation (NAVD8	38):		A	ir Pressure	in Well?	Y (N)			
PURGE INF											
Date:	2-13	-22	- / -								
Name (Sam	ple Collecto	r):A	pat	21							-
Method of V	Vell Purge:	Low Flow	Perstaltic P	ump	Ded	icated Tubi	ng? (Y)/ N			
Time Purgir	ng Initiated:	A to	34	1339	One	(1) Well V	olume (mL):	. <u>.</u> 1	NA		-
	Vater Level		11	.55	Tota	al Volume P	Purged (mL):	e.	558	0	-
		Elevation (N	AVD88):		Wel	I Purged To	Dryness?		Y / 🕅		
0 22		otoc):		5	Wat	ter Level af	ter Sampling	(feet btoc):	11.	55	-
	meter (feet):						e., pump is of		NA		
Casing Dia	meter (reet).	2 00111			Tim	e Sampling	g Completed:		1017		
PURGE ST	TABILIZATIO	ON DATA					Oxidation		Water	Not	es
Time	Purge Rate	Cumulative Volume	Temp	Specific Conductance	Dissolved Oxygen	рН (S.U.)	Reduction Potential	Turbidity (NTU)	Level (feet btoc)	(e.g., o color,	
u I	(mL/min)	(mL)	(°C)	(µS/cm)	(mg/L)		(mV)	8.73	11.55	Ye now !	
1341	2.0	400	15.76	828.45	0.75	6.61	-82.1	5.40	KL SS	IN .	11
1343	250	1380	16.19	819.37 812.72	J. 12	6.95	-122.4	4.13	11.55	~	6
1345	230	1840	16.38		0.30	6.96	-1227	4.39	11.55	1	W V
1349	230	2300	16.38	812.84	0.29	6.97	-122.9	4.76	11.55	Clear,	
1851	230	2760	16.34			7.00	-103.1	3.78	11.55	11	V
1353	250	3260	16.38	803.98	0.25	7.01	-103.3	and the second se	1.1.1	**	"
1355 1357	220	4160	16.38	816.26	0.22	11.05	-103.1	3.33	11.55	1.	11
	240	4640	16.38	\$2.92	0.22	7.04	-103.0	3.26	11.55	11	,
	230	5100	116.27	749.42	0.22	7.04	-122.9			IN	9
1403	240	5580	16.36	791.25	0.21	7.05	-122.9	3.01			
							-				
				_							
					-						

Facility:	SBMU Sikeston	Power Station - C	CCR Groundwat	ter Monitoring	Monitoring Wel	HD:MV	V 8		
Sampling Informa	tion:								
Method of Samplin		Perstaltic Pump	& Tubing			Dedicated:	(Y) / N		
		11.0							
Monitoring Event:	Annual ()	*	·/						
Final Purge Stabliz	ation Sampling L		Specific			Oxidation	Turbidity		
<u>Date</u> Sample Time	Sample Rate (mL/min)	Temp (°C)	Conductance (µS/cm)	Dissolved Oxygen (mg/L)	pH (S.U.)	Reduction Potential (mV)	(NTU)		
12-13-22 1403	240	16.38	791.25	0.21	7.05	-122.9	3.01		
See instrument ca 1 - In-Situ SmarTi	Instrument Calibration Data: See instrument calibration log of daily calibration data for the following instruments: 1 - In-Situ SmarTroll Multi-Probe Field Meter (Temperature, Specific Conductance, Dissolved Oxygen, pH, Oxidation Reduction Potentia 2 - HF scientific, inc. Micro TPI Field Portable Turbidimeter								
Weather Condition			ordy						
weather Condition									
Sample Character	istics:	Lear, Co	Iorless	adorass		4	· .		
Sample Collection	Order:	Per SAP	e9						
Comments and O	haan latinna:	19 M N							
		is 7.	07						
PEC/	10100	12 (**	0		2 - ³ 2				
		3ē)							
				∓ .ú					
				¥7					
		(#1)			0				
-									
· · · · · · · · · · · · · · · · · · ·									
I certify that samp	bling procedures	were in accordar	nce with applica	ble EPA and State prot	ocols.				
Date: 12-13-	<u>да</u> ву: Д	es-	R	Title	Les	Tech			

Page 2 of 2

Facility: SBMU SPS – CCR Groundwater Monitoring
Monitoring Well ID: <u>MW U</u> Name (Field Staff): <u>A Patel</u> A Peuster
Date: 12-13-22
Access: Accessibility: Good Fair Poor
Well clear of weeds and/or debris?: Yes 🗠 No
Well identification clearly visible?: Yes <u>Mo</u> No
Remarks:
Concrete Pad: Good Inadequate
Depressions or standing water around well?: Yes No
Remarks:
<u>Protective Outer Casing</u> : Material = $4^{\circ} \times 4^{\circ}$ Steel Hinged Casing with Hasp
Condition of Protective Casing: Good Damaged
Condition of Locking Cap: Good Condition Damaged
Condition of Lock: Good Condition
Condition of Weep Hole: Good L Damaged
Remarks:
Well Riser: Material = 2" Diameter, Schedule 40 PVC, Flush Threaded
Condition of Riser: Good Damaged
Condition of Riser Cap: Good Condition Damaged
Measurement Reference Point: Yes / No
Remarks:
Dedicated Purging/Sampling Device: Type = 1/4 " ID Semi-Rigid Polyethylene & 0.170" ID Flexible Silicone Tubing
Condition: Good Damaged Missing
Remarks:
Monitoring Well Locked/Secured Post Sampling?: Yes1 No
Remarks:
Field Certification Alich Potel 19-13-22 Signed Title Date

Monito	ring Well ID;	MW	H_Fac	cility: SBM	J Sikeston P	ower Statio	on - Groundw	ater Monitor	ing	
Initial Wate	er Level (fee	t btoc):	12.5	3		Date: [2-13-	22		
Initial Grou	ndwater Ele	vation (NAVE	088):	đ		Air Pressu	re in Well?	YN)	
	FORMATIO									
Date:	12-12	5-22	-							
Name (Sar	nple Collect	or):A	, De	wher						
Method of	Well Purge:	Low Flov	v Perstaltic	Pump	De	dicated Tul	oing? (Y) / N		
Time Purgi	ng Initiated:	11	439		On	e (1) Well \	/olume (mL)	:	NA	
Beginning	Water Level	I (feet btoc):	ĺá	2.53	Tot	tal Volume	Purged (mL)	:	430	<u>20</u>
Beginning	Groundwate	er Elevation (N	NAVD88):		We	ell Purged 1	o Dryness?		YN	
Well Total	Depth (feet	btoc):	37.2	S	Wa		fter Samplin e., pump is o		12.5	3
Casing Dia	meter (feet)	2" Sch 4	0 PVC		Tin		g Completed		NΑ	
	FABILIZATI						g oompicted			
	Purge	Cumulative		Specific	Dissolved		Oxidation	-	Water	Notes
Time	Rate (mL/min)	Volume (mL)	Temp (°C)	Conductance (µS/cm)	Oxygen (mg/L)	рН (S.U.)	Reduction Potential (mV)	Turbidity (NTU)	Level (feet btoc)	(e.g., opacity, color, odor)
1441		500	16.76	62334	0.80	7.18	-117.4	2.33	12.53	Clear, odor
1443	250	1000	16.96	522.78	0.63	7.25	-119.5	1.45	12.52	11 12
1445	230	1460	17.05	525.14	0.55	7.23	-120.7	1.84	12.53	15 U
1447	240	1940	17.00	522.25	0.50	7.24	-120.4	1.86	12.53	te tt
1449	230	2400	17.06	519.20	0.47	7.25	-120.6	1.93	12.53	14 17
1451	250	2900	17.06	521.31	o.hs	7.26	-121.2	2.66	12.53	K 11
1453	240	3380	17.06	520.40	0.43	7.26	-120.7	2.85	12.53	w 4
1455	240	3860	17.06	521.26	J.W	7.26	-120,6	2.44	12.83	n 11
1457	230	4320	17.05	521.26 519.27	2.41	7.27	-123.4	2.35	12.53	(v V
ļ										
		1		1	1	1			1	

Facility:	SBMU Sikeston	Power Station - (CCR Groundwa	ter Monitoring	Monitoring We	IID:M V	v 4_
Sampling Informa	ition:						
Method of Sampling: Low Flow - Perstaltic Pump & Tubing						Dedicated:	(Y) / N
Water Level @ Sampling (feet btoc):						pesar	rele
Monitoring Event: Annual () Semi-Annual () Quarterly () Monthly () Other (
Final Purge Stablization Sampling Data:							
<u>Date</u> Sample Time	Sample Rate (mL/min) •	Temp (°C)	Specific Conductance (µS/cm)	Dissolved Oxygen (mg/L)	рН (S.U.)	Reduction Potential (mV)	Turbidity (NTU)
12-13-22 1457	230	17.05	619.27	0.41	7.27	-123.4	2.35
Instrument Calibration Data: See instrument calibration log of daily calibration data for the following instruments: 1 - In-Situ SmarTroll Multi-Probe Field Meter (Temperature, Specific Conductance, Dissolved Oxygen, pH, Oxidation Reduction Potentia 2 - HF scientific, inc. Micro TPI Field Portable Turbidimeter							
General Information:							
Weather Conditions @ time of sampling: <u>Cloudy</u>							
Sample Characteristics: Clear, Color less, Odoness							
Sample Collection Order: Per SAP							
Comments and Observations:							
PH buffer was 7.04							
		<u> </u>	· · · · · · · · · · · · · · · · · · ·				
)?					S(
6 0	.×		4	10 ¹¹			
I certify that sampling procedures were in accordance with applicable EPA and State protocols.							
Date: 12-13-22 By: Ashish Padel Title: Las Teen							

Page 2 of 2

Pace

 REGULATORY PROGRAM (CIRCLE):
 NPDES

 MORBCA
 RCRA

 CCDD
 TACO: RES or IND/COMM

CHAIN OF CUSTOD' RECORD

STATE WHERE SAMPLE COLLECTED

.

		LIGHTED AREA				IENT (PLEAS	SE PRINT)	N.			-		(FOR LAB USE ONLY)
1 SIKESTON POWER STATION	PROJECT	NUMBER	PR	OJECT LOC	ATION	PURCHASE	E ORDER #	3) ANAI	YSIS RE	QUES	TED	(POR LAB GAL GILLI)
ADDRESS 1551 W WAKEFIELD	PHONE N 573-47			E-MAIL		DATE S	HIPPED						LOGIN #
CITY STAT SIKESTON, MO 63801 ZIP CONTACT PERSON MR LUKE ST MARY	SAMPLER (PLEASE PRINT AAAHM SAMPLER'S SIGNATURE	ony D	evsa	kr		MATRIX WW-WASTEWAT OW-DRINGING W GW-GROUND W WWSL-SLUDGE NAS-NON AQUE LCHT-LACHATE OIL-OR SO-SOIL SOL-SOIL	TER VATER ATER COUS SOLID						SIRESTON BMO, SIRESTON FOWER STATION SIKESTON BOTTOM ASH 2022 RESAMPLES GJ SCHINDLER
SAMPLE DESCRIPTION	DATE		SAMP GRAB		MATRIX	BOTTLE	PRES	TDS	CL, CA				REMARKS
2 (UNIQUE DESCRIPTION AS IT WILL APPEARON THE ANALYTICAL REPORT)							CLIENT PROVIDED	-		-	+	-	
MW-5	12-13-22	laus	X	-	GW	1	6	X				-	
MW-5 DUPLICATE	12-13-22		X		GW	1	6	X			-	-	
MW-6	12-B-22	1054	X		GW	2	3,6	X	X		-	-	
FIELD BLANK	12-13-22	1054	X		DI	2	3,6	X	x		-	10	
*													
	-												
CHEMICAL PRESERVATION CODES: 1-HCL 2-H2SO4	3 – HNO3 4 – NA	OH 5-NA	A2S2O3	6 – UNP	RESERVED	7 – OTHEF	2				4		
			DATE RE		0	not meet al Policy and t		nforman be quali	ce requil fied. Qua	ements alified da	as defi ita may	NOT b	on to proceed with analysis, even though it may the receiving facility's Sample Acceptance he acceptable to report to all regulatory authorities NLS)
TIME	-(4-22	RECEIV	/ED BY: (S	SIGNATURE)			DA	TE AE		6).	COMM	MENTS: (FOR LAB USE ONLY)
RELINQUISHED BY: (SIGNATURE) DATE	COPO	RECEIV	ED BY: (S	SIGNATURE)			DA	TE		SAM	IPLE T	MPER	
тме							TI	4E		CHI	L PRO	CESS	STARTED PRIOR TO RECEIPT YOR N EVED ON ICE YOR N
RELINQUISHED BY: (SIGNATURE) DATE		RECEIV	VED BY: (S	SIGNATURE))		DA	TE		SAN	IPLE A	CCEPT	TANCE NONCONFORMANT
TIME							ТІ	WE		0.00035	292200-101		TAKEN FROM SAMPLE BOTTLE
	- 1										-		

Appendix 1c

Field Sampling Notes – April 18, 2023 (First 2023 Semi-annual Event) Field Instrumentation Calibration Log

Facility: SBMU SPS CCR Groundwater Sampling

Field Instruments:

Calibrated by: Ashish Pater

Solution SPS CCR Groundwater Sampling

s/N#: 893508

In-Situ smarTROLL Field Meter

HF scientific, inc. Micro TPI Field Portable Turbidimeter

SIN #: 201627366

	Date	Time	pH Standa	rds	pH Measure- ments	Specific Conductand Standard (µS/cm)	e	Specific Conductance Measurement (µS/cm)	Oxidation Re Stan		ction Potent d (mV)	tial	Oxidation Reduction Potential Measurement (mV)	Dissolved (%		ygen	Turbidity Standards (NTU)		Turbidity Measurements (NTU)
A			4.00	=	4.02/17	OAV			Temperature (°C)	=	21.35			Temperature (°C)		æ.30	0.02	=	0.02
of Day tion	4-18-	a so	7.00	=	7.02/2.0	MV								Tap Water Source	<u>_</u> \$	ikesta City	10.0	=	10.0
Beginning of D Calibration	2023	0030	10.00	n	10.02	1413		14125	Standard (mV)	=	229.5	н	228.9	Barometric Pressure (mm/Hg)	-	751.30	r 1000	=	1000.0
B					-175.7									Measurement	×=	100.02			
×			4.00	=	4.07	9 9 V			Temperature (°C)	=	21:55			Temperature (°C)		21.19	0.02	=	D.04
Chec	4-18-	10.0	7.00	=	7.05.	$\delta_{g}(x_{0}) = 0$		a. ((- 02		20	Tap Water Source	=	Sikesm	10.0	=	13.11
End of Day Check	4-18- 2523	1905	10.00		10.04	1413	=	[412.9	Standard (mV)	=	2290	=	235.5	Barometric Pressure (mm/Hg) Measurement	=	749.4	1000		998.3

Notes: The Multi-Probe Field Meter measures Temperature, Specific Conductance, Dissolved Oxygen, pH, and Oxidation Reduction Potential.

The HF scientific, inc. Micro TPI Field Portable Turbidimeter measures Turbidity.

Dissolved oxygen is calibrated via % saturation method; however, field measurements are recorded as mg/L.

I certify that the aforementioned meters were calibrated within the manufacturers specifications.

Date: 4-18-2023 By Ashish Parel

-10

Facility: <u>SBMU SPS - CCR Groundwater Monitoring</u> Monitoring Well ID: <u>MW 3</u> Name (Field Staff): <u>A Patel J Lowes</u> A DUester Date: <u>U-13-2023</u>
Accessi Accessibility: Good L Fair Poor
Well clear of weeds and/or debris?: Yes
Well identification clearly visible?: Yes 🖵 No
Remarks:
<u>Concrete Pad</u> : Condition of Concrete Pad: Good Inadequate
Depressions or standing water around well?: Yes No
Remarks:
Protective Outer Casing: Material = 4" x 4" Steel Hinged Casing with Hasp
Condition of Protective Casing: Good Damaged
Condition of Locking Cap: Good 🖌 Damaged
Condition of Lock: Good 🗾 Damaged
Condition of Weep Hole: Good L Damaged
Remarks:
Well Riser: Material = <u>2" Diameter, Schedule 40 PVC, Flush Threaded</u>
Condition of Riser: Good Damaged
Condition of Riser Cap: Good Damaged
Measurement Reference Point: Yes No
Remarks:
Dedicated Purging/Sampling Device: Type = <u>1/4</u> " ID Semi-Rigid Polyethylene & 0.170" ID Flexible Silicone Tubing
Condition: Good Damaged Missing
Remarks:
Monitoring Well Locked/Secured Post Sampling?: Yes 🖉 No
Remarks:
Field Certification ASWSI R US ILUZMY 4-18-2023
Signed Title Date

Prepared by: GREDELL Engineering Resources, Inc.

Monito	ring Well ID:	MW	3 Fac	ility: SBMU	J Sikeston P	ower Statio	n - Groundw	rater Monitor	ing		
Initial Wate	er Level (feet	t btoc):	11.05			Date: L	1-18 -	2023			
Initial Grou	ndwater Ele	vation (NAVE	088):			Air Pressur	e in Well?	Y /N			
PURGE IN	FORMATIO	N									
Date:	4-18	-202	.3								
Name (Sar	nple Collect	or):	Lor	Ves							
Method of	Well Purge:	Low Flow	v Perstaltic F	Pump	De	dicated Tub	ing?	Y) / N			
Time Purgi	ng Initiated:	0	740		On	e (1) Well V	/olume (mL)		NA		
Beginning	Water Level	(feet btoc):	_11.	05	Tot	al Volume I	Purged (mL)		4961	DC	
Beginning	Groundwate	r Elevation (N	NAVD88):	L	We	ell Purged T	o Dryness?		Y / 🔃		
Well Total	Depth (feet	btoc):	37.0	50	Wa		fter Sampling		<u> </u>	25	
Casing Dia	imeter (feet)	2" Sch 40	0 PVC		Tin	· ·	g Completed	,	080	\mathbf{c}	
					1111	le Samplini	y completed	•		~	-
	FABILIZATIC Purge	Cumulative		Specific	Dissolved		Oxidation	The set of the set	Water	Not	tes
Time	Rate (mL/min)	Volume (mL)	Temp (°C)	Conductance (µS/cm)	Oxygen (mg/L)	рН (S.U.)	Reduction Potential	Turbidity (NTU)	Level (feet btoc)	(e.g., o color,	
0742	, ,	600	16.08	138.25		6.57	(mV) 130,3	3.63	11.05	Clear,	no olor
0744	255	1110		143.22	2.54	6.50	124.2	4.28	11.05	11	11
0746	275	1660	14.81	138.72		6.45	117.2	4.57	11.05	12	21
0748	275	2200	14.77	138.92		6.43	111.6	4.95	11.05	11	11
0750	270	2743	14.77	139.27	2.25	6.43	126.1	4.64	11.05	41	t 1
0752	290	3300	14.77	137.30		6.43	100.6	1.65	11.05	La.	17
075M	293	3880	14.78	136.02	1.99	6.43	96.5	1.09	11.05	N1	47
0756	250	4380	14.81	136.91	1.75	6.44	92.9	1.37	11.05		19
0758	292	4960	14.83	136.91	1.56	6.45	88.8	1.43	11.05	11	*,
						•					
Ri .											

btoc - below top of casing

7 1

						12	
Facility:	SBMU Sikeston	Power Station -	CCR Groundwa	ter Monitoring	Monitoring We	II ID:/	IW3
Sampling Informa	ation:						
Method of Samplin	ig: Low Flow -	Perstaltic Pump	o & Tubing	x		Dedicated:	(Y) / N
Water Level @ Sa	mpling (feet btoc)	11.09	5				
Monitoring Event:	Annual ()	Semi-Annua	I 🖌 Quarte	rly() Mo	onthly ()	Other ()	
Final Purge Stabliz	ation Sampling D	Data:					
<u>Date</u> Sample Time	Sample Rate (mL/min)	Temp (°C)	Specific Conductance (µS/cm)	Dissolved Oxygen · (mg/L)	рН (S.U.)	Oxidation Reduction Potential (mV)	Turbidity (NTU)
U-18.2020 0758	290	14.33	136.64	1.56	6.45	87.8	1.43
Instrument Calibr See instrument cal 1 - In-Situ SmarTr 2 - HF scientific, in	libration log of da oll Multi-Probe F	ield Meter (Tem	perature, Specifi	ng instruments: c Conductance, Dissolv	ved Oxygen, pH	, Oxidation Red	uction Potentia
General Informat	ion:						
Weather Condition			MAY				
Sample Character	istics: <u> </u>	lear, co	loress	odorless			21
Sample Collection	Order:	Per SAP			8		
Comments and Ol	*,		6 B	2	· · · · · ·	a	
Movin		in tro	ich abo	v} 70 feet	GWOY	1.72	
	J			a 6	2 5		j.
***	ж		×	÷			÷
•	· .		s - 8 - ⁶ - 7	•			
	_						
المحمد الم		in a second-		In EDA and State prote			
				ole EPA and State proto			
Date: 4-17- 2	Э 23 ву: /	shish	peser	Title:	Las	Leada	141

91

4A

Monitoring Well ID: <u>ML</u> Name (Field Staff): <u>JL</u> Date: <u>-/-/8-23</u>				
Access: Accessibility: Goo	od. <u>X</u> _b	Fair	Poor	
Well clear of weeds and/or de	ebris?: Yes 🎽	No		
Well identification clearly visi	ble?: Yes 🔰	<u>د</u> No		
Remarks:				
<u>Concrete Pad</u> : Condition of Concrete Pad:	1.	Good XI	nadequate	R G
Depressions or standing wat	er around well?:	Yes N	lo <u>×</u>	
Remarks:				
Protective Outer Casing: Mat	erial = <u>4" x 4" Ste</u>	el Hinged Casing	g with Hasp	
Condition of Protective Casir	ng: Good <u>X</u>	Damage	ed	
Condition of Locking Cap:	Good <u>X</u>	Damage	ed	
Condition of Lock:	Good <u>X</u>	Damage	ed	
Condition of Weep Hole:	Good <u>X</u>	Damage	ed	
Remarks:				
Well Riser: Material = 2" Diameter	r, Schedule 40 PV	C, Flush Thread	ed	
Condition of Riser:	Good 🗡	Damage	ed	
Condition of Riser Cap:	Good <u>×</u>	Damage	d	
Measurement Reference Po	int: Yes <u>X</u>	No	-	
Remarks:				
Dedicated Purging/Sampling Device	<u>ce</u> : Type = <u>¼ " ID s</u> <u>Silicone</u>	Semi-Rigid Polye Tubing	thylene & 0.170" ID Flexible	<u>9</u>
Condition: Good X	Damaged	Missing		
Remarks:				
Monitoring Well Locked/Sec	ured Post Samplin	g?: Yes <u>X</u>	No	
Remarks:				
eld Certification	- 11-	Ech Level 4	4-18-23	
Signed	1 (Title	Date	

Prepared by: GREDELL Engineering Resources, Inc.

Monitori	ing Well ID:	Mw	6 Faci	lity: SBMU	Sikeston Po	ower Station	n - Groundw	ater Monitori	ng	
Initial Wate	r Level (feet	btoc):	.02			Date: U	-18-20	23		
Initial Grour	ndwater Elev	ation (NAVD	88):			Air Pressure	e in Well?	Y / 🕅		
		N								
		-2023								
				Loves						
Method of V			Perstaltic F		Dec	licated Tub	ing?	V) N		
	ng Initiated:		819) (1) Well V	olume (mL):		NA	
				2/1					946	2
Beginning \	Nater Level	(feet btoc):	(1.	04			Purged (mL):			
Beginning	Groundwate	r Elevation (N	IAVD88):		We	Il Purged To	o Dryness?		Y / N	
Well Total I	Depth (feet l	otoc):	37.7	15	Wa		ter Sampling a., pump is c	g (feet btoc):	11.0	4
Casing Dia	meter (feet);	2" Sch 40) PVC						0200	
					Tim	e Sampling	g Completed	:	0859	
PURGE ST	ABILIZATIO						Ovidation			
Time	Purge	Cumulative	Temp	Specific	Dissolved	pН	Oxidation Reduction	Turbidity	Water Level	Notes (e.g., opacity,
	Rate (mL/min)	Volume (mL)	(°C)	Conductance (µS/cm)	Oxygen (mg/L)	(S.U.)	Potential (mV)	(NTU)	(feet btoc)	color, odor)
0821		700	16.12	328.72	1.81	6.60		23.82	11.04	Red sleaks
0823	300	1300	16.03	333.49	J.75	6.71	-37.9	20.36	11.34	plake od
0825	275	1840	15.98	332.53	2.66	6.78	-42.9	15.17	11.04	Clear, 20
0827	250	2340	16 22			6.82	-46.9	14.94	11.04	NI 17
0829	300	2940		331.08		6.85	-47.5	12.23	(1.04	ii ir
0831	280	3500	16 57	329.16	0.44	6.87	-46.9	11.45	11.04	Ne Tr
0833	320	4260	16.07	333.3	2.42	6.88	-47.9	10.72	11.04	
0835	275	4800		326.73				5.72	(1	,
0837	293	5360	16.20	387.62	0.50		-48.5		11.04	
0839	320	6000		331.02		6.90	-522		11.04	11 V
0841		6560	16.17	332 27	2.48	6.93		2.93	11.04	
0843		7143	16.19	333.35	0.55	6.91	-50.5		11.04	
2845	280	7700		332.21	0.57	6.91	-50.5		11.04	
0847	320	8340	16.21	329.67	0.55			2.49	11.04	
0849	300		16.34	330.58	ð.57	6.91	-50.5	2.57	11.04	
0851	260	9460		3 32.05		6.91	- 50.5	2.55	11.04	N 81

btoc - below top of casing

Facility:	SBMU Sikeston	Power Station -	CCR Groundwa	ter Monitoring	Monitoring We	11 ID: <u>Mw</u>	6
Sampling Informa	ation:						
Method of Samplin	g: Low Flow -	Perstaltic Pump	& Tubing			Dedicated:	(Y) / N
Water Level @ Sa	mpling (feet btoc)	11.04					
Monitoring Event:	Annual()	Semi-Annua	Quarte	rly() Mc	onthly ()	Other ()	
Final Purge Stabliz	ation Sampling D)ata:	•				
<u>Date</u> Sample Time	Sample Rate (mL/min)	Temp (°C)	Specific Conductance (µS/cm)	Dissolved Oxygen (mg/L)	рН (S.U.)	Oxidation Reduction Potential (mV)	Turbidity (NTU)
4-18-23 0851	260	16.27	332.05	.54	6.91	-50.5	2.55
Instrument Calibr See instrument cal 1 - In-Situ SmarTr 2 - HF scientific, in	libration log of da oll Multi-Probe Fi	eld Meter (Temp	erature, Specifi	ing instruments: ic Conductance, Dissolv	ved Oxygen, pH	l, Oxidation Red	luction Potentia
General Informati	ion:	-					
Weather Condition			nny				
Sample Character	istics: <u>Cle</u>	or, oderles	s, Color le				
Sample Collection	Order:	Per SAP		25 M			
Comments and Ot	oservations:			2. 4 1	$\tilde{z} = y^2$		
Collect	hed Field	Blanks				*	
	×		¥	ж	6	ж. s	
23 v	54 ⁽)		.			11	
	Se N i ei			8			A
· · · · · · · · · · · · · · · · · · ·					21 24	1	
			•		34 ¹ 0		ā!
10			2 k	6			v
	•C	il. N	, en la compañía de la		E	ŭ	
			-container - D - D				
I certify that sample	ling procedures w	vere in accordan	ce with applicat	ble EPA and State proto	COIS.		
Date: 4-18-2	ву: _	fully	the state	Title:	Lob Tech	Level 4	

Page 2 of 2

1 mill

Facility: <u>SBMU SPS – CCR Groundwater Monitoring</u> Monitoring Well ID: かい Name (Field Staff):
Name (Field Staff): Date: <u>4 - 18 - 2.3</u>
Access: Accessibility: Good <u>×</u> Fair <u>Poor</u>
Well clear of weeds and/or debris?: Yes <u>×</u> No
Well identification clearly visible?: Yes <u>×</u> No
Remarks:
Concrete Pad: Condition of Concrete Pad: Good X Inadequate
Depressions or standing water around well?: Yes No _X
Remarks:
Protective Outer Casing: Material = <u>4" x 4" Steel Hinged Casing with Hasp</u>
Condition of Protective Casing: Good <u>×</u> Damaged
Condition of Locking Cap: Good X Damaged
Condition of Lock: Good X Damaged
Condition of Weep Hole: Good <u>×</u> Damaged
Remarks:
Well Riser: Material = <u>2" Diameter, Schedule 40 PVC, Flush Threaded</u>
Condition of Riser: Good X Damaged
Condition of Riser Cap: Good 🗶 Damaged
Measurement Reference Point: Yes X No
Remarks:
Dedicated Purging/Sampling Device: Type = <u>1/4</u> " ID Semi-Rigid Polyethylene & 0.170" ID Flexible Silicone Tubing
Condition: Good <u>X</u> Damaged Missing
Remarks:
Monitoring Well Locked/Secured Post Sampling?: Yes X No
Remarks:
Field Certification Author that the Level 4 4-18-23
Signed Title Date

Prepared by: GREDELL Engineering Resources, Inc.

Monitor	ring Well ID:	MW	5 Fac	ility: SBMU	J Sikeston P	ower Static	n - Groundw	ater Monitor	ing	
Initial Wate	er Level (fee	t btoc):	10.03			Date: 4-	-18-23			
Initial Grou	ndwater Ele	vation (NAVE	988):			Air Pressu	re in Well?	Y / 🔊		
PURGE IN	FORMATIO	N								
Date:	4-18- 2	23								
Name (Sar	nple Collect	or):								
Method of	Well Purge:	Low Flow	Perstaltic I	Pump	Dec	dicated Tub	bing?	<u>ү</u> / N		
Time Purgi	ng Initiated:	o	951		One	e (1) Well \	/olume (mL):		NA	
Beginning	Water Leve	(feet btoc):	/0 . o	3	Tot	al Volume	Purged (mL)		3500	
Beginning	Groundwate	er Elevation (N	AVD88):		We	I Purged T	o Dryness?		Y /	
Well Total	Depth (feet	btoc):	37.2		Wa		fter Sampling		10.03	
		: 2" Sch 40				(i.	e., pump is c	off)		
					Tim	ne Samplin	g Completed	:	1015	
PURGE ST	TABILIZATI	ON DATA					Ovidation			
Time	Purge Rate	Cumulative Volume	Temp (°C)	Specific Conductance	Dissolved Oxygen	рН (S.U.)	Oxidation Reduction Potential	Turbidity (NTU)	Water Level	Notes (e.g., opacity, color, odor)
	(mL/min)	(mL)		(µS/cm)	(mg/L)		(mV)		(feet btoc)	Yellow Flakes
0953	100	560	17,87	598.49	1.19	6.67	-24.3	12.08	10.03	
0755	255	1060	16.78	612.40	.86	6.76	.25.9	6.69	10.03	Tellow Flakes Yellow Flakes
0959	250	1560	16.56	615.50	.68	6.60	· 27. 3 . 27. 6		10.03	Clear
0959	220	2000	16.55	612.18	.60	6.82	-28.1	4.23	10.03	clear
1003	240 270	2480	1456	606.95	.56	6.84	-29.9	3.92 4.33	10.03	Clear
1005	240	3540	16.61	613.87	.52	6.85	-31.1	4.55	10.03	Clear
1007	670	3000	74.00	017.10		6.00	- 201	1100	10.00	Cit
							1		1	

Facility:	SBMU.Sikeston	Power Station -	CCR Groundwa	ter Monitoring	Monitoring W	/ell ID:	5
Sampling Informa	ation:						
Method of Samplin	g: Low Flow -	Perstaltic Pum	o & Tubing			Dedicated:	(Y) / N
Water Level @ Sa	mpling (feet btoc)	10.03					
Monitoring Event:	Annual ()	Semi-Annua	al (Quarter	rly() N	lonthly ()	Other()	
Final Purge Stabliz	ation Sampling D)ata:	-				
<u>Date</u> Sample Time	Sample Rate (mL/min)	Temp (°C)	Specific Conductance (µS/cm)	Dissolved Oxygen (mg/L)	рН (S.U.)	Oxidation Reduction Potential (mV)	Turbidity (NTU)
4-18-23	240	16.65	619.56	.52	6.85		4.55
Instrument Calibr See instrument cal 1 - In-Situ SmarTr 2 - HF scientific, in	libration log of da oll Multi-Probe Fi	eld Meter (Tem	perature, Specifi	ng instruments: c Conductance, Disso	lved Oxygen, p	H, Oxidation Red	uction Potentia
General Informati	ion:	<i></i>					
Weather Condition	ns @ time of sam	pling: <u>5-</u> v	iny				
Sample Character	istics:	Color less,	odor less, c	lear :			.1
Sample Collection	Order:	Per SAP			6		
ent ac		a . "		<i>.</i>		°.e	
Comments and Ob	oservations:			· · · ·			
-	0. 6.	1	a				
	÷ 4.				3		
•							

Date: 4-18-23 By: Authority Pace

Title: 45 Tech here 7

Page 2 of 2

Facility: <u>SBMU SPS – CCR Groundwater Monitoring</u> Monitoring Well ID: <u>MW S</u>
Name (Field Staff): <u>A Parter J Lowes A Duester</u> Date: <u>U-18 · 2023</u>
Access: Accessibility: Good V Fair Poor Poor
Well clear of weeds and/or debris?: Yes No No
Well identification clearly visible?: Yes 🛌 No
Remarks:
Concrete Pad: Good Inadequate
Depressions or standing water around well?: Yes No
Remarks:
<u>Protective Outer Casing</u> : Material = $4^{\circ} \times 4^{\circ}$ Steel Hinged Casing with Hasp
Condition of Protective Casing: Good 🛩 Damaged
Condition of Locking Cap: Good Condition
Condition of Lock: Good 🖌 Damaged
Condition of Weep Hole: Good 🖌 Damaged
Remarks:
Well Riser: Material = 2" Diameter, Schedule 40 PVC, Flush Threaded
Condition of Riser: Good 1/ Damaged
Condition of Riser Cap: Good 🖌 Damaged
Measurement Reference Point: Yes No
Remarks:
Dedicated Purging/Sampling Device: Type = 1/4 " ID Semi-Rigid Polyethylene & 0.170" ID Flexible Silicone Tubing
Condition: Good 🖌 Damaged Missing
Remarks:
Monitoring Well Locked/Secured Post Sampling?: Yes V No
Remarks:
Field Certification Achor Rose lab Lendmen U-18-2023
Signed Title Date

Prepared by: GREDELL Engineering Resources, Inc.

January 2017

Field Sampling Log												
Monitor	ing Well ID:	Мы	8 Faci	lity: SBML	J Sikeston Po	ower Station	n - Groundw	ater Monitori	ng			
Initial Wate	r Level (feet	btoc):	9.31		-	Date: U	118/2	1023				
		vation (NAVD				Air Pressur	e in Well?	Y /				
PURGE IN	FORMATIO	N										
Date:	4-1	8-20	123									
Name (San	nple Collecto	or): An	thony	Duesd	er						-	
Method of Well Purge: Low Flow Perstaltic Pump Dedicated Tubing?												
Time Purging Initiated: 10.47 One (1) Well Volume (mL): NA												
Beginning Water Level (feet btoc): 7.31 Total Volume Purged (mL): 7365												
Beginning Groundwater Elevation (NAVD88): Well Purged To Dryness? Y /												
Well Total Depth (feet btoc): 37.05 Water Level after Sampling (feet btoc): 9.32												
Casing Diameter (feet): 2" Sch 40 PVC												
Time Sampling Completed:												
PURGE ST	TABILIZATIO	ON DATA					0.11.7					
Time	Purge	Cumulative	Temp	Specific	Dissolved	pН	Oxidation Reduction	Turbidity	Water Level	Note (e.g., op		
	Rate (mL/min)	Volume (mL)	(°C)	Conductance (µS/cm)	Oxygen (mg/L)	(S.U.)	Potential (mV)	(NTU)	(feet btoc)	color, o		
1049		520	18.57	496 27	0.54	6.85	-70.8	1.43	9.32	SPeck.	odar	
1051	270	1060	17.14	507.79	0.37	7.00	-74.7	20.9.8	9.32	- 14	**	
1053	260	1580	16.92	512.62	0.30	7.08	-753	62.29	9:32	<i>d</i>	u V	
1055	210	2000	16.84	512.33	0.25	7.12	-73.1	112.9	9.32	a		
1057	210	2540	(8.83	511.44	0.23	7.17	-74.4	28.81	9.32		17	
1059	230	3100	16.97	512.52	0.21	7.20	-74.4	11.65	9.32	31		
1101	240	3580	16.92	516.93	0.20	7.21	-74.4	11.85	9.32	44		
1103			16.82	516.28	0.20	7.23	-74:5	11.39	9.32	Clear,		
1105		4680	16.81	517.08	2.19		-74.5	10.00	4.32		17	
1107	310	5200	16.87	S17.93	2.17	7.24	-75.3	11.17	9.32	L.		
1129		5720	16.83	516.44	2.16	7.26	-77.3	7.96	9.37	11	Pt .	
1111	230	6180	16.28	523.22	017	7.27	-73.4	9.31	9.32		(1	
113	260	6700	16.89	521.11	0.16	7.29	-78.8.	6.59	9.32	**	U.	
	280	7240	16.95	522.91	2.16		-78.4		9.32	w.	11	
1117	260	7760	16.94	522.94	0.16		-78.4		9.32	10		
1119	250	8260	17.01	524.92		7.27		5.21	9.32	R.		
	280	8820	16.88	504.21	0.15	7.26	-77.4	6.04	9.32	a		
123	270	9360	16.81	535.22	0.17	7.28	-78-4	5.80	9.32	"	*/	
1												

btoc - below top of casing

Facility:	SBMU Sikeston	Power Station - (CCR Groundwa	ter Monitoring	Monitoring Wel	IID: MW	8
Sampling Informa	ition:						
Method of Samplin	g: Low Flow -	Perstaltic Pump	& Tubing			Dedicated:	(Y) / N
Water Level @ Sa	mpling (feet btoc)	9.30	2				
Monitoring Event:	Annual ()	Semi-Annual	Quarte	rly() Mo	onthly()	Other ()	
Final Purge Stabliz	ation Sampling D)ata:					
<u>Date</u> Sample Time	Sample Rate (mL/min)	Temp (°C)	Specific Conductance (µS/cm)	Dissolved Oxygen (mg/L)	рН (S.U.)	Oxidation Reduction Potential (mV)	Turbidity (NTU)
1123	270	16.81	535.22	0.17	7.28	-78.9	5.80
Instrument Calibr See instrument cal 1 - In-Situ SmarTr 2 - HF scientific, ir General Informati	libration log of da coll Multi-Probe Fi nc. Micro TPI Fiel	eld Meter (Temp d Portable Turbi	erature, Specifi dimeter	ic Conductance, Dissolv	ed Oxygen, pH	, Oxidation Red	uction Potentia
Weather Condition			ny, wi				
Sample Character	istics: Cle	eur, Col	orless,	odorus			
Sample Collection	Order:	Per SAP					
Comments and Ob Moving		train a	jort So	At Gway.			
I certify that samp	ling procedures w	vere in accordan	ce with applicat	ble EPA and State proto	cols		
Date: 4-18-3	23 ву:	on 1	asu	Title:	Les T	Tech	
			Pag	e 2 of 2			

Facility: <u>SBMU SPS – CCR Groundwater Monitoring</u> Monitoring Well ID: <u><u></u><u></u> </u>										
Name (Field Staff): A Patel J Lowes A Drester										
Date: 4-18-27										
Access: Accessibility: Good <u>Fair</u> Poor										
Well clear of weeds and/or debris?: Yes 🥢 No										
Well identification clearly visible?: Yes <u>Ves</u> No										
Remarks:										
Concrete Pad: Condition of Concrete Pad: Good L Inadequate										
Depressions or standing water around well?: Yes No										
Remarks:										
<u>Protective Outer Casing</u> : Material = $\underline{4^{"} \times 4^{"}}$ Steel Hinged Casing with Hasp										
Condition of Protective Casing: Good <u> </u> Damaged										
Condition of Locking Cap: Good 🖌 Damaged										
Condition of Lock: Good ⊬ Damaged										
Condition of Weep Hole: Good 🕢 Damaged										
Remarks:										
Well Riser: Material = <u>2" Diameter, Schedule 40 PVC, Flush Threaded</u>										
Condition of Riser: Good 🔔 Damaged										
Condition of Riser Cap: Good 🗠 Damaged										
Measurement Reference Point: Yes 🔛 No										
Remarks:										
Dedicated Purging/Sampling Device: Type = <u>1/4</u> " ID Semi-Rigid Polyethylene & 0.170" ID Flexible Silicone Tubing										
Condition: Good L Damaged Missing										
Remarks:										
Monitoring Well Locked/Secured Post Sampling?: Yes No										
Remarks:										
Field Certification Actor Parel Las Legisman 4-18-2025										
Signed Title Date										

Prepared by: GREDELL Engineering Resources, Inc.

January 2017

Initial Water Level (feet bloc): 0.11 Date: $U - 13 - 2 - 23$ Initial Groundwater Elevation (NAVD88):	Monitor	ing Well ID	MW	4_Faci	ility: SBMU	Sikeston Po	ower Statio	n - Groundw	ater Monitori	ng		
PURCE INFORMATION Date: $U - 18 - 2033$ Name (Sample Collector): $Ahhorry 0 V453er$ Method of Well Purge: Low Flow Perstattic Pump Dedicated Tubing? $O' N$ Time Purging Initiated: 1309 One (1) Well Volume (mL): 1433 Beginning Water Level (feet btoc): $10 \cdot 11$ Total Volume Purged (mL): 1433 Beginning Groundwater Elevation (NAVD88): Well Purged To Dryness? V / O Well Total Depth (feet btoc): 37.20 Well Purged To Dryness? V / O Well Total Depth (feet btoc): 37.20 Well Purged To Dryness? V / O Ome (1) Well Youme (mL): $10 \cdot 11$ Time Sampling Completed: 1000 Purge Stabilization DATA Outmulative Temp Completed: 000 Orgen 71.7 7.05 -69(4) (58.2 (50.11) Velicity Colorigo (Colorigo Colorigo	Initial Wate	r Level (feet	btoc):	0.11			Date: U	-18-2	023			
Date: $U - I \& -20 23$ Name (Sample Collector): $Anthony$ 0 (/25 /e/ Method of Well Purge: Low Flow Perstattic Pump Dedicated Tubing? \bigcirc / N Beginning Water Level (feet btoc): $[3 \bigcirc 9$ One (1) Well Volume (mL): NA Beginning Groundwater Elevation (NAVD88): Well Purged To Dryness? Y / \bigotimes Well Total Depth (feet btoc): 37.20 Water Level after Sampling (feet btoc): 10.11 Casing Diameter (feet): 2^* Sch 40 PVC Dissolved Oxygen (mgL): 10.11 Water Level (feet btoc): 10.11 PURGE STABILIZATION DATA Cumulative (mL): 10.11 Water Level (feet btoc): 10.11 Water Level (feet btoc): 10.11 13 1/ 5 6 0 19.55 568 ($2 > 7.71$ $7.25 = -56.44$ 10.23 10.11 10.01	Initial Grour	ndwater Elev	vation (NAVD	88):			Air Pressur	e in Well?	Y /N			
Name (Sample Collector): $Anthory$ $0 \ell 2 + 2 \ell 1$ Mathod of Well Purge: Low Flow Perstattic Pump Dedicated Tubing? \bigcirc / N Time Purging Initiated: 1309 One (1) Well Volume (mL): NA Beginning Water Level (feet btoc): $1 - 1 \ell$ Total Volume Purged (mL): $[\ell 2 - 3 \ell]$ Beginning Groundwater Elevation (NAVD88): Well Purged To Dryness? Y / \emptyset Well Total Depth (feet btoc): $27 \cdot 20$ Water Level after Sampling (feet btoc): $[b - 1 l]$ Casing Diameter (feet): 2° Sch 40 PVC Water Level after Sampling (feet btoc): $[b - 1 l]$ Time Purge Cumulative (mL): (mL, q) (ml, q) (ml, q) (ml, q) Time Purge Cumulative (mL): (mg, l) (mg, l) (mg, l) (ml, q) (ml, q) (ml, q) 13 11 56 0 19.56 36 $3 \cdot 4 \cdot 3$ $2 \cdot 5 \cdot 7 \cdot 1 \cdot 7 \cdot 7 \cdot 5 - 5 \cdot 6 \cdot 1 \cdot 4 \cdot 1 \cdot 2 \cdot 6 \cdot 1 \cdot 7 \cdot 4 \cdot 7 \cdot 1 \cdot 7 \cdot 5 \cdot 5 \cdot 7 \cdot 1 \cdot 5 \cdot 5 \cdot 4 \cdot 2 \cdot 1 \cdot 5 \cdot 5 \cdot 4 \cdot 2 \cdot 1 \cdot 5 \cdot 5 \cdot 4 \cdot 2 \cdot 1 \cdot 5 \cdot 5 \cdot 4 \cdot 2 \cdot 1 \cdot 5 \cdot 5 \cdot 4 \cdot 2 \cdot 1 \cdot 5 \cdot 5 \cdot 4 \cdot 2 \cdot 1 \cdot 5 \cdot 5 \cdot 4 \cdot 2 \cdot 1 \cdot 5 \cdot 5 \cdot 4 \cdot 2 \cdot 1 \cdot 5 \cdot 5 \cdot 2 \cdot 1 \cdot 5 \cdot 5 \cdot 4 \cdot 2 \cdot 5 \cdot 5 \cdot 4 \cdot 2 \cdot 4 \cdot 5 \cdot 5 \cdot 5 \cdot 4 \cdot 2 \cdot 4 \cdot 4$	PURGE INI	FORMATIO	N									
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Date:	4-18.	2003									
Time Purging Initiated: Image of the total initiate initiate initiates: Image of the total initiates: <th colspan<="" td=""><td>Name (San</td><td>nple Collecto</td><td>or): Ant</td><td>hony</td><td>Ovest</td><td>er</td><td></td><td></td><td></td><td></td><td></td></th>	<td>Name (San</td> <td>nple Collecto</td> <td>or): Ant</td> <td>hony</td> <td>Ovest</td> <td>er</td> <td></td> <td></td> <td></td> <td></td> <td></td>	Name (San	nple Collecto	or): Ant	hony	Ovest	er					
Beginning Water Level (feet btoc): $[0.1]$ Total Volume Purged (mL): $[423]$ Beginning Groundwater Elevation (NAVD88):	Method of \	Well Purge:	Low Flow	Perstaltic F	Pump	Dec	dicated Tub	ing?	Y) / N			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Time Purgi	ng Initiated:	13	309		One	e (1) Well V	'olume (mL):	-	NA		
Beginning Groundwater Elevation (NAVD88):	Beginning	Water Level	(feet btoc):	(0.	()	Tot	al Volume F	Purged (mL):		1403		
Well Total Depth (feet btoc): 37.20 Water Level after Sampling (feet btoc): 10.11 Casing Diameter (feet): $2"Sch 40 PVC$ Time Sampling Completed: $2"Sch 40 PVC$ Time Sampling Completed: $14 L2$ Purge Cumulative Volume (mL) Temp Completed: $14 L2$ Oxidation Reduction Turbidity (NTU) Water Level after Sampling (feet btoc): 10.11 Time Sampling Completed: $14 L2$ Oxidation Reduction Turbidity (NTU) Notes (e.g., opacity, color, opa	Beginning	Groundwate	r Elevation (N	IAVD88):		We	II Purged Te	o Dryness?		Y / 🕥		
(i.e., pump is off) Time Sampling Completed: (I.e., pump is off) Time Sampling Completed: (I.U.12) Time Sampling Completed: Volume (mL) Specific Conductance Oxygen (mg/L) Oxidation Reduction Potential (NUU) (I.U.12) Value (mL) Temp (°C) Specific Conductance Oxygen (mg/L) Oxidation Potential (WU) 1311 56 0 19.65 Secific Conductance Oxygen (mg/L) Oxidation Potential (WU) Value (e.g. opacity, color, odor) 1311 56 0 19.65 Secific (D.U.1 Value (J.U.1 Value (J.U.12 1311 56 0 IIII (J.O.3 J.I.I (U.O.3) Jand Walue (J.U.2 J.J.I.I Value (J.U.12 Value (J.U.12 Value (J.U.12<							ter Level af	ter Sampling	g (feet btoc):	10.1	1	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							(i.e	e., pump is o	ff)			
TimePurge Rate (mL/min)Cumulative Volume (mL)Temp (°C)Specific Conductance (µS/m)Dissolved Oxygen (mg/L)PH (SU)Oxidation Reduction (USU)Oxidation Reduction (mV)Water Level (NTU)Notes (e.g. opacity, color, odor)13 1156019.65368.(2 2.771 7.05 -69.4 [58.713.11Yetuw (INTU)Vetter (eet btoc)(e.g. opacity, color, odor)13 132.70110018.44381.43 2.59 7.18 7.29 7.52	Casing Dia	meter (reet)	2 301140			Tim	ne Sampling	g Completed	:	juli	2	
TimePurge Rate (mL/min)Cumulative Volume (mL)Temp (°C)Specific Conductance (µS/m)Dissolved Oxygen (mg/L)pH (SU)Reduction Potential (MTU)Turbidity (NTU) (NTU)Water (Level (eet btoc)Interest (color, odor)131156019.65368.(2 2.771 7.05 -69.44 198.210.11" Yeitige" (color, odor)1313270110018.44381.43 2.59 7.18 -72.72 19.2.210.11" Yeitige" (color, odor)1315280166518.04383.22 0.40 7.29 -81.1 (u.0.0)13.11" Yeitige" (color, odor)131727022.0017.9537.444 2.43 7.33 -73.2 114.810.11" Yeitige" (color, odor)1321280330017.96381.44 0.37 7.37 -85.0 95.37 10.11 " Yeitige" (color, odor)1323280386.0(8.22391.41 0.37 7.42 -86.7 94.68 10.11 " Yeitige" (color, odor)1324280386.0(8.23392.6 0.35 7.41 -87.6 69.03 12.11 " Yeitige" (color, odor)1323280386.0(8.23392.6 0.35 7.41 -87.6 69.03 12.11 " Yeitige" (color, odor)1324250600017.99388.33 0.32 7.42 -86.7 94.68 10.11	PURGE ST	TABILIZATIO	ON DATA									
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Time	- 1		Temp			pН					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				(°C)			(S.U.)		(NTU)	-	color, odor)	
[3:3] 275 $[1:05]$ 18.44 381.43 5.59 7.48 725.3 155.2 (3.11) (3.11) $[3:15]$ 280 1665 18.04 383.22 0.46 7.29 -81.1 (40.0) 15.11 (40.0) 15.11 (40.0) 15.11 (40.0) 15.11 (40.0) 15.11 (40.0) 15.11 (40.0) 15.11 (40.0) 15.11 (40.0) 15.11 (40.0) 15.11 (40.0) 15.11 (40.0) 15.23 73.27 73.27 73.22 114.8 10.11 (7.11) 15.23 285.27 10.11 (7.11) 10.11 (7.11) 10.11 (7.11) 10.11 (7.11) 10.11 (7.11) 10.11 (7.11) 10.11 (7.11) 10.11 (7.11) 10.11 (7.11) 10.11 (7.11) 10.11 (7.11) 10.11 (7.11) 10.11 (7.11) 10.11 (7.11) 10.11 (7.11) 10.11 (7.11) 10.11 (7.11) 10.11	1311		560	19.65	368.12	2.71	7.05		158.2	13.11	FIGKE Cloudy	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	133	270	1100	18.44	381.43	3.59	7.18	75.8	150.2	13.(1		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		280	166	18.04	383.22	0.48	7.29	-81.1		13,11		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1317	270		17.95	387.44	0.43	7.33		114.8	10.11		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					391.46	J.43	7.35	-842	84.39	10.11		
1323 280 386ω 18.22 391.41 $\bigcirc .37$ 7.42 -86.7 94.68 $\bigcirc .11$ $\bigcirc .11$ $I.325$ 270 0.4400 $I8.08$ 392.6 $\bigcirc .35$ 7.41 -87.6 69.03 $I_{\bigcirc,11}$ $\bigcirc .11$ $I327$ $\bigcirc 80$ 496.0 $I8.08$ 392.6 $\bigcirc .35$ 7.41 -87.6 69.03 $I_{\bigcirc,11}$ $\bigcirc .11$ $I327$ $\bigcirc 80$ 496.0 $I8.05$ 388.17 $\bigcirc .34$ 7.42 $\neg 81.2$ 69.03 $I_{\bigcirc,11}$ $\bigcirc .11$ $I327$ $\bigcirc 80$ 496.0 $I8.05$ 388.33 $\bigcirc .32$ 7.42 $\neg 81.2$ 69.03 $I_{\bigcirc,11}$ $\bigcirc .11$ $I327$ $\bigcirc 500$ $I8.07$ 388.33 $\bigcirc .32$ 7.46 -88.9 61.64 $I_{\bigcirc,11}$ $\bigcirc .11$ $@ 11.333$ 30_{20} 6600 $I7.94$ 397.21 0.32 7.48 -91.2 62.47 $I_{\odot,11}$ $@ 11.335$ $I333$ 30_{20} 7.793 $I8.09$ 394.01 0.32 $7.$					388.74		7.37	- 85.0	95.37	10.11		
I:325 270 $U400$ $I8.08$ 392.6 0.35 7.41 -87.6 69.03 $I2.11$ $I1$ $I327$ 270 $U4962$ $I8.05$ 388.17 0.34 7.42 -87.6 69.03 $I2.11$ $I1$ $I327$ 270 4962 $I8.05$ 388.17 0.34 7.42 -87.3 69.03 $I2.11$ $I1$ $I324$ 270 5500 $I8.03$ 388.33 0.32 7.46 -87.3 68.62 $I2.11$ $I1$ $I331$ 250 6000 $I7.99$ 393.13 0.32 7.46 -87.9 61.64 10.11 $I1$ $I333$ 250 6000 $I7.99$ 393.13 0.32 7.48 -91.2 62.49 $I0.11$ $I1$ $I333$ 3000 6000 $I8.04$ 389.21 0.32 7.48 -92.6 36.46 $I0.11$ $I1$ $I335$ 270 7.02 $I8.09$ 394.41 0.31 7.47 -92.6 <				(8.22	391.91		7.42	-86.7	94.68	10.11		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							7.41	-87.6	69.03	12.11		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						2.34	7.42	. 38.2	69.03	10.11		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							7.45	-89.3	68.60	10.11		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						0	7.46			12.11		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									62.49	71.61		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							7.48	-92.6	36.46	10.1		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							7.47	-93.1	\$.74	10.11		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										10.11		
1343 273 9343 18.33 398.35 0.33 7.48 -93.3 26.97 10.11 " " " " " " " " 1345 280 9933 17.99 396.41 0.33 7.47 -92.9 33.44 10.11 " "												
1345 280 9900 17.99 396.4 0.30 7.47 -92.9 30.44 10.11 "		1						-				
								-92.9				
	1347										14 JA	

btoc - below top of casing

Facility: SB

SBMU Sikeston Power Station - CCR Groundwater Monitoring

Monitoring Well ID:

MW 4

Date: <u>U-17-223</u>

PURGE STABILIZATION DATA CONTINUED

PURGE S	ADILIZATI	UN DATA CO				T					
Time	Purge Rate (mL/min)	Cumulative Volume (mL)	Temp (°C)	Specific Conductance (µS/cm)	Dissolved Oxygen (mg/L)	рН (S.U.)	Oxidation Reduction Potential (mV)	Turbidity (NTU)	Water Level (feet btoc)	Notes (e.g., opacity color, odor)	
1349	300	11000	17.97	395.40	0.29	7.49	-960	2203	10.11	Clear, od	sr
1351	293	11580	17.96			7.50	-96.1	18.14	13.01	Clear, Fia	Ke
1353	293	12100	17.95			7.51	-97.2	17.41	12.4		6
1355	280	12660	17.97	413.52		7.91	-96.2	17.22	10.11	u	
1357	340	13340	17.92	397.71	0.29	7.50	-46.8	11.46	10.11	"	4
13 59	280	13800	17.81	399.31		7.50	-96.5	11.83	10.11	es V	LP
1401	270	14340	17.82	400.15	233	7.50	-96.3	11.72	10.1		V
1403	293	14920	(7.75	405.23	3.30	7.49	-96.3	10.86	lo.tr	11	9
-				·							
				₩.(4				14			
-											
	1										
		1							110		

Facility:	SBMU Sikeston	Power Station - (CCR Groundwa	ter Monitoring	Monitoring We		14
Sampling Informa	ition:						
Method of Samplin	g: Low Flow -	Perstaltic Pump	& Tubing			Dedicated:	(Y) / N
Water Level @ Sa	mpling (feet btoc)	10.11					
Monitoring Event:	Annual ()	Semi-Annua	Quarte	rly() Mo	onthly ()	Other ()	
Final Purge Stabliz	ation Sampling D	ata:				1	1
<u>Date</u> Sample Time	Sample Rate (mL/min)	Temp (°C)	Specific Conductance (µS/cm)	Dissolved Oxygen (mg/L)	рН (S.U.)	Oxidation Reduction Potential (mV)	Turbidity (NTU)
4-18-23	290	17.75	405.23	٥,30	7.49	-96.3	12.86
Instrument Calibr See instrument cal 1 - In-Situ SmarTr 2 - HF scientific, ir	libration log of da oll Multi-Probe Fi	eld Meter (Temp	erature, Specifi	ng instruments: c Conductance, Dissolv	ved Oxygen, pH	I, Oxidation Red	uction Potentia
General Informati	ion:						
Weather Condition	ns @ time of sam	pling: <u>Sv</u>	nny, W	ingh			
Sample Character	istics: <u>Cl</u>	eur, Co	1 or less	, adores			
Sample Collection	Order:	Per SAP					
Comments and Ok		it Du	plicut	९			
Moving	1 Coal	train	about	So At a	way		
·							
-							
I certify that samp	ling procedures w	vere in accordan	ce with applicat	ble EPA and State proto	ocols.		
Date: <u>4-16-2</u>	323 By:	Aspira	Pase	C Title:	Las -	Teeh	

Page 2 of 2

4

ace

RECOLATONT PROGRAM (GIRGLE):	NPDES
MORBCA	RCRA
CCDD	TACO: RES OR IND/COMM
CCDD	TACO: RES OR IND/CO

CHAIN OF CUSTODY RECORD

STATE WHERE SAMPLE COLLECTED MO

CLIENT		ALL H	IGHLIGHTED AR	EAS MUST	T BE COM	PLETED BY	CLIENT (PLE	ASF PRINT)						
SIKESTON BMU POWER STAT		PROJI	ECT NUMBER	P	ROJECT LO	OCATION	PURCHA	SE ORDER #	10	-			-	
OIRESTON DIVID FOWER STAT	ION				BOTTON				(3) AN	ALYSIS R	EQUEST	ED	(FOR LAB USE ONLY)
ADDRESS		PHO	NE NUMBER	_					1	/				<u>O</u>
1551 W WAKEFIELD			475-3131		E-MA	IL,	DATE	SHIPPED						LOGIN #
•									1					
CITY		SAMPLER		_								1 1		LOGGED BY:
STAT SIKESTON, MO 63801		(PLEASE PR	RINT)				MATRI	X TYPES:	1					CLIENT: SIKESTON BMU, SIKESTON
ZIP			hony	$\Delta \omega$. 101	-	WW-WASTEW	ATER						POWER STATION
001174.07 777.0		19/15	NUNY	PV	ster		DW- DRINKING GW- GROUND 1	WATER	S S					PROJECT: SIKESTON BOTTOM ASH
		SAMPLER'S					WWSL-SLUDG	EOUS SOLID	P					2022
MR LUKE ST MARY	5	SIGNATURE					OIL-OIL SO-SOIL							PROJ. MGR.: GJ SCHINDLER
		11	K		_		SOL-SOLID		6,			1 1	- 1	
		Ann	120	2					Ū.		1			
2 SAMPLE DESCRIPTION		DATE	TIME	SAME	PLE TYPE	MATRIX			<u> </u>	ା <u>ସ</u>		1 1		
(UNIQUE DESCRIPTION AS IT WILL APPEAR ON THE ANALYTICAL REPORT)		COLLECTED		GRAB	COMP	TYPE	BOTTLE	PRES CODE	ۍ ا			1 1		
<u> </u>					1			CLIENT	U U	[m		1 1		REMARKS
MW-3	4	4-18-2	30758	V		0.44					1	+-+		
				X		GW	2	3,6	X	X				
MW-4	1	4-18-2	3 1403	x		GW	2	2.0	X					
BANA/ C		-			-	Gw	2	3,6	X	X				
MW-5	¢	1-18-2	31005	X		GW	2	3,6	x	x				
MW-6	1	14 102 0	1		-	0	- 4	3,0	^	~				
11174-0	R.	1-18-5	30851	X		GW	2	3,6	X	X		1 1		
MW-8	4	1-18-2	3 11 23						1					
			111	X		GW	2	3,6	X	X				
DUPLICATE	4	1-18-2	3	X		CIAL								
				^		GW	2	3,6	X	X		1		
FIELD BLANK	f	8-18-2	30851	X		DI	2	26	x	V				
							4	3,6	^	X				
CHEMICAL DESCRIVATION CODES						1			1 J		1			
CHEMICAL PRESERVATION CODES: 1-HCL 2-H2SO4	3 - HN	103 4-NA	AOH 5-NA	2\$203	6 UNP	RESERVED	7 - OTHER	T						
TURNAROUND TIME REQUESTED (PLEASE CIRCLE)	NORMAL	PHICH		-	5 7 7 7 7 7 7	-								
(5) (RUSH TAT IS SUBJECT TO PDC LABS APPROVAL AND SURCHAI	(GE)	RUSH		DATE RES NEEDE		\square	Lundaman							
RUSH RESULTS VIA (PLEASE CIRCLE) EMAIL PHON	/F					(6)								ceed with analysis, even though it may iving facility's Sample Acceptance
							Policy and the	e data will be	qualifie	d. Qual	ified data	may NOT	be accept	iving facility's Sample Acceptance table to report to all regulatory authorities.
	M ABOVE:						PROCEED W	WITH ANALYS			V DESIII	TS: /INIT	AL CL	, and general automica.
RELINQUISHED BY: (SIGNATURE)	ATE	001	RECEIVE	D BY: (SIG	NATURE	<u> </u>				GOAL	TRESUL			
· 1	TE-(9-	~~3			ANTOKEJ			DATE			0	CON	MENTS:	(FOR LAB USE ONLY)
Ashish I Geter "	ME OSC							TIME			(8)			
RELINQUISHED BY: (SIGNATURE)	UO 4	0									\sim			
· · · · · ·			RECEIVE	D BY: (SIG	NATURE)			DATE				-		
T	WE							-	_		SAMPL	TEMPE	RATURE	JPON RECEIPT °C
RELINQUISHED BY: (SIGNATURE)								TIME						
D/	ΤE		RECEIVE	D BY: (SIG	NATURE)			DATE	_		SAMPLI	(S) RECE	EIVED ON	ICE VORM
	//E										REPOR	ACCEPT IS NEED	TANCE NO	ONCONFORMANT
								TIME						YORN
											DATE A	VD TIME	TAKEN F	ROM SAMPLE BOTTLE

Appendix 1d

Field Sampling Notes – May 23, 2023 (Re-sample)

Field Instrumentation Calibration Log PGARI Calibrated by: Ashish Facility: SBMU SPS CCR Groundwater Sampling HF scientific; inc. Micro TPI Field Portable Turbidimeter In-Situ smarTROLL Field Meter Field Instruments: 201607366 S/N #: 893508 -S/N #: Oxidation Specific Turbidity Specific Turbidity Reduction Dissolved Oxygen pН **Oxidation Reduction Potential** Measurements Conductance Conductance Standards pН Potential (%) Measure-Standard (mV) (NTU) Date Time Standard Measurement (NTU) Standards Measurement ments (µS/cm) (µS/cm) (mV)0.52 Temperature Temperature 20.69 0.02 (C) . % (°C) 4.00 0 (°C) Beginning of Day Celibration Keston Tap Water 10.0 10.0 = 7.00 Source 14 5-22-Barometric 1413 0640 229. 'Standard 155.4 229.5 Pressure 2023 (mV) 1000 10000 (mm/Hg) 10.00 1173 90 Measurement Temperature 0.01 R1.60 0.02 Temperature = SS (°C) 4.00 404 (°C) End of Day Check 1 15 161 Tap Water 10.0 10.09 7.00 7.05 Source 4-4 228.6 Barometric 1398.6 1413 = = 229.0 Standard Pressure 7526 = 998.2 (mV) 1000 (mm/Hg) =10.04 10.00 99 Measurement The Multi-Probe Field Meter measures Temperature, Specific Conductance, Dissolved Oxygen, pH, and Oxidation Reduction Potential. Notes: The HF scientific, inc. Micro TPI Field Portable Turbidimeter measures Turbidity. Dissolved oxygen is calibrated via % saturation method; however, field measurements are recorded as mg/L

62e1

I certify that the aforementioned meters were calibrated within the manufacturers specifications.

KI.SI

Date 5-22 - 2021

	Facility:	SBMU SP	S CCR Grou	ndwater Sam	pling	_	Field Instr		n Calibra Calibrated by:		n Log Ach , 22	Reo	rec			
	Field Instr			arTROLL Fiel							nc. Micro TPI Fi		rbidimeter			
8 9	Date	Time	pH Standards	ments	Specific Conductan Standard (µS/cm)	ce	Specific Conductance Measurement (µS/cm)	Oxidation Red Stand	duction Poten lard (mV)	tlal	Oxidation Reduction Potential Measurement (mV)	Dissolved (%		Turbidity Standards (NTU)		Turbidity Measurements (NTU)
Beginning of Day Calibration	5-23- 2023	०६२०	4.00 = 7.00 = 10.00 =	4.00/1629 7.00/14.4 .4.4 .10.00 .474.8	1413	=	1425	(°C)	= २ ९.०० = २२०		<u> </u>	Tap Water Source	= 2, 20 = 5,4123 = 73.9 = 73.9	1 0.0	и и и	0.02 10.0 1000.0
End of Day Check	5-23- 2 023	1235	4.00 = 7.00 = 10.00 =	4.04 7.02 10.05	1413	=	1408.2		= 22.13 = 229.0	-	ડ ેન્ટ્8ેટ	Temperature (°C) Tap Water Source Barometric Pressure (mm/Hg) Measurement	= 25.71 = 514201 = 754.2 = 99.2-	0.02 10.0 1000	и и и	0.07 9.87 (0)8.0

 $(a_1,a_2,a_3,a_4,a_5) = (a_1,a_2,a_4)$

The Multi-Probe Field Meter measures Temperature, Specific Conductance, Dissolved Oxygen, pH, and Oxidation Reduction Potential. Notes.

The HF scientific, inc. Micro TPI Field Portable Turbidimeter measures Turbidity.

Dissolved oxygen is calibrated via % saturation method; however, field measurements are recorded as mg/L.

I certify that the aforementioned meters were calibrated within the manufacturers specifications.

By: Ashin Reser Datê: 5-23 - 203

متعذ والمر

_	Date: 5 . 22 - 2023
	Access: Accessibility: Good Fair Poor Poor
	Well clear of weeds and/or debris?: Yes No
	Well identification clearly visible?: Yes No
	Remarks:
P or	Concrete Pad: Condition of Concrete Pad: Good Inadequate
	Depressions or standing water around well?: Yes Not
	Remarks:
	Protective Outer Casing: Material = <u>4" x 4" Steel Hinged Casing with Hasp</u>
	Condition of Protective Casing: Good Damaged
_	Condition of Locking Cap: Good Damaged
	Condition of Lock: Good L Damaged
	Condition of Weep Hole: Good // Damaged
	Remarks:
÷	Well Riser: Material = 2" Diameter, Schedule 40 PVC, Flush Threaded
4	Condition of Riser: Good L/ Damaged
	Condition of Riser Cap: Good Condition Damaged
	Measurement Reference Point: Yes No
	Remarks:
	Dedicated Purging/Sampling Device: Type = <u>1/4 " ID Semi-Rigid Polyethylene & 0.170" ID Flexible</u> Silicone Tubing
	Condition: Good Damaged Missing
	Remarks:
	Monitoring Well Locked/Secured Post Sampling?: Yes / No
	Remarks:

Prepared by: GREDELL Engineering Resources, Inc.

S evenestie

いっていたんなんです

January 2017

Monito	ring Well ID:	MW	3 Fac	ility: SBML	J Sikeston P	ower Statio	n - Groundw	ater Monitor	ing		
Initial Wate	er Level (fee	t btoc):	1.11	•		Date:	5.2	2-20	23		
Initial Grou	ndwater Ele	vation (NAVD	088):			Air Pressur	e in Well?	Y (M)			
PURGE IN	FORMATIO										
Date:	5-2	2-23			110010						
Name (Sar	mple Collect	or):	nth or	ny D	Vesa						-
Method of	Well Purge:	Low Flow	Perstaltic	Pump	Dee	dicated Tub	ing?	Y) / N			
Time Purgi	ing Initiated:	0	700		On	e (1) Well V	olume (mL):	9	NA		
Beginning	Water Level	(feet btoc):	_1(.61	Tot	al Volume F	^D urged (mL)		403	S	
Beginning	Groundwate	er Elevation (N	AVD88):		We	Il Purged T	o Dryness?		YI		
Well Total	Depth (feet	btoc):	37.2	Q	Wa		fter Sampling		_ <u>[ī,]</u> ;	٩	
		: 2" Sch 4				(i.e	e., pump is c	off)	0.2.7		
					Tin	ne Sampling	g Completed	:	_08.	52	0.000
PURGE S	TABILIZATI	ON DATA					Oxidation			Nutra	_
Time	Purge Rate	Cumulative Volume	Temp (°C)	Specific Conductance	Dissolved Oxygen	рН (S.U.)	Reduction Potential	Turbidity (NTU)	Water Level	Notes (e.g., opacity,	
	(mL/min)	(mL)		(µS/cm)	(mg/L)		(mV)		(feet btoc)	color, odor)	_
10802	000	540		178.13		6.91	2245		11/2		ir 11
0804	250	1240	15 93		1.92	6.78		4.97			11
0806	260	1560		180.07		6 66		192.5. 215	11.12	1 1	,
0808	270	2000	15.58		1.71	6.64		4.24	11.12	11	5
2810	240	2580	15-58		1.60	6.61	206.8	1.75	11.12		P.P
0812	250	3080	15.55	1		6.61	203.5	1.52	11.12		11
0814	220	3920	15.56	171.68	1.37	6.57	211.4	1.56	11.12		-
0816	265	4050	15.59	169.13	1.26	6.60	219.5	1.93	11.12		_
			-								-
										201 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -	
			<u> </u>							e e	-
										1.	-
											- 22
	1										-
						2.00					
						*				<u> </u>	

btoc - below top of casing

Facility: Sl	BMU Sikeston	Power Station -	CCR Groundwa	ter Monitoring	Monitoring We		lw3
Sampling Information	4				0		
Method of Sampling:		Perstaltic Pump	& Tubing			Dedicated:	(Y) / N
Water Level @ Samp							
Monitoring Event:	Annual ()		Quarte	rlv() M	onthly ()	Other ()	
Final Purge Stablizati	13			.,,(,,	o) ()		
	Sample Rate (mL/min)	Temp (°C)	Specific Conductance (µS/cm)	Dissolved Oxygen (mg/L)	рН (S.U.)	Oxidation Reduction Potential (mV)	Turbidity (NTU)
5-22-2023 0815	265	15.58	169.13	1.26	6.60	219.5	1.95
Instrument Calibrati See instrument calibr 1 - In-Situ SmarTroll 2 - HF scientific, inc.	ation log of da Multi-Probe Fi	eld Meter (Temp	erature, Specifi	ng instruments: c Conductance, Dissol [,]	ved Oxygen, pH	, Oxidation Red	uction Potentia
General Information		bling: <u>Sv</u>	unny, C	lear			
) Sample Characteristi	cs: _C	eur, C	or orles,	, oderess		e (N
Sample Collection Or	der:	Per SAP					
Comments and Obse	- nuations:		Ř				
		-		6			
	3	1.0					2
· · · · · · · · · · · · · · · · · · ·				1			
		1. I.					-
			-				
	8						
I certify that sampling	procedures w	ere in accordan	ce with applicab	le EPA and State proto	ocols.		
Date: 5-22-2	Одуву:	Ashin		Title:	145	lender	16.

Prepared by: GREDELL Engineering Resources, Inc.

and a

HARRING TO THE

ЗÝ

Name (Field Staff): A P Date: <u>5-23-2023</u>	atel A pre	ster J lowes	
<u>Access</u> : Accessibility: Goo	od L F	air Poor	
Well clear of weeds and/or de	ebris?: Yes L	No	
Well identification clearly visit	ole?: Yes	No	
Remarks:	a r	(92)	
<u>Concrete Pad</u> : Condition of Concrete Pad:		Good / Inadequate	
Depressions or standing wate	er around well?	/es No	
Remarks:			
Protective Outer Casing: Mate	erial = <u>4" x 4" Stee</u>	Hinged Casing with Hasp	
Condition of Protective Casin	g: Good 📈	Damaged	
Condition of Locking Cap:	Good L	Damaged	
Condition of Lock:	Good <u></u>	Damaged	
Condition of Weep Hole:	Good	Damaged	
Remarks:			
Well Riser: Material = <u>2" Diameter</u>	Schedule 40 PVC	Flush Threaded	
Condition of Riser:	Good 🗸	Damaged	
Condition of Riser Cap:	Good 📈	Damaged	
Measurement Reference Poir	nt: Yes	No	
Remarks:			
Dedicated Purging/Sampling Device	<u>e</u> : Type = <u>¼ " ID Se</u> <u>Silicone T</u>	mi-Rigid Polyethylene & 0.170" ID F ubing	lexible
Condition: Good	Damaged	Missing	
Remarks:			
Monitoring Well Locked/Secu	red Post Sampling	Yes / No	
Remarks:			

Prepared by: GREDELL Engineering Resources, Inc.

Mary M.

All All

January 2017

Monitorin	g Well ID:	Mw	6 Facilit	y: SBMU S				ter Monitorin			1
		otoc):		- (3	C	Date: 5	- 23 -	2023			
		ation (NAVD8		8 8	A	Air Pressure	in Well?	Y /			
PURGE INF							10 ⁻¹⁰				
Date: 5	and the second se										
		r): Jus	45.0	1,owes							
					Ded	icated Tubir	na?	D/ N			
Method of W	/ell Purge:		Perstaltic Pu	amb *					1.4		
Time Purgin	g Initiated:	0	721		One	e (1) Well Vo	olume (mL):		NA		
Beginning V	Vater Level	(feet btoc):		. 22	Tota	al Volume P	urged (mL):		7841	0	
		Elevation (N	AVD88):		We	II Purged To	Dryness?		Y / 🚺		
		otoc):	-	5	Wa	ter Level aff	ter Sampling	; (feet btoc):	11.	22	
				.		- (i.e	., pump is o	ff)		5 162	
Casing Diar	meter (feet):	2" Sch 40	PVC		Tim	ne Sampling	Completed		079	58	
		NDATA							T		
PURGE ST	Purge	Cumulative		Specific	Dissolved	рH	Oxidation Reduction	Turbidity	Water	Notes (e.g., opaci	ity
Time	Rate	Volume	Temp (°C)	Conductance (µS/cm)	Oxygen (mg/L)	(S.U.)	Potential	(NTU)	Level (feet btoc)	color, odo	r)
	(mL/min)	(mL)	11		0.83	6.70	(mV)	18.89	11.22	FILME D	Sa
0723		600	1 12	437.05	0.66	6.76	-18.7	18.00	11.22	11	4
5725	270	1140	17.02	418.84	0.60	6.79	-19.7	14.95		"	9
0127	280	2260	16.86	412.00	0.46	6.81	-11.6	9.92	11.22	11	"
0729	280	2820	16.70	1.00 1		6.81	-18.2	10.47	11.20	510 A.M. 21*	1
0731	290	3400	16.83	424.65		6.82	-12.3	8.58	11.22	Clear no	00
0739	272	3940	16.74	427.64		6.82	-8.8	7.28		14	-
0737		4520	16.76	424.01	0.35	6.84		5.68	11.22	19	
	280	Cm2.	16 22	1122 01	12 36	6.84	-6.2	6.22	11.22	v	1
0741	230	5540	16.75	420.82	0.35	6.84	2.8	4.38	11.22	1.	-
0743	300	6140	16.74	4 26.56	0.36	0.05	12.5		11.22	at .	
0745	280	6700	16.82	426.79	0.56	621	22.7	5.40	11.22	**	1
0747		7280	16.86	427.26	0.25	6.20	24.2	5.50	11.22	-	
0740	280	1842	16.41	426.63	0.5)	0.00		5.50			
			_								
										1	_

btoc - below top of casing

Facility:	SBMU Sikeston I	Power Station -	CCR Groundwa	ter Monitoring	Monitoring We	II 1D: <u>M</u>	W 6
Sampling Informa	ition:						
Method of Samplin	g: Low Flow -	Perstaltic Pump	& Tubing			Dedicated:	(Y) / N
Water Level @ Sa	mpling (feet btoc)	. 11. 2	2				
Monitoring Event:	Annual ()	Semi-Annua	l (rly () Mo	onthly ()	Other ()	
Final Purge Stabliz	ation Sampling D	ata:		¥.	and the second second		
<u>Date</u> Sample Time	Sample Rate (mL/min)	Temp (°C)	Specific Conductance (µS/cm)	Dissolved Oxygen (mg/L)	рН (S.U.)	Oxidation Reduction Potential (mV)	Turbidity (NTU)
5-23-2023	280	16.91	426.63	0.35	6.86	24.3	5.5 ₀
2 - HF scientific, ir General Informati Weather Condition	ibration log of dai oll Multi-Probe Fin nc. Micro TPI Fiel on:	eld Meter (Temp d Portable Turbi	perature, Specifi	c Conductance, Dissolv	ved Oxygen, pH	, Oxidation Red	uction Potentia
60°F			0 11 - 1	210	1		
Sample Characteri	stics:	lear,	COTOVIS	285, 000	less	- <u></u>	<i>,</i> ,
Sample Collection	Order:	Per SAP		· · ·			
Comments and Ob	oservations:		. • • •				
	5 L		*	1		2 *	
		6		· · · ·	120 ¹²¹		
Y.			5	e*	1		
		2			-		×4
*		•		8	1	1	
	÷	x (a) = 1		••			
· · · · ·							

I certify that sampling procedures were in accordance with applicable EPA and State protocols.

_____ Title: Las leadmar Date: 5-23-23 By: ALish Parel

Page 2 of 2

Facility: SBMU SPS – CCR	R Groundwater Monitoring	
Monitoring Well ID:M	W-5	
	ATEL A DEUSTER JLOW	IES
Date: 5-23-2023		8
Access: Accessibility: Goo	d 🧹 🛛 Fair	_
Well clear of weads and/or do	ebris?: Yes 🗹 No	Poor
Well identification clearly with	ble?: Yes <u> </u>	<u>-</u>
Remarks:	ne?. Yes No	_
Concrete Pad:		
Condition of Concrete Pad:	Good 🗹	Inadequate
Depressions or standing wate	er around well?: Yes	
Remarks:		
Protective Outer Casing: Mate	erial = <u>4" x 4" Steel Hinged Casin</u>	g with Hasp
Condition of Protective Casing	g: Good 🗹 🛛 Damage	ed
Condition of Locking Cap:	Good 🗹 🛛 Damage	ed
Condition of Lock:	Good 🗹 🛛 Damage	ed
Condition of Weep Hole:	Good 🗹 🛛 Damage	ed
Remarks:		
Well Riser: Material = 2" Diameter,	Schedule 40 PVC, Flush Thread	ed
Condition of Riser:	Good 🗹 Damage	ed
Condition of Riser Cap:	Good 🗾 🛛 Damage	d
Measurement Reference Point	t: Yes 🗹 No	
Remarks:		
Dedicated Purging/Sampling Device	: Type = <u>1/4</u> " ID Semi-Rigid Polye Silicone Tubing	thylene & 0.170" ID Flexible
Condition: Good 🖌	Damaged Missing	
Remarks:		
Monitoring Well Locked/Secure	ed Post Sampling?: Yes 🖌	No
Remarks:		
ield Certification	Las Jech	5-23-23
6)gned	Title	Date

Prepared by: GREDELL Engineering Resources, Inc.

Monito	ring Well ID:	MW-	Fac	cility: SBMU	J Sikeston P	ower Statio	n - Groundw	ater Monitor	ing					
Initial Wate	er Level (fee	t btoc):	0.27			Date: 🗲	-23-23	3						
Initial Grou	ndwater Ele	vation (NAVE	088):	N 2 V		Air Pressu	re in Well?	Y/100						
	FORMATIO							(
	5-2													
Name (Sar	nple Collect	or): J-5+	in Loc	ses		<i>d</i> ,								
Method of	Well Purge:	Low Flow	v Perstaltic	Pump	De	dicated Tub	oing?	Y) / N						
Time Purgi	Purging Initiated: 0814 One (1) Well Volume (mL): NA													
Beginning	Water Level	(feet btoc):	10.2	7	Tot	al Volume I	Purged (mL)	:	7020	>				
Beginning	Groundwate	er Elevation (N	NAVD88):		We	ell Purged T	o Dryness?		Y 1 🚺					
Well Total	Depth (feet	btoc): 3	7.14		Wa	nter Level a	fter Samplin	; g (feet btoc):						
	Casing Diameter (feet): 2" Sch 40 PVC													
outing bid	Time Sampling Completed:													
PURGE ST	TABILIZATI	ON DATA			11									
Time	Purge	Cumulative	Temp	Specific	Dissolved	pН	Oxidation Reduction	Turbidity	Water	Notes				
	Rate (mL/min)	Volume (mL)	(°C)	Conductance (µS/cm)	Oxygen (mg/L)	(S.U.)	Potential (mV)	(NTU)	Level (feet btoc)	(e.g., opacity, color, odor)				
0814	\$20	620	18.38	795.92	79	664	27.3	22.17	10.27	Yellow Flakes				
0818 AI	+220 SIB	310 20	18.36	800.22	. 80	665	27.3	6h 8!	10.27	Yellow FLOKES				
0820	310	1840	16.68	834.65	.49	6.76	14.6	6.58	10.27	Yellow Flaks				
0822	270	2420	16.57	895.50	.44	679	1.4	8.58	12.17	Yellow Reles				
0824	380	3180	1674	831.05	.41	6.82	16.6	5.98	10.27	Yellow Flakes				
0826	280	3790	16.74	829.86	.37	6.82	8.6	T.47	122T	Yellow Klokes				
8828	360	4460	16.80	\$39.70	.38	6.82	12.4	6.23	10.27	Yellow Flator				
0 5/30	270	5000	16.87	838.43	.58	6.83	9.5	5.12	10.27	Yellow Fight				
0852	250	5500	16.92	842.26	.38	633	9.5	4.60	10.27	Yellow Flates				
0834	250	6000	16.92	843.43	.39	6.83	27	2.87	10.27	Clear				
0856	300	6600	1695		.38	6.84	10.9	3.75	10.27	clear .				
0838	210	7020	16.95	843,18	.38	6.84	10.7	2.95	10.27	Clear				
		F												
							*							
						9 9			- A					
							· · · · · · · · · · ·							

btoc - below top of casing

 \mathcal{Q}

Facility:	SBMU Sikeston I	Power Station -	CCR Groundwa	ter Monitoring	Monitoring We	ell ID: MO	1-5
ampling Informa	ation:						
Method of Samplin	ng: Low Flow -	Perstaltic Pum	p & Tubing			Dedicated:	(Y) / N
Water Level @ Sa		10.2	7				
Monitoring Event:	Annual ()	Semi-Annua	al (V) Quarte	rly() Me	onthly ()	Other ()	
Final Purge Stabliz	zation Sampling D	ata:					
<u>Date</u> Sample Time	Sample Rate (mL/min)	Temp (°C)	Specific Conductance (µS/cm)	Dissolved Oxygen (mg/L)	рН (S.U.)	Oxidation Reduction Potential (mV)	Turbidity (NTU)
6-23-23 0838	210	16.95	843.18	. 38	6.84	70.7	2.95
2 - HF scientific, i General Informat Weather Condition	ion:		nny, Clea	 (*) 			
Sample Character	istics: C(e	r, oder l	ess, color.	less	e a parte	e 24	
Sample Collection		, Per SAP		Se , e	•		
				4 · · · ·	· · ·		¹ . 5
Comments and O	A . A /	Wrate #	7.	* <u>,</u> ,			
	in p	- 1 ⁽⁴⁾ -	1 11				
1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -		···					5 to 1
			· · · · · · · ·				
· · · ·			4. ²	1		· · · ·	
	<u> </u>					100 m	3
· ,		Ø		Ti. ja	4 a.e.		
I certify that samp Date: 5-23-		rere in accorda	120	ble EPA and State proto	11 -	rch	

i.

	Date: 525-2023
<u>Acc</u>	<u>ess</u> : Accessibility: Good 🖵 Fair Poor
	Well clear of weeds and/or debris?: Yes No
	Well identification clearly visible?: Yes <u>No</u>
	Remarks:
<u>Con</u>	Condition of Concrete Pad: Good Low Inadequate
	Depressions or standing water around well?: Yes No
	Remarks:
Prot	tective Outer Casing: Material = $\frac{4^{\circ} \times 4^{\circ}}{5}$ Steel Hinged Casing with Hasp
	Condition of Protective Casing: Good Damaged
	Condition of Locking Cap: Good L Damaged
	Condition of Lock: Good <u>C</u> Damaged
	Condition of Weep Hole: Good Damaged
	Remarks:
Wel	I Riser: Material = <u>2" Diameter, Schedule 40 PVC, Flush Threaded</u>
	Condition of Riser: Good
	Condition of Riser Cap: Good 🖉 Damaged
	Measurement Reference Point: Yes / No
	Remarks:
Ded	icated Purging/Sampling Device: Type = <u>1/4</u> " ID Semi-Rigid Polyethylene & 0.170" ID Flexible Silicone Tubing
	Condition: Good Damaged Missing
	Remarks:
	Monitoring Well Locked/Secured Post Sampling?: Yes No

Prepared by: GREDELL Engineering Resources, Inc.

ŝ

January 2017

Field Sampling Lo	g
-------------------	---

Monitor	ing Well ID:	MW	4 Fac	ility: SBML	J Sikeston P	ower Statio	n - Groundw	ater Monitor	ing		
Initial Wate	r Level (feel	t btoc):	0.37			Date: S	-23	- 200	3		
10 10 10 10 10 10 10 10 10 10 10 10 10 1		vation (NAVD				Air Pressur	e in Well?	YIN			
PURGE IN	FORMATIO					1			***		
Date:	5.2	3-250		. 1							
Name (San	nple Collect	or):	JUS	rin (owe	S					
Method of	Well Purge:	Low Flow	Perstaltic I	Dump	Dec	dicated Tub	ing?	Y) / N			
Time Purgi	ng Initiated:		033		One	e (1) Well ∨	/olume (mL):		NA		
Beginning	Water Level	(feet btoc):	10.	38	Tot	al Volume I	Purged (mL)		535	20	
Beginning	Groundwate	r Elevation (N	IAVD88):		We	II Purged T	o Dryness?		Y /	and a	
Well Total	Depth (feet	btoc):	37.0	25	Wa		fter Sampling e., pump is c	g (feet btoc):	/0	.38	
Casing Dia	meter (feet)	2" Sch 40) PVC		Tim		a Completed		110	2	
					тш ж	ie sampling	g Completed	•		5	
PURGE STABILIZATION DATA											
Time	Rate (mL/min)	Volume (mL)	Temp (°C)	Conductance (µS/cm)	Oxygen (mg/L)	рН (S.U.)	Reduction Potential	Turbidity (NTU)	Level (feet btoc)	(e.g., opacity, color, odor)	
1035	(1121111)	620	21.68			7.04	(mV) - %4.6	780	10.38	arar, oder	
1027	280	1160	18.72	609.65			-93.8		10.38	11 1	
1089	260	1680	18.26	618.61	10000	7.24		5.85	10.28	11 Y	
1041	260	2200	18.09	629.01	0.45	7.29	-92.5	5.10	13.38		
1043	260	2723	18.15	615.34	3.42	7.31	-43.3	3.98	10.38		
1045	260	3240	18.54	617.93	0.39	7.33	-94.7	4.56	10.38	17 <i>1</i> 7	
1047	260	3760	18.08	615.00	2.37	7.34	-95.4	5.82	13.38		
1049	270	4300	17.99	619.49	0.35	7.34	-96.5	3.33	10.38	li b	
1051	260	4820	1700	617.32	0.34	7.36	-97.8	3.30	10.38	u 1.	
1053	280	5380	17.95	66.71	0.37	7.35	-99.3	3.45	10.38		
					·						
					12						
						•	1				

btoc - below top of casing

Facility:	SBMU Sikeston	Power Station -	CCR Groundwa	ter Monitoring	Monitoring Wo	ell ID:	MW 4
ampling Informa	ation:						
Method of Samplin	g: Low Flow -	Perstaltic Pump	& Tubing			Dedicated:	(Y) / N
Water Level @ Sa	mpling (feet btoc)	10.3	7				
Monitoring Event:	Annual ()	Semi-Annua	Quarte	erly ()	Monthly ()	Other ()	
Final Purge Stabliz	ation Sampling D)ata:	-			-	
<u>Date</u> Sample Time	Sample Rate (mL/min)	Temp * (°C)	Specific Conductance (µS/cm)	Dissolved Oxyg (mg/L)	gen pH (S.U.)	Oxidation Reduction Potential (mV)	Turbidity (NTU)
5-23-2023	280	17.95	616.71	0.37	7.35	-993	3.45
2 - HF scientific, in General Informat Weather Condition	roll Multi-Probe Fi nc. Micro TPI Fiel ion:	ield Meter (Temp Id Portable Turbi	berature, Specif dimeter		issolved Oxygen, pl	H, Oxidation Red	duction Potentia
_75°F	0		101-	710	0		
Sample Character	istics:	lear, Ce	or less	, 00010	885	4.9	
Sample Collection	Order:	Per SAP	<u></u>	<u>, , , , , , , , , , , , , , , , , , , </u>			
Comments and Ol	bservations:					•	
i				(4)4 (4)4	a • 1 g	4 C	
		×		• • • •			
· · · · ·	•	• •			1 75 V 1 1 1		1
				1			
·							
Loortify that comp	ling procedures y	vere in accordan	ce with applicat	ble EPA and State	protocols		

I certify that sampling p

Title: Cub Leheman Date 5-23-2023 By: 18.2

Page 2 of 2

CHAIN OF CUSTODY pg. 1 of 1 Work order # 3051831

TEKLAB, INC. 5445 Horseshoe Lake Road - Collinsville, IL 62234 - Phone: (618) 344-1004 - Fax: (618) 344-1005

Client:		Sikeston Board of	f Municipal	S	amp	ples	i on	: 🛙	(ic	ε :	3	BLUE	ICE	E	NO IC	æ		4.4	2	°C		LTG#	<u>ار او </u>	5	-							
Address:		Sikeston Power S	Iation								Pi	rese	erve	d ii	1: 🖻	ע [VB	1	IEÉO				F	OR I	AB	<u>US</u>	<u>کة د</u>	DNE	Ĺ		i i	
City / State	/ Zip	Sikeston, MO 63	801								La	ab N	lote) S:	ی۔ رئی	e	۰.	с. Дог	11 - -						. 49	er igen L			•			
Contact:	Ashish	Patel		Phone	:	(57	3) 47	5-31	19		pr	ojec	±=	SB	MU-	SP	S Bc	ottor	n As	h Po	nd	é. Mer			- 1994 - 1994		and the					200
E-Mail:	Mail: apatel@sbmu.net Fax:											lien	210.000		3.54			.256.5.2		94° No. 7 7 1	4 10.984.975	osaan i	Services.	1960612	o- 215280	95.00.00s			20.2., 92		n, ∵.∞	
Are these sample Are there any requ	Are these samples known to be involved in litigation? If yes, a surcharge to Are these samples known to be hazardous? Are these samples known to be hazardous? Are there any required reporting limits to be met on the requested analysis limits in the comment section. Yes No Project Name/Number Sample									No	Re	•				äine	er pro	vide	d for I							-						
Pro	ject Na	ime/Number		Sample		lect	or's	Nai	ne			N	IAT	RIX						IN	DIC	ATE	AN/	NALYSIS REQUESTED								
CCR BAP ReSam	CCR BAP ReSample Antho							252	en																							
	Results Requested Billing Instruction						# and Type of Containers										Q								l							
		(100% Surcharge)			1_						Groundwater						Chloride			Ì												
Other	L] 3 Dar	y (50% Surcharge)			N N						vate						8															
Lab Use Only	Sam	ple Identification		Time Sampled							×																					
23051831-001	MW-6	,25/0749	Ő						X						x																	
				· · · · · · · · · · · · · · · · · · ·		Τ	Т		Τ	Τ						Ĩ																
					Π		T	Π		Τ							Í				ļ	-				T						
					Η	1	\uparrow	ΤÌ	Ť					Ť.		-ĥ	1															
		·······	-				╈	Н	-†-	╈	1								ļ	l	<u> </u>										•••••	
1.11			-		┝┥	\neg	+		-	+											<u> </u>	+				+	\neg					
					\vdash	╉	+	┿┙	-+-	+	1					╋	 	-				1	-			_						
			-		\mathbb{H}	+		\square	+		┢					╉					<u> </u>	+				+						
			_				_								_							<u> </u>				_			·			
					Ц		_						_	_		_						<u> </u>	-		_							
		quished By																														
				lime				\square	.	-		S	Rec	ceiv	ed B	<u>x</u>								Đa	ate/T	ime	<u> </u>					
-fs1:52	10	<i>hl</i>		5-24-	20	2	<u>s/</u>	<u>3</u> 7	<u>73 -</u>	2_		ĽĽ	L	Li	\mathcal{M}	h		0	<u>le</u>	~					5/2	نلعه	<u>23</u>	<u> </u>	<u>155</u>		NRS	<u>}</u>
<u> </u>											Ĺ														,					-		
																							T									

The individual signing this agreement on behalf of the client, acknowledges that he/she has read and understands the terms and conditions of this agreement, and that he/she has the authority to sign on behalf of the client. See www.teklabinc.com for terms and conditions.

BottleOrder: 79954

Appendix 1e

Field Sampling Notes – October 11, 2023 (Second 2023 Semi-annual Event) Field Instrumentation Calibration Log

BMU SPC Facility: Ameren RIEC Ash Ponds - Groundwater Monitoring

Callbrated by: Ash. 32 Pater

	Field Instru	uments:	In-Situ SmarTROLL	MP or In-Situ		HF scientific, inc. Micro TPI Field Portable Turbidimeter									
		S/N #:	843508) . 5				2	201637366						
	Date	Time	pH Standards (S.U.)	pH Measure- ments (S.U./mV)	Specific Conductance Standard (µS/cm)	e	Specific Conductance Measurement (µS/cm)	Oxidation Reduction Potential Standard (mV)	Oxidation Reduction Potential Measurement (mV)	Dissolved (%		Turbidity Standards (NTU)	м	leasu	rbidity urements NTU)
libration	12.		4.00 @ 25.00°C Standard is 4.02 @ 25.00°C	4.01	1413 @25.00*C	25.00°C		220 mV at 25.00°C		Temperature (°C) Tap Water	=~23.93 Sillosta	0.02	(H)	0.	०२
Beginning of Day Calibration	(). طورع	% <u>(</u> 5	7.00 @25.00°C Standard is	7.03			1413.8	= Standard is	229.0 20.91°c	Barometric	C:17	10.0	.0	9	.98
Beginning		1	10.00 @25.00°c Standard is 2.06 @ 23.1° C	10.06			<i>2</i> 0.98°C	Standard is 229 mV @ 25 °C	sorie o	Pressure (mm/Hg) Measurement	=748.99 =122.04	1000	= (99	8.3
с К	10-11-		4.00 @ 25.00°C Standard is 1.02@ 20.8°C	11.02 NA	1413 @25.00°C		1414.7	220 mV at 25.00°C		Temperature (°C) Tap Water	= 20, 62 	0.01	п	0.	63
			7.00 @25.00°C Standard is 7.01 @26.1 °C	7.00 NA				=	228.8	Barometric	City	10.0	#	9	.97
End			10.00 @25.00°C Standard is	10.05 NA				Standard is 129 mV @ 2404 C 25		Pressure (mm/Hg) Measurement	= 749.01 = 99.97	1000		10	080

The In-Situ SmarTROLL MP Field Meter and In-Situ AquaTROLL 400 measure Temperature, Specific Conductance, Dissolved Oxygen, pH, and Oxidation Reduction Potential. Notes: The HF scientific, inc. Micro TPI Field Portable Turbidimeter measures Turbidity.

Dissolved oxygen is calibrated via % saturation method; however, field measurements are recorded as mg/L

I certify that the aforementioned meters were calibrated within the manufacturers specifications. Paser

Date: 10-11-2023 By: ASL.32

Monitoring Well Field Inspection

Facility: <u>SBMU SPS - CCR Groundwater Monitoring</u> Monitoring Well ID: Name (Field Staff): MW 3 MW 3
Date: <u>[3 · [1 · 2 · 2]</u>
Access: Accessibility: Good 🖌 Fair Poor
Well clear of weeds and/or debris?: Yes 🟒 No
Well identification clearly visible?: Yes 🖌 No
Remarks:
Concrete Pad: Condition of Concrete Pad: Good Left Inadequate
Depressions or standing water around well?: Yes No
Remarks:
Protective Outer Casing: Material = <u>4</u> " x 4" Steel Hinged Casing with Hasp
Condition of Protective Casing: Good 🗹 Damaged
Condition of Locking Cap: Good 🖌 Damaged
Condition of Lock: Good 🔽 Damaged
Condition of Weep Hole: Good 🖌 Damaged
Remarks:
Well Riser: Material = 2" Diameter, Schedule 40 PVC, Flush Threaded
Condition of Riser: Good 🖌 Damaged
Condition of Riser Cap: Good 🕢 Damaged
Measurement Reference Point: Yes 🖌 No
Remarks:
Dedicated Purging/Sampling Device: Type = 1/4 " ID Semi-Rigid Polyethylene & 0.170" ID Flexible Silicone Tubing
Condition: Good 🖌 Damaged Missing
Remarks:
Monitoring Well Locked/Secured Post Sampling?: Yes Mo
Remarks:
Field Certification Ann fase (13 lead man 13-11-2321 Signed Title Date

Prepared by: GREDELL Engineering Resources, Inc.

January 2017

Monito	ring Well ID:	Mh	3 Fac	ility: SBML	J Sikeston P	ower Statio	n - Groundw	ater Monitor	ing	-		
Initial Wate	er Level (fee	t btoc):	12.4:	2		Date: J	-11-0	2023				
Initial Grou	ndwater Ele	vation (NAVE	088):			Air Pressur	e in Well?	Y / 🕢				
PURGE IN	FORMATIO	N										
Date: 1	0-11	- 202	3									
Name (Sar	nple Collect	or): <u>A</u>	Due	SPER							-	
Method of	Well Purge:	Low Flow	v Perstaltic F	Pump	Dec	dicated Tub	ing?	Ý / N				
Time Purging Initiated: 0741 One (1) Well Volume (mL): NA												
Beginning	Water Level	l (feet btoc):	12.	42	Tot	al Volume I	Purged (mL)	:	55	80		
		er Elevation (N	NAVD88):		We	ll Purged T	o Dryness?		YIN			
	Depth (feet			20				g (feet btoc):	12.	43		
				+			e., pump is c					
Casing Dia	Casing Diameter (feet): <u>2" Sch 40 PVC</u> Time Sampling Completed: <u>0810</u>											
PURGE ST	TABILIZATI	ON DATA							""			
Time	Purge Rate	Cumulative Volume	Temp	Specific Conductance	Dissolved Oxygen	рН	Oxidation Reduction	Turbidity	Water Level	Not (e.g., o		
1	(mL/min)	(mL)	(°C)	(µS/cm)	(mg/L)	(S.U.)	Potential (mV)	(NTU)	(feet btoc)	color,	odor)	
0743		440	17.93	177.53	2.32	6.27	104.5	14.28	12.43	FIAK	otor	
0745	230	900	17.22	183.65	1.92	6.29	100.7	12.72	12.43	11		
0747	230	1360	16.94	185.04	1.67	6.31	97.5	8.96	12.43	**	*	
6749	230	1820	16.83	183.14	1.45	6.33	93.5	9.83	12.43	**	1/	
0751	220	2260	16.74	122.27	1.31	6.36	89.6	4.56	14.43		• • • •	
6753	240	2745	16.70	182.21	1.19	6.38	86.9	3.27	12.43	"	11	
0755	240	3220	16.69	181.43	1.08	6.41	\$3.9	2.44	12.43	Clear,	6201	
0757		3680	16.68	121.58	1.05	6.43	22.7	3.11	12.43	la .	V	
0759	210	4100	16.65	178.38	0.98	6.45	82.5	3.01	12.43	61	v	
0801		4600	16.65	178.38 178.32 178.24	0.93	6.46	78.7	2.04	12.43		11	
0803	240	5080	16.63	178.24	0.91	6.49	78.4	2.04	12.43	**	₹¥)	
0809	250	5580	16.61	180.48	0.42	6.49	72.3	1.77	12.43	1-	1	
0.00 .												

btoc - below top of casing

Facility:	SBMU Sikeston I	Power Station - (CCR Groundwa	ter Monitoring	Monitoring We		N3				
Sampling Informa	ition:										
Method of Samplin	1ethod of Sampling: Low Flow - Perstaltic Pump & Tubing										
Water Level @ Sa	ater Level @ Sampling (feet btoc):/2.43										
Monitoring Event:	Annual()		l 💓 Quarte	rly() Mo	onthly ()	Other ()					
Final Purge Stabliz	ation Sampling D	ata:		1		0.11.11	j				
<u>Date</u> Sample Time	Sample Rate (mL/min)	Temp (°C)	Specific Conductance (µS/cm)	Dissolved Oxygen (mg/L)	рН (S.U.)	Oxidation Reduction Potential (mV)	Turbidity (NTU)				
10-11-2023	250	16.61	180.98	0.92	6.49	72.3	1.77				
Instrument Calibration Data: See instrument calibration log of daily calibration data for the following instruments: 1 - In-Situ SmarTroll Multi-Probe Field Meter (Temperature, Specific Conductance, Dissolved Oxygen, pH, Oxidation Reduction Potentia 2 - HF scientific, inc. Micro TPI Field Portable Turbidimeter											
General Informati	on:										
Weather Condition	-		oudy								
Sample Character	stics: <u></u>	ear, Co	norless	, odorless							
Sample Collection	Order:	Per SAP	1								
Comments and Ob	oservations:	e s									
÷											
		2									
<u>.</u>											
,											

I certify that sampling procedures were in accordance with applicable EPA and State protocols,

Date: 10-11-2023 By: 1/8/ / Title: Las Undman

Page 2 of 2

Monitoring Well Field Inspection

Facility: <u>SBMU SPS - CCR Groundwater Monitoring</u> Monitoring Well ID: <u>MW 6</u> Name (Field Staff): <u>A Paker A OVes Pr</u> Date: <u>ID-II-2023</u>
Access: Accessibility: Good <u>Fair</u> Poor
Well clear of weeds and/or debris?: Yes 🖌 No
Well identification clearly visible?: Yes No
Remarks:
Concrete Pad: Condition of Concrete Pad: Good Left Inadequate
Depressions or standing water around well?: Yes No
Remarks:
<u>Protective Outer Casing</u> : Material = $4^{\circ} \times 4^{\circ}$ Steel Hinged Casing with Hasp
Condition of Protective Casing: Good 🖵 Damaged
Condition of Locking Cap: Good 🜽 Damaged
Condition of Lock: Good 🖌 Damaged
Condition of Weep Hole: Good Damaged
Remarks:
Well Riser: Material = 2" Diameter, Schedule 40 PVC, Flush Threaded
Condition of Riser: Good <u>Condition</u> Damaged
Condition of Riser Cap: Good L/ Damaged
Measurement Reference Point: Yes 🔐 No
Remarks:
Dedicated Purging/Sampling Device: Type = <u>14</u> " ID Semi-Rigid Polyethylene & 0.170" ID Flexible Silicone Tubing
Condition: Good 🕢 Damaged Missing
Remarks:
Monitoring Well Locked/Secured Post Sampling?: Yes // No
Remarks:
Field Certification ASL31 Aun Las beer man 10.11-202 Signed Title Date

Prepared by: GREDELL Engineering Resources, Inc.

January 2017

Field Sampling Log												
Monitoring Well ID: A K G Facility: SBMU Sikeston Power Station - Groundwater Monitoring												
Initial Water Level (feet btoc): 12.42 Date: 13-11-2323												
Initial Groundwater Elevation (NAVD88): Air Pressure in Well? Y /												
PURGE INFORMATION												
Date: 10-11-2023												
Name (Sample Collector): A DURSTER												
Method of Well Purge: Low Flow Perstaltic Pump Dedicated Tubing?												
Time Purgi	ng Initiated:		0830		On	e (1) Well V	/olume (mL):	1	NA			
Beginning	Water Level	(feet btoc):	[-	2.42	Tot	al Volume I	Purged (mL)		47	80	_	
Beginning	Groundwate	er Elevation (N	AVD88):		We	I Purged T	o Dryness?		Y /			
Well Total	Depth (feet	btoc):	38.	0	Wa	iter Level at	fter Sampling	g (feet btoc):	12.	42		
		: 2" Sch 40				(i.	e., pump is o	ff)				
					Tim	ne Sampling	g Completed	:	085	s		
PURGE S	TABILIZATI	ON DATA					Ovidation					
Time	Purge Rate	Cumulative Volume	Temp	Specific Conductance	Dissolved Oxygen	pН	Oxidation Reduction	Turbidity	Water Level	Note (e.g., op		
	(mL/min)	(mL)	(°C)	(µS/cm)	(mg/L)	(S.U.)	Potential (mV)	(NTU)	(feet btoc)	color, o	odor)	T
0832		500	17.71	456.64	1.43	6.51	-46.9	8-13	12.42	YENDW FLAKE,	0101	Tur
0834	250			459.73		6.62	-66.5	-	13.43	<u>.</u>	11	5.
0836	243	1480	17.10	462.94	0.42	6.67	-73.1 -76.2	4.65	12.42	1.1		
08 38	230	1940	17.05		0.82	6.71	- 10.2	2.83	12.42	17	,,	
245	230	2400	17.04		0.72		-78.1	2.90	12.42	11	17	
2111	243	2210	17.52	456.01		6.74		2.69	12.42	Clear, V	1310	
<u>844</u>	262	2.240	17.01	454.91	0.09	6.70	-727	1.85	12.42	**	1000	
0040	220	420	12.01	453.17	1.60	6.17	-78.8	1 70	12,42		13	
2840	240	4780	17.01	462.54	0.54	6. 95	-78.8	1.52	12.42	41	17	
	U		(1.01	400.34	0.50			1.93				
					1							
									3			
			1				÷ 4					

btoc - below top of casing

ç,

Facility:	SBMU Sikeston	Power Station - (CCR Groundwa	ter Monitoring	Monitoring We	IIID: M	w 6
Sampling Informa							
Method of Samplin	g: Low Flow -	Perstaltic Pump	& Tubing			Dedicated:	(Y) / N
Water Level @ Sa	mpling (feet btoc)	12.4	12				
Monitoring Event:	Annual ()	Semi-Annua	I (N) Quarte	rly() Mo	onthly ()	Other()	
Final Purge Stabliz	ation Sampling D)ata:	1				
<u>Date</u> Sample Time	Sample Rate (mL/min)	Temp (°C)	Specific Conductance (µS/cm)	Dissolved Oxygen (mg/L)	рН (S.U.)	Oxidation Reduction Potential (mV)	Turbidity (NTU)
(0.11.202) 0850	240	17.01	462.54	J.56	6.80	-79.2	1.53
2 - HF scientific, ir General Informati Weather Condition Sample Characteri Sample Collection Comments and Ob	on: s @ time of samp istics: Order:	pling: <u>Cl</u>		Windy 85. Odone	87		
Collec	t Fie	12 (30	ιΛK		ø		
		2	6				
I certify that sampl	ing procedures w	vere in accordan	ce with applicat	ble EPA and State proto	ocols		

Title: Los Creazman Date: 0-11.2023, JAM. 1

Page 2 of 2

Monitoring Well Field Inspection

Facility: SBMU SPS - CCR Groundwater Monitoring Monitoring Well ID: Mw 5 Name (Field Staff): A fate A D WSKA Date: 10-11-2023
Accessibility: Good Fair Poor Well clear of weeds and/or debris?: Yes No Well identification clearly visible?: Yes No
Remarks:
Concrete Pad: Condition of Concrete Pad: Depressions or standing water around well?: Yes No
Protective Outer Casing: Material $=$ 4" x 4" Steel Hinged Casing with Hasp
Condition of Protective Casing: Good 🗠 Damaged
Condition of Locking Cap: Good <u>Damaged</u>
Condition of Lock: Good L Damaged
Condition of Weep Hole: Good L Damaged
Remarks:
Well Riser: Material = 2" Diameter, Schedule 40 PVC, Flush Threaded
Condition of Riser: Good <i>L</i> Damaged
Condition of Riser Cap: Good 🤐 Damaged
Measurement Reference Point: Yes No
Remarks:
Dedicated Purging/Sampling Device: Type = 1/4 " ID Semi-Rigid Polyethylene & 0.170" ID Flexible Silicone Tubing
Condition: Good <u>C</u> Damaged <u>Missing</u>
Remarks:
Monitoring Well Locked/Secured Post Sampling?: Yes No
Remarks:
Field Certification AD.S. Pare as back MGr 10-1)-2023 Signed Title Date

Prepared by: GREDELL Engineering Resources, Inc.

January 2017

Monitor	ring Well ID:	MW	5 Fac	ility: SBML	J Sikeston P	ower Statio	n - Groundw	ater Monitor	ring		
Initial Wate	er Level (fee	t btoc):	11.39			Date: 🖊	Nw :	5			
Initial Grou	ndwater Ele	vation (NAVD			_	Air Pressur	e in Well?	Y / N			
PURGE IN	FORMATIO	N									
Date:	10-1	1-20	123								
Name (Sar	nple Collect	or):A	DU	ester							-
Method of	Well Purge:	Low Flow	/ Perstaltic F	oump	Dec	dicated Tub	ing? 🤇	Y) / N			
Time Purgi	ng Initiated		9444		One	e (1) Well V	olume (mL)		NA		
Beginning	Water Level	(feet btoc):	((.39	Tot	al Volume I	^o urged (mL)	2	321	10	
Beginning	Groundwate	r Elevation (N	IAVD88):		We	ll Purged T	o Dryness?		Y / 🕅	-	
Well Total	Depth (feet	btoc):	37.40)	Wa		fter Sampling		. 17.5	39	-
Casing Dia	ameter (feet)	2" Sch 40) PVC		Tim		e., pump is c g Completed		100	5	-
PURGE S	TABILIZATIO						Oxidation		1		
Time	Purge Rate (mL/min)	Cumulative Volume (mL)	Temp (°C)	Specific Conductance (µS/cm)	Dissolved Oxygen (mg/L)	рН (S.U.)	Reduction Potential (mV)	Turbidity (NTU)	Water Level (feet btoc)	Not (e.g., op color, o	oacity, odor)
946		460	17.92	8.808	1.55	6.81	-43.5	1.04	11.39	Clear,	od er
0948	220	900	17.55	811.25		6.82	-49.5	1.18	11.39	**	H
0452		1380	17.41		2.97	6.82		3.73	11.34	11	1
0952	220	1820	17.30	812.92		6.12	- 55.1	0,38	11.39		
0954		2230	17.29		3.73	6.83		0.49	11.39	1	· · ·
0956		2760	17.28		0.65	6.83	-57.6	5,92	11.39	1.	
0458	240	3240	1.30	812.13	J, 4 4	6.83	- 58.8	0.30	LINST		
				<u>.</u>							
									1		
							-				

Facility:	SBMU Sikeston	Power Station - (CCR Groundwa	ter Monitoring	Monitoring We		WS				
Sampling Informa	ition:										
Method of Samplin	g: Low Flow -	Perstaltic Pump	& Tubing			Dedicated:	(Y) / N				
Water Level @ Sa	mpling (feet btoc)	11.3	9								
Monitoring Event:	Annual()	Semi-Annua	Quarte	rly () Mo	onthly()	Other()					
Final Purge Stabliz	ation Sampling D)ata:	,,			Oxidation					
<u>Date</u> Sample Time	Sample Rate (mL/min)	Temp (°C)	Specific Conductance (µS/cm)	Dissolved Oxygen (mg/L)	рН (S.U.)	Reduction Potential (mV)	Turbidity (NTU)				
10-11-2023	243	(7.30	813.78	0.64	6.83	-58.8	ა _{.ვა}				
nstrument Calibration Data: See instrument calibration log of daily calibration data for the following instruments: 1 - In-Situ SmarTroll Multi-Probe Field Meter (Temperature, Specific Conductance, Dissolved Oxygen, pH, Oxidation Reduction Potentia 2 - HF scientific, inc. Micro TPI Field Portable Turbidimeter General Information:											
Weather Condition		pling:	over,	Windy							
Sample Characteri	stics: C	lear, C	010/275.	odorless							
Sample Collection		Per SAP									
Comments and Ob	oservations:		*	х. 							
						÷-					
·											
I certify that sampl	ing procedures w	vere in accordan	ce with applicat	le EPA and State proto	ocols.						

Monitoring Well Field Inspection

Facility: <u>SBMU SPS – CCR Groundwater Monitoring</u> Monitoring Well ID: <u>MW S</u> Name (Field Staff): <u>A ficture A ficture</u> Date: <u>10–11–223</u>
Access: Accessibility: Good <u>Fair</u> Poor
Well clear of weeds and/or debris?: Yes 🥢 No
Well identification clearly visible?: Yes <u>No</u>
Remarks:
Concrete Pad: Good Lee Inadequate
Depressions or standing water around well?: Yes No
Remarks:
<u>Protective Outer Casing</u> : Material = $\frac{4^{\circ} \times 4^{\circ}}{5}$ Steel Hinged Casing with Hasp
Condition of Protective Casing: Good Damaged
Condition of Locking Cap: Good <u>Condition</u> Damaged
Condition of Lock: Good <u>Condition</u> Damaged
Condition of Weep Hole: Good Damaged
Remarks:
Well Riser: Material = 2" Diameter, Schedule 40 PVC, Flush Threaded
Condition of Riser: Good 🔑 Damaged
Condition of Riser Cap: Good <u>Condition</u> Damaged
Measurement Reference Point: Yes No
Remarks:
Dedicated Purging/Sampling Device: Type = <u>1/4</u> " ID Semi-Rigid Polyethylene & 0.170" ID Flexible Silicone Tubing
Condition: Good Commaged Missing
Remarks:
Monitoring Well Locked/Secured Post Sampling?: Yes No
Remarks:
Field Certification MA Chis Leaching 10-11-2027
Signed Title Date

Prepared by: GREDELL Engineering Resources, Inc.

January 2017

Monitor	ing Well ID:	Mw	8 Fac	ility: SBMU	J Sikeston P	ower Statio	n - Groundw	vater Monitor	ing	
Initial Wate	r Level (fee	t btoc):	10.7	2		Date:	0-11-6	-202	3	
Initial Grou	ndwater Ele	vation (NAVE	- 088):			Air Pressur	e in Well?	YIN)	
PURGE IN	FORMATIO	N								
Date:	10-11	- 202	3							
Name (Sar	nple Collect	or): 🗡	Due	ster						
Method of	Well Purge:	Low Flow	/ Perstaltic I	⊃ump	Dec	dicated Tub	ing?	Y/N		
Time Purging Initiated: 1021 One (1) Well Volume (mL): NA										
Beginning	Water Level	(feet btoc):	10	.75	Tot	al Volume I	Purged (mL)	:	328	0
		er Elevation (N			We	II Purged T	o Dryness?		Y / (N)	
		btoc):	24	50				g (feet btoc):	<u> </u>	71
Casing Dia	meter (feet)	2" Sch 40) PVC			(i.e	e., pump is c	off)	1	
<u> </u>	. ,				Tim	ie Sampling	g Completed	1:	04	8
PURGE ST	ABILIZATIO	ON DATA					Oxidation		F	
Time	Purge Rate (mL/min)	Cumulative Volume (mL)	Temp (°C)	Specific Conductance (µS/cm)	Dissolved Oxygen (mg/L)	рН (S.U.)	Reduction Potential	Turbidity (NTU)	Water Level (feet btoc)	Notes (e.g., opacity, color, odor)
1023	(1121111)	4B	19.07	748.84	1.10	6.79	(mV) -63.6	1.16	10.71	Clear, Odor
1025	210	820	18.44			6.91	.74.0	0.76	10.71	
1027	200	1220	18.25	757.22	-	6.97	- 71.1	0.66	10.71	44 75
1029	210	1645	18.15	755.50		7.01	-82.8	0.55	13,71	11 II
1031	180	2000	18.13	756.42			- 85.7	3.74	13,71	11 41
1033	んむ	2440	18.08	751.19	0.44	7.04	- 42.1	0,90	10.71	AA D
1035	210	2860	18.04	757.54	0.42	7.07	-94.2	0.56	13.71	M 17
1037	210	3080	18.07	753.30	0,41	7.07	-94.4	0.72	13.71	h 1)
	-									
						·				
					1					
l										

Facility:	SBMU Sikeston	Power Station - (CCR Groundwa	ter Monitoring	Monitoring We	IIID: M	w 8
Sampling Informa	ation:						
Method of Samplin	g: Low Flow -	Perstaltic Pump	& Tubing			Dedicated:	(Y) / N
Water Level @ Sa	mpling (feet btoc)	10.7	1				
Monitoring Event:	Annual()	Semi-Annual	Quarte	rly() Mo	onthly()	Other ()	
Final Purge Stabliz	ation Sampling D	ata:					1
<u>Date</u> Sample Time	Sample Rate (mL/min)	Temp (°C)	Specific Conductance (µS/cm)	Dissolved Oxygen (mg/L)	рН (S.U.)	Oxidation Reduction Potential (mV)	Turbidity (NTU)
10-11-2023	210	18.07	750.30	0.41	7.07	-94.9	2.7.2
2 - HF scientific, in General Informati Weather Condition <u>65°F</u> Sample Character Sample Collection Comments and Of	roll Multi-Probe Fi inc. Micro TPI Fiel ion: is @ time of samp istics: Order:	eld Meter (Temp d Portable Turbi- bling: <u>SU</u> <u>Leur, Co</u> Per SAP	erature, Specifi dimeter	c Conductance, Dissolv	red Oxygen, pH	, Oxidation Red	luction Potentia
·			1				
	ling procedures	in apportant	on with applicat	Ne EPA and State proto			

I certify that sampling procedures were in accordance with applicable EPA and State protocols.

Date: []-11-2023 By: Ashish Paler Title: [45 leydman

Page 2 of 2

Monitoring Well Field Inspection

Facility: <u>SBMU SPS - CCR Groundwater Monitoring</u> Monitoring Well ID: <u>MW 4</u> Name (Field Staff): <u>Ashish Paket Anthony DVESE</u> Date: <u>()-1(-252</u> 3
Access: Accessibility: Good \checkmark Fair Poor Well clear of weeds and/or debris?: Yes \checkmark No
Well identification clearly visible?: Yes Vell Remarks: No
Concrete Pad: Good Inadequate Condition of Concrete Pad: Good Inadequate Depressions or standing water around well?: Yes No
Remarks: Protective Outer Casing: Material = <u>4" x 4" Steel Hinged Casing with Hasp</u> Condition of Protective Casing: Good Damaged
Condition of Locking Cap:Good /DamagedCondition of Lock:Good /Damaged
Condition of Weep Hole: Good Damaged Remarks:
Well Riser: Material = <u>2" Diameter, Schedule 40 PVC, Flush Threaded</u> Condition of Riser: Good Condition of Riser Cap: Good Damaged
Measurement Reference Point: Yes K No Remarks:
Dedicated Purging/Sampling Device: Type = 1/4 " ID Semi-Rigid Polyethylene & 0.170" ID Flexible Silicone Tubing Silicone Tubing Condition: Good I Damaged
Remarks: Monitoring Well Locked/Secured Post Sampling?: Yes
Remarks: Field Certification Ashish Case 10-11+2323 Signed Title Date

Prepared by: GREDELL Engineering Resources, Inc.

Monito	ring Well ID:	MI	V 4 Fac	ility: SBMU	J Sikeston P	ower Statio	n - Groundw	ater Monitor	ing	
Initial Wate	er Level (fee	t btoc):	11.7	0		Date:	0-11-	2023		
Initial Grou	ndwater Ele	vation (NAVE)88):	2 		Air Pressu	re in Well?	Y /		
PURGE IN	FORMATIO	N								
Date:	10-11	-2.22	-							
Name (Sar	nple Collect	or):A	Du	2SRF						
Method of	Well Purge:	Low Flow	Perstaltic F	Pump	De	dicated Tub	oing?	Y) / N		
Time Purgi	ng Initiated:	1	121		On	e (1) Well \	/olume (mL)		NA	
Beginning	Water Level	(feet btoc):	((.73	Tot	al Volume I	Purged (mL)	:	340	0
Beginning	Groundwate	er Elevation (N	AVD88)		We	ell Purged T	o Dryness?		Y / 🕅	
Well Total	Depth (feet	btoc):	37.	55	Wa			g (feet btoc):	11.7	0
Casing Dia	imeter (feet)	2" Sch 40	D PVC		Tim		e., pump is c g Completed		11	
					1111	ie Sampling	g Completed			<u> </u>
	FABILIZATI Purge	Cumulative	_	Specific	Dissolved		Oxidation		Water	Notes
Time	Rate (mL/min)	Volume (mL)	Temp (°C)	Conductance (µS/cm)	Oxygen (mg/L)	рН (S.U.)	Reduction Potential	Turbidity (NTU)	Level (feet btoc)	(e.g., opacity, color, odor)
1123	(500	19.79	571.25		7.01	(mV)	0.85	11.70	clear, no
1129	275	1040	18.84	587.5		7.12		0.35	11.70	the Pr
1127	230	1500	18.63	587.03		7.16	-104.7		11.70	ti tr
1124	240	1980	18.57	592.02	0.70	7.20	-127.3		11.70	
1131	230	2443	18.53	591.22		7.24			11.70	11 11
1133	240	2920		593.86	-		-109.6		11.70	14 (f
1135	240	3400	1-8.92		10.60	7.25	-128.6	2.49	11.73	· · · · · · ·
		· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·					
										6
				-						

btoc - below top of casing

Facility:	SBMU Sikeston I	Power Station -	CCR Groundwa	ter Monitoring	Monitoring We		v 4
Sampling Informa	tion:	•					
Method of Samplin	g: Low Flow -	Perstaltic Pump	& Tubing			Dedicated:	(Y) / N
Water Level @ Sar	mpling (feet btoc)	11.70	2				
Monitoring Event:	Annual()	Semi-Annua	Quarter	rly() Mo	onthly ()	Other ()	
Final Purge Stabliz	ation Sampling D	ata:			1		
<u>Date</u> Sample Time	Sample Rate (mL/min)	Temp (°C)	Specific Conductance (µS/cm)	Dissolved Oxygen (mg/L)	рН (S.U.)	Oxidation Reduction Potential (mV)	Turbidity (NTU)
10-11-2023	240	18.52	596.48	0.6	7.25	-138.63	0.49
Instrument Calibr See instrument cal 1 - In-Situ SmarTn 2 - HF scientific, in	ibration log of dai oll Multi-Probe Fi	eld Meter (Temp	perature, Specifi	ng instruments: c Conductance, Dissolv	ved Oxygen, pł	I, Oxidation Redu	uction Potentia
General Informati	on:						
Weather Condition	s @ time of samp	oling: <u>SU</u>	nny				
Sample Characteri	stics:	lear, Ce	laless,	62 Mess			
Sample Collection	Order:	Per SAP					
Comments and Ob	servations:	Ĩ			5	4 19	×

I certify that sampling procedures were in accordance with applicable EPA and State protocols,

Date 11-2023 By: Bhish Parel Title: Lab Lead man

Page 2 of 2

CHAIN OF CUSTODY pg. <u>1</u> of <u>1</u> Work order

TEKLAB, INC. 5445 Horseshoe Lake Road - Collinsville, IL 62234 - Phone: (618) 344-1004 - Fax: (618) 344-1005

Are these sample Are there any req	Sikeston Board of 107 E Malone Ave Sikeston, MO 638 Luke St. Mary Istmary@sbmu.net Istmary@sbmu.n	igation? If yes,	_ Phone: _ Fax: a surcharge w মত	ill apply		es Ko	Pr	ab N	les on: rved in: otes: Comm	: 🛛 L		100			N		FORL	<u>AB U</u>	_°C JSE (LTG#			
Pro	ject Name/Number		Sample C					M	ATRIX					INC	ICA	TE A	NALY	SIS R	EQU	ESTI	ED			
Standard	ts Requested] 1-2 Day (100% Surcharge)] 3 Day (50% Surcharge)	Billing Ins		the second second	a statistic monore	Containers	Aquecus	Groundwater	Trip Blank		B Ca (ICP)	Chloride	Fluoride	рН	Sulfate	TDS								
Lab Use Only	Sample Identification		e Sampled	1 1	_			· X		+	х	x	X	Х	Х	X	_	-		_				
	MW-4	10-11-2		11		++					x	X	x	X	x	x		+		-		+		_
Lana and		12-11-2			++	+++-		X		$ \rightarrow $		^ X	×	X	×	X		1			-		-	_
	MVV-5	10-11-2					_	X		Ļ	X					-	-	-		_		-		
	MVV-6	10-11-2		1 1				X			X	Х	х	Х	X	X							-	_
	MVV-8	10-11-2	1037	1 1				X			х	X	х	X	Х	х								
	Duplicate	13-11-2	3	1 1				X			Х	X	X	Х	Х	X		1			6			
	Field Blank	10-11-2	13 0850	1 1			X				х	X	х	X	х	Х								
	Trip Blank	10-11-2	3	1 1					x		X	X	х	X	Х	X			1					
															-					-				
	Relinguished By		1	Date/	Time					Re	ceive	d B	y						D	ate/Ti	me			_
Ashisi	h Parel		10-12-0	23	0	700	_													_				_
									_	-		_							30					
								-									-		-		_			

The individual signing this agreement on behalf of the client, acknowledges that he/she has read and understands the terms and conditions of this agreement, and that he/she has the authority to sign on behalf of the client. See www.teklabinc.com for terms and conditions.

Appendix 2

Laboratory Analytical Results and Quality Assurance/Quality Control Data

Appendix 2a

Laboratory Analytical Results and Quality Assurance/Quality Control Data – November 1, 2022 (Second 2022 Semi-annual Event)

Pace Analytical Services, LLC 2231 W. Altorfer Drive Peoria, IL 61615 (800)752-6651

November 22, 2022

Luke St Mary Sikeston BMU, Sikeston Power Station 1551 W Wakefield Sikeston, MO 63801

RE: SIKESTON FLY BOTTOM ASH APP III

Dear Luke St Mary:

Please find enclosed the analytical results for the **7** sample(s) the laboratory received on **11/4/22 10:00 am** and logged in under work order **FK01101**. All testing is performed according to our current TNI accreditations unless otherwise noted. This report cannot be reproduced, except in full, without the written permission of Pace Analytical Services, LLC.

If you have any questions regarding your report, please contact your project manager. Quality and timely data is of the utmost importance to us.

Pace Analytical Services appreciates the opportunity to provide you with analytical expertise. We are always trying to improve our customer service and we welcome you to contact the Director of Client Services, Lisa Grant, with any feedback you have about your experience with our laboratory at 309-683-1764 or lisa.grant@pacelabs.com.

pail of Schindler

Gail Schindler Project Manager (309) 692-9688 x1716 gail.schindler@pacelabs.com

SAMPLE RECEIPT CHECK LIST

Items not applicable will be marked as in compliance

Work Order FK01101 YES Samples received within temperature compliance when applicable YES COC present upon sample receipt YES COC completed & legible YES Sampler name & signature present YES Unique sample IDs assigned YES Sample collection location recorded YES Date & time collected recorded on COC YES Relinquished by client signature on COC YES COC & labels match YES Sample labels are legible YES Appropriate bottle(s) received YES Sufficient sample volume received YES Sample containers received undamaged NO Zero headspace, <6 mm present in VOA vials NO Trip blank(s) received YES All non-field analyses received within holding times NO Short hold time analysis

YES

YES

Current PDC COC submitted

Case narrative provided

Case Narrative

MW-3 TDS was originally analyzed within hold time but results did not meet acceptance criteria. The sample was reanalyzed outside hold time with passing QC.

Pace Analytical Services, LLC 2231 W. Altorfer Drive Peoria, IL 61615 (800)752-6651

Sample: FK01101-01 Name: MW-3 Matrix: Ground Wa							Sampled: 11/01/2 Received: 11/04/2 PO #: 30965		
Parameter	Result	Unit	Qualifier	Prepared	Dilution	MRL	Analyzed	Analyst	Method
Anions - PIA									
Chloride	< 1.0	mg/L		11/11/22 19:36	1	1.0	11/11/22 19:36	CRD	EPA 300.0 REV 2.1
Fluoride	< 0.250	mg/L		11/11/22 19:36	1	0.250	11/11/22 19:36	CRD	EPA 300.0 REV 2.1
Sulfate	10	mg/L		11/13/22 12:29	5	5.0	11/13/22 12:29	LAM	EPA 300.0 REV 2.1
General Chemistry - PIA									
Solids - total dissolved solids (TDS)	100	mg/L	н	11/09/22 14:09	1	17	11/09/22 15:02	HRF	SM 2540C
<u> Total Metals - PIA</u>									
Boron	20	ug/L		11/08/22 09:10	5	10	11/11/22 10:10	JMW	EPA 6020A
Calcium	17000	ug/L		11/08/22 09:10	5	200	11/10/22 17:30	JMW	EPA 6020A
Sample: FK01101-02 Name: MW-4 Matrix: Ground Wa							Sampled: 11/01/2 Received: 11/04/2 PO #: 30965		
Parameter	Result	Unit	Qualifier	Prepared	Dilution	MRL	Analyzed	Analyst	Method
<u>Anions - PIA</u>									
Chloride	12	mg/L		11/11/22 20:30	5	5.0	11/11/22 20:30	CRD	EPA 300.0 REV 2.1
Fluoride	< 0.250	mg/L		11/11/22 20:12	1	0.250	11/11/22 20:12	CRD	EPA 300.0 REV 2.1
Sulfate	79	mg/L		11/11/22 20:48	25	25	11/11/22 20:48	CRD	EPA 300.0 REV 2.1
Concret Chamister DIA									
General Chemistry - PIA									
General Chemistry - PIA Solids - total dissolved solids (TDS)	340	mg/L		11/07/22 09:30	1	26	11/07/22 10:54	HRF	SM 2540C
Solids - total dissolved	340	mg/L		11/07/22 09:30	1	26	11/07/22 10:54	HRF	SM 2540C
Solids - total dissolved solids (TDS)	340 940	mg/L ug/L		11/07/22 09:30 11/08/22 09:10	1	26 10	11/07/22 10:54 11/11/22 10:14	HRF	SM 2540C EPA 6020A

Sample: FK01101-03 Name: MW-5 Matrix: Ground Wa							Sampled: 11/01/2 Received: 11/04/2 PO #: 30965		
Parameter	Result	Unit	Qualifier	Prepared	Dilution	MRL	Analyzed	Analyst	Method
Anions - PIA									
Chloride	13	mg/L		11/11/22 21:24	10	10	11/11/22 21:24	CRD	EPA 300.0 REV 2.1
Fluoride	< 0.250	mg/L		11/11/22 21:06	1	0.250	11/11/22 21:06	CRD	EPA 300.0 REV 2.1
Sulfate	250	mg/L		11/11/22 21:42	100	100	11/11/22 21:42	CRD	EPA 300.0 REV 2.1
<u> General Chemistry - PIA</u>									
Solids - total dissolved solids (TDS)	670	mg/L		11/07/22 11:55	1	26	11/07/22 12:59	HRF	SM 2540C
<u> Total Metals - PIA</u>									
Boron	420	ug/L		11/08/22 09:10	5	10	11/11/22 10:17	JMW	EPA 6020A
Calcium	130000	ug/L		11/08/22 09:10	5	200	11/10/22 17:38	JMW	EPA 6020A
Sample: FK01101-04 Name: MW-6 Matrix: Ground Wa							Sampled: 11/01/2 Received: 11/04/2 PO #: 30965		
Parameter	Result	Unit	Qualifier	Prepared	Dilution	MRL	Analyzed	Analyst	Method
Anions - PIA									
Chloride	4.6	mg/L		11/11/22 22:01	1	1.0	11/11/22 22:01	CRD	EPA 300.0 REV 2.1
Sulfate	26	mg/L		11/11/22 22:55	10	10	11/11/22 22:55	CRD	EPA 300.0 REV 2.1
<u> General Chemistry - PIA</u>									
Fluoride	< 0.250	mg/L		11/17/22 15:02	1	0.250	11/17/22 15:02	ANK	SM 4500F C 1997
Solids - total dissolved solids (TDS)	330	mg/L		11/07/22 11:55	1	26	11/07/22 12:59	HRF	SM 2540C
<u> Total Metals - PIA</u>									
<u>Total Metals - PIA</u> Boron	55	ug/L		11/08/22 09:10	5	10	11/11/22 10:21	JMW	EPA 6020A

Sample: FK01101-05 Name: MW-8 Matrix: Ground Wa							Sampled: 11/01/2 Received: 11/04/2 PO #: 30965		
Parameter	Result	Unit	Qualifier	Prepared	Dilution	MRL	Analyzed	Analyst	Method
Anions - PIA									
Chloride	51	mg/L		11/11/22 23:31	10	10	11/11/22 23:31	CRD	EPA 300.0 REV 2.1
Fluoride	< 0.250	mg/L		11/11/22 23:13	1	0.250	11/11/22 23:13	CRD	EPA 300.0 REV 2.1
Sulfate	130	mg/L		11/13/22 12:47	25	25	11/13/22 12:47	LAM	EPA 300.0 REV 2.1
<u> General Chemistry - PIA</u>									
Solids - total dissolved solids (TDS)	500	mg/L		11/07/22 11:55	1	26	11/07/22 12:59	HRF	SM 2540C
<u> Total Metals - PIA</u>									
Boron	440	ug/L		11/08/22 09:10	5	10	11/11/22 10:25	JMW	EPA 6020A
Calcium	110000	ug/L		11/08/22 09:10	5	200	11/10/22 17:45	JMW	EPA 6020A
Sample: FK01101-06 Name: DUPLICATE Matrix: Ground Wa							Sampled: 11/01/2 Received: 11/04/2 PO #: 30965		
Parameter	Result	Unit	Qualifier	Prepared	Dilution	MRL	Analyzed	Analyst	Method
Anions - PIA									
Chloride	51	mg/L		11/12/22 00:07	10	10	11/12/22 00:07	CRD	EPA 300.0 REV 2.1
Fluoride	< 0.250	mg/L		11/11/22 23:49	1	0.250	11/11/22 23:49	CRD	EPA 300.0 REV 2.1
Sulfate	120	mg/L		11/12/22 00:25	100	100	11/12/22 00:25	CRD	EPA 300.0 REV 2.1
General Chemistry - PIA									
Solids - total dissolved				11/07/22 11:55	1	26	11/07/22 12:59	HRF	SM 2540C
solids (TDS)	520	mg/L		11/07/22 11:00	·	20		T II V	
	520	mg/L		1101122 11:55	·	20			
solids (TDS)	520	mg/∟ ug/L		11/08/22 09:10	5	10	11/11/22 10:28	JMW	EPA 6020A

Sample: FK01101- Name: FIELD BL/ Matrix: Ground						Sampled: 11/01/2 Received: 11/04/2 PO #: 30965	22 10:00	
Parameter	Result	Unit	Qualifier Prepare	d Dilution	MRL	Analyzed	Analyst	Method
Anions - PIA								
Chloride	< 1.0	mg/L	11/12/22 0	0:43 1	1.0	11/12/22 00:43	CRD	EPA 300.0 REV 2.1
Fluoride	< 0.250	mg/L	11/12/22 0	0:43 1	0.250	11/12/22 00:43	CRD	EPA 300.0 REV 2.1
Sulfate	< 1.0	mg/L	11/12/22 0	0:43 1	1.0	11/12/22 00:43	CRD	EPA 300.0 REV 2.1
<u> General Chemistry - PIA</u>								
Solids - total dissolved solids (TDS)	37	mg/L	11/07/22 1	1:55 1	17	11/07/22 12:59	HRF	SM 2540C
<u> Total Metals - PIA</u>								
Boron	< 10	ug/L	11/09/22 0	7:40 5	10	11/11/22 11:34	JMW	EPA 6020A
Calcium	< 200	ug/L	11/09/22 0	7:40 5	200	11/10/22 18:14	JMW	EPA 6020A

NOTES

Specifications regarding method revisions, method modifications, and calculations used for analysis are available upon request. Please contact your project manager.

* Not a TNI accredited analyte

Certifications

- CHI McHenry, IL 4314-A W. Crystal Lake Road, McHenry, IL 60050 TNI Accreditation for Drinking Water and Wastewater Fields of Testing through IL EPA Accreditation No. 100279 Illinois Department of Public Health Bacterial Analysis in Drinking Water Approved Laboratory Registry No. 17556
- PIA Peoria, IL 2231 W. Altorfer Drive, Peoria, IL 61615

TNI Accreditation for Drinking Water, Wastewater, Solid and Hazardous Material Fields of Testing through IL EPA Accreditation No. 100230 Illinois Department of Public Health Bacterial Analysis in Drinking Water Approved Laboratory Registry No. 17553 Drinking Water Certifications/Accreditations: Iowa (240); Kansas (E-10338); Missouri (870) Wastewater Certifications/Accreditations: Arkansas (88-0677); Iowa (240); Kansas (E-10338) Solid and Hazardous Material Certifications/Accreditations: Arkansas (88-0677); Iowa (240); Kansas (E-10338)

- SPMO Springfield, MO 1805 W Sunset Street, Springfield, MO 65807 USEPA DMR-QA Program
- STL Hazelwood, MO 944 Anglum Rd, Hazelwood, MO 63042 TNI Accreditation for Wastewater, Solid and Hazardous Material Fields of Testing through KS KDHE Certification No. E-10389 TNI Accreditation for Wastewater, Solid and Hazardous Material Fields of Testing through IL EPA Accreditation No. - 200080 Illinois Department of Public Health Bacterial Analysis in Drinking Water Approved Laboratory, Registry No. 171050 Missouri Department of Natural Resources - Certificate of Approval for Microbiological Laboratory Service - No. 1050

Qualifiers

H Test performed after the expiration of the appropriate regulatory/advisory maximum allowable hold time.

Dail g Schindler

Certified by: Gail Schindler, Project Manager

PACE ANALYTICAL SERVICES WWW.PACELABS.COM

REGULATORY PROGRAM (CIRCLE):	NPDES
MORBCA	RCRA
CCDD	TACO: RES OR IND/COMM

CHAIN OF CUSTODY RECORD

STATE WHERE SAMPLE COLLECTED MO

									LIENT (PLEA								
¹ CLIENT SIKESTON BMU POWER S	TATION		PROJEC		R		DJECT LOC		PURCHAS	E ORDER #	(3) AN	LYSIS	REQUE	STED		(FOR LAB USE ONLY)
<u> </u>		1				B	оттом	ASH	-		\sim	/					ENDIAL 7
ADDRESS 1551 W WAKEFIELD				NUMBER 75-3131			E-MAIL		DATE S	HIPPED							LOGIN # TROILOF I
																	LOGGED BY:
CITY				T)		1			MATRIX	TYPES:							CLIENT: SIKESTON BMU, SIKESTON POWER STATION
STAT SIKESTON, MO 63801		S	EASE PRIN		1	11/0	0		WW- WASTEWAT	ATER	S						PROJECT: SIKESTON BOTTOM ASH
CONTACT PERSON		-			CC	oWe	2		GW- GROUND W WWSL- SLUDGE NAS- NON AQUE	OUS SOLID	Ĩ						2022
MR LUKE ST MARY			IPLER'S		/				LCHT-LEACHATE OIL-OIL SO-SOIL SOL-SOLID		- C - C - C - C - C - C - C - C - C - C						PROJ. MGR.: GJ SCHINDLER
				2nd	1. 0	Jo			SOL-SOLID		S04,						
		25	C	-							L.	4					
2 SAMPLE DESCRIPTION (UNIQUE DESCRIPTION AS IT WILL APPEAR ON THE ANALYTICAL	REPORT)		DATE LECTED		ME ECTED	SAMPL GRAB	E TYPE COMP	MATRIX	BOTTLE	PRES CODE	ີ ປ	U.					REMARKS
										CLIENT PROVIDED	0	B					ALMARKS
MW-3		11-	1-22	07	51	x		GW	2	3,6	x	x					
MW-4		11-	1-22	112	11	x		GW	2	3,6	x	x					
MW-5		11-	1-22	10	10	x		GW	2	3,6	x	x					
MW-6		11-	1-22	08	43	x		GW	2	3,6	x	x					
MW-8		11-	1-22	10	43	x		GW	2	3,6	x	x					
DUPLICATE		11-	1-22			x		GW	2	3,6	x	x					
FIELD BLANK		11-	1-22	10	0	x		DI	2	3,6	x	x					
	The second se	HNO3	4 - NA	н	5 – NA2	28203	6 – UNPF	RESERVED	7 – OTHER								
5 TURNAROUND TIME REQUESTED (PLEASE CIRC (RUSH TAT IS SUBJECT TO PDC LABS APPROVAL AND	CLE) NORM SURCHARGE)	AL R	USH			DATE RES		6	l understand	that by initia	alina th	s box l	ive the	lab pe	rmission		oceed with analysis, even though it may
RUSH RESULTS VIA (PLEASE CIRCLE) EMAIL	PHONE					012-012-022-			not meet all	sample confi	ormanc	e requir	ements	as defi	ined in th	ne rece	aiving facility's Sample Acceptance stable to report to all regulatory authorities.
EMAIL IF DIFFERENT FROM ABOVE: PHONE # IF DIFFE	RENT FROM ABOVI	:							PROCEED V					•		200-00-00 Period	
RELINQUISHED BY: (SIGNATURE)	DATE		ſ	1	RECEIVE	D BY: (SIG	NATURE)	JL		DATE				>	COMM	ENTS:	(FOR LAB USE ONLY)
Mish Pate	TIME									TIME	1		8).			
RELINQUISHED BY: (SIGNATURE)	DATE				RECEIVE	D BY: (SIGI			-	DATE		~	-	-			
	TIME						,				-		SAM		EMPERA	TURE	
	Sales and the									TIME							D PRIOR TO RECEIPT
RELINQUISHED BY: (SIGNATURE)	DATE		1	1	RECEIVE	D BY: (Slot	NATURE)	A		DATE	11	5h	SAM	IPLE A	RECEN	NCE N	IONCONFORMANT
	TIME			(A)	HA		9	MIN	Dil	TIME	14.	700			NEEDE		Upg YORN
			10	IN	Ufe	/		v_{\parallel}	M	K	N	Ø	DAT	E AND	TIME TA	KEN F	ROM SAMPLE BOTTLE

Appendix 2b

Laboratory Analytical Results and QAQC Data – December 13, 2022 (Re-sample)

Pace Analytical Services, LLC 2231 W. Altorfer Drive Peoria, IL 61615 (800)752-6651

December 30, 2022

Luke St Mary Sikeston BMU, Sikeston Power Station 1551 W Wakefield Sikeston, MO 63801

RE: SIKESTON BOTTOM ASH RESAMPLES

Dear Luke St Mary:

Please find enclosed the analytical results for the **4** sample(s) the laboratory received on **12/15/22 4:00 pm** and logged in under work order **FL03252**. All testing is performed according to our current TNI accreditations unless otherwise noted. This report cannot be reproduced, except in full, without the written permission of Pace Analytical Services, LLC.

If you have any questions regarding your report, please contact your project manager. Quality and timely data is of the utmost importance to us.

Pace Analytical Services appreciates the opportunity to provide you with analytical expertise. We are always trying to improve our customer service and we welcome you to contact the Director of Client Services, Lisa Grant, with any feedback you have about your experience with our laboratory at 309-683-1764 or lisa.grant@pacelabs.com.

Dail of Schindler

Gail Schindler Project Manager (309) 692-9688 x1716 gail.schindler@pacelabs.com

SAMPLE RECEIPT CHECK LIST

Items not applicable will be marked as in compliance

Work Order FL03252 YES Samples received within temperature compliance when applicable YES COC present upon sample receipt YES COC completed & legible YES Sampler name & signature present YES Unique sample IDs assigned YES Sample collection location recorded YES Date & time collected recorded on COC YES Relinquished by client signature on COC YES COC & labels match YES Sample labels are legible YES Appropriate bottle(s) received YES Sufficient sample volume received YES Sample containers received undamaged NO Zero headspace, <6 mm present in VOA vials YES Trip blank(s) received YES All non-field analyses received within holding times NO Short hold time analysis YES Current PDC COC submitted NO Case narrative provided

Sample: FL03252-0	1						Sampled: 12/13/2	22 12:43	
Name: MW-5							Received: 12/15/2		
Matrix: Ground W	ater - Grab						PO #: 30965		
Parameter	Result	Unit	Qualifier	Prepared	Dilution	MRL	Analyzed	Analyst	Method
General Chemistry - PIA									
Solids - total dissolved solids (TDS)	490	mg/L		12/16/22 14:41	1	26	12/16/22 15:25	HRF	SM 2540C
Sample: FL03252-02	2						Sampled: 12/13/2	22 00:00	
Name: MW-5 DUPI	ICATE						Received: 12/15/2	22 16:00	
Matrix: Ground W	ater - Grab						PO #: 30965		
Parameter	Result	Unit	Qualifier	Prepared	Dilution	MRL	Analyzed	Analyst	Method
General Chemistry - PIA									
Solids - total dissolved solids (TDS)	460	mg/L	М	12/16/22 14:41	1	26	12/16/22 15:25	HRF	SM 2540C
Sample: FL03252-0	3						Sampled: 12/13/2	22 10:54	
Name: MW-6							Received: 12/15/2	22 16:00	
Matrix: Ground W	ater - Grab						PO #: 30965		
Parameter	Result	Unit	Qualifier	Prepared	Dilution	MRL	Analyzed	Analyst	Method
Anions - PIA									
Chloride	4.0	mg/L		12/23/22 23:56	1	1.0	12/23/22 23:56	LAM	EPA 300.0 REV 2.1
General Chemistry - PIA									
Solids - total dissolved solids (TDS)	220	mg/L		12/16/22 14:41	1	26	12/16/22 15:25	HRF	SM 2540C
<u> Total Metals - PIA</u>									
Calcium	45000	ug/L		12/20/22 12:10	5	200	12/21/22 10:30	JMW	EPA 6020A

Sample: FL03252-04 Sampled: 12/13/22 10:54 Name: FIELD BLANK Received: 12/15/22 16:00 Matrix: Ground Water - Grab PO #: 30965										
Parameter	Result	Unit	Qualifier	Prepared	Dilution	MRL	Analyzed	Analyst	Method	
Anions - PIA										
Chloride	< 1.0	mg/L		12/24/22 00:32	1	1.0	12/24/22 00:32	LAM	EPA 300.0 REV 2.1	
<u> General Chemistry - PIA</u>										
Solids - total dissolved solids (TDS)	< 17	mg/L		12/16/22 14:41	1	17	12/16/22 15:25	HRF	SM 2540C	
<u>Total Metals - PIA</u>										
Calcium	< 200	ug/L		12/27/22 09:01	5	200	12/27/22 14:40	JMW	EPA 6020A	

NOTES

Specifications regarding method revisions, method modifications, and calculations used for analysis are available upon request. Please contact your project manager.

* Not a TNI accredited analyte

Certifications

- CHI McHenry, IL 4314-A W. Crystal Lake Road, McHenry, IL 60050 TNI Accreditation for Drinking Water and Wastewater Fields of Testing through IL EPA Accreditation No. 100279 Illinois Department of Public Health Bacterial Analysis in Drinking Water Approved Laboratory Registry No. 17556
- PIA Peoria, IL 2231 W. Altorfer Drive, Peoria, IL 61615

TNI Accreditation for Drinking Water, Wastewater, Solid and Hazardous Material Fields of Testing through IL EPA Accreditation No. 100230 Illinois Department of Public Health Bacterial Analysis in Drinking Water Approved Laboratory Registry No. 17553 Drinking Water Certifications/Accreditations: Iowa (240); Kansas (E-10338); Missouri (870) Wastewater Certifications/Accreditations: Arkansas (88-0677); Iowa (240); Kansas (E-10338) Solid and Hazardous Material Certifications/Accreditations: Arkansas (88-0677); Iowa (240); Kansas (E-10338)

SPMO - Springfield, MO - 1805 W Sunset Street, Springfield, MO 65807 USEPA DMR-QA Program

STL - Hazelwood, MO - 944 Anglum Rd, Hazelwood, MO 63042 TNI Accreditation for Wastewater, Solid and Hazardous Material Fields of Testing through KS KDHE Certification No. E-10389 TNI Accreditation for Wastewater, Solid and Hazardous Material Fields of Testing through IL EPA Accreditation No. - 200080 Illinois Department of Public Health Bacterial Analysis in Drinking Water Approved Laboratory, Registry No. 171050 Missouri Department of Natural Resources - Certificate of Approval for Microbiological Laboratory Service - No. 1050

Qualifiers

M Analyte failed to meet the required acceptance criteria for duplicate analysis.

Dail g Schindler

Certified by: Gail Schindler, Project Manager

PACE ANALYTICAL SERVICES WWW.PACECLABS.COM

Pace

NPDES
RCRA
TACO: RES OR IND/COMM

CHAIN OF CUSTODY RECORD

STATE WHERE SAMPLE COLLECTED IL

		LIGHTED AREA	S MUST BE		TED BY CL	IENT (PLEAS	SE PRINT)	\square						(FOR LAB USE ONLY)
1) SIKESTON POWER STATION	PROJECT	PROJECT NUMBER PROJECT LOCATION							3 ANALYSIS REQUESTED				- and the second	(4) FLAD - 011
	PHONE N	E-MAIL		DATE SHIPPED			Τ			Τ		LOGIN # FL03252-04		
1551 W WAKEFIELD	573-475-3131											LOGGED BY:		
STAT SIKESTON, MO 63801	Anthony Devster			er	MATRIX TYPES: www.wastewater gw.ground water gw.ground water wwsl.sluoder Nas.Non Aqueous solid LchtLechate		TER JATER ATER OUS SOLID							STATION SIKESTON BOTTOM ASH 2022 RESAMPLES
CONTACT PERSON MR LUKE ST MARY	SAMPLER'S SIGNATURE					oil-oil So-Soil Sol-Solid			CA					GJ SCHINDLER
SAMPLE DESCRIPTION 2 (UNIQUE DESCRIPTION AS IT WILL APPEAR ON THE ANALYTICAL REPORT)	DATE COLLECTED	TIME COLLECTED	SAMPL GRAB	E TYPE COMP	MATRIX TYPE	BOTTLE COUNT	PRES CODE CLIENT PROVIDED	TDS	СĽ,					REMARKS
MW-5	12-13-22	laus	x		GW	1	6	X						
MW-5 MW-5 DUPLICATE	12-13-22		x		GW	1	6	X						
MW-6	12-13-22	1054	x		GW	2	3,6	X	X					
FIELD BLANK	12-13-22	1054	x		DI	2	3,6	X	X			1	-	
								_						
								_						
CHEMICAL PRESERVATION CODES.	– HNO3 4 – NA	AOH 5 – NA	25203		RESERVED									
5 TURNAROUND TIME REQUESTED (PLEASE CIRCLE) NOF (RUSH TAT IS SUBJECT TO PACE LABS APPROVAL AND SURCHARGE) RUSH RESULTS VIA (PLEASE CIRCLE) EMAIL PHONE	MAL RUSH		DATE RE		6									roceed with analysis, even though it may ceiving facility's Sample Acceptance ptable to report to all regulatory authorities.
EMAIL IF DIFFERENT FROM ABOVE: PHONE # IF DIFFERENT FROM ABO	DVE:					PROCEED	WITH ANAL	YSIS AN	ND QUA	ALIFY R	ESULTS			
RELINQUISHED BY: (SIGMATURE)	-14-22	RECEIN	ED BY: (SI	GNATURE)			DA				8	COM	IMENTS	S: (FOR LAB USE ONLY)
TIME	COPO					1	TIN							ba
RELINQUISHED BY: (SIGNATURE)	RECEIVED BY: (SIGNATURE)				DATE				SAMPLE TEMPERATURE UPON RECEIPT					
		DECEN		IGNATURE)				5		S	AMPLE(S	S) RECE	EIVED	NONCONFORMANT
DINQUISHED BY: (SIGNATURE)		REVEN	120 01. (0	\cap		1		115 2/15	5/2		EPORT I	S NEED	DED	YORM
0 0 1		0	n	-U	1 l	\sim		10	00	5 °	ATE ANI	D TIME	TAKE	N FROM SAMPLE BOTTLE
		-71-		1				-		R	C	201	vit	er
		V		V							-			

Appendix 2c

Laboratory Analytical Results and QAQC Data – April 18, 2023 (First 2023 Semi-annual Event)

Pace Analytical Services, LLC 2231 W. Altorfer Drive Peoria, IL 61615 (800)752-6651

May 05, 2023

Luke St Mary Sikeston BMU, Sikeston Power Station 1551 W Wakefield Sikeston, MO 63801

RE: SIKESTON FLY BOTTOM ASH APP III

Dear Luke St Mary:

Please find enclosed the analytical results for the **7** sample(s) the laboratory received on **4/20/23 10:30 am** and logged in under work order **GD03480**. All testing is performed according to our current TNI accreditations unless otherwise noted. This report cannot be reproduced, except in full, without the written permission of Pace Analytical Services, LLC.

If you have any questions regarding your report, please contact your project manager. Quality and timely data is of the utmost importance to us.

Pace Analytical Services appreciates the opportunity to provide you with analytical expertise. We are always trying to improve our customer service and we welcome you to contact the General Manager, Lisa Grant, with any feedback you have about your experience with our laboratory at 309-683-1764 or lisa.grant@pacelabs.com.

pail of Schindler

Gail Schindler Project Manager (309) 692-9688 x1716 gail.schindler@pacelabs.com

SAMPLE RECEIPT CHECK LIST

Items not applicable will be marked as in compliance

Work Order GD03480 YES Samples received within temperature compliance when applicable YES COC present upon sample receipt YES COC completed & legible YES Sampler name & signature present YES Unique sample IDs assigned YES Sample collection location recorded YES Date & time collected recorded on COC YES Relinquished by client signature on COC YES COC & labels match YES Sample labels are legible YES Appropriate bottle(s) received YES Sufficient sample volume received YES Sample containers received undamaged NO Zero headspace, <6 mm present in VOA vials NO Trip blank(s) received YES All non-field analyses received within holding times NO Short hold time analysis

YES

NO

Current PDC COC submitted

Case narrative provided

Sample: GD03480-0 Name: MW-3 Matrix: Ground Wa							Sampled: 04/18/2 Received: 04/20/2 PO #: 30965		
Parameter	Result	Unit	Qualifier	Prepared	Dilution	MRL	Analyzed	Analyst	Method
Anions - PIA									
Chloride	1.2	mg/L		05/02/23 14:51	1	1.0	05/02/23 14:51	CRD	EPA 300.0 REV 2.1
Fluoride	< 0.250	mg/L		05/02/23 14:51	1	0.250	05/02/23 14:51	CRD	EPA 300.0 REV 2.1
Sulfate	12	mg/L		05/02/23 15:09	5	5.0	05/02/23 15:09	CRD	EPA 300.0 REV 2.1
<u>General Chemistry - PIA</u>									
Solids - total dissolved solids (TDS)	120	mg/L		04/25/23 10:57	1	26	04/25/23 11:58	HRF	SM 2540C
<u> Total Metals - PIA</u>									
Boron	23	ug/L		04/25/23 09:01	5	10	04/27/23 13:56	JMW	EPA 6020A
Calcium	15000	ug/L		04/25/23 09:01	5	200	04/27/23 13:56	JMW	EPA 6020A
Sample: GD03480-0 Name: MW-4 Matrix: Ground Wa							Sampled: 04/18/2 Received: 04/20/2 PO #: 30965		
Parameter	Result	Unit	Qualifier	Prepared	Dilution	MRL	Analyzed	Analyst	Method
Anions - PIA									
Chloride	10	mg/L		05/02/23 15:46	5	5.0	05/02/23 15:46	CRD	EPA 300.0 REV 2.1
Fluoride	< 0.250	mg/L		05/02/23 15:27	1	0.250	05/02/23 15:27	CRD	EPA 300.0 REV 2.1
Sulfate	76	mg/L		05/02/23 16:04	25	25	05/02/23 16:04	CRD	EPA 300.0 REV 2.1
General Chemistry - PIA									
Solids - total dissolved solids (TDS)	330	mg/L		04/21/23 11:04	1	26	04/21/23 17:08	CPS	SM 2540C
Total Metals - PIA									
Boron	680	ug/L		04/25/23 09:01	5	10	04/27/23 14:00	JMW	EPA 6020A

Sample: GD03480-0 Name: MW-5 Matrix: Ground Wa							Sampled: 04/18/2 Received: 04/20/2 PO #: 30965		
Parameter	Result	Unit	Qualifier	Prepared	Dilution	MRL	Analyzed	Analyst	Method
Anions - PIA									
Chloride	13	mg/L		05/02/23 16:40	5	5.0	05/02/23 16:40	CRD	EPA 300.0 REV 2.1
Fluoride	< 0.250	mg/L		05/02/23 16:22	1	0.250	05/02/23 16:22	CRD	EPA 300.0 REV 2.1
Sulfate	210	mg/L		05/02/23 16:58	50	50	05/02/23 16:58	CRD	EPA 300.0 REV 2.1
<u> General Chemistry - PIA</u>									
Solids - total dissolved solids (TDS)	500	mg/L		04/21/23 11:04	1	26	04/21/23 17:08	CPS	SM 2540C
<u> Total Metals - PIA</u>									
Boron	340	ug/L		04/25/23 09:01	5	10	04/27/23 14:04	JMW	EPA 6020A
Calcium	120000	ug/L		04/25/23 09:01	5	200	04/27/23 14:04	JMW	EPA 6020A
Sample: GD03480-0 Name: MW-6 Matrix: Ground Wa							Sampled: 04/18/2 Received: 04/20/2 PO #: 30965		
Parameter	Result	Unit	Qualifier	Prepared	Dilution	MRL	Analyzed	Analyst	Method
Anions - PIA									
Chloride	5.0	mg/L		05/02/23 17:16	1	1.0	05/02/23 17:16	CRD	EPA 300.0 REV 2.1
Fluoride	< 0.250	mg/L		05/02/23 17:16	1	0.250	05/02/23 17:16	CRD	EPA 300.0 REV 2.1
Sulfate	29	mg/L		05/02/23 18:10	5	5.0	05/02/23 18:10	CRD	EPA 300.0 REV 2.1
General Chemistry - PIA									
Solids - total dissolved solids (TDS)	240	mg/L		04/21/23 11:04	1	26	04/21/23 17:08	CPS	SM 2540C
Total Metals - PIA									
Total Wetals - FIA									
Boron	57	ug/L		04/25/23 09:01	5	10	04/27/23 14:07	JMW	EPA 6020A

Sample: GD03480-05 Name: MW-8 Matrix: Ground Wa							Sampled: 04/18/2 Received: 04/20/2 PO #: 30965		
Parameter	Result	Unit	Qualifier	Prepared	Dilution	MRL	Analyzed	Analyst	Method
Anions - PIA									
Chloride	44	mg/L		05/02/23 18:46	10	10	05/02/23 18:46	CRD	EPA 300.0 REV 2.1
Fluoride	< 0.250	mg/L		05/02/23 18:28	1	0.250	05/02/23 18:28	CRD	EPA 300.0 REV 2.1
Sulfate	110	mg/L		05/03/23 23:22	25	25	05/03/23 23:22	CRD	EPA 300.0 REV 2.1
<u> General Chemistry - PIA</u>									
Solids - total dissolved solids (TDS)	440	mg/L		04/21/23 11:04	1	26	04/21/23 17:08	CPS	SM 2540C
<u> Total Metals - PIA</u>									
Boron	420	ug/L		04/25/23 09:01	5	10	04/27/23 14:11	JMW	EPA 6020A
Calcium	92000	ug/L		04/25/23 09:01	5	200	04/27/23 14:11	JMW	EPA 6020A
Sample: GD03480-06 Name: DUPLICATE Matrix: Ground Wa							Sampled: 04/18/2 Received: 04/20/2 PO #: 30965		
Parameter	Result	Unit	Qualifier	Prepared	Dilution	MRL	Analyzed	Analyst	Method
Anions - PIA									
Chloride	11	mg/L		05/02/23 19:23	5	5.0	05/02/23 19:23	CRD	EPA 300.0 REV 2.1
Fluoride	< 0.250	mg/L		05/02/23 19:04	1	0.250	05/02/23 19:04	CRD	EPA 300.0 REV 2.1
Sulfate	66	mg/L		05/02/23 19:41	50	50	05/02/23 19:41	CRD	EPA 300.0 REV 2.1
General Chemistry - PIA									
	000	ma/l		04/21/23 11:04	1	26	04/21/23 17:08	CPS	SM 2540C
Solids - total dissolved solids (TDS)	300	mg/L		04/21/2011.04		20			
	300	mg/∟		04/21/2011.04	·	20			
solids (TDS)	300	ug/L		04/25/23 09:01	5	10	04/27/23 14:15	JMW	EPA 6020A

Sample: GD03480 Name: FIELD BL Matrix: Ground							Sampled: 04/18/2 Received: 04/20/2 PO #: 30965		
Parameter	Result	Unit	Qualifier	Prepared	Dilution	MRL	Analyzed	Analyst	Method
Anions - PIA									
Chloride	< 1.0	mg/L	0	5/02/23 19:59	1	1.0	05/02/23 19:59	CRD	EPA 300.0 REV 2.1
Fluoride	< 0.250	mg/L	0	5/02/23 19:59	1	0.250	05/02/23 19:59	CRD	EPA 300.0 REV 2.1
Sulfate	< 1.0	mg/L	0	5/02/23 19:59	1	1.0	05/02/23 19:59	CRD	EPA 300.0 REV 2.1
<u>General Chemistry - PIA</u>									
Solids - total dissolved solids (TDS)	< 17	mg/L	C	4/21/23 11:04	1	17	04/21/23 17:08	CPS	SM 2540C
Total Metals - PIA									
Boron	11	ug/L	0	4/25/23 09:01	5	10	04/27/23 14:19	JMW	EPA 6020A
Calcium	< 200	ug/L	0	4/25/23 09:01	5	200	04/27/23 14:19	JMW	EPA 6020A

NOTES

Specifications regarding method revisions, method modifications, and calculations used for analysis are available upon request. Please contact your project manager.

* Not a TNI accredited analyte

Certifications

CHI - McHenry, IL - 4314-A W. Crystal Lake Road, McHenry, IL 60050 TNI Accreditation for Drinking Water and Wastewater Fields of Testing through IL EPA Accreditation No. 100279 Illinois Department of Public Health Bacterial Analysis in Drinking Water Approved Laboratory Registry No. 17556

PIA - Peoria, IL - 2231 W. Altorfer Drive, Peoria, IL 61615

TNI Accreditation for Drinking Water, Wastewater, Solid and Hazardous Material Fields of Testing through IL EPA Accreditation No. 100230

Illinois Department of Public Health Bacterial Analysis in Drinking Water Approved Laboratory Registry No. 17553 Drinking Water Certifications/Accreditations: Iowa (240); Kansas (E-10338); Missouri (870) Wastewater Certifications/Accreditations: Arkansas (88-0677); Iowa (240); Kansas (E-10338) Solid and Hazardous Material Certifications/Accreditations: Arkansas (88-0677); Iowa (240); Kansas (E-10338)

SPMO - Springfield, MO - 1805 W Sunset Street, Springfield, MO 65807 USEPA DMR-QA Program

STL - Hazelwood, MO - 944 Anglum Rd, Hazelwood, MO 63042

TNI Accreditation for Wastewater, Solid and Hazardous Material Fields of Testing through KS KDHE Certification No. E-10389 TNI Accreditation for Wastewater, Solid and Hazardous Material Fields of Testing through IL EPA Accreditation No. - 200080 Illinois Department of Public Health Bacterial Analysis in Drinking Water Approved Laboratory, Registry No. 171050 Missouri Department of Natural Resources - Certificate of Approval for Microbiological Laboratory Service - No. 1050

Dail & Schindler

Certified by:

Gail Schindler, Project Manager

PACE ANALYTICAL SERVICES WWW.PACELABS.COM

REGULATORY PROGRAM (CIRCLE):	NPDES
MORBCA	RCRA
CCDD	TACO: RES OR IND/COMM
5. April 1977	

CHAIN OF CUSTODY RECORD

STATE WHERE SAMPLE COLLECTED MO

				HLIGHTED ARE	AS <u>MUST</u> I	BE COMPL	ETED BY CL	LIENT (PLEAS	SE PRINT)						
				NUMBER		OJECT LOC		PURCHASE		\Box	\	VOIC DE	OUFOT		(FOR LAB USE ONLY)
SIKESTON BMU POWER STAT	ION				В	OTTOM	ASH			3) ANA	YSIS RE	QUESTE	-0	(4)
ADDRESS			PHONE	NUMBER		E-MAIL		DATE S					1 1		LOGIN # 6003480
1551 W WAKEFIELD				5-3131				DATEO							TOOM #
															LOGGED BY:
CITY		SAMPL	FR					MATRIX	TVDES	1					CLIENT: SIKESTON BMU, SIKESTON
STAT SIKESTON, MO 63801			SE PRIN	Т)	~			WW.WASTEWAT							POWER STATION
ZIP		14	1th	ony	110	ster		DW- DRINKING W GW- GROUND WA	ATER	S					PROJECT: SIKESTON BOTTOM ASH
CONTACT PERSON		141			1203	,10		WWSL-SLUDGE NAS- NON AQUE	OUS SOLID	2					2022
MR LUKE ST MARY		SAMPL		0				LCHT-LEACHATE OIL-OIL SO-SOIL							PROJ. MGR.: GJ SCHINDLER
		1	1					SO-SOIL SOL-SOLID		S04					
		He	Jan.	0 7	6					S					
\wedge		/	<u> </u>							Ц ц.	CA				
(2) SAMPLE DESCRIPTION (UNIQUE DESCRIPTION AS IT WILL APPEAR ON THE ANALYTICAL REPORT)	COLLE		TIME	GRAB	LE TYPE COMP	MATRIX	BOTTLE	PRES	C,					REMARKS
\bigcirc									CLIENT	0	8				REMARKS
MW-3		LI-1X	2-22	0758	V		0.44			V	v				
			-		X		GW	2	3,6	X	X				
MW-4		4-18	3-23	1403	X		GW	2	3,6	x	X				
MW-5				1005											
IVIV-5		4 10	~5	1005	X		GW	2	3,6	X	X				ν
MW-6		4-18	3-23	0851	X		GW	2	3,6	X	x				
50141.0		112	. 12			+	1		0,0						
MW-8	•			1123	X		GW	2	3,6	X	X				
DUPLICATE	4	1-12	3-23		x		GW	2	2.0	v	v				
					^		GW	2	3,6	X	X				
FIELD BLANK	4	4-17	8-23	0851	X		DI	2	3,6	X	X				
									· · · · ·						
CHEMICAL PRESERVATION CODES: 1 - HCL 2 - H2SO	4 <u>3</u> -H	NO2													
	4 3-1	INO3	4 – NAC	0H 5 – NA	25203	6 – UNPI	RESERVED	7 – OTHER							
5 TURNAROUND TIME REQUESTED (PLEASE CIRCLE) (RUSH TAT IS SUBJECT TO PDC LABS APPROVAL AND SURCH)	NORMA	L RUS	iΗ		DATE RES		\square								
	•				NEEDE	-0	(6)								roceed with analysis, even though it may ceiving facility's Sample Acceptance
RUSH RESULTS VIA (PLEASE CIRCLE) EMAIL PHO	DNE			L											eptable to report to all regulatory authorities.
EMAIL IF DIFFERENT FROM ABOVE: PHONE # IF DIFFERENT FR	ROM ABOVE:							PROCEED V	VITH ANALY	SIS ANI	D QUALI	FY RESU	LTS: (INI	ITIALS)	
RELINQUISHED BY: (SIGNATURE)	DATE			RECEIVE	ED BY: (SIG	NATURE)			DATE			1	C	OMMENTS	S: (FOR LAB USE ONLY)
(1) $1 \dots 2$		-23				,			DATE			(8)		Chinichite	
Ashish (Gter		00							TIME						
RELINQUISHED BY: (SIGNATURE)	DATE	00		RECEIVE	ED BY: (SIG	NATURE			DATE			-	-		
				ALCEIVE					DATE	-		SAMPI	E TEMP	PERATURI	E UPON RECEIPT
	TIME								TIME			CHILL	PROCE	SS STAPT	
RELINQUISHED BY: (SIGNATURE)	DATE			RECEIVE	ED BY: (SIG	SNATURE)			DATE		/	SAMPI	E(S) RE	CEIVED C	ON ICE Y OR N
				4	illes	and i	-1		41	20/2	3		LE ACCE		NONCONFORMANT YORN
	TIME			Ann	111	PM.	2.l		TIME						
			5	XV/////	/	MC	4		1	73	0	DATE	and tin	TAKEN	I FROM SAMPLE BOTTLE
				pour			1		K	110	/				

CLIENT: Client's company name 1

ADDRESS: Client's mailing address CITY, STATE, ZIP: Client's city, state and zip code for mailing

CONTACT PERSON: Person to receive results

PROJECT NUMBER: Client's reference to the project or work involved with these samples.

PROJECT LOCATION: Client's location of project

PURCHASE ORDER NUMBER: Client's invoicing information

PHONE NUMBER: Client's contact phone number

E-MAIL: Client's e-mail for correspondence and final report

DATE SHIPPED: Month, date and year samples were shipped or delivered to the lab SAMPLER: Printed name of sample collector SAMPLER'S SIGNATURE: Signature of sample collector

*REGULATORY PROGRAM: Circle regulatory program if applicable. STATE WHERE SAMPLES COLLECTED: Enter the state if different from client address

SAMPLE DESCRIPTION: The unique sample description you want to appear on the 2 analytical report

DATE COLLECTED: Date sample was collected. For composite samples, this is typically the date when the last aliquot was added.

TIME COLLECTED: Time sample was collected. For composite samples, this is typically the time when the last aliquot was added.

SAMPLE TYPE: Place a check mark in the box marked "GRAB" if the sample was collected at one time from one specific location. Place a check mark in the box marked "COMP" if the sample is a composite of samples collected at one or more times or locations and combined to make one sample.

MATRIX TYPE: From field above. If "OTHER" please identify BOTLE COUNT: Total number of containers submitted for the samples

PRESERVATION CODE: Indicate bottle preservative using the codes on the front of the COC for non-PACE bottles, provided by the client.

4-12-5310000 d-3.33 1033

ANALYSIS REQUESTED: Write the analysis name (or an abbreviation), the name of a 3 group of tests, or the method number you would like us to perform. Examples are BOD, TCLP Metals, PCBs, Method 624, etc. Place a check mark in the small boxes that correspond to the sample(s) on which you want these tests performed.

REMARKS: List special instructions about the sample here. This space can also be used for listing additional analyses, or to request an extra copy of the report to be sent to an alternate person/address.

To be completed by laboratory personnel. 4

TURNAROUND TIME REQUESTED: Circle "NORMAL" if you want routine 10 working day TAT. If faster results are needed circle "RUSH", indicated the due date requested, and, if possible, call the lab in advance to schedule this work. Surcharges may apply for nonroutine turnaround times.

RUSH RESULTS VIA: Choose method by which you would like to receive the RUSH results by circling either "PHONE" or E-MAIL". List the appropriate number/e-mail if different from that listed in section 1.

6

5

Place your initials on the line to give the lab permission to proceed with analysis without calling you regarding a sample nonconformance. If the sample does not meet the Sample Acceptance Policy requirements then the appropriate case narrative and/or data qualifiers will be added to the corresponding analysis and may not be acceptable to use for regulatory purposes. Contact your project manager for further information or to obtain a copy of the Sample Acceptance Policy.

Summarized Sample Acceptance Policy Requirements:

- Proper, full and completed chain-of-custody documentation
- Readable unique sample container identification written in indelible ink
- Appropriate sample container
- Sufficient sample volume to perform requested tests
- · Received within required holding time
- Received within temperature preservation requirements
- Sample containers received in good condition (not leaking or broken)
- Any custody seal intact .
- Properly preserved, and
- No headspace in volatile water samples

A data qualifier and/or case narrative will be added to the final test report when the above sample acceptance requirements are not met. BOX 6 CANNOT BE USED FOR DRINKING WATER COMPLIANCE SAMPLES.

RELINQUISHED BY/RECEIVED BY: This form must be signed each time the sample(s) 7 changes hands. Chain-of-Custody seals are available upon request if needed.

To be completed by laboratory personnel. 8

DADTE SAMPLE ACCEPTANCE POLICY - RECEIVING FACILITY'S SPECIFIC POLICY AVAILABLE FROM YOUR PROJECT MANAGER.

SERVING YOU IN THE FOLLOWING LOCATIONS

2231 W Altorfer Dr Peoria, IL 61615 309-692-9688

944 Anglum Road Hazelwood, MO 63042 314-432-0550

VIYVON.

1805 W Sunset St. Springfield, MO 65807 417-964-8924

4314-A Crystal Lake Rd McHenry, IL 60050 815-344-4044

Thank you for using Pace Analytical Services, LLC Please call 800-752-6651 if you have any questions about completing this form.

Appendix 2d

Laboratory Analytical Results and QAQC Data – May 23, 2023 (Re-sample)

http://www.teklabinc.com/

June 14, 2023

Luke St. Mary Sikeston Board of Municipal Utilities 107 E Malone Ave PO Box 370 Sikeston, MO 63801 TEL: (573) 475-3119 FAX:

RE: CCR BAP ReSample

WorkOrder: 23051831

Dear Luke St. Mary:

TEKLAB, INC received 1 sample on 5/26/2023 9:55:00 AM for the analysis presented in the following report.

Samples are analyzed on an as received basis unless otherwise requested and documented. The sample results contained in this report relate only to the requested analytes of interest as directed on the chain of custody. NELAP accredited fields of testing are indicated by the letters NELAP under the Certification column. Unless otherwise documented within this report, Teklab Inc. analyzes samples utilizing the most current methods in compliance with 40CFR. All tests are performed in the Collinsville, IL laboratory unless otherwise noted in the Case Narrative.

All quality control criteria applicable to the test methods employed for this project have been satisfactorily met and are in accordance with NELAP except where noted. The following report shall not be reproduced, except in full, without the written approval of Teklab, Inc.

If you have any questions regarding these tests results, please feel free to call.

Sincerely,

Elizabeth & Hurley

Elizabeth A. Hurley Director of Customer Service (618)344-1004 ex 33 ehurley@teklabinc.com

Report Contents

http://www.teklabinc.com/

Client: Sikeston Board of Municipal Utilities

Client Project: CCR BAP ReSample

Work Order: 23051831 Report Date: 14-Jun-23

This reporting package includes the following:

Cover Letter	1
Report Contents	2
Definitions	3
Case Narrative	5
Accreditations	6
Laboratory Results	7
Quality Control Results	8
Receiving Check List	10
Chain of Custody	Appended

Definitions

http://www.teklabinc.com/

Client: Sikeston Board of Municipal Utilities

Client Project: CCR BAP ReSample

Work Order: 23051831

Report Date: 14-Jun-23

Abbr Definition

- * Analytes on report marked with an asterisk are not NELAP accredited
- CCV Continuing calibration verification is a check of a standard to determine the state of calibration of an instrument between recalibration.
- CRQL A Client Requested Quantitation Limit is a reporting limit that varies according to customer request. The CRQL may not be less than the MDL.
- DF Dilution factor is the dilution performed during analysis only and does not take into account any dilutions made during sample preparation. The reported result is final and includes all dilution factors.
- DNI Did not ignite
- DUP Laboratory duplicate is a replicate aliquot prepared under the same laboratory conditions and independently analyzed to obtain a measure of precision.
- ICV Initial calibration verification is a check of a standard to determine the state of calibration of an instrument before sample analysis is initiated.
- IDPH IL Dept. of Public Health
- LCS Laboratory control sample is a sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes and analyzed exactly like a sample to establish intra-laboratory or analyst specific precision and bias or to assess the performance of all or a portion of the measurement system.
- LCSD Laboratory control sample duplicate is a replicate laboratory control sample that is prepared and analyzed in order to determine the precision of the approved test method. The acceptable recovery range is listed in the QC Package (provided upon request).
- MBLK Method blank is a sample of a matrix similar to the batch of associated sample (when available) that is free from the analytes of interest and is processed simultaneously with and under the same conditions as samples through all steps of the analytical procedures, and in which no target analytes or interferences should present at concentrations that impact the analytical results for sample analyses.
- MDL "The method detection limit is defined as the minimum measured concentration of a substance that can be reported with 99% confidence that the measured concentration is distinguishable from method blank results."
- MS Matrix spike is an aliquot of matrix fortified (spiked) with known quantities of specific analytes that is subjected to the entire analytical procedures in order to determine the effect of the matrix on an approved test method's recovery system. The acceptable recovery range is listed in the QC Package (provided upon request).
- MSD Matrix spike duplicate means a replicate matrix spike that is prepared and analyzed in order to determine the precision of the approved test method. The acceptable recovery range is listed in the QC Package (provided upon request).
- MW Molecular weight
- NC Data is not acceptable for compliance purposes
- ND Not Detected at the Reporting Limit
- NELAP NELAP Accredited
 - PQL Practical quantitation limit means the lowest level that can be reliably achieved within specified limits of precision and accuracy during routine laboratory operation conditions.
 - RL The reporting limit the lowest level that the data is displayed in the final report. The reporting limit may vary according to customer request or sample dilution. The reporting limit may not be less than the MDL.
 - RPD Relative percent difference is a calculated difference between two recoveries (ie. MS/MSD). The acceptable recovery limit is listed in the QC Package (provided upon request).
 - SPK The spike is a known mass of target analyte added to a blank sample or sub-sample; used to determine recovery deficiency or for other quality control purposes.
 - Surr Surrogates are compounds which are similar to the analytes of interest in chemical composition and behavior in the analytical process, but which are not normally found in environmental samples.
 - TIC Tentatively identified compound: Analytes tentatively identified in the sample by using a library search. Only results not in the calibration standard will be reported as tentatively identified compounds. Results for tentatively identified compounds that are not present in the calibration standard, but are assigned a specific chemical name based upon the library search, are calculated using total peak areas from reconstructed ion chromatograms and a response factor of one. The nearest Internal Standard is used for the calculation. The results of any TICs must be considered estimated, and are flagged with a "T". If the estimated result is above the calibration range it is flagged "ET"
- TNTC Too numerous to count (> 200 CFU)

eklab, Inc.

Definitions

http://www.teklabinc.com/

Work Order: 23051831

Report Date: 14-Jun-23

Client: Sikeston Board of Municipal Utilities

Client Project: CCR BAP ReSample

Qualifiers

- # Unknown hydrocarbon
- C RL shown is a Client Requested Quantitation Limit
- H Holding times exceeded
- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
 - S Spike Recovery outside recovery limits
 - X Value exceeds Maximum Contaminant Level

- B Analyte detected in associated Method Blank
- E Value above quantitation range
- I Associated internal standard was outside method criteria
- M Manual Integration used to determine area response
- R RPD outside accepted recovery limits
- T TIC(Tentatively identified compound)

Case Narrative

http://www.teklabinc.com/

Work Order: 23051831 Report Date: 14-Jun-23

Client: Sikeston Board of Municipal Utilities

Client Project: CCR BAP ReSample

			Locations			
	Collinsville		Springfield		Kansas City	
Address	5445 Horseshoe Lake Road	Address	3920 Pintail Dr	Address	8421 Nieman Road	
	Collinsville, IL 62234-7425		Springfield, IL 62711-9415		Lenexa, KS 66214	
Phone	(618) 344-1004	Phone	(217) 698-1004	Phone	(913) 541-1998	
Fax	(618) 344-1005	Fax	(217) 698-1005	Fax	(913) 541-1998	
Email	jhriley@teklabinc.com	Email	KKlostermann@teklabinc.com	Email	jhriley@teklabinc.com	
	Collinsville Air		Chicago			
Address	5445 Horseshoe Lake Road	Address	1319 Butterfield Rd.			
	Collinsville, IL 62234-7425		Downers Grove, IL 60515			
Phone	(618) 344-1004	Phone	(630) 324-6855			
Fax	(618) 344-1005	Fax				
Email	EHurley@teklabinc.com	Email	arenner@teklabinc.com			

Accreditations

http://www.teklabinc.com/

Work Order: 23051831

Report Date: 14-Jun-23

Client: Sikeston Board of Municipal Utilities

Client Project: CCR BAP ReSample

State	Dept	Cert #	NELAP	Exp Date	Lab
Illinois	IEPA	100226	NELAP	1/31/2024	Collinsville
Kansas	KDHE	E-10374	NELAP	4/30/2024	Collinsville
Louisiana	LDEQ	05002	NELAP	6/30/2023	Collinsville
Louisiana	LDEQ	05003	NELAP	6/30/2023	Collinsville
Oklahoma	ODEQ	9978	NELAP	8/31/2023	Collinsville
Arkansas	ADEQ	88-0966		3/14/2024	Collinsville
Illinois	IDPH	17584		5/31/2025	Collinsville
Iowa	IDNR	430		6/1/2024	Collinsville
Kentucky	UST	0073		1/31/2024	Collinsville
Missouri	MDNR	00930		5/31/2023	Collinsville
Missouri	MDNR	930		1/31/2025	Collinsville

Client: Sikeston Bo	ard of Municipal Utilities	5				Wor	k Order: 23051831
Client Project: CCR BAP Re	Sample					Repo	ort Date: 14-Jun-23
Lab ID: 23051831-0	01			Client Samp	ole ID: MW-	6	
Matrix: GROUNDWA	ATER			Collection	Date: 05/2	3/2023 7	7:49
Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed Batch
SW-846 9251 (TOTAL)							
Chloride	NELAP	4		4	mg/L	1	06/09/2023 0:00 R330074

http://www.teklabinc.com/

Client: Sikeston Board of Municipal Utilities

Client Project: CCR BAP ReSample

Work Order: 23051831

Report Date: 14-Jun-23

SW-846 9251 (TOTAL) Batch R330074 SampType:	MBLK		Units mg/L							
SamplD: ICB/MBLK	WIDER		onito ing/L							Date
Analyses	Cert	RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Chloride		4		< 4	0.5000	0	0	-100	100	06/09/2023
Batch R330074 SampType:	LCS		Units mg/L							
SampID: ICV/LCS										Date Analyzed
Analyses	Cert	RL	Qual	Result	Spike	SPK Ref Val		Low Limit	High Limit	
Chloride		4		19	20.00	0	94.4	90	110	06/09/2023
Batch R330074 SampType: SampID: 23050117-003FMS	MS		Units mg/L							Date
Analyses	Cert	RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Chloride		20		185	100.0	96.87	88.3	85	115	06/09/2023
Batch R330074 SampType:	MSD		Units mg/L					RPD Lin	nit: 15	
SampID: 23050117-003FMSD Analyses	Cert	RL	Qual	Result	Spike	SPK Ref Val	%REC	RPD Ref Va	al %RPD	Date Analyzed
Chloride		20		187	100.0	96.87	90.5	185.2	1.17	06/09/2023
Batch R330074 SampType:	MS		Units mg/L							
SampID: 23050117-005EMS	Cart	זת	Orral	D14	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Date Analyzed
Analyses Chloride	Cert	RL 4	Qual	Result 38	20.00	19.12	93.1	85	115	06/09/2023
Batch R330074 SampType:	MSD		Units mg/L					RPD Lir	nit: 15	
SampID: 23050117-005EMSD			U							Date
Analyses	Cert	RL	Qual	Result	Spike	SPK Ref Val	%REC	RPD Ref Va	al %RPD	Analyzed
Chloride		4		38	20.00	19.12	93.6	37.73	0.29	06/09/2023
Batch R330074 SampType:	MS		Units mg/L							
SampID: 23050117-005FMS										Date
Analyses	Cert	RL	Qual	Result	Spike	SPK Ref Val		Low Limit		Analyzed
Chloride		4		38	20.00	19.81	89.0	85	115	06/09/2023
Batch R330074 SampType: SampID: 23050117-005FMSD	MSD		Units mg/L					RPD Lin	nit: 15	Date
	Cart	RL	Qual	Result	Spike	SPK Ref Val	%RFC	RPD Ref Va	al %RPD	Analyzed
Analyses	Cert	1.17	Qual	Nesun	onke		/01.120			

http://www.teklabinc.com/

Client: Sikeston Board of Municipal Utilities

Client Project: CCR BAP ReSample

Work Order: 23051831

Report Date: 14-Jun-23

SW-846 9251 (TOTAL)										
Batch R330074 SampType SampID: 23051711-001AMS	MS		Units mg/L							Date
Analyses	Cert	RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Chloride		4		35	20.00	16.21	92.3	85	115	06/09/2023
Batch R330074 SampType	MSD		Units mg/L					RPD Lin	nit: 15	
SampID: 23051711-001AMSD Analyses	Cert	RL	Qual	Result	Spike	SPK Ref Val	%REC	RPD Ref Va	al %RPD	Date Analyzed
Chloride		4	• • • •	35	20.00	16.21	91.8	34.66	0.26	06/09/2023
Batch R330074 SampType SampID: 23051776-003AMS	MS		Units mg/L							Date
Analyses	Cert	RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Chloride		40		413	200.0	229.6	91.6	85	115	06/09/2023
Batch R330074 SampType	MSD		Units mg/L					RPD Lin	nit: 15	
SamplD: 23051776-003AMSD Analyses	Cert	RL	Oual	Result	Spike	SPK Ref Val	%REC	RPD Ref Va	al %RPD	Date Analyzed
Chloride		40	¥ 001	410	200.0	229.6	90.3	412.9	0.64	06/09/2023

Receiving Check List

http://www.teklabinc.com/

Client: Sikeston Board of Municipal Utilities

Client Project: CCR BAP ReSample

Work Order: 23051831 Report Date: 14-Jun-23

Carrier: UPS Completed by: Eliyabeth & Hurley On: 26-May-23 Elizabeth A. Hurley	Received Reviewe On: 26-May-2	d by:	FILLO Hopk Ellie Hopkins	eno
Pages to follow: Chain of custody 1 Shipping container/cooler in good condition? Type of thermal preservation? Chain of custody present? Chain of custody signed when relinquished and received? Chain of custody agrees with sample labels?	None ☐ Yes ✔ Yes ✔	0 No Ice V No No No No No No	Not Present D	Temp °C 4.4 Dry Ice
Samples in proper container/bottle? Sample containers intact? Sufficient sample volume for indicated test? All samples received within holding time? Reported field parameters measured: Container/Temp Blank temperature in compliance?	Yes ✔ Yes ✔ Yes ✔ Field □ L	No No No No ab No	NA 🔽	
When thermal preservation is required, samples are complian 0.1°C - 6.0°C, or when samples are received on ice the same Water – at least one vial per sample has zero headspace? Water - TOX containers have zero headspace? Water - pH acceptable upon receipt?	nt with a temperature between a day as collected.		No VOA vials ✔ No TOX containers ✔ NA □	
NPDES/CWA TCN interferences checked/treated in the field? Any No responses m	Yes 🗌 nust be detailed below o	No 🗌	NA 🗹	

CHAIN OF CUSTODY pg. <u>1</u> of <u>1</u> Work order # 3051831

TEKLAB, INC. 5445 Horseshoe Lake Road - Collinsville, IL 62234 - Phone: (618) 344-1004 - Fax: (618) 344-1005

Client:		Sikeston Board of	Municipal	Utilities							Sa	mp	es	on:	Ŕ	ICE	3	BLUE	E ICE	e	NO		1.11.1.1	•	4	- C.C.		LTG#		5	-
Address:		Sikeston Power St	ation		_						Pr	esei	ve	d in:		LAB	3	FIEL	9			Į	OR	LA	B U	<u>SE (</u>	DNE	<u>r</u> :		i si ài S	
City / State	/ Zip	Sikeston, MO 638	01								La	b N	ote	s:																	
Contact:	Ashish	Patel		Phone:		(573)	475	-3119)		pro	ojeđ		SBM	10-S	PS B	Sotte	m A	shi Po	ond		ir Ma	<u>7</u>) 1	
E-Mail:	apatel@)sbmu.net		Fax:							6.04 M	ent			5								1012 <u>1</u> 946.0012					24,642, 1922			
Are these sample Are there any requ	s known uired rep	to be involved in liti to be hazardous? orting limits to be m ion. Yes	Yes Net on the r	No			-	Yes e prov	/ide	No	Re				onta	iner p	FOVIC	ed for													
Pro	ject Na	me/Number		Sample (Colle	ecto	r's l	Nam	e			M/	ATF	XIX					IN	DIC	ATE	E AN	IALY	/SIS	S RE	QU	EST	ED			
CCR BAP ReSam	iple			Anthor	7	D	ん	se	*																						
Result			Billing I	Instructions	# ar	nd Ty	pe o	f Cor	Itain	ers	Groundwater					Q	2		Ĩ.												
		(100% Surcharge)									R					Chloride			ľ												
Other		y (50% Surcharge)			UNP						<i>r</i> ate					6															
Lab Use Only	1	ple Identification		Time Sampled		_																									
23051831-001	MW-6		6-23-	,23/0749	0						X					×															
															Τ				I												
							Π	T	T						1	Î	1	1	1												
		· · · · · · · · · · · · · · · · · · ·	1					+	\uparrow						1	1	-		1	1	-			+							
			1					\uparrow	╈				\uparrow			1			-	1		·····		\uparrow							
			1				+		╈						-	1			-	-	-										
					+	+	\square	╉	╉				-		+-		+			+				-+-				<u> </u>			
						+		-+	╈	+						╆─	+			+			_	-							
	┣──					_	$\left \right $		-	-	$ \rightarrow $	_	-			┢	+		+	+				-							
		1118	<u> </u>																												
A1:1		quished By HL		5-24-		te/∏i		57.	<u>.</u>		\cap	l	Į	የ እ		ecei	ved C	By Vo						5	عروا	<u>ס</u> דנ	te/T ה	<u>ime</u> 155	7	res	>
7											<u>م</u>	<u></u>	<u>~</u>	<u>~~</u>	<u>, '</u>	<u> </u>	<u> </u>								<u>,</u>	<u></u>		<u></u>	<u> </u>	<u></u> y	
					••••••																										
										_																					

The individual signing this agreement on behalf of the client, acknowledges that he/she has read and understands the terms and conditions of this agreement, and that he/she has the authority to sign on behalf of the client. See www.tektabinc.com for terms and conditions.

BottleÖrder: 79954

Appendix 2e

Laboratory Analytical Results and QAQC Data – October 11, 2023 (Second 2023 Semi-annual Event)

http://www.teklabinc.com/

October 23, 2023

Luke St. Mary Sikeston Board of Municipal Utilities 107 E Malone Ave PO Box 370 Sikeston, MO 63801 TEL: (573) 475-3119 FAX:

RE: Bottom Ash Pond (BAP)

WorkOrder: 23101081

Dear Luke St. Mary:

TEKLAB, INC received 8 samples on 10/13/2023 9:40:00 AM for the analysis presented in the following report.

Samples are analyzed on an as received basis unless otherwise requested and documented. The sample results contained in this report relate only to the requested analytes of interest as directed on the chain of custody. NELAP accredited fields of testing are indicated by the letters NELAP under the Certification column. Unless otherwise documented within this report, Teklab Inc. analyzes samples utilizing the most current methods in compliance with 40CFR. All tests are performed in the Collinsville, IL laboratory unless otherwise noted in the Case Narrative.

All quality control criteria applicable to the test methods employed for this project have been satisfactorily met and are in accordance with NELAP except where noted. The following report shall not be reproduced, except in full, without the written approval of Teklab, Inc.

If you have any questions regarding these tests results, please feel free to call.

Sincerely,

Elizabeth & Hurley

Elizabeth A. Hurley Director of Customer Service (618)344-1004 ex 33 ehurley@teklabinc.com

Report Contents

http://www.teklabinc.com/

Client: Sikeston Board of Municipal Utilities

Client Project: Bottom Ash Pond (BAP)

 Work Order:
 23101081

 Report Date:
 23-Oct-23

This reporting package includes the following:

Cover Letter	1
Report Contents	2
Definitions	3
Case Narrative	5
Accreditations	6
Laboratory Results	7
Quality Control Results	15
Receiving Check List	34
Chain of Custody	Appended

Client Project: Bottom Ash Pond (BAP)

Definitions

http://www.teklabinc.com/

Client: Sikeston Board of Municipal Utilities

Work Order: 23101081

Report Date: 23-Oct-23

Abbr Definition

- * Analytes on report marked with an asterisk are not NELAP accredited
- CCV Continuing calibration verification is a check of a standard to determine the state of calibration of an instrument between recalibration.
- CRQL A Client Requested Quantitation Limit is a reporting limit that varies according to customer request. The CRQL may not be less than the MDL.
- DF Dilution factor is the dilution performed during analysis only and does not take into account any dilutions made during sample preparation. The reported result is final and includes all dilution factors.
- DNI Did not ignite
- DUP Laboratory duplicate is a replicate aliquot prepared under the same laboratory conditions and independently analyzed to obtain a measure of precision.
- ICV Initial calibration verification is a check of a standard to determine the state of calibration of an instrument before sample analysis is initiated.
- IDPH IL Dept. of Public Health
- LCS Laboratory control sample is a sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes and analyzed exactly like a sample to establish intra-laboratory or analyst specific precision and bias or to assess the performance of all or a portion of the measurement system.
- LCSD Laboratory control sample duplicate is a replicate laboratory control sample that is prepared and analyzed in order to determine the precision of the approved test method. The acceptable recovery range is listed in the QC Package (provided upon request).
- MBLK Method blank is a sample of a matrix similar to the batch of associated sample (when available) that is free from the analytes of interest and is processed simultaneously with and under the same conditions as samples through all steps of the analytical procedures, and in which no target analytes or interferences should present at concentrations that impact the analytical results for sample analyses.
- MDL "The method detection limit is defined as the minimum measured concentration of a substance that can be reported with 99% confidence that the measured concentration is distinguishable from method blank results."
- MS Matrix spike is an aliquot of matrix fortified (spiked) with known quantities of specific analytes that is subjected to the entire analytical procedures in order to determine the effect of the matrix on an approved test method's recovery system. The acceptable recovery range is listed in the QC Package (provided upon request).
- MSD Matrix spike duplicate means a replicate matrix spike that is prepared and analyzed in order to determine the precision of the approved test method. The acceptable recovery range is listed in the QC Package (provided upon request).
- MW Molecular weight
- NC Data is not acceptable for compliance purposes
- ND Not Detected at the Reporting Limit
- NELAP NELAP Accredited
 - PQL Practical quantitation limit means the lowest level that can be reliably achieved within specified limits of precision and accuracy during routine laboratory operation conditions.
 - RL The reporting limit the lowest level that the data is displayed in the final report. The reporting limit may vary according to customer request or sample dilution. The reporting limit may not be less than the MDL.
 - RPD Relative percent difference is a calculated difference between two recoveries (ie. MS/MSD). The acceptable recovery limit is listed in the QC Package (provided upon request).
 - SPK The spike is a known mass of target analyte added to a blank sample or sub-sample; used to determine recovery deficiency or for other quality control purposes.
 - Surr Surrogates are compounds which are similar to the analytes of interest in chemical composition and behavior in the analytical process, but which are not normally found in environmental samples.
 - TIC Tentatively identified compound: Analytes tentatively identified in the sample by using a library search. Only results not in the calibration standard will be reported as tentatively identified compounds. Results for tentatively identified compounds that are not present in the calibration standard, but are assigned a specific chemical name based upon the library search, are calculated using total peak areas from reconstructed ion chromatograms and a response factor of one. The nearest Internal Standard is used for the calculation. The results of any TICs must be considered estimated, and are flagged with a "T". If the estimated result is above the calibration range it is flagged "ET"
- TNTC Too numerous to count (> 200 CFU)

Definitions

http://www.teklabinc.com/

Client: Sikeston Board of Municipal Utilities

Client Project: Bottom Ash Pond (BAP)

Work Order: 23101081 Report Date: 23-Oct-23

Qualifiers

- # Unknown hydrocarbon
- C RL shown is a Client Requested Quantitation Limit
- H Holding times exceeded
- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
 - S Spike Recovery outside recovery limits
 - X Value exceeds Maximum Contaminant Level

- B Analyte detected in associated Method Blank
- E Value above quantitation range
- I Associated internal standard was outside method criteria
- M Manual Integration used to determine area response
- R RPD outside accepted recovery limits
- T TIC(Tentatively identified compound)

Case Narrative

http://www.teklabinc.com/

Client: Sikeston Board of Municipal Utilities

Client Project: Bottom Ash Pond (BAP)

Cooler Receipt Temp: 4.8 °C

Per Ken Ewers, report field pH for the groundwater samples. EAH 10/19/23

 Work Order:
 23101081

 Report Date:
 23-Oct-23

			Locations		
	Collinsville		Springfield		Kansas City
Address	5445 Horseshoe Lake Road	Address	3920 Pintail Dr	Address	8421 Nieman Road
	Collinsville, IL 62234-7425		Springfield, IL 62711-9415		Lenexa, KS 66214
Phone	(618) 344-1004	Phone	(217) 698-1004	Phone	(913) 541-1998
Fax	(618) 344-1005	Fax	(217) 698-1005	Fax	(913) 541-1998
Email	jhriley@teklabinc.com	Email	KKlostermann@teklabinc.com	Email	jhriley@teklabinc.com
	Collinsville Air		Chicago		
Address	5445 Horseshoe Lake Road	Address	1319 Butterfield Rd.		
	Collinsville, IL 62234-7425		Downers Grove, IL 60515		
Phone	(618) 344-1004	Phone	(630) 324-6855		
Fax	(618) 344-1005	Fax			
Email	EHurley@teklabinc.com	Email	arenner@teklabinc.com		

Accreditations

http://www.teklabinc.com/

Client: Sikeston Board of Municipal Utilities

Client Project: Bottom Ash Pond (BAP)

Work Order: 23101081 Report Date: 23-Oct-23

State	Dept	Cert #	NELAP	Exp Date	Lab
Illinois	IEPA	100226	NELAP	1/31/2024	Collinsville
Kansas	KDHE	E-10374	NELAP	4/30/2024	Collinsville
Louisiana	LDEQ	05002	NELAP	6/30/2024	Collinsville
Louisiana	LDEQ	05003	NELAP	6/30/2024	Collinsville
Oklahoma	ODEQ	9978	NELAP	8/31/2024	Collinsville
Arkansas	ADEQ	88-0966		3/14/2024	Collinsville
Illinois	IDPH	17584		5/31/2025	Collinsville
Iowa	IDNR	430		6/1/2024	Collinsville
Kentucky	UST	0073		1/31/2024	Collinsville
Missouri	MDNR	00930		5/31/2023	Collinsville
Missouri	MDNR	930		1/31/2025	Collinsville

http://www.teklabinc.com/

Client: Sikeston Board of Municipal Utilities

Work Order: 23101081 Report Date: 23-Oct-23

Client Project: Bottom Ash Pond (BAP)

Lab ID: 23101081-001

Collection Date: 10/11/2023 8:05

Client Sample ID: MW-3

Matrix: GROUNDW	ATER				Collection	n Date: 10	/11/202	3 8:05	
Analyses	Certification	MDL	RL	Qual	Result	Units	DF	Date Analyzed	Batch
SW-846 9040B FIELD									
рН	*	0	1.00		6.49		1	10/11/2023 8:05	R337931
STANDARD METHODS 254	0 C (TOTAL) 1997	2011							
Total Dissolved Solids	NELAP	20	20		122	mg/L	1	10/16/2023 12:51	R337858
SW-846 9036 (TOTAL)									
Sulfate	NELAP	10	10		11	mg/L	1	10/17/2023 2:38	R337819
SW-846 9214 (TOTAL)									
Fluoride	NELAP	0.25	0.25		< 0.25	mg/L	1	10/16/2023 11:53	R337786
SW-846 9251 (TOTAL)									
Chloride	NELAP	1	4		< 4	mg/L	1	10/17/2023 2:37	R337841
SW-846 3005A, 6010B, MET	ALS BY ICP (TOT	AL)							
Boron	NELAP	10.0	10.0		13.9	µg/L	1	10/19/2023 15:15	213345
Calcium	NELAP	0.200	0.200		15.5	mg/L	1	10/19/2023 15:15	213345

http://www.teklabinc.com/

Client: Sikeston Board of Municipal Utilities

Work Order: 23101081 Report Date: 23-Oct-23

Client Project: Bottom Ash Pond (BAP)

Lab ID: 23101081-002

Collection Date: 10/11/2023 11:35

Client Sample ID: MW-4

Matrix: GROUNDW	ATER				Collection	n Date: 10	/11/202	3 11:35	
Analyses	Certification	MDL	RL	Qual	Result	Units	DF	Date Analyzed	Batch
SW-846 9040B FIELD									
рН	*	0	1.00		7.25		1	10/11/2023 11:35	R337931
STANDARD METHODS 254	0 C (TOTAL) 1997	2011							
Total Dissolved Solids	NELAP	50	50		335	mg/L	2.5	10/16/2023 12:51	R337858
SW-846 9036 (TOTAL)									
Sulfate	NELAP	50	50		88	mg/L	5	10/17/2023 12:56	R337890
SW-846 9214 (TOTAL)									
Fluoride	NELAP	0.25	0.25		< 0.25	mg/L	1	10/16/2023 11:55	R337786
SW-846 9251 (TOTAL)									
Chloride	NELAP	1	4		14	mg/L	1	10/17/2023 3:12	R337841
SW-846 3005A, 6010B, MET	ALS BY ICP (TOT	AL)							
Boron	NELAP	10.0	10.0		940	µg/L	1	10/19/2023 15:17	213345
Calcium	NELAP	0.200	0.200		81.1	mg/L	1	10/19/2023 15:17	213345

http://www.teklabinc.com/

Work Order: 23101081

Report Date: 23-Oct-23

Client: Sikeston Board of Municipal Utilities

Client Project: Bottom Ash Pond (BAP)

Lab ID: 23101081-003

Client Sample ID: MW-5 Collection Date: 10/11/2023 9:58

Matrix: GROUNDW	ATER				Collection	n Date: 10	/11/202	3 9:58	
Analyses	Certification	MDL	RL	Qual	Result	Units	DF	Date Analyzed	Batch
SW-846 9040B FIELD									
рН	*	0	1.00		6.83		1	10/11/2023 9:58	R337931
STANDARD METHODS 254	0 C (TOTAL) 1997	, 2011							
Total Dissolved Solids	NELAP	50	50		435	mg/L	2.5	10/16/2023 12:51	R337858
SW-846 9036 (TOTAL)									
Sulfate	NELAP	100	100		172	mg/L	10	10/17/2023 3:26	R337819
SW-846 9214 (TOTAL)									
Fluoride	NELAP	0.25	0.25		< 0.25	mg/L	1	10/16/2023 12:03	R337786
SW-846 9251 (TOTAL)									
Chloride	NELAP	1	4		15	mg/L	1	10/17/2023 3:20	R337841
SW-846 3005A, 6010B, MET	ALS BY ICP (TOT	AL)							
Boron	NELAP	10.0	10.0		405	µg/L	1	10/19/2023 15:18	213345
Calcium	NELAP	0.200	0.200		106	mg/L	1	10/19/2023 15:18	213345

http://www.teklabinc.com/

Work Order: 23101081

Report Date: 23-Oct-23

Client: Sikeston Board of Municipal Utilities

Client Project: Bottom Ash Pond (BAP)

Lab ID: 23101081-004

Client Sample ID: MW-6 Collection Date: 10/11/2023 8:50

Matrix: GROUNDW	ATER				Collection	n Date: 10)/11/202	3 8:50	
Analyses	Certification	MDL	RL	Qual	Result	Units	DF	Date Analyzed	Batch
SW-846 9040B FIELD									
рН	*	0	1.00		6.80		1	10/11/2023 8:50	R337931
STANDARD METHODS 2540) C (TOTAL) 1997	, 2011							
Total Dissolved Solids	NELAP	50	50		250	mg/L	2.5	10/16/2023 12:52	R337858
SW-846 9036 (TOTAL)									
Sulfate	NELAP	10	10		25	mg/L	1	10/17/2023 3:28	R337819
SW-846 9214 (TOTAL)									
Fluoride	NELAP	0.25	0.25		< 0.25	mg/L	1	10/16/2023 12:06	R337786
SW-846 9251 (TOTAL)									
Chloride	NELAP	1	4	J	3	mg/L	1	10/17/2023 3:28	R337841
SW-846 3005A, 6010B, MET	ALS BY ICP (TOT	AL)							
Boron	NELAP	10.0	10.0		47.6	µg/L	1	10/19/2023 15:40	213345
Calcium	NELAP	0.200	0.200	S	46.7	mg/L	1	10/19/2023 15:40	213345
Matrix spike control limits are no	ot applicable due to h	igh samp	le/spike r	atio.					

http://www.teklabinc.com/

Client: Sikeston Board of Municipal Utilities

Client Project: Bottom Ash Pond (BAP)

Lab ID: 23101081-005

Work Order: 23101081

Report Date: 23-Oct-23

Lab ID: 23101081-	005				Client Sam	ple ID: M	W-8		
Matrix: GROUNDW	ATER				Collectio	n Date: 10)/11/202	3 10:37	
Analyses	Certification	MDL	RL	Qual	Result	Units	DF	Date Analyzed	Batch
SW-846 9040B FIELD									
рН	*	0	1.00		7.07		1	10/11/2023 10:37	R337931
STANDARD METHODS 254	0 C (TOTAL) 1997	, 2011							
Total Dissolved Solids	NELAP	50	50		455	mg/L	2.5	10/16/2023 12:52	R337858
SW-846 9036 (TOTAL)									
Sulfate	NELAP	100	100		102	mg/L	10	10/17/2023 3:41	R337819
SW-846 9214 (TOTAL)									
Fluoride	NELAP	0.25	0.25		< 0.25	mg/L	1	10/16/2023 12:08	R337786
SW-846 9251 (TOTAL)									
Chloride	NELAP	1	4		44	mg/L	1	10/17/2023 3:36	R337841
SW-846 3005A, 6010B, MET	ALS BY ICP (TOT	AL)							
Boron	NELAP	10.0	10.0		423	µg/L	1	10/19/2023 15:44	213345
Calcium	NELAP	0.200	0.200		96.5	mg/L	1	10/19/2023 15:44	213345

http://www.teklabinc.com/

Work Order: 23101081

Report Date: 23-Oct-23

Client: Sikeston Board of Municipal Utilities **Client Project:** Bottom Ash Pond (BAP)

Lab ID: 23101081-006

Client Sample ID: Duplicate

Matrix: GROUNDWATER

Collection Date: 10/11/2023 0:00

Analyses	Certification	MDL	RL	Qual	Result	Units	DF	Date Analyzed	Batch
SW-846 9040B FIELD									
рН	*	0	1.00		7.07		1	10/11/2023 0:00	R337931
STANDARD METHODS 254	0 C (TOTAL) 1997	2011							
Total Dissolved Solids	NELAP	50	50		460	mg/L	2.5	10/16/2023 12:53	R337858
SW-846 9036 (TOTAL)									
Sulfate	NELAP	100	100		103	mg/L	10	10/17/2023 3:50	R337819
SW-846 9214 (TOTAL)									
Fluoride	NELAP	0.25	0.25		< 0.25	mg/L	1	10/16/2023 12:10	R337786
SW-846 9251 (TOTAL)									
Chloride	NELAP	1	4		44	mg/L	1	10/17/2023 3:44	R337841
SW-846 3005A, 6010B, MET	ALS BY ICP (TOT	AL)							
Boron	NELAP	10.0	10.0		423	µg/L	1	10/19/2023 15:46	213345
Calcium	NELAP	0.200	0.200		97.2	mg/L	1	10/19/2023 15:46	213345

Client: Sikeston Board of Municipal Utilities

Client Project: Bottom Ash Pond (BAP)

Work Order: 23101081

Report Date: 23-Oct-23

Client Sample ID: Field Blank

Lab ID: 23101081-007 Matrix: AQUEOUS

Collection Date: 10/11/2023 8:50

Certification	MDL	RL	Qual	Result	Units	DF	Date Analyzed	Batch
C (TOTAL) 1997	, 2011							
NELAP	20	20		28	mg/L	1	10/16/2023 12:53	R337858
NELAP	10	10		< 10	mg/L	1	10/17/2023 4:08	R337819
ANALYZED								
NELAP	0	1.00	Н	5.43		1	10/17/2023 10:41	R337830
NELAP	0.25	0.25		< 0.25	mg/L	1	10/16/2023 12:13	R337786
NELAP	1	4		< 4	mg/L	1	10/17/2023 4:08	R337841
LS BY ICP (TOT	AL)							
NELAP	10.0	10.0		< 10.0	µg/L	1	10/19/2023 15:47	213345
NELAP	0.200	0.200		< 0.200	mg/L	1	10/19/2023 15:47	213345
	C (TOTAL) 1997 NELAP NELAP RY ANALYZED NELAP NELAP NELAP	NELAP 10 RY ANALYZED NELAP 0.25 NELAP 1 NELAP 1 NELAP 10.0	C (TOTAL) 1997, 2011 20 20 NELAP 20 20 NELAP 10 10 RY ANALYZED 1.00 1.00 NELAP 0 1.00 NELAP 0.25 0.25 NELAP 1 4 NELAP 10.0 10.0	C (TOTAL) 1997, 2011 Control NELAP 20 20 NELAP 10 10 RY ANALYZED NELAP 0 1.00 NELAP 0 1.00 H NELAP 0.25 0.25 NELAP 1 4 NELAP 10.0 10.0	C (TOTAL) 1997, 2011 Control Contrediteeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee	C (TOTAL) 1997, 2011 Constrained Constrated <thconstrained< th=""> <thconstrained< td="" th<=""><td>C (TOTAL) 1997, 2011 NELAP 20 20 28 mg/L 1 NELAP 10 10 <10</td> mg/L 1 NELAP 10 10 <10</thconstrained<></thconstrained<>	C (TOTAL) 1997, 2011 NELAP 20 20 28 mg/L 1 NELAP 10 10 <10	C (TOTAL) 1997, 2011 C

Client: Sikeston Bo	oard of Municipal	Utilities					V	ork Order: 23101	081
Client Project: Bottom Ash	ו Pond (BAP)						R	Report Date: 23-Oc	t-23
Lab ID: 23101081-(008				Client Sam	ple ID: Tr	ip Blank		
Matrix: TRIP BLAN	К				Collection	n Date: 10)/13/202	3 9:40	
Analyses	Certification	MDL	RL	Qual	Result	Units	DF	Date Analyzed	Batch
STANDARD METHODS 254	0 C (TOTAL) 1997	, 2011							
Total Dissolved Solids	NELAP	20	20		26	mg/L	1	10/16/2023 12:53	R337858
SW-846 9036 (TOTAL)									
Sulfate	NELAP	10	10		< 10	mg/L	1	10/17/2023 4:16	R337819
SW-846 9040B, LABORATC	ORY ANALYZED								
Lab pH	NELAP	0	1.00	RH	5.52		1	10/16/2023 9:17	R337767
RPD for DUP was outside conti	rol limits due to samp	le compo	sition.						
Consistent results were not ach	ieved across multiple	e prep and	l analyse	s. The h	ighest result is re	ported.			
SW-846 9214 (TOTAL)									
Fluoride	NELAP	0.25	0.25		< 0.25	mg/L	1	10/16/2023 12:15	R337786
SW-846 9251 (TOTAL)									
Chloride	NELAP	1	4		< 4	mg/L	1	10/17/2023 4:16	R337841
SW-846 3005A, 6010B, MET	ALS BY ICP (TOT	AL)							
Boron	NELAP	10.0	10.0		< 10.0	µg/L	1	10/19/2023 15:49	213345
Calcium	NELAP	0.200	0.200		< 0.200	mg/L	1	10/19/2023 15:49	213345
			-	-					

http://www.teklabinc.com/

Client: Sikeston Board of Municipal Utilities

Work Order: 23101081 Report Date: 23-Oct-23

Client Project: Bottom Ash Pond (BAP)

Batch R337858	SampType:	MBLK		Units mg/L							
SampID: MBLK											Date
Analyses		Cert	RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Total Dissolved Solids			20	•	< 20	16.00	0	0	-100	100	10/16/202
Total Dissolved Solids			20		< 20	16.00	0	0	-100	100	10/16/202
Batch R337858 SampID: LCS	SampType:	LCS		Units mg/L							Date
Analyses		Cert	RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Total Dissolved Solids			20		920	1000	0	92.0	90	110	10/16/202
Total Dissolved Solids			20		952	1000	0	95.2	90	110	10/16/202
	SampType:	DUP		Units mg/L					RPD Lir	nit 10	
SampID: 23091794-0	40ADUP	C i	DI	0.1	D	G 11	SPK Ref Val				Date Analyzed
Analyses Total Dissolved Solids		Cert	RL 50	Qual	Result 3600	Spike	SPK Kei vai	%REC	RPD Ref V		-
I otal Dissolved Solids			50		3600				3545	1.54	10/16/202
o u v v ii	SampType:	DUP		Units mg/L					RPD Lir	nit 10	
SampID: 23100935-0 Analyses	03ADUP	Cert	RL	Qual	Result	Spike	SPK Ref Val	%REC	RPD Ref V	al %RPD	Date Analyzed
Total Dissolved Solids		Cert	20	Quai	530	Spike		,	530.0	0.00	10/16/202
SW-846 9036 (TOT	ΔΙ)										
	SampType:	MBLK		Units mg/L							
SampID: ICB/MBLK											Date
Analyses		Cert	RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Sulfate			10		< 10	6.140	0	0	-100	100	10/16/202
	SampType:	LCS		Units mg/L							
Dutth											Date
Batch R337819 SampID: ICV/LCS											
SampID: ICV/LCS		Cert	RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
SampID: ICV/LCS Analyses		Cert	<u>RL</u> 10	Qual	Result 19	Spike 20.00	SPK Ref Val 0	%REC 95.5	Low Limit 90	High Limit 110	Analyzed
SampID: ICV/LCS <u>Analyses</u> Sulfate Batch R337819	SampType:	Cert MS		Qual Units mg/L							-
SampID: ICV/LCS Analyses Sulfate								95.5		110	

http://www.teklabinc.com/

Client: Sikeston Board of Municipal Utilities

Work Order: 23101081

Client Project: Bottom Ash Pond (BAP)

SW-846 9036 (TOTAL)										
Batch R337819 SampType:	MSD		Units mg/L					RPD Lin	nit 10	
SampID: 23091794-006AMSD										Date
Analyses	Cert	RL	Qual	Result	Spike	SPK Ref Val	%REC	RPD Ref Va	al %RPD	Analyzed
Sulfate		50		207	100.0	113.2	94.0	210.8	1.69	10/16/2023
Batch R337819 SampType:	MS		Units mg/L							
SampID: 23091794-006BMS										Date
Analyses	Cert	RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Sulfate		50		209	100.0	118.2	91.2	85	115	10/16/2023
Batch R337819 SampType: SampID: 23091794-006BMSD	MSD		Units mg/L					RPD Lin	nit 10	Date
Analyses	Cert	RL	Qual	Result	Spike	SPK Ref Val	%REC	RPD Ref Va	al %RPD	Analyzed
Sulfate		50		209	100.0	118.2	90.6	209.4	0.29	10/16/2023
Batch R337819 SampType:	MS		Units mg/L							
SampID: 23091794-060BMS Analyses	Cert	RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Date Analyzed
Sulfate		100	,	458	200.0	275.7	91.0	85	115	10/16/2023
Batch R337819 SampType:	MSD		Units mg/L					RPD Lin	nit 10	
SampID: 23091794-060BMSD										Date
Analyses	Cert	RL	Qual	Result	Spike	SPK Ref Val	%REC	RPD Ref Va	al %RPD	Analyzed
Sulfate		100		459	200.0	275.7	91.7	457.7	0.32	10/16/2023
Batch R337819 SampType:	MS		Units mg/L							
SampID: 23091794-101BMS	C .	DI	0.1	D 1.	G 1			Low Limit	llice liceit	Date Analyzed
Analyses Sulfate	Cert	RL 500	Qual	Result 1880	Spike	SPK Ref Val		Low Limit		-
Sullate		500		1000	1000	929.5	95.1	85	115	10/16/2023
Batch R337819 SampType:	MSD		Units mg/L					RPD Lin	nit 10	
SampID: 23091794-101BMSD										Date
Analyses	Cert	RL	Qual	Result	Spike	SPK Ref Val	%REC	RPD Ref Va	al %RPD	Analyzed
Sulfate		500		1840	1000	929.5	91.3	1881	2.04	10/16/2023
Batch R337819 SampType:	MS		Units mg/L							
SampID: 23091794-103AMS	C	DI	0.1	D 1	a .:			Loui Limit	Llink Lineit	Date Analyzed
Analyses	Cert	RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	/ layzeu
Sulfate		10	S	22	20.00	10.85	55.8	85	115	10/17/2023

http://www.teklabinc.com/

Client: Sikeston Board of Municipal Utilities

Work Order: 23101081

	nit 10	RPD Limi					Units mg/L		MSD	SampType:	Batch R337819
Date										-103AMSD	SampID: 23091794-
) Analyzed	al %RPD	RPD Ref Val	%REC	SPK Ref Val	Spike	Result	Qual	RL	Cert		Analyses
10/17/2023	0.86	22.02	56.8	10.85	20.00	22	S	10			Sulfate
							Units mg/L		MS	SampType:	Batch R337819
Date nit Analyzed									_	-001AMS	SampID: 23101081-0
	High Limit		%REC	SPK Ref Val	Spike	Result	Qual	RL	Cert		Analyses
10/17/2023	115	85	88.5	10.73	20.00	28		10			Sulfate
	nit 10	RPD Limi					Units mg/L		MSD	SampType:	Batch R337819
Date Analyzed	al %RPD	RPD Ref Val	%REC	SPK Ref Val	Spike	Result	Qual	RL	Cert	-001AMSD	SampID: 23101081-0 Analyses
10/17/2023	0.25	28.43	88.2	10.73	20.00	28		10			Sulfate
Date							Units mg/L		MBLK	SampType:	Batch R337890 SampID: ICB/MBLK
A	High Limit	Low Limit	%REC	SPK Ref Val	Spike	Result	Oual	RL	Cert		Analyses
10/17/2023	100	-100	0	0	6.140	<10	Quui	10	Cert		Sulfate
							Units mg/L		LCS	SampType:	Batch R337890
Date _{nit} Analyzed	High Limit	Low Limit	%RFC	SPK Ref Val	Spike	Result	Oual	RL	Cert		SampID: ICV/LCS Analyses
10/17/2023	110	90	93.9	0	20.00	19	Quai	10	Cert		Sulfate
							Units mg/L		MS	SampType:	Batch R337890
Date										0-001AMS	SampID: 23101090-0
nit Analyzed	High Limit	Low Limit	%REC	SPK Ref Val	Spike	Result	Qual	RL	Cert		Analyses
10/17/2023	115	85	86.9	325.3	200.0	499		100			Sulfate
	nit 10	RPD Limi					Units mg/L		MSD	SampType:	Batch R337890
Date										-001AMSD	SampID: 23101090-0
O Analyzed		RPD Ref Val			Spike	Result	Qual	RL	Cert		Analyses
10/17/2023	0.64	499.1	85.3	325.3	200.0	496		100			Sulfate
							Units mg/L		MS	SampType:	Batch R337890
Date nit Analyzed										-001AMS	SampID: 23101094-0
10/17/2023	High Limit					Result	Qual		Cert		Analyses
	High Li 115	Low Limit 85	%REC 89.0	SPK Ref Val 232.2	Spike 200.0	Result 410	Qual	<u>RL</u> 100	Cert		

http://www.teklabinc.com/

Client: Sikeston Board of Municipal Utilities

Work Order: 23101081

SW-846 9036 (TOTAL)										
Batch R337890 SampType:	MSD		Units mg/L					RPD Lim	nit 10	
SampID: 23101094-001AMSD										Date
Analyses	Cert	RL	Qual	Result	Spike	SPK Ref Val	%REC	RPD Ref Va	I %RPD	Analyzed
Sulfate		100		412	200.0	232.2	90.0	410.2	0.47	10/17/2023
Batch R337890 SampType: SampID: 23101248-002AMS	MS		Units mg/L							Date
Analyses	Cert	RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Sulfate		10	S	24	20.00	8.620	75.2	85	115	10/17/2023
Batch R337890 SampType:	MSD		Units mg/L					RPD Lin	nit 10	
SampID: 23101248-002AMSD Analyses	Cert	RL	Qual	Result	Spike	SPK Ref Val	%REC	RPD Ref Va	al %RPD	Date Analyzed
Sulfate		10	S	25	20.00	8.620	79.4	23.65	3.57	10/17/2023
SW-846 9040B, LABORATOR	Y ANALY	ZED								
Batch R337767 SampType: SampID: LCS	LCS		Units							Date
Analyses	Cert	RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Lab pH		1.00		6.97	7.000	0	99.6	99.29	100.7	10/16/2023
Batch R337767 SampType:	DUP		Units					RPD Lim	nit 10	
SampID: 23101081-008ADUP										Date
Analyses	Cert	RL	Qual	Result	Spike	SPK Ref Val	%REC	RPD Ref Va	al %RPD	Analyzed
Lab pH		1.00	RH	5.41				5.520	2.01	10/16/2023
Batch R337767 SampType: SampID: 23101053-002ADUP	DUP		Units					RPD Lin	nit 10	Date
Analyses	Cert	RL	Qual	Result	Spike	SPK Ref Val	%REC	RPD Ref Va	I %RPD	Analyzed
Lab pH	con	1.00	H	5.37	opine			5.370	0.00	10/16/2023
Batch R337767 SampType:	DUP		Units					RPD Lin	nit 10	
SampID: 23101060-001ADUP										Date
Analyses	Cert	RL	Qual	Result	Spike	SPK Ref Val	%REC	RPD Ref Va	I %RPD	Analyzed
Lab pH		1.00	Н	6.37				6.410	0.63	10/16/2023

http://www.teklabinc.com/

Client: Sikeston Board of Municipal Utilities

Work Order: 23101081

Batch R337767 SampType:	DUP		Units					RPD Limit 10	
SampID: 23101069-001ADUP									Date
Analyses	Cert	RL	Qual	Result	Spike	SPK Ref Val	%REC	RPD Ref Val %RPD	Analyzed
Lab pH		1.00	Н	7.37				7.370 0.00	10/16/2023
Batch R337767 SampType:	DUP		Units					RPD Limit 10	
SampID: 23101069-002ADUP									Date
Analyses	Cert	RL	Qual	Result	Spike	SPK Ref Val	%REC	RPD Ref Val %RPD	Analyzed
Lab pH		1.00	Н	7.68				7.680 0.00	10/16/2023
Batch R337767 SampType:	DUP		Units					RPD Limit 10	
SampID: 23101070-001ADUP									Date
Analyses	Cert	RL	Qual	Result	Spike	SPK Ref Val	%REC	RPD Ref Val %RPD	Analyzed
Lab pH		1.00	Н	8.02				8.000 0.25	10/16/2023
Batch R337767 SampType: SampID: 23101070-002ADUP	DUP		Units					RPD Limit 10	Date
Analyses	Cert	RL	Oual	Result	Spike	SPK Ref Val	%REC	RPD Ref Val %RPD	Analyzed
Lab pH	con	1.00	H	7.87	opike			7.860 0.13	10/16/2023
Batch R337767 SampType:	DUP		Units					RPD Limit 10	
SampID: 23101076-001ADUP	Cart	ы	Orral	Desult	Cu:les	SPK Ref Val	%REC	RPD Ref Val %RPD	Date Analyzed
Analyses Lab pH	Cert	RL 1.00	Qual H	Result 7.69	Spike	or reneer var	JUILO	7.700 0.13	10/16/2023
Batch R337767 SampType:	DUP		Units					RPD Limit 10	
SampID: 23101076-005ADUP	201		01110						Date
Analyses	Cert	RL	Oual	Result	Spike	SPK Ref Val	%REC	RPD Ref Val %RPD	Analyzed
Lab pH		1.00	Н	7.64				7.640 0.00	10/16/2023
Batch R337767 SampType:	DUP		Units					RPD Limit 10	
SampID: 23101084-001BDUP									Date
Analyses	Cert	RL	Qual	Result	Spike	SPK Ref Val	%REC	RPD Ref Val %RPD	Analyzed
Lab pH		1.00	Н	11.5				11.50 0.00	10/16/2023
Batch R337767 SampType:	DUP		Units					RPD Limit 10	
SampID: 23101090-001ADUP									Date
Analyses	Cert	RL	Qual	Result	Spike	SPK Ref Val	%REC	RPD Ref Val %RPD	Analyzed
Lab pH		1.00	Н	7.30				7.300 0.00	10/16/2023

http://www.teklabinc.com/

Client: Sikeston Board of Municipal Utilities

Work Order: 23101081

Batch R337767 SampType:	DUP		Units					RPD Limit 10	
SampID: 23101090-002ADUP									Date
Analyses	Cert	RL	Qual	Result	Spike	SPK Ref Val	%REC	RPD Ref Val %RPD	Analyzed
Lab pH		1.00	Н	7.20				7.200 0.00	10/16/2023
Batch R337767 SampType:	DUP		Units					RPD Limit 10	
SampID: 23101090-003ADUP									Date
Analyses	Cert	RL	Qual	Result	Spike	SPK Ref Val	%REC	RPD Ref Val %RPD	Analyzed
Lab pH		1.00	Н	7.09				7.100 0.14	10/16/2023
Batch R337767 SampType:	DUP		Units					RPD Limit 10	
SampID: 23101090-004ADUP									Date
Analyses	Cert	RL	Qual	Result	Spike	SPK Ref Val	%REC	RPD Ref Val %RPD	Analyzed
Lab pH		1.00	Н	7.25				7.250 0.00	10/16/2023
Batch R337767 SampType: SampID: 23101090-005ADUP	DUP		Units					RPD Limit 10	Date
Analyses	Cert	RL	Qual	Result	Spike	SPK Ref Val	%REC	RPD Ref Val %RPD	Analyzed
Lab pH		1.00	Н	7.23				7.240 0.14	10/16/2023
Batch R337767 SampType:	DUP		Units					RPD Limit 10	
SampID: 23101091-001ADUP	Cert	RL	Oual	Result	Spike	SPK Ref Val	%REC	RPD Ref Val %RPD	Date Analyzed
Analyses Lab pH	Cen	1.00	H	6.80	Spike	0	,	6.820 0.29	10/16/2023
Batch R337767 SampType:	DUP		Units					RPD Limit 10	
SampID: 23101091-002ADUP									Date
Analyses	Cert	RL	Oual	Result	Spike	SPK Ref Val	%REC	RPD Ref Val %RPD	Analyzed
Lab pH		1.00	Н	6.88				6.900 0.29	10/16/2023
Batch R337767 SampType:	DUP		Units					RPD Limit 10	
SampID: 23101091-003ADUP									Date
Analyses	Cert	RL	Qual	Result	Spike	SPK Ref Val	%REC	RPD Ref Val %RPD	Analyzed
Lab pH		1.00	Н	7.41				7.410 0.00	10/16/2023
Batch R337767 SampType:	DUP		Units					RPD Limit 10	
SampID: 23101091-004ADUP									Date
Analyses	Cert	RL	Qual	Result	Spike	SPK Ref Val	%REC	RPD Ref Val %RPD	Analyzed
Lab pH		1.00	Н	7.21				7.230 0.28	10/16/2023

http://www.teklabinc.com/

Client: Sikeston Board of Municipal Utilities

Work Order: 23101081

Batch R337767 SampType:	DUP		Units					RPD Limit 10	
SampID: 23101092-001ADUP									Date
Analyses	Cert	RL	Qual	Result	Spike	SPK Ref Val	%REC	RPD Ref Val %RPD	Analyzed
Lab pH		1.00	Н	7.02				7.020 0.00	10/16/2023
Batch R337767 SampType:	DUP		Units					RPD Limit 10	
SampID: 23101093-001ADUP									Date
Analyses	Cert	RL	Qual	Result	Spike	SPK Ref Val	%REC	RPD Ref Val %RPD	Analyzed
Lab pH		1.00	Н	8.43				8.490 0.71	10/16/2023
Batch R337767 SampType:	DUP		Units					RPD Limit 10	
SampID: 23101094-001ADUP									Date
Analyses	Cert	RL	Qual	Result	Spike	SPK Ref Val	%REC	RPD Ref Val %RPD	Analyzed
Lab pH		1.00	Н	8.93				8.930 0.00	10/16/2023
Batch R337767 SampType: SampID: 23101096-001ADUP	DUP		Units					RPD Limit 10	Date
Analyses	Cert	RL	Oual	Result	Spike	SPK Ref Val	%REC	RPD Ref Val %RPD	Analyzed
Lab pH		1.00	Н	7.47				7.470 0.00	10/16/2023
Batch R337767 SampType:	DUP		Units					RPD Limit 10	
SampID: 23101099-002ADUP									Date Analyzed
Analyses	Cert	RL	Qual	Result	Spike	SPK Ref Val	%REC	RPD Ref Val %RPD	
Lab pH		1.00	Н	7.99				7.990 0.00	10/16/2023
Batch R337767 SampType: SampID: 23101113-001ADUP	DUP		Units					RPD Limit 10	
Analyses	Cert	RL	Oual	Result	Spike	SPK Ref Val	%REC	RPD Ref Val %RPD	Date Analyzed
Lab pH	Cert	1.00	H	8.38	Spike	er triter tal	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	8.430 0.59	10/16/2023
Batch R337767 SampType:	DUP		Units					RPD Limit 10	
SampID: 23101113-002ADUP									Date
Analyses	Cert	RL	Qual	Result	Spike	SPK Ref Val	%REC	RPD Ref Val %RPD	Analyzed
Lab pH		1.00	Н	8.43				8.450 0.24	10/16/2023
Batch R337830 SampType: SampID: LCS	LCS		Units						Date
Analyses	Cert	RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit High Limit	Date Analyzed
	COL	111	Quai	result	Opine		-		

http://www.teklabinc.com/

Client: Sikeston Board of Municipal Utilities

Work Order: 23101081

Batch R337830 SampType:	DUP		Units					RPD Limit 10	
SampID: 23101081-007ADUP									Date
Analyses	Cert	RL	Qual	Result	Spike	SPK Ref Val	%REC	RPD Ref Val %RPD	Analyzed
Lab pH		1.00	Н	5.42				5.430 0.18	10/17/2023
Batch R337830 SampType:	DUP		Units					RPD Limit 10	
SampID: 23101076-003ADUP									Date
Analyses	Cert	RL	Qual	Result	Spike	SPK Ref Val	%REC	RPD Ref Val %RPD	Analyzed
Lab pH		1.00	Н	11.4				11.42 0.26	10/17/2023
Batch R337830 SampType:	DUP		Units					RPD Limit 10	
SampID: 23101076-007ADUP									Date
Analyses	Cert	RL	Qual	Result	Spike	SPK Ref Val	%REC	RPD Ref Val %RPD	Analyzed
Lab pH		1.00	Н	7.80				7.830 0.38	10/17/2023
Batch R337830 SampType: SampID: 23101155-002ADUP	DUP		Units					RPD Limit 10	
	Cert	RL	Oual	Result	Spike	SPK Ref Val	%REC	RPD Ref Val %RPD	Date Analyzed
Analyses Lab pH	Cen	1.00	H	5.64	Spike	of Refer var	JUICEO	5.640 0.00	10/17/2023
		1.00						0.010 0.00	10,1172020
Batch R337830 SampType:	DUP		Units					RPD Limit 10	
SampID: 23101171-001ADUP Analyses	Cert	RL	Oual	Result	Spike	SPK Ref Val	%REC	RPD Ref Val %RPD	Date Analyzed
Lab pH	Cert	1.00	H	7.30	Spike			7.300 0.00	10/17/2023
P									
Batch R337830 SampType: SampID: 23101171-002ADUP	DUP		Units					RPD Limit 10	D /
Analyses	Cert	RL	Oual	Result	Spike	SPK Ref Val	%REC	RPD Ref Val %RPD	Date Analyzed
Lab pH	Cert	1.00	H	7.72	Брікс		,	7.710 0.13	10/17/2023
Batch R337830 SampType:	DUP		Units					RPD Limit 10	
SampID: 23101204-001ADUP			01110						Date
Analyses	Cert	RL	Qual	Result	Spike	SPK Ref Val	%REC	RPD Ref Val %RPD	Analyzed
Lab pH		1.00	Н	6.76				6.730 0.44	10/17/2023
Batch R337830 SampType:	DUP		Units					RPD Limit 10	
SampID: 23101204-002ADUP									Date
Analyses	Cert	RL	Qual	Result	Spike	SPK Ref Val	%REC	RPD Ref Val %RPD	Analyzed
Lab pH		1.00	Н	7.81				7.820 0.13	10/17/2023

http://www.teklabinc.com/

Client: Sikeston Board of Municipal Utilities

Work Order: 23101081

SW-846 9040B, LABORATOR	Y ANALY	ZED							
Batch R337830 SampType: SampID: 23101204-003ADUP	DUP		Units					RPD Limit 10	Date
Analyses	Cert	RL	Qual	Result	Spike	SPK Ref Val	%REC	RPD Ref Val %RPD	Analyzed
Lab pH		1.00	H	7.92	opine			7.880 0.51	10/17/2023
Batch R337830 SampType:	DUP		Units					RPD Limit 10	
SampID: 23101209-001ADUP									Date
Analyses	Cert	RL	Qual	Result	Spike	SPK Ref Val	%REC	RPD Ref Val %RPD	Analyzed
Lab pH		1.00	Н	7.47				7.380 1.21	10/17/2023
Batch R337830 SampType: SampID: 23101222-001ADUP	DUP		Units					RPD Limit 10	Dete
Analyses	Cert	RL	Qual	Result	Spike	SPK Ref Val	%REC	RPD Ref Val %RPD	Date Analyzed
Lab pH	con	1.00	H	7.50	opike			7.500 0.00	10/17/2023
Batch R337888 SampType:	LCS		Units						
SampID: LCS Analyses	Cert	RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit High Limit	Date Analyzed
Lab pH	con	1.00	Quui	6.98	7.000	0	99.7	99.29 100.7	10/18/2023
Batch R337888 SampType:	DUP		Units					RPD Limit 10	
SampID: 23101092-002ADUP Analyses	Cert	RL	Oual	Result	Spike	SPK Ref Val	%RFC	RPD Ref Val %RPD	Date Analyzed
Lab pH	Cen	1.00	H	7.27	Spike		,	7.280 0.14	10/18/2023
Batch R337888 SampType:	DUP		Units					RPD Limit 10	
SampID: 23101232-001BDUP									Date
Analyses	Cert	RL	Qual	Result	Spike	SPK Ref Val	%REC	RPD Ref Val %RPD	Analyzed
Lab pH		1.00	Н	7.73				7.660 0.91	10/18/2023
Batch R337888 SampType: SampID: 23101234-001ADUP	DUP		Units					RPD Limit 10	
Analyses	Cert	RL	Qual	Result	Snike	SPK Ref Val	%REC	RPD Ref Val %RPD	Date Analyzed
Lab pH		1.00	H	7.22	Opike			7.290 0.96	10/18/2023
Batch R337888 SampType:	DUP		Units					RPD Limit 10	
SampID: 23101234-002ADUP									Date
Analyses	Cert	RL	Qual	Result	Spike	SPK Ref Val	%REC	RPD Ref Val %RPD	Analyzed
Lab pH		1.00	Н	7.27				7.300 0.41	10/18/2023

http://www.teklabinc.com/

Client: Sikeston Board of Municipal Utilities

Work Order: 23101081

Batch R337888 SampType:	DUP		Units					RPD Limit 10	
SampID: 23101234-003ADUP									Date
Analyses	Cert	RL	Qual	Result	Spike	SPK Ref Val	%REC	RPD Ref Val %RPD	Analyzed
Lab pH		1.00	Н	7.35				7.350 0.00	10/18/2023
Batch R337888 SampType:	DUP		Units					RPD Limit 10	
SampID: 23101234-004ADUP									Date
Analyses	Cert	RL	Qual	Result	Spike	SPK Ref Val	%REC	RPD Ref Val %RPD	Analyzed
Lab pH		1.00	Н	7.33				7.290 0.55	10/18/2023
Batch R337888 SampType:	DUP		Units					RPD Limit 10	
SampID: 23101234-005ADUP									Date
Analyses	Cert	RL	Qual	Result	Spike	SPK Ref Val	%REC	RPD Ref Val %RPD	Analyzed
Lab pH		1.00	Н	7.34				7.390 0.68	10/18/2023
Batch R337888 SampType: SampID: 23101259-002ADUP	DUP		Units					RPD Limit 10	Date
Analyses	Cert	RL	Qual	Result	Spike	SPK Ref Val	%REC	RPD Ref Val %RPD	Analyzed
Lab pH		1.00	Н	7.66				7.640 0.26	10/18/2023
Batch R337888 SampType:	DUP		Units					RPD Limit 10	
SampID: 23101269-001ADUP Analyses	Cert	RL	Oual	Result	Spike	SPK Ref Val	%REC	RPD Ref Val %RPD	Date Analyzed
Lab pH	Curt	1.00	H	7.60	Брікс		,	7.600 0.00	10/18/2023
Batch R337888 SampType:	DUP		Units					RPD Limit 10	
SampID: 23101282-002ADUP									Date
Analyses	Cert	RL	Qual	Result	Spike	SPK Ref Val	%REC	RPD Ref Val %RPD	Analyzed
Lab pH		1.00	Н	7.71				7.670 0.52	10/18/2023
Batch R337888 SampType:	DUP		Units					RPD Limit 10	
SampID: 23101288-001ADUP									Date
Analyses	Cert	RL	Qual	Result	Spike	SPK Ref Val	%REC	RPD Ref Val %RPD	Analyzed
Lab pH		1.00	Н	5.86				5.860 0.00	10/18/2023
Batch R337888 SampType:	DUP		Units					RPD Limit 10	
SampID: 23101329-002ADUP									Date
Analyses	Cert	RL	Qual	Result	Spike	SPK Ref Val	%REC	RPD Ref Val %RPD	Analyzed
Lab pH		1.00	н	7.09				7.090 0.00	10/18/2023

http://www.teklabinc.com/

Client: Sikeston Board of Municipal Utilities

Work Order: 23101081

Batch R337888 SampType:	DUP		Units					RPD Limit 10	
SampID: 23101332-001ADUP									Date
Analyses	Cert	RL	Qual	Result	Spike	SPK Ref Val	%REC	RPD Ref Val %RPD	Analyzed
Lab pH		1.00	Н	7.72				7.680 0.52	10/18/2023
Batch R337888 SampType:	DUP		Units					RPD Limit 10	
SampID: 23101332-002ADUP									Date
Analyses	Cert	RL	Qual	Result	Spike	SPK Ref Val	%REC	RPD Ref Val %RPD	Analyzed
Lab pH		1.00	Н	8.47				8.490 0.24	10/18/2023
Batch R337888 SampType:	DUP		Units					RPD Limit 10	
SampID: 23101360-001ADUP									Date
Analyses	Cert	RL	Qual	Result	Spike	SPK Ref Val	%REC	RPD Ref Val %RPD	Analyzed
Lab pH		1.00	Н	7.67				7.650 0.26	10/18/2023
Batch R337888 SampType: SampID: 23101361-001ADUP	DUP		Units					RPD Limit 10	Date
Analyses	Cert	RL	Qual	Result	Spike	SPK Ref Val	%REC	RPD Ref Val %RPD	Analyzed
Lab pH		1.00	Н	11.4				11.42 0.18	10/18/2023
Batch R337888 SampType:	DUP		Units					RPD Limit 10	
SampID: 23101362-001ADUP	Cert	RL	Oual	Result	Spike	SPK Ref Val	%REC	RPD Ref Val %RPD	Date Analyzed
Analyses Lab pH	Cen	1.00	H	7.61	Spike			7.610 0.00	10/18/2023
Batch R337888 SampType:	DUP		Units					RPD Limit 10	
SampID: 23101363-001ADUP	-								Date
Analyses	Cert	RL	Qual	Result	Spike	SPK Ref Val	%REC	RPD Ref Val %RPD	Analyzed
Lab pH		1.00	H	7.56				7.550 0.13	10/18/2023
Batch R337943 SampType:	LCS		Units						
SampID: LCS									Date
Analyses	Cert	RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit High Lim	it Analyzed
Lab pH		1.00		6.97	7.000	0	99.6	99.29 100.7	10/19/2023
Batch R337943 SampType:	DUP		Units					RPD Limit 10	
SampID: 23100005-001ADUP									Date
Analyses	Cert	RL	Qual	Result	Spike	SPK Ref Val	%REC	RPD Ref Val %RPD	Analyzed
Lab pH		1.00	н	7.67				7.660 0.13	10/19/2023

http://www.teklabinc.com/

Client: Sikeston Board of Municipal Utilities

Work Order: 23101081

Batch R337943 SampType:	DUP		Units					RPD Limit 10	
SampID: 23101317-001ADUP									Date
Analyses	Cert	RL	Qual	Result	Spike	SPK Ref Val	%REC	RPD Ref Val %RPD	Analyzed
Lab pH		1.00	Н	6.84				6.830 0.15	10/19/2023
Batch R337943 SampType:	DUP		Units					RPD Limit 10	
SampID: 23101317-002ADUP									Date
Analyses	Cert	RL	Qual	Result	Spike	SPK Ref Val	%REC	RPD Ref Val %RPD	Analyzed
Lab pH		1.00	Н	6.72				6.750 0.45	10/19/2023
Batch R337943 SampType:	DUP		Units					RPD Limit 10	
SampID: 23101339-001ADUP									Date
Analyses	Cert	RL	Qual	Result	Spike	SPK Ref Val	%REC	RPD Ref Val %RPD	Analyzed
Lab pH		1.00	Н	7.29				7.290 0.00	10/19/2023
Batch R337943 SampType: SampID: 23101339-002ADUP	DUP		Units					RPD Limit 10	
	Cert	RL	Oual	Result	Spike	SPK Ref Val	%REC	RPD Ref Val %RPD	Date Analyzed
Analyses Lab pH	Cen	1.00	H	7.32	Бріке	OF RELEVAN	/iiteo	7.300 0.27	10/19/2023
		1.00		1.52				1.500 0.21	10/13/2023
Batch R337943 SampType:	DUP		Units					RPD Limit 10	
SampID: 23101339-003ADUP	a l	DI		D 1	a .1	SPK Ref Val		RPD Ref Val %RPD	Date Analyzed
Analyses	Cert	RL	Qual	Result	Spike	SFK KEI VAI	70REC		•
Lab pH		1.00	Н	7.43				7.450 0.27	10/19/2023
Batch R337943 SampType:	DUP		Units					RPD Limit 10	
SampID: 23101339-004ADUP	a	D.	0.1	D	a 11				Date Analyzed
Analyses	Cert	RL	Qual	Result	Spike	SPK Ref Val	%REC	RPD Ref Val %RPD	-
Lab pH		1.00	Н	7.38				7.410 0.41	10/19/2023
Batch R337943 SampType: SampID: 23101340-001ADUP	DUP		Units					RPD Limit 10	
	a	D.	0.1		a 11				Date Analyzed
Analyses	Cert	RL	Qual	Result	Spike	SPK Ref Val	%REC	RPD Ref Val %RPD	
Lab pH		1.00	Н	7.27				7.310 0.55	10/19/2023
Batch R337943 SampType:	DUP		Units					RPD Limit 10	
SampID: 23101386-001ADUP									Date
Analyses	Cert	RL	Qual	Result	Spike	SPK Ref Val	%REC	RPD Ref Val %RPD	Analyzed
Lab pH		1.00	Н	6.22				6.240 0.32	10/19/2023

http://www.teklabinc.com/

Client: Sikeston Board of Municipal Utilities

Work Order: 23101081

SW-846 9040B, LA				11.1							
	SampType:	DUP		Units					RPD Lir	nit 10	
SampID: 23101394-0	UZADUP										Date Analyzed
Analyses		Cert	RL	Qual	Result	Spike	SPK Ref Val	%REC	RPD Ref V		-
Lab pH			1.00	Н	5.15				5.160	0.19	10/19/2023
zaven	SampType:	DUP		Units					RPD Lir	nit 10	
SampID: 23101442-0	01ADUP										Date
Analyses		Cert	RL	Qual	Result	Spike	SPK Ref Val	%REC	RPD Ref V	al %RPD	Analyzed
Lab pH			1.00	Н	7.82				7.810	0.13	10/19/2023
Daten	SampType:	DUP		Units					RPD Lir	nit 10	
SampID: 23101463-0 Analyses	01ADUP	Cert	RL	Qual	Result	Spike	SPK Ref Val	%REC	RPD Ref V	al %RPD	Date Analyzed
Lab pH			1.00	Н	7.61				7.610	0.00	10/19/2023
Batch R337943	SampType:	DUP		Units					RPD Lir	nit 10	
SampID: 23101472-0	01ADUP										Date
Analyses		Cert	RL	Qual	Result	Spike	SPK Ref Val	%REC	RPD Ref V	al %RPD	Analyzed
Lab pH			1.00	Н	7.87				7.860	0.13	10/19/2023
SW-846 9214 (TOT	AL)										
Batch R337786 SampID: MBLK	SampType:	MBLK		Units mg/L							Data
Analyses		Cert	RL	Qual	Result	Spike	SPK Ref Val	%RFC	Low Limit	High Limit	Date Analyzed
Fluoride		Cert	0.10	Quai	< 0.10	0.0500	0	0	-100	100	10/16/2023
Batch R337786	SampType:	LCS		Units mg/L							
SampID: LCS				-							Date
Analyses		Cert	RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Fluoride			0.10		1.01	1.000	0	101.1	90	110	10/16/2023
Batch R337786	SampType:	MS		Units mg/L							
SampID: 23091794-0	16AMS										Date
Analyses		Cert	RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Fluoride			0.10		2.35	2.000	0.2150	106.6	75	125	10/16/2023

http://www.teklabinc.com/

Client: Sikeston Board of Municipal Utilities

Work Order: 23101081

SW-846 9214 (TOTAL)										
Batch R337786 SampType: SampID: 23091794-016AMSD	MSD		Units mg/L					RPD Lin	nit 15	Date
Analyses	Cert	RL	Qual	Result	Spike	SPK Ref Val	%REC	RPD Ref Va	al %RPD	Analyzed
Fluoride	Cont	0.10	Quai	2.66	2.000	0.2150	122.2	2.348	12.39	10/16/2023
Batch R337786 SampType:	MS		Units mg/L							
SampID: 23091794-023AMS										Date
Analyses	Cert	RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Fluoride		0.10		2.98	2.000	0.9210	103.1	75	125	10/16/2023
Batch R337786 SampType:	MSD		Units mg/L					RPD Lin	nit 15	
SampID: 23091794-023AMSD Analyses	Cert	RL	Qual	Result	Spike	SPK Ref Val	%REC	RPD Ref Va	al %RPD	Date Analyzed
Fluoride		0.10	Yuui	2.98	2.000	0.9210	102.9	2.983	0.13	10/16/2023
Batch R337786 SampType: SampID: 23091794-028BMS	MS		Units mg/L							Date
Analyses	Cert	RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Fluoride		0.10		2.06	2.000	0.2180	92.4	75	125	10/16/2023
Batch R337786 SampType:	MSD		Units mg/L					RPD Lin	nit 15	
SampID: 23091794-028BMSD										Date
Analyses	Cert	RL	Qual	Result	Spike	SPK Ref Val	%REC	RPD Ref Va	al %RPD	Analyzed
Fluoride		0.10		2.12	2.000	0.2180	94.9	2.065	2.44	10/16/2023
Batch R337786 SampType:	MS		Units mg/L							
SampID: 23091794-046BMS										Date
Analyses	Cert	RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Fluoride		0.10		2.30	2.000	0.3240	98.8	75	125	10/16/2023
Batch R337786 SampType:	MSD		Units mg/L					RPD Lin	nit 15	
SampID: 23091794-046BMSD										Date
Analyses	Cert	RL	Qual	Result	Spike	SPK Ref Val		RPD Ref Va	al %RPD	Analyzed
Fluoride		0.10		2.37	2.000	0.3240	102.2	2.299	2.91	10/16/2023
Batch R337786 SampType: SampID: 23091794-104BMS	MS		Units mg/L							
	Cont	DI	Ouel	Pocult	Spiles	SPK Ref Val	%REC	Low Limit	High Limit	Date Analyzed
Analyses Fluoride	Cert	RL 0.10	Qual	Result 2.35	Spike 2.000	0.2700	104.0	75	125	10/16/2023
		0.10		2.30	2.000	0.2700	104.0	10	120	10/10/2023

http://www.teklabinc.com/

Client: Sikeston Board of Municipal Utilities

Work Order: 23101081

SW-846 9214 (TOTAL) Batch R337786 SampType:	MSD		Units mg/L					RPD Lin	nit 15	
SampID: 23091794-104BMSD	mob		onno mg/L							Date
Analyses	Cert	RL	Qual	Result	Spike	SPK Ref Val	%REC	RPD Ref Va	al %RPD	Analyzed
Fluoride	0011	0.10	Quui	2.32	2.000	0.2700	102.4	2.350	1.33	10/16/2023
Batch R337786 SampType:	MS		Units mg/L							
SampID: 23100953-001AMS										Date
Analyses	Cert	RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Fluoride		0.10		2.76	2.000	0.6310	106.4	75	125	10/16/2023
Batch R337786 SampType:	MSD		Units mg/L					RPD Lin	nit 15	
SampID: 23100953-001AMSD										Date
Analyses	Cert	RL	Qual	Result	Spike	SPK Ref Val	%REC	RPD Ref Va	al %RPD	Analyzed
Fluoride		0.10		2.72	2.000	0.6310	104.2	2.759	1.61	10/16/2023
Batch R337786 SampType:	MS		Units mg/L							
SampID: 23101030-004AMS										Date
Analyses	Cert	RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Fluoride		0.10		2.32	2.000	0.3580	98.0	75	125	10/16/2023
Batch R337786 SampType:	MSD		Units mg/L					RPD Lin	nit 15	
SampID: 23101030-004AMSD										Date
Analyses	Cert	RL	Qual	Result	Spike	SPK Ref Val	%REC	RPD Ref Va	al %RPD	Analyzed
Fluoride		0.10		2.40	2.000	0.3580	102.2	2.317	3.64	10/16/2023
Batch R337786 SampType:	MS		Units mg/L							
SampID: 23101081-008AMS										Date
Analyses	Cert	RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Fluoride		0.10		1.92	2.000	0	96.2	75	125	10/16/2023
Batch R337786 SampType:	MSD		Units mg/L					RPD Lin	nit 15	
SampID: 23101081-008AMSD										Date
Analyses	Cert	RL	Qual	Result	Spike	SPK Ref Val	%REC	RPD Ref Va	al %RPD	Analyzed
Fluoride		0.10		1.93	2.000	0	96.4	1.925	0.16	10/16/2023
Batch R337786 SampType:	MS		Units mg/L							
	MS		Units mg/L							Date
Batch R337786 SampType:	MS Cert	RL	Units mg/L Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Date Analyzed

http://www.teklabinc.com/

Client: Sikeston Board of Municipal Utilities

Work Order: 23101081

SW-846 9214 (TOTAL)										
Batch R337786 SampType:	MSD		Units mg/L					RPD Lin	nit 15	
SampID: 23101092-002AMSD										Date
Analyses	Cert	RL	Qual	Result	Spike	SPK Ref Val	%REC	RPD Ref Va	al %RPD	Analyzed
Fluoride		0.10		2.52	2.000	0.4170	105.2	2.533	0.47	10/16/2023
SW-846 9251 (TOTAL)										
Batch R337841 SampType: SampID: ICB/MBLK	MBLK		Units mg/L							Date
Analyses	Cert	RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Chloride		4		< 4	0.5000	0	0	-100	100	10/16/2023
Batch R337841SampType:SampID:ICV/LCS	LCS		Units mg/L							Date
Analyses	Cert	RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Chloride		4		19	20.00	0	95.0	90	110	10/16/2023
Batch R337841 SampType:	MS		Units mg/L							
SampID: 23091794-027BMS										Date
Analyses	Cert	RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Chloride		20		119	100.0	26.60	92.3	85	115	10/16/2023
Batch R337841 SampType:	MSD		Units mg/L					RPD Lin	nit 15	
SampID: 23091794-027BMSD										Date
Analyses	Cert	RL	Qual	Result	Spike	SPK Ref Val	%REC	RPD Ref Va	al %RPD	Analyzed
Chloride		20		117	100.0	26.60	90.0	118.9	1.95	10/16/2023
Batch R337841 SampType: SampID: 23091794-060BMS	MS		Units mg/L							Dete
Analyses	Cert	RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Date Analyzed
Chloride	con	20	Q UUI	136	100.0	46.37	90.0	85	115	10/16/2023
Batch R337841 SampType:	MSD		Units mg/L					RPD Lin	nit 15	
SampID: 23091794-060BMSD										Date
Analyses	Cert	RL	Qual	Result	Spike	SPK Ref Val	%REC	RPD Ref Va	al %RPD	Analyzed
Chloride		20		136	100.0	46.37	89.9	136.4	0.12	10/16/2023

SW-846 9251 (TOTAL)

SampID: 23091794-101BMS

SampID: 23091794-101BMSD

Batch R337841

Batch R337841

Analyses Chloride

http://www.teklabinc.com/

Client: Sikeston Board of Municipal Utilities

Cert RL

40

Work Order: 23101081

Client Project: Bottom Ash Pond (BAP)

SampType: MS

SampType: MSD

					Report Date	23-Oct-	23
Units mg/L							
							Date
Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
S	328	200.0	161.9	83.2	85	115	10/16/2023
Units mg/L					RPD Lin	nit 15	
Orral	Decult	C a : la a	SPK Rof Val	%REC			Date Analyzed

Analyses		Cert	RL	Qual	Result	Spike	SPK Ref Val	%REC	RPD Ref V	al %RPD	Analyzed
Chloride			40	S	327	200.0	161.9	82.8	328.3	0.26	10/16/2023
Batch R337841	SampType:	MS		Units mg/L							
SampID: 23091794-	103AMS										Date
Analyses		Cert	RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Chloride			40		248	200.0	48.59	99.7	85	115	10/17/2023
Batch R337841	SampType:	MSD		Units mg/L					RPD Lir	nit 15	
SampID: 23091794-	103AMSD										Date
Analyses		Cert	RL	Qual	Result	Spike	SPK Ref Val	%REC	RPD Ref V	al %RPD	Analyzed
Chloride			40		243	200.0	48.59	97.1	248.0	2.15	10/17/2023

Batch R337841 SampType:	MS		Units mg/L							
SampID: 23101081-001AMS										Date
Analyses	Cert	RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Chloride		4		20	20.00	0	99.6	85	115	10/17/2023

Batch R337841 SampType:	MSD		Units mg/L					RPD L	imit 15	
SampID: 23101081-001AMSD										Date
Analyses	Cert	RL	Qual	Result	Spike	SPK Ref Val	%REC	RPD Ref	Val %RPD	Analyzed
Chloride		4		20	20.00	0	99.7	19.91	0.10	10/17/2023

Batch R337892 SampID: ICB/MBLK	SampType:	MBLK		Units mg/L							Date
Analyses		Cert	RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Chloride			4		< 4	0.5000	0	0	-100	100	10/17/2023
Batch R337892	SampType:	LCS		Units mg/L							
SampID: ICV/LCS											Date
Analyses		Cert	RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Chloride			4		19	20.00	0	92.6	90	110	10/17/2023

Calcium

http://www.teklabinc.com/

Client: Sikeston Board of Municipal Utilities

Work Order: 23101081

Client Project: Bottom Ash Pond (BAP)

Report Date: 23-Oct-23

SW-846 9251 (TO	TAL)										
Batch R337892 SampID: 23101090-	SampType: 001AMS	MS		Units mg/L							Date
Analyses		Cert	RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Chloride			40		468	200.0	279.7	94.2	85	115	10/17/202
Batch R337892	SampType:	MSD		Units mg/L					RPD Lir	nit 15	
SampID: 23101090-	OUTAMSD	a		<u> </u>	D	a					Date Analyzed
Analyses		Cert	RL	Qual	Result	Spike	SPK Ref Val	%REC	RPD Ref V		
Chloride			40		462	200.0	279.7	91.0	468.2	1.38	10/17/202
Batch R337892 SampID: 23101094-	SampType: 001AMS	MS		Units mg/L							Date
Analyses		Cert	RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Chloride			4		30	20.00	12.21	90.0	85	115	10/17/20
Batch R337892	SampType:	MSD		Units mg/L					RPD Lir	nit 15	
SampID: 23101094-	001AMSD	C .	DI	0.1	D L				RPD Ref V		Date Analyzed
Analyses Chloride		Cert	RL 4	Qual	Result 30	Spike 20.00	SPK Ref Val	90.9	30.20	0.59	10/17/20
			-								
Batch R337892 SampID: 23101248-	SampType: 002AMS	MS		Units mg/L							Date
Analyses		Cert	RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Chloride			4		47	20.00	27.40	97.6	85	115	10/17/20
Batch R337892	SampType:	MSD		Units mg/L					RPD Lir	nit 15	
SampID: 23101248-	002AMSD										Date
Analyses		Cert	RL	Qual	Result	Spike	SPK Ref Val		RPD Ref V		Analyzed
Chloride			4		46	20.00	27.40	95.2	46.91	0.99	10/17/20
SW-846 3005A, 60			о (тот								
Batch 213345 SampID: MBLK-213	SampType: 345	MBLK		Units µg/L							Date
Analyses		Cert	RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Boron			20.0		< 20.0	9.000	0	0	-100	100	10/19/20

0.100

< 0.100

0.0350 0

0

-100

100

10/19/2023

Calcium

http://www.teklabinc.com/

Client: Sikeston Board of Municipal Utilities

0.100

S

51.2

Client Project: Bottom Ash Pond (BAP)

Work Order: 23101081 Report Date: 23-Oct-23

1.75

50.33

10/19/2023

SW-846 3005A, 6010B,	METAI	LS BY ICF	ο (ΤΟΤΑ	L)							
Batch 213345 Samp	Туре:	LCS	l	Jnits µg/L							
SampID: LCS-213345 Analyses		Cert	RL	Oual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Date Analyzed
Boron		Cert	20.0	Quai	501	500.0	0	100.3	85	115	10/19/2023
Calcium			0.100		2.64	2.500	0	105.5	85	115	10/19/2023
Batch 213345 Samp SampID: 23101081-004BM	Type: S	MS	ι	Jnits µg/L							Date
Analyses		Cert	RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Boron			20.0		562	500.0	47.60	103.0	75	125	10/19/2023
Calcium			0.100	S	50.3	2.500	46.67	146.4	75	125	10/19/2023
Batch 213345 Samp	Туре:	MSD	ι	Jnits µg/L					RPD Lin	nit 20	
SampID: 23101081-004BM	SD										Date
Analyses		Cert	RL	Qual	Result	Spike	SPK Ref Val	%REC	RPD Ref Va	al %RPD	Analyzed
Boron			20.0		563	500.0	47.60	103.0	562.5	0.02	10/19/2023

2.500

46.67

182.0

Receiving Check List

http://www.teklabinc.com/

Client: Sikeston Board of Municipal Utilities

Client Project: Bottom Ash Pond (BAP)

Work Order: 23101081 Report Date: 23-Oct-23

Carrier: UPS	Recei	ved By: LM			
Completed by: On: 14-Oct-23 Timothy W. Mathis	0	n. oct-23	Elizabeth A. H Elizabeth A. Hurley	hurlag	
Pages to follow: Chain of custody 1	Extra pages included	i 0			
Shipping container/cooler in good condition?	Yes 🗸	No	Not Present	Temp °C	4.8
Type of thermal preservation?	None	Ice 🔽	Blue Ice	Dry Ice	
Chain of custody present?	Yes 🗹	No 🗌			
Chain of custody signed when relinquished and received?	Yes 🖌	No 🗌			
Chain of custody agrees with sample labels?	Yes 🖌	No 🗌			
Samples in proper container/bottle?	Yes 🖌	No 🗌			
Sample containers intact?	Yes 🖌	No 🗌			
Sufficient sample volume for indicated test?	Yes 🖌	No 🗌			
All samples received within holding time?	Yes	No 🗹			
Reported field parameters measured:	Field	Lab 🔽	NA 🗌		
Sample analyses to be measured in the field and/or within 15 These analyses include Chlorine (demand, free and/or residua					
Container/Temp Blank temperature in compliance?	Yes 🖌	No			J
When thermal preservation is required, samples are complia 0.1°C - 6.0°C, or when samples are received on ice the sam		between			
Water - at least one vial per sample has zero headspace?	Yes	No	No VOA vials		
Water - TOX containers have zero headspace?	Yes	No	No TOX containers		
Water - pH acceptable upon receipt?	Yes 🗹	No 🗌	NA 🗌		
NPDES/CWA TCN interferences checked/treated in the field?	Yes	No 🗌	NA		
Any No responses	must be detailed belo	ow or on the	• COC.		

pH strip #90719. - TMathis - 10/14/2023 10:50:30 AM

CHAIN OF CUSTODY pg. 1 of 1 Work order # 23[0]08

TEKLAB, INC. 5445 Horseshoe Lake Road - Collinsville, IL 62234 - Phone: (618) 344-1004 - Fax: (618) 344-1005

Client:	Sikeston Board of	•	Jtilities						Sar	mpl	es on:		CE	📓 8	LUE	ICE	🕅 N		=	1	43			LTG#	¢	1	
Address:								-	Pre	ser	ved in: otes:	[<u>33</u>] L	AB	l⊠ł{t⊧	IELD	1. 0	973	14	<u>F0</u>		<u> 18 0</u>	<u>SE (</u>	<u>ONL</u>	<u> </u>			
City / State Contact:	Luke St. Mary		Phone:		(573)	475-31	119	-	Lar) NC	otes:						107		149. 1471	ashdi ini ana shi sharad			•		i i f		ľ
E-Mail:	lstmary@sbmu.net		Fnone.	· -							Comme									· .							
Are these sample Are there any requ	s known to be involved in lits s known to be hazardous? uired reporting limits to be r ient section. Yes	Yes	No		-		rovide																				
Pro	ect Name/Number		Sample (MA	TRIX					IN	DICA	TE /	ANA	LYS	IS R	EQU	JEST	ED			
Standard	s Requested 1-2 Day (100% Surcharge)		Anthony nstructions	# an	d Typ		Container	success a		Groundwater	74, 01,		B Ca (ICP)	Chlaride	Fluoride	рH	Sulfate	TDS									
Other	3 Day (50% Surcharge) Sample Identification	Date/1	Fime Sampled	UNP	2			2		vater	() P)	ē	e		φ										
23101081	MW-3	10-11-	23 0805	1 1					>	X			Х	х	х	х	х	х					•				
002	MVV-4	10-11 -	23 1135	1 1					>	X		Ì	Х	х	х	х	х	х						<u> </u>			
003	MW-5	10.11-		1 1)	X			Х	х	х	х	x	Х				<u></u>		1			
004	MVV-6	13-11-	-	1 1)	X			х	х	х	х	x	x				<u>+</u>	+		<u></u>		
	MW-8		-25 1037	1 1)	X			х	х	х	х	x	X	010120100				-				
206	Duplicate	13-11-		1 1)	X			Х	х	х	х	X	X									
007	Field Blank	10-11	-23 0850	1 1				7>	(1	х	х	Х	х	x	х			<u>}</u>				<u></u>		
800	Trip Blank	10-11-		1 1						*****			X	X	X	X	×	X					+				
		-							ta atar Mener	with market succession.						urt 4 1.4000 (N. Vo	00411464000010	222.0004201/20	Ministration of Landon				49164305440000	******			
	Relinquished By			Dat	e/Tin	ne			<u>l</u>		<u>[</u>	Re	ceive	ed By	<u> </u>		}		T	<u> </u>	<u>.</u>)ate/T	ime			
Ashish	Pater	JO-(2-à	Ŋ		07	ത			\geq	RM	ιφ		ØŜ)					6	[3]]			ÔAU	40			

The individual signing this agreement on behalf of the client, acknowledges that he/she has read and understands the terms and conditions of this agreement, and that he/she has the authority to sign on behalf of the client. See www.teklabinc.com for terms and conditions.

Appendix 3

Groundwater Quality Database

				Field	Parame	ters			Appe	ndix III Monitor	ing Const	ituents (Detectior	ו)						Ар	pendix IV N	Monitorir	ng Cons	tituents	(Assessm	nent)			
Well	Date	Monitoring Purpose	Spec. Cond.	Temp.	ORP	D.O.	Turbidity	pН	Chloride	Fluoride	Sulfate	TDS	Boron	Calcium	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Lead	Lithium	Mercury	Molybdenum	Selenium	Thallium	Radium 226 and 228 (Combined)
ID		5 1	µmhos/cm	°C	mV	mg/L	NTU	S.U.	mg/L	mg/L	mg/L	mg/L	ug/L	mg/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	pCi/L
									None	4.0	None	None	None	None	6	10	2000	4	5	100	6	15	40	2	100	50	2	5
MW-3 (UG)	11/30/2016	Background	254.0	15.75	-27.1	0.41	37.28	7.08	2.3	0.438	26	160	18	24	<3.0	1.5	96	<1.0	<1.0	<4.0	<2.0	<1.0	<10	<0.20	<1.0	<1.0	<1.0	1.668
	1/24/2017	Background	226.4	16.52	-8.4	0.39	4.46	6.88	2.0	0.261	30	130	12	21	<3.0	1.2	120	<1.0	<1.0	<4.0	<2.0	<1.0	<10	<0.20	<1.0	<1.0	<1.0	0.677(ND)
	2/22/2017	Background	226.6	16.47	9.7	0.36	3.56	6.9 3	1.9	0.290	26	120	33	22	<3.0	1.0	120	<1.0	<1.0	<4.0	<2.0	<1.0	<10	<0.20	<1.0	<1.0	<1.0	0.460(ND)
	3/20/2017	Background	212.1	17.07	33.7	0.43	6.61	6.6 8	1.8	0.286	21	170	22	19	<3.0	<1.0	110	<1.0	<1.0	<4.0	<2.0	<1.0	<10	<0.20	<1.0	<1.0	<1.0	0.277(ND)
	4/27/2017	Background	223.2	15.35	9.2	0.57	2.69	6.68	2.0	0.257	28	140	54	20	<3.0	<1.0	110	<1.0	<1.0	<4.0	<2.0	<1.0	<10	<0.20	9.9	<1.0	<1.0	-0.030(ND)
	5/17/2017	Background	224.9	17.68	26.8	0.45	12.59	6.59	1.5	<0.250	21	130	19	17	<3.0	<1.0	120	<1.0	<1.0	<4.0	<2.0	<1.0	<10	0.40	<1.0	<1.0	<1.0	0.844(ND)
	6/8/2017	Background	217.9	16.73	18.2	0.49	2.61	6.66	1.7	0.276	22	160	20	19	<3.0	<1.0	110	<1.0	<1.0	<4.0	<2.0	<1.0	<10	<0.20	<1.0	<1.0	<1.0	-0.469(ND)
	7/13/2017	Background	243.8	19.02	5.5	0.39	4.79	6.71	2.2	0.256	19	160	18	20	<3.0	<1.0	100	<1.0	<1.0	<4.0	<2.0	<1.0	<10	<0.20	<1.0	<1.0	<1.0	0.715(ND)
	10/31/2017	Background / D1	246.2	16.74	12.4	0.65	7.47	6.64	2.0	0.331	20	140	27	19	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)
	6/13/2018	Background / D2	194.2	17.19	42.3	0.42	7.57	6.59	1.3	0.291	17	130	23	20	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)
	11/26/2018	Background / D3	194.9	15.05	49.8	0.47	2.23	6.50	1.5	0.301	18	100	23	17	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8
	2/5/2019	Background	205.0	14.49	46.9	0.49	1.92	6.46	1.5	0.342	20	160	22	17	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8
	5/28/2019	Background / D4	218.4	16.42	32.2	0.82	9.69	6.4	1.3	<0.250	20	(NA)	51	17	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8
	7/23/2019	0	203.0	16.58	71.0	0.88	4.96	(NA)	(NA)	(NA)	(NA)	140	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)
	8/28/2019	Background / D5	207.4	16.97	75.6	0.89	4.02	6.4	1.1	<0.250	18	140	35	15	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8
	11/4/2019	Background	202.3	16.60	63.2	0.70	4.22	6.4	1.4	<0.250	18	130	37	15	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8
	2/18/2020	Background / D6	207.6	14.17	58.6	1.22	6.34	6.4	1.3	<0.250	21	(NA)	27	16	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8
	3/30/2020	5	199.3	14.87	61.2	1.20	6.01	(NA)	(NA)	(NA)	(NA)	180	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)
	7/21/2020	Background / D7	197.8	16.87	-40.4	8.42	3.43	6.5	1.0	<0.250	15	140	21	18	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8
	10/20/2020	Background	206.2	16.22	-15.1	8.73	2.88	6.5	1.2	<0.250	15	130	21	17	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8
	4/16/2021	Detection 8	189.2	14.10	41.3	12.69	4.03	6.5	1.2	<0.250	16	(NA)	25	17	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)
	4/17/2021		196.8	14.04	34.3	12.04	3.47	(NA)	(NA)	(NA)	(NA)	150	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)
	11/1/2021	Detection 9	199.7	11.89	70.3	10.10	1.46	6.57	1.0	<0.250	14	(NA)	25	14	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)
	12/27/2021	-	194.7	7.62	62.3	1.67	1.03	(NA)	(NA)	(NA)	(NA)	170	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)
ļ	8/3/2022	Detection 10	158.1	17.06	42.0	0.36	8.28	6.65	< 1.0	<0.250	11	130	23	16	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)
	11/1/2022	Detection 11	(NA)	15.70	53.4	1.25	3.60	(NA)	< 1.0	<0.250	10	100 H	20	17	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)
	12/13/2022		166.9	15.67	35.1	0.50	3.43	6.65	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)
	4/18/2023	Detection 12	136.6	14.83	88.8	1.56	1.43	6.45	1.2	<0.250	12	120	23	15	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)
	10/11/2023	Detection 13	181.0	16.61	72.3	0.92	1.77	6.49	<4	<0.250	11	122	13.9	15.5	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)

NOTES:

1. All data transcribed from analytical lab data sheets or field notes.

2. Less than (<) symbol denotes concentration not detected at or above reportable limits.

3. (ND) denotes Radium 226 and 228 (combined) concentration not detected above minimum detectable concentration.

4. (NA) denotes analysis not conducted, or not available at time of report.

5. Background monitoring per USEPA 40 CFR 257.93.

6. Detection monitoring per USEPA 40 CFR 257.94.

7. Assessment monitoring per USEPA 40 CFR 257.95.

8. Additional background sampling based on recommendations in Alternate Source Demonstration dated September 26, 2018 (see Gredell Engineering, 2019).

9. Background updated March 2021 to include previous background, additional background (see note 8), and detection monitoring data through October 2020 except as noted in note 10.

10. Censored data for outlier removal or trend elimination indicated as shown below:

4.5 - Value identified by Sanitas for Groundwater as an outlier.

- Value restricted from data set to eliminate significant trend.

11. Data Qualifiers

H – Reanalyzed outside hold time

J – Analyte detected below quantitaion limits

				Field	Parame	ters			Арре	ndix III Monitor	ing Const	ituents (Detectior	ו)						Ар	pendix IV I	<i>l</i> onitorir	ng Cons	tituents	(Assessm	nent)			
Well	Date	Monitoring Purpose	Spec. Cond.	Temp.	ORP	D.O.	Turbidity	рН	Chloride	Fluoride	Sulfate	TDS	Boron	Calcium	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Lead	Lithium	Mercury	Molybdenum	Selenium	Thallium	Radium 226 and 228 (Combined)
ID			µmhos/cm	°C	mV	mg/L	NTU	S.U.	mg/L	mg/L	mg/L	mg/L	ug/L	mg/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	pCi/L
									None	4.0	None	None	None	None	6	10	2000	4	5	100	6	15	40	2	100	50	2	5
MW-4 (DG)	11/30/2016	Background	575.6	17.51	-108.3	0.48	0.61	7.46	18	0.259	140	390	1400	89	<3.0	<1.0	41	<1.0	<1.0	<4.0	<2.0	<1.0	<10	<0.20	<1.0	<1.0	<1.0	0.572(ND)
	1/24/2017	Background	543.7	17.00	-105.2	0.50	0.48	7.45	15	<0.250	120	290	880	79	<3.0	<1.0	46	<2.0	<1.0	<4.0	<2.0	<1.0	<10	<0.20	<1.0	<1.0	<1.0	0.7031(ND)
	2/22/2017	Background	554.0	17.95	-115.3	0.51	1.19	7.49	13	<0.250	97	320	1500	78	<3.0	<1.0	51	<1.0	<1.0	<4.0	<2.0	<1.0	<10	<0.20	<1.0	<1.0	<1.0	0.550(ND)
	3/20/2017	Background	562.8	18.58	-108.8	0.69	1.70	7.37	12	<0.250	94	350	1400	72	<3.0	<1.0	53	<1.0	<1.0	<4.0	<2.0	<1.0	<10	1.3	<1.0	<1.0	<1.0	1.036
	4/27/2017	Background	536.9	17.25		0.91	2.38	7.38	14	<0.250	99	300	1300	74	<3.0	<1.0	50	<1.0	<1.0	<4.0	<2.0	<1.0	<10	<0.20	<1.0	<1.0	<1.0	0.210(ND)
	5/17/2017	Background	554.9	17.90	-115.5	0.63	3.02	7.38	14	<0.250	96	320	1200	71	<3.0	<1.0	66	<1.0	<1.0	<4.0	<2.0	<1.0	<10	<0.20	<1.0	<1.0	<1.0	0.774(ND)
	6/8/2017	Background	509.7	18.24	-122.9	0.86	0.84	7.38	12	<0.250	86	340	1100	61	<3.0	<1.0	45	<1.0	<1.0	<4.0	<2.0	<1.0	<10	<0.20	<1.0	<1.0	<1.0	0.464(ND)
	7/13/2017	Background	575.5	19.46	-115.2	0.52	1.43	7.37	13	<0.250	88	300	1200	79	<3.0	<1.0	52	<1.0	<1.0	<4.0	<2.0	<1.0	<10	<0.20	<1.0	<1.0	<1.0	1.086(ND)
	10/31/2017	Background / D1	525.8	18.35	-118.1	0.63	1.07	7.31	17	<0.250	83	290	1400	67	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)
	6/13/2018	Background / D2	511.5	18.92	-120.7	0.44	18.50	7.32	14	<0.250	86	290	1200	80	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)
	11/26/2018	Background / D3	468.0	16.07	-101.8	0.53	1.01	7.36	8.8	<0.250	54	260	1100	64	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8
	2/5/2019	Background	761.0	15.62	-97.5	0.52	2.58	7.3	33	<0.250	140	420	1100	100	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8
	5/28/2019	Background / D4	581.7	18.65	-108.5	0.37	3.30	7.3	11	<0.250	75	(NA)	980	70	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8
	7/23/2019	Ŭ	615.2	18.88	-105.2	0.43	0.36	(NA)	(NA)	(NA)	(NA)	340	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)
	8/28/2019	Background / D5	645.4	19.60	-101.7	0.40	2.31	(NA)	18	<0.250	110	300	1100	83	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8
	10/23/2019	5	620.0	18.90	-110.6	0.55	1.93	7.3	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)
	11/4/2019	Background	657.7	18.52	-104.2	0.50	0.96	7.2	2.1	<0.250	120	400	1200	89	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8
	2/18/2020	Background / D6	526.9	14.49	-87.6	0.63	1.60	7.4	11	<0.250	66	(NA)	930	67	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8
	3/30/2020	5	520.6	16.45	-91.1	0.35	19.51	(NA)	(NA)	(NA)	(NA)	300	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)
	7/21/2020	Background / D7	550.7	19.75	-145.6	5.06	6.49	(NA)	14	<0.250	86	290	920	76	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8
	8/3/2020	5	567.8	18.81	-117.8	4.87	7.19	7.4	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)
	10/20/2020	Background	596.6	17.94	-92.1	6.36	1.80	7.4	17	<0.250	96	330	1000	80	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8
	4/16/2021	Detection 8	591.2	15.99	-58.4	4.85	12.85	7.4	19	<0.250	100	340	920	85	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)
	11/1/2021	Detection 9	609.8	14.87	-59.8	0.54	2.97	7.34	16	<0.250	95	360	870	76	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)
	8/3/2022	Detection 10	552.4	19.67	-130.9	0.32	6.40	7.32	14	<0.250	93	390	880	76	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)
	11/1/2022	Detection 11	539.5	18.90	-127.6	0.90	3.19	(NA)	12	<0.250	79	340	940	81	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)
	12/13/2022		519.3	17.05	-120.4	0.41	2.35	7.27	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)
	4/18/2023	Detection 12	405.2	17.75	-96.3	0.30	10.86	7.49	10	<0.250	76	330	680	72	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)
	10/11/2023	Detection 13	596.5	18.52	-108.6	0.60	0.49	7.25	14	<0.250	88	335	940	81.1	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)

NOTES:

1. All data transcribed from analytical lab data sheets or field notes.

2. Less than (<) symbol denotes concentration not detected at or above reportable limits.

3. (ND) denotes Radium 226 and 228 (combined) concentration not detected above minimum detectable concentration.

4. (NA) denotes analysis not conducted, or not available at time of report.

5. Background monitoring per USEPA 40 CFR 257.93.

6. Detection monitoring per USEPA 40 CFR 257.94.

7. Assessment monitoring per USEPA 40 CFR 257.95.

8. Additional background sampling based on recommendations in Alternate Source Demonstration dated September 26, 2018 (see Gredell Engineering, 2019).

9. Background updated March 2021 to include previous background, additional background (see note 8), and detection monitoring data through October 2020 except as noted in note 10.

10. Censored data for outlier removal or trend elimination indicated as shown below:

4.5 - Value identified by Sanitas for Groundwater as an outlier.

- Value restricted from data set to eliminate significant trend.

11. Data Qualifiers

H – Reanalyzed outside hold time

J – Analyte detected below quantitaion limits

 $S-Spike Recovery outside recovery limits % \label{eq:scovery} % \label{eq:scovery}$

				Field	Parame	ters			Apper	ndix III Monitori	ing Const	ituents (Detectior	ı)						Ар	pendix IV N	<i>l</i> onitorir	ng Cons	tituents	(Assessm	ent)			
Well ID	Date	Monitoring Purpose	Spec. Cond. µmhos/cm	Temp. °C	ORP mV	D.O. mg/L	Turbidity NTU	pH S.U.	Chloride mg/L	Fluoride mg/L	Sulfate mg/L	TDS mg/L	Boron ug/L	Calcium mg/L	Antimony ug/L	Arsenic ug/L	Barium ug/L	Beryllium ug/L	Cadmium ug/L	Chromium ug/L	Cobalt ug/L	Lead ug/L	Lithium ug/L	Mercury ug/L	Molybdenum ug/L	Selenium ug/L	Thallium ug/L	Radium 226 and 228 (Combined) pCi/L
			•						None	4.0	None	None	None	None	6	10	2000	4	5	100	6	15	40	2	100	50	2	5
MW-5 (DG)	11/30/2016	Background	808.3	16.20	-48.7	0.50	1.24	6.97	16	0.255	230	560	470	96	<3.0	<1.0	84	<1.0	<1.0	<4.0	4.3	<1.0	<10	<0.20	<1.0	<1.0	<1.0	1.844
	1/24/2017	Background	745.3	16.24	-37.6	0.58	0.72	6.90	15	<0.250	270	470	480	120	<3.0	<1.0	91	<1.0	<1.0	<4.0	5.2	<1.0	<10	<0.20	<1.0	<1.0	<1.0	0.827(ND)
	2/22/2017	Background	717.8	17.75	-50.5	0.36	3.43	6.97	11	<0.250	170	420	470	100	<3.0	<1.0	83	<1.0	<1.0	<4.0	3.6	<1.0	<10	<0.20	<1.0	<1.0	<1.0	0.130(ND)
	3/20/2017	Background	737.9	17.78	-36.5	0.72	2.16	6.85	11	<0.250	170	480	320	99	<3.0	<1.0	76	<1.0	<1.0	<4.0	4.4	<1.0	<10	<0.20	<1.0	<1.0	<1.0	0.538(ND)
	4/27/2017	Background	777.3	16.07	-58.8	0.69	5.20	6.80	12	<0.250	460	480	490	120	<3.0	<1.0	87	<1.0	<1.0	<4.0	4.8	<1.0	<10	<0.20	3.0	<1.0	<1.0	1.676
	5/17/2017	Background	760.1	17.81	-56.0	0.46	5.35	6.81	11	<0.250	200	440	5700	240	<3.0	1.8	180	<1.0	<1.0	16	5.3	6.3	<10	0.24	<1.0	<1.0	<1.0	1.739
	6/8/2017	Background	678.3	17.72	-58.6	0.69	1.89	6.82	11	<0.250	180	480	360	97	<3.0	<1.0	77	<1.0	<1.0	<4.0	3.9	<1.0	<10	<0.20	<1.0	<1.0	<1.0	0.869(ND)
	7/13/2017	Background	799.0	19.19	-82.0	1.08	17.49	6.98	10	<0.250	190	430	320	110	<3.0	<1.0	81	<1.0	<1.0	<4.0	3.8	<1.0	<10	<0.20	<1.0	<1.0	<1.0	0.767(ND)
	10/31/2017	Background / D1	591.8	17.45	-77.6	0.85	3.17	6.89	13	<0.250	88	310	280	72	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)
	6/13/2018	Background / D2	756.4	18.28	-55.6	0.84	1.91	6.77	11	<0.250	240	480	370	130	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)
	11/26/2018	Background / D3	836.4	14.90	-27.0	0.51	0.38	6.74	17	<0.250	230	520	420	120	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8
	2/5/2019	Background	845.6	15.22	-23.7	0.41	0.71	6.72	15	0.272	200	480	450	120	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8
	5/28/2019	Background / D4	861.1	18.31	-59.1	0.60	3.71	6.9	10	<0.250	190	(NA)	280	110	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8
	7/23/2019	5	806.9	18.66	-44.9	0.81	1.34	(NA)	(NA)	(NA)	(NA)	480	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)
	8/28/2019	Background / D5	848.4	18.49	-42.2	0.64	0.82	6.8	16	<0.250	190	480	410	110	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8
	11/4/2019	Background	729.9	18.03	-55.8	0.77	2.65	6.8	3.2	<0.250	15	440	420	99	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8
	2/18/2020	Background / D6	871.7	14.05	-45.2	0.81	0.88	6.8	15	<0.250	210	(NA)	400	110	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8
	3/30/2020		750.4	15.84	-49.7	0.62	2.90	(NA)	(NA)	(NA)	(NA)	450	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)
	7/21/2020	Background / D7	816.5	18.35	-102.9	4.37	5.36	6.8	14	<0.250	210	470	330	110	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8
	10/20/2020	Background	886.3	16.27	-70.2	8.15	3.72	6.9	15	<0.250	220	590	360	120	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	-	Note 8	Note 8	Note 8	Note 8
	4/16/2021	Detection 8	837.4	15.79	-11.1	7.27	2.84	6.9	10	<0.250	240	510	370	120	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)
	11/1/2021	Detection 9	790.8	12.79	-25.5	7.62	0.50	6.90	13	<0.250	170	490	330	94	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)
	8/3/2022	Detection 10	758.3	17.88	-83.7	0.59	11.66	6.82	12	<0.250	210	(NA)	390	110	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)
	9/12/2022		882.5	17.00	-85.4	0.41	3.12	(NA)	(NA)	(NA)	(NA)	510	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)
	11/1/2022	Detection 11	802.2	16.74	-73.0	0.54	4.59	(NA)	13	<0.250	250	(NA)	420	130	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)
	12/13/2022		801.3	16.47	-77.4	0.51	1.27	6.81	(NA)	(NA)	(NA)	490	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)
	4/18/2023	Detection 12	619.6	16.65	-31.1	0.52	4.55	6.85	13	<0.250	210	500	340	120	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)
	10/11/2023	Detection 13	810.8	17.30	-58.8	0.64	0.3	6.83	15	<0.250	172	435	405	106	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)

NOTES:

1. All data transcribed from analytical lab data sheets or field notes.

2. Less than (<) symbol denotes concentration not detected at or above reportable limits.

3. (ND) denotes Radium 226 and 228 (combined) concentration not detected above minimum detectable concentration.

4. (NA) denotes analysis not conducted, or not available at time of report.

5. Background monitoring per USEPA 40 CFR 257.93.

6. Detection monitoring per USEPA 40 CFR 257.94.

7. Assessment monitoring per USEPA 40 CFR 257.95.

8. Additional background sampling based on recommendations in Alternate Source Demonstration dated September 26, 2018 (see Gredell Engineering, 2019).

9. Background updated March 2021 to include previous background, additional background (see note 8), and detection monitoring data through October 2020 except as noted in note 10.

10. Censored data for outlier removal or trend elimination indicated as shown below:

4.5 - Value identified by Sanitas for Groundwater as an outlier.

- Value restricted from data set to eliminate significant trend.

11. Data Qualifiers

H - Reanalyzed outside hold time

J – Analyte detected below quantitaion limits

				Field	Parame	ters			Appe	ndix III Monitor	ing Const	ituents (Detection	n)						Ар	pendix IV M	Monitoriı	ng Cons	tituents	(Assessm	nent)			
Well	Date	Monitoring Purpose	Spec. Cond.		ORP	D.O.	Turbidity	pН	Chloride	Fluoride	Sulfate	TDS	Boron	Calcium	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Lead	Lithium	Mercury	Molybdenum	Selenium	Thallium	Radium 226 and 228 (Combined)
ID		U	µmhos/cm	°C	mV	mg/L	NTU	S.U.	mg/L	mg/L	mg/L	mg/L	ug/L	mg/L	ug/L	pCi/L												
									None	4.0	None	None	None	None	6	10	2000	4	5	100	6	15	40	2	100	50	2	5
MW-6 (UG)	11/30/2016	Background	369.0	16.39	-49.4	0.85	0.84	6.92	2.8	0.331	36	200	30	45	<3.0	4.3	190	<1.0	<1.0	<4.0	<2.0	<1.0	<10	<0.20	<1.0	<1.0	<1.0	1.532
	1/24/2017	Background	358.9	16.29	-44.8	0.66	0.26	6.87	2.4	<0.250	43	200	2	41	<3.0	5.7	220	<1.0	<1.0	<4.0	<2.0	<1.0	<10	<0.20	<1.0	<1.0	<1.0	0.948(ND)
	2/22/2017	Background	352.5	17.20	-42.2	0.81	15.27	6.89	2.1	0.269	32	160	59	40	<3.0	6.4	210	<1.0	<1.0	<4.0	<2.0	<1.0	<10	<0.20	<1.0	<1.0	<1.0	0.685(ND)
	3/20/2017	Background	360.8	16.90	24.9	0.36	9.70	6.73	2.1	<0.250	31	240	37	39	<3.0	5	160	<1.0	<1.0	<4.0	<2.0	<1.0	<10	<0.20	<1.0	<1.0	<1.0	0.577(ND)
	4/27/2017	Background	331.5	15.71	-50.9	0.39	8.35	6.72	2.3	<0.250	34	170	36	38	<3.0	3.2	180	<1.0	<1.0	<4.0	<2.0	<1.0	<10	<0.20	<1.0	<1.0	<1.0	1.243(ND)
	5/17/2017	Background	323.2	17.65	-71.5	0.45	7.13	6.76	1.8	<0.250	30	170	35	30	<3.0	4.9	190	<1.0	<1.0	<4.0	<2.0	<1.0	<10	<0.20	<1.0	<1.0	<1.0	1.173(ND)
	6/8/2017	Background	326.7	17.50	-53.0	0.33	3.86	6.73	1.7	<0.250	29	180	38	36	<3.0	4.6	190	<1.0	<1.0	<4.0	<2.0	<1.0	<10	<0.20	<1.0	<1.0	<1.0	0.893(ND)
	7/13/2017	Background	396.8	19.68	-84.0	0.72	2.17	6.98	1.6	<0.250	28	180	31	40	<3.0	5.8	200	<1.0	<1.0	<4.0	<2.0	<1.0	<10	<0.20	<1.0	<1.0	<1.0	0.575(ND)
	10/31/2017	Background / D1	359.6	17.57	-57.9	0.71	1.48	6.72	1.7	0.303	29	170	41	38	(NA)													
	6/13/2018	Background / D2	345.4	17.59	-44.0	0.40	13.24	6.67	2.3	<0.250	32	160	43	41	(NA)													
	11/26/2018	Background / D3	375.3	15.04	-37.6	1.07	1.66	6.72	1.5	0.313	29	180	46	36	Note 8													
	2/5/2019	Background	384.7	14.86	-33.9	0.56	2.68	6.72	1.6	0.338	27	160	44	40	Note 8													
	7/23/2019	Background / D4	419.3	17.64	-59.8	0.51	2.03	(NA)	(NA)	(NA)	(NA)	180	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)
	8/28/2019	Background / D5	442.2	17.67	-65.4	0.66	1.15	6.7	1.0	<0.250	24	200	54	44	Note 8													
	11/4/2019	Background	388.3	17.62	-48.1	0.38	1.68	6.7	1.4	0.319	22	210	47	43	Note 8													
	2/18/2020	Background / D6	390.3	14.54		0.81	5.79	6.7	1.7	<0.250	24	(NA)	40	41	Note 8	-	Note 8	Note 8	Note 8	Note 8								
	3/30/2020	0	391.0	15.17	-53.6	0.67	3.99	(NA)	(NA)	(NA)	(NA)	230	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)
	7/21/2020	Background / D7	415.1	17.64		4.54	3.48	6.7	<1.0	<0.250	22	220	46	43	Note 8	-	Note 8	Note 8	Note 8	Note 8								
	10/20/2020	Background	455.5	16.43		6.31	0.57	7.0	2.4	< 0.250	24	250	47	49	Note 8	-	-	Note 8	Note 8	Note 8	Note 8							
	4/16/2021	Detection 8	399.3	14.69		6.88	16.55	6.8	2.0	<0.250	24	200	52	44	(NA)													
	11/1/2021	Detection 9	475.9	12.07	-20.8	5.05	2.22	6.88	4.3	0.330	27	220	56	47	(NA)													
	12/27/2021		444.7	7.72	-56.0	0.67	3.26	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)
	8/3/2022 9/12/2022	Detection 10	381.1 443.5	17.84	-93.0 -82.3	0.40	12.36	6.86	4.3	<0.250	24 (NA)	230	51 (NA)	43	(NA) (NA)	(NA)	(NA)	(NA)	(NA) (NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA) (NA)	(NA)	(NA) (NA)
I	9/12/2022			16.99 16.37		0.50	11.06 5.60	(NA) 6.85	(NA) 4.6	(NA) <0.250	· · /	(NA) (NA)	· · /	(NA)	(NA) (NA)	(NA) (NA)	(NA)	(NA) (NA)	(NA) (NA)	(NA) (NA)	(NA)	(NA)	(NA) (NA)	(NA) (NA)	(NA)	(NA) (NA)	(NA) (NA)	(NA) (NA)
	12/13/2022	Detection 11	(NA) 438.7	16.02	(NA) -81.6	0.75 0.66	5.60 8.15	(NA)	4.6 (NA)	<0.250 (NA)	26 (NA)	(NA) 220	55 (NA)	(NA) 45	(NA) (NA)													
	4/18/2023		332.1	16.27	-50.5	0.00	2.55	(NA) 6.91	(INA) 5.0 (INA)	<0.250	(NA) 29	220	(NA) 57	45	(NA) (NA)	(NA) (NA)	(NA)	(NA) (NA)	(NA) (NA)	(NA) (NA)	(NA)	(NA)	(NA)	(NA) (NA)	(NA) (NA)	(NA) (NA)	(NA) (NA)	(NA) (NA)
	4/18/2023 5/23/2023	Detection 12	426.6	16.27	-50.5 24.3	0.54	2.55	(NA)	4.0	<0.250 (NA)	29 (NA)	(NA)	57 (NA)	46 (NA)	(NA)	(NA) (NA)	(NA)	(NA)	(NA) (NA)									
	10/11/2023	Detection 13	420.0	17.01	-79.2	0.56	1.53	(NA) 6.80	4.0 3 J	<0.250	(NA) 25	250	(NA) 47.6	(NA) 46.7 S	(NA)	(NA) (NA)	(NA)	(NA)	(NA)	(NA) (NA)	(NA)	(NA)	(NA)	(NA)	(NA) (NA)	(NA) (NA)	(NA)	(NA) (NA)
	10/11/2023	Detection 10	402.0	17.01	-13.2	0.00	1.00	0.00		-0.200	25	200	-1.5	40.7 3	(רארו)	(11/7)	(117)	(ראין)	(11/4)	(11/7)	(11/~)	(1177)	(117)	(11/4)		(1177)	(11/4)	(114)

NOTES:

1. All data transcribed from analytical lab data sheets or field notes.

2. Less than (<) symbol denotes concentration not detected at or above reportable limits.

3. (ND) denotes Radium 226 and 228 (combined) concentration not detected above minimum detectable concentration.

4. (NA) denotes analysis not conducted, or not available at time of report.

5. Background monitoring per USEPA 40 CFR 257.93.

6. Detection monitoring per USEPA 40 CFR 257.94.

7. Assessment monitoring per USEPA 40 CFR 257.95.

8. Additional background sampling based on recommendations in Alternate Source Demonstration dated September 26, 2018 (see Gredell Engineering, 2019).

9. Background updated March 2021 to include previous background, additional background (see note 8), and detection monitoring data through October 2020 except as noted in note 10.

10. Censored data for outlier removal or trend elimination indicated as shown below:

4.5 - Value identified by Sanitas for Groundwater as an outlier.

- Value restricted from data set to eliminate significant trend.

11. Data Qualifiers

H – Reanalyzed outside hold time

J – Analyte detected below quantitaion limits

				Field	Parame	ters			Appe	ndix III Monitor	ing Const	ituents (Detectior	ו)						Ар	pendix IV M	<i>l</i> onitorir	ng Cons	tituents	(Assessm	ient)			
Well	Date	Monitoring Purpose	Spec. Cond.	Temp.	ORP	D.O.	Turbidity	pН	Chloride	Fluoride	Sulfate	TDS	Boron	Calcium	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Lead	Lithium	Mercury	Molybdenum	Selenium	Thallium	Radium 226 and 228 (Combined)
ID		5 1	µmhos/cm	°C	mV	mg/L	NTU	S.U.	mg/L	mg/L	mg/L	mg/L	ug/L	mg/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	pCi/L
									None	4.0	None	None	None	None	6	10	2000	4	5	100	6	15	40	2	100	50	2	5
MW-8 (DG)	5/18/2017	Background	662.5	17.58	-89.4	0.29	2.39	7.16	40	<0.250	100	340	400	74	<3.0	<1.0	86	<1.0	<1.0	<4.0	<2.0	<1.0	<10	<0.20	<1.0	<1.0	<1.0	1.067
	6/9/2017	Background	678.2	17.90	-108.5	0.31	0.47	7.16	43	<0.250	110	380	520	82	<3.0	<1.0	86	<1.0	<1.0	<4.0	<2.0	<1.0	<10	<0.20	<1.0	<1.0	<1.0	0.839(ND)
	7/13/2017	Background	661.5	18.57	-107.1	0.23	1.20	7.25	30	<0.250	89	320	430	87	<3.0	<1.0	74	<1.0	<1.0	<4.0	<2.0	<1.0	<10	<0.20	<1.0	<1.0	<1.0	1.034(ND)
	8/3/2017	Background	665.7	19.06	-108.4	0.24	0.98	7.15	37	<0.250	89	380	490	80	<3.0	<1.0	74	<1.0	<1.0	<4.0	<2.0	<1.0	<10	<0.20	<1.0	<1.0	<1.0	0.681(ND)
	8/15/2017	Background	594.9	18.56	-88.7	0.38	0.99	7.16	30	<0.250	83	320	530	75	<3.0	<1.0	68	<1.0	<1.0	<4.0	<2.0	<1.0	<10	<0.20	<1.0	<1.0	<1.0	0.906(ND)
	8/30/2017	Background	644.2	18.62	-91.3	0.29	1.18	7.15	41	<0.250	96	290	510	88	<3.0	<1.0	75	<1.0	<1.0	<4.0	<2.0	<1.0	<10	<0.20	<1.0	<1.0	<1.0	0.805(ND)
	9/14/2017	Background	707.9	18.52	-90.1	0.48	0.67	7.13	53	<0.250 H	110	370	510	80	<3.0	<1.0	77	<1.0	<1.0	<4.0	<2.0	<1.0	12	<0.20	<1.0	<1.0	<1.0	0.314(ND)
	9/27/2017	Background	764.0	19.11	-89.6	0.30	0.58	7.05	50	<0.250	120	420	480	92	<3.0	<1.0	80	<1.0	<1.0	<4.0	<2.0	<1.0	<10	<0.20	<1.0	<1.0	<1.0	0.594(ND)
	10/31/2017	Background / D1	698.1	17.99	-96.3	0.38	0.94	7.09	40	<0.250	110	380	540	80	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)
	6/13/2018	Background / D2	788.8	18.34	-99.1	0.23	4.80	7.11	65	<0.250	(NA)	430	520	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)
	7/10/2018	5	899.4	18.52	-94.2	0.35	2.69	(NA)	(NA)	(NA)	150	(NA)	(NA)	120	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)
	11/26/2018	Background / D3	662.1	15.08	-77.6	0.35	2.88	7.17	45	<0.250	100	320	500	94	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8
	2/5/2019	Background	839.7	14.72	-76.0	0.30	2.66	7.14	71	0.26	140	390	550	110	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8
	5/28/2019	Background / D4	836.6	18.25	-90.6	0.29	4.89	7.1	53	<0.250	130	(NA)	540	100	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8
	7/23/2019		819.5	19.34	-90.7	0.30	1.39	(NA)	(NA)	(NA)	(NA)	420	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)
	8/28/2019	Background / D5	769.1	19.38	-90.0	0.25	1.25	7.1	55	<0.250	110	360	460	93	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8
	11/4/2019	Background	729.8	18.39	-80.0	0.29	0.86	7.1	2.0	<0.250	4.5	400	480	98	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8
	2/18/2020	Background / D6	747.9	13.49	-75.7	0.29	0.69	7.2	53	<0.250	110	(NA)	480	93	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8
	3/30/2020		840.0	15.71	-82.4	0.20	7.48	(NA)	(NA)	(NA)	(NA)	480	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)
	7/21/2020	Background / D7	673.7	19.33	-130.8	2.91	3.56	7.1	50	<0.250	100	420	470	89	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8
	10/20/2020	Background	794.1	17.14	-83.8	3.59	0.88	7.2	56	<0.250	130	460	510	110	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	Note 8	-	Note 8	Note 8	Note 8	Note 8
	4/16/2021	Detection 8	758.6	15.85	-44.7	3.47	5.16	7.2	51	< 0.250	130	400	460	100	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)
	11/1/2021	Detection 9	676.9	14.15	-45.1	0.42	0.71	7.16	45	0.258	94	360	430	80	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)
	8/3/2022	Detection 10	752.0	19.27	-110.8	0.18	11.32	7.08	56	< 0.250	140	490	420	100	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)
	11/1/2022	Detection 11	776.1	18.65	-107.5	0.19	3.20	(NA)	51	<0.250	130	500	440	110	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)
	12/13/2022		791.3	16.36	-102.9	0.21	3.01	7.05	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)
	4/18/2023	Detection 12	535.2	16.81	-78.9	0.17	5.80	7 28 (N A)	44	<0.250	110	440	420	92	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)
	5/23/2023	Detection 40	650.7	17.53	-56.2	0.19	1.73	7.14	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)
	10/11/2023	Detection 13	750.3	18.07	-94.9	0.41	0.72	7.07	44	<0.250	102	455	423	96.5	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)

NOTES:

1. All data transcribed from analytical lab data sheets or field notes.

2. Less than (<) symbol denotes concentration not detected at or above reportable limits.

3. (ND) denotes Radium 226 and 228 (combined) concentration not detected above minimum detectable concentration.

4. (NA) denotes analysis not conducted, or not available at time of report.

5. Background monitoring per USEPA 40 CFR 257.93.

6. Detection monitoring per USEPA 40 CFR 257.94.

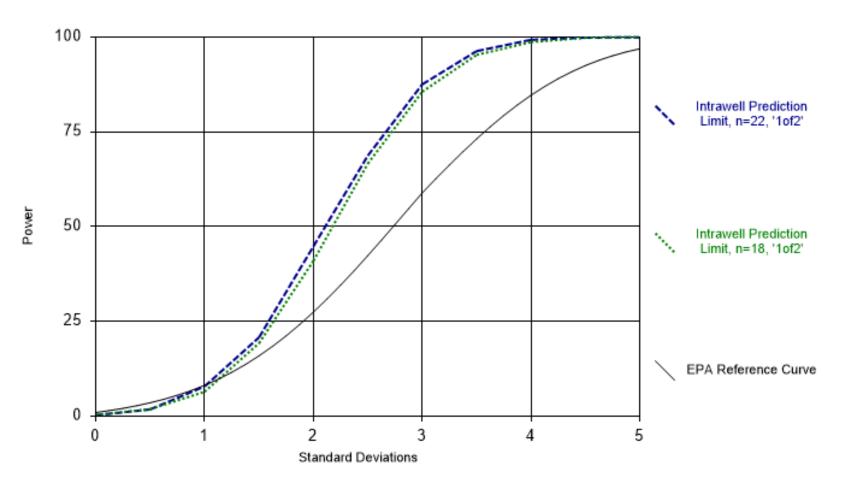
7. Assessment monitoring per USEPA 40 CFR 257.95.

8. Additional background sampling based on recommendations in Alternate Source Demonstration dated September 26, 2018 (see Gredell Engineering, 2019).

9. Background updated March 2021 to include previous background, additional background (see note 8), and detection monitoring data through October 2020 except as noted in note 10.

10. Censored data for outlier removal or trend elimination indicated as shown below:

- Value restricted from data set to eliminate significant trend.

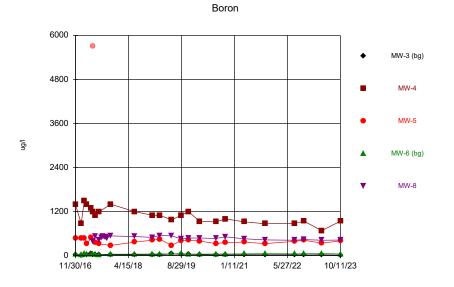

11. Data Qualifiers

H – Reanalyzed outside hold time

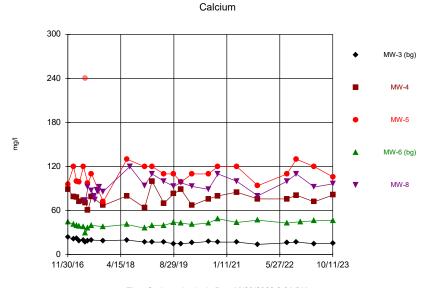
J - Analyte detected below quantitaion limits

Appendix 4

Statistical Power Curve

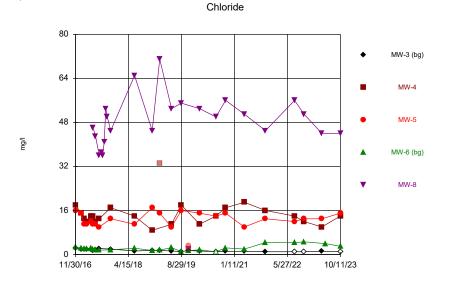

Power Curve

Analysis Run 8/25/2023 1:27 PM View: Everything Minus Detrended Data SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SBMU-SPS EDD File 09-28-17

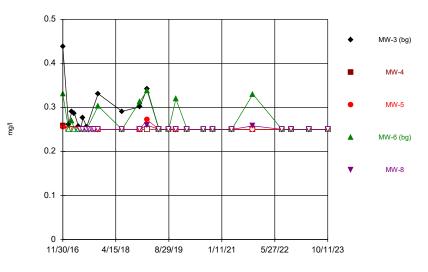

Appendix 5

Time Series Plots

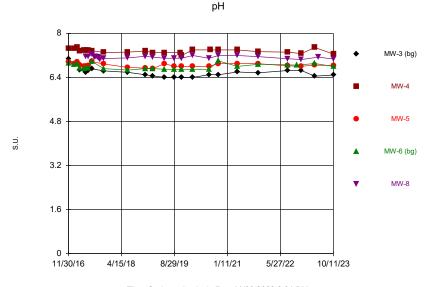
Sanitas™ v.9.6.37 Software licensed to GREDELL Engineering. UG



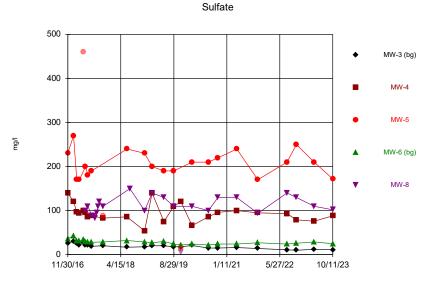
Time Series Analysis Run 11/20/2023 3:31 PM SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SBMU-SPS EDD File 09-28-17


Time Series Analysis Run 11/20/2023 3:31 PM SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SBMU-SPS EDD File 09-28-17

Sanitas¹¹⁴ v.9.6.37 Software licensed to GREDELL Engineering. UG Hollow symbols indicate censored values.

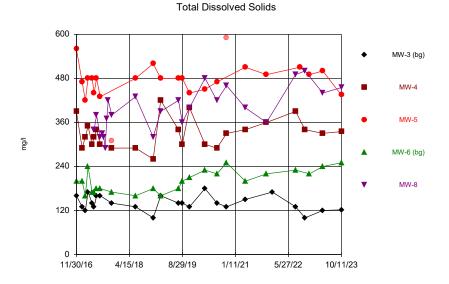

Time Series Analysis Run 11/20/2023 3:31 PM SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SBMU-SPS EDD File 09-28-17 Sanitas[™] v.9.6.37 Software licensed to GREDELL Engineering. UG Hollow symbols indicate censored values.

Fluoride



Time Series Analysis Run 11/20/2023 3:31 PM SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SBMU-SPS EDD File 09-28-17

Sanitas[™] v.9.6.37 Software licensed to GREDELL Engineering. UG

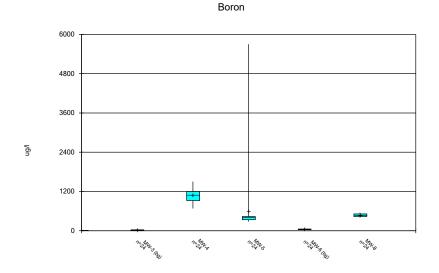


Time Series Analysis Run 11/20/2023 3:31 PM SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SBMU-SPS EDD File 09-28-17

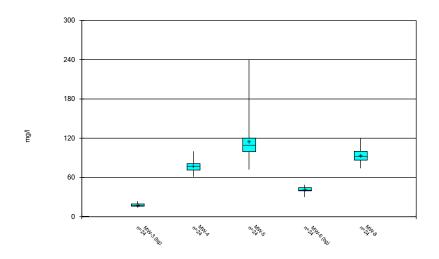
Time Series Analysis Run 11/20/2023 3:31 PM SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SBMU-SPS EDD File 09-28-17

Sanitas™ v.9.6.37 Software licensed to GREDELL Engineering. UG

Time Series Analysis Run 11/20/2023 3:31 PM SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SBMU-SPS EDD File 09-28-17


Appendix 6

Box and Whiskers Plots


Box & Whiskers Plot

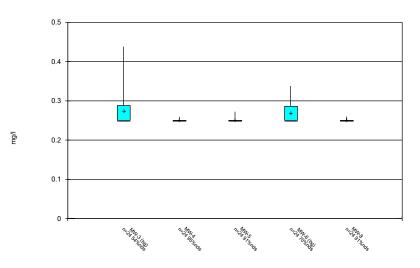
	SBMU-Sikeston Power Station	Client: GREDEI	L Engineering	Data: SBMU-SPS	EDD File 09-28-17	Printed 11/2	1/2023, 8:42 A	М	
<u>Constituent</u>	Well	<u>N</u>	<u>Mean</u>	Std. Dev.	Std. Err.	Median	<u>Min.</u>	Max.	<u>%NDs</u>
Boron (ug/l)	MW-3 (bg)	24	25.54	10.15	2.071	23	12	54	0
Boron (ug/l)	MW-4	24	1089	208.8	42.62	1100	680	1500	0
Boron (ug/l)	MW-5	24	607.7	1086	221.7	395	280	5700	0
Boron (ug/l)	MW-6 (bg)	24	44.9	8.682	1.772	46	27	59	0
Boron (ug/l)	MW-8	24	479.7	44.4	9.064	480	400	550	0
Calcium (mg/l)	MW-3 (bg)	24	17.81	2.462	0.5025	17	14	24	0
Calcium (mg/l)	MW-4	24	77.09	8.719	1.78	77	61	100	0
Calcium (mg/l)	MW-5	24	115.1	29.63	6.048	110	72	240	0
Calcium (mg/l)	MW-6 (bg)	24	41.49	4.226	0.8627	41	30	49	0
Calcium (mg/l)	MW-8	24	93.56	11.37	2.321	92.5	74	120	0
Chloride (mg/l)	MW-3 (bg)	24	1.475	0.4152	0.08475	1.35	1	2.3	12.5
Chloride (mg/l)	MW-4	24	14.25	5.341	1.09	14	2.1	33	0
Chloride (mg/l)	MW-5	24	12.59	2.919	0.5959	13	3.2	17	0
Chloride (mg/l)	MW-6 (bg)	24	2.338	1.027	0.2096	2.1	1	4.6	4.167
Chloride (mg/l)	MW-8	24	47	12.74	2.601	48	2	71	0
Fluoride (mg/l)	MW-3 (bg)	24	0.2741	0.04397	0.008975	0.25	0.25	0.438	54.17
Fluoride (mg/l)	MW-4	24	0.2504	0.001837	0.000375	0.25	0.25	0.259	95.83
Fluoride (mg/l)	MW-5	24	0.2511	0.004562	0.0009312	0.25	0.25	0.272	91.67
Fluoride (mg/l)	MW-6 (bg)	24	0.2689	0.03234	0.006601	0.25	0.25	0.338	70.83
Fluoride (mg/l)	MW-8	24	0.2508	0.002558	0.0005222	0.25	0.25	0.26	91.67
pH (S.U.)	MW-3 (bg)	24	6.6	0.1742	0.03556	6.59	6.4	7.08	0
pH (S.U.)	MW-4	24	7.36	0.07295	0.01489	7.37	7.2	7.49	0
pH (S.U.)	MW-5	24	6.847	0.07006	0.0143	6.825	6.72	6.98	0
pH (S.U.)	MW-6 (bg)	24	6.793	0.09937	0.02028	6.745	6.67	7	0
pH (S.U.)	MW-8	24	7.134	0.05081	0.01037	7.14	7.05	7.25	0
Sulfate (mg/l)	MW-3 (bg)	24	18.71	5.328	1.088	18.5	10	30	0
Sulfate (mg/l)	MW-4	24	94.46	20.42	4.169	93.5	54	140	0
Sulfate (mg/l)	MW-5	24	204.8	75.53	15.42	205	15	460	0
Sulfate (mg/l)	MW-6 (bg)	24	28.38	4.853	0.9906	28.5	22	43	0
Sulfate (mg/l)	MW-8	24	107.8	28.39	5.796	110	4.5	150	0
Total Dissolved Solids (mg/l)	MW-3 (bg)	24	139.7	20.87	4.261	140	100	180	0
Total Dissolved Solids (mg/l)	MW-4	24	330.2	40.12	8.19	330	260	420	0
Total Dissolved Solids (mg/l)	MW-5	24	474.8	52.41	10.7	480	310	590	0
Total Dissolved Solids (mg/l)	MW-6 (bg)	24	200.8	29.77	6.077	200	160	250	0
Total Dissolved Solids (mg/l)	MW-8	24	394.8	58.6	11.96	395	290	500	0

Sanitas™ v.9.6.37 Software licensed to GREDELL Engineering. UG

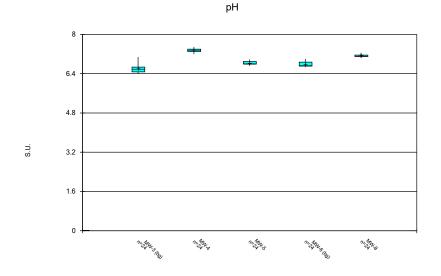
Box & Whiskers Plot Analysis Run 11/21/2023 8:41 AM SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SBMU-SPS EDD File 09-28-17

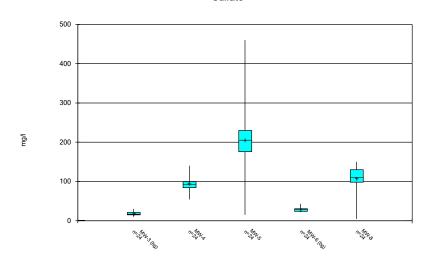
Calcium

Box & Whiskers Plot Analysis Run 11/21/2023 8:41 AM SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SBMU-SPS EDD File 09-28-17


Sanitas™ v.9.6.37 Software licensed to GREDELL Engineering. UG

Box & Whiskers Plot Analysis Run 11/21/2023 8:41 AM SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SBMU-SPS EDD File 09-28-17


Sanitas™ v.9.6.37 Software licensed to GREDELL Engineering. UG



Box & Whiskers Plot Analysis Run 11/21/2023 8:41 AM SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SBMU-SPS EDD File 09-28-17

Sanitas™ v.9.6.37 Software licensed to GREDELL Engineering. UG

Box & Whiskers Plot Analysis Run 11/21/2023 8:41 AM SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SBMU-SPS EDD File 09-28-17

Total Dissolved Solids

Box & Whiskers Plot Analysis Run 11/21/2023 8:41 AM SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SBMU-SPS EDD File 09-28-17

Sanitas™ v.9.6.37 Software licensed to GREDELL Engineering. UG

 $\mathbf{F}_{\mathbf{E}}^{\mathbf{D}}$

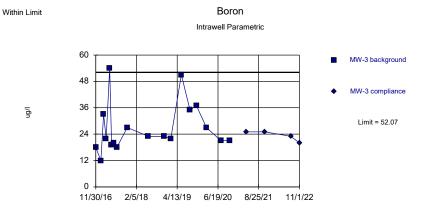
Box & Whiskers Plot Analysis Run 11/21/2023 8:41 AM SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SBMU-SPS EDD File 09-28-17

Appendix 7

Prediction Limit Charts

Appendix 7a

Prediction Limit Charts (Second 2022 Semi-annual Event)


Prediction Limit

	SBMU-Sikes	ton Power Station	Client: GREDE	LL Engineering	Data: SBM	U-SPS	EDD Fil	e 09-28-17	Printed 8/28/2023,	11:36 AM	
Constituent	<u>Well</u>	Upper Lim.	Lower Lim.	Date	Observ.	<u>Sig.</u>	<u>Bg N</u>	<u>%NDs</u>	<u>Transform</u>	<u>Alpha</u>	Method
Chloride (mg/l)	MW-6	2.954	n/a	11/1/2022	4.6	Yes	18	5.556	No	0.001504	Param Intra 1 of 2

Prediction Limit

	SBMU-Sikeston Power Station		Client: GREDELL Engineering		Data: SBMU-SPS EDD File 09-28-17				Printed 8/28/2023		
<u>Constituent</u>	Well	Upper Lim.	Lower Lim.	Date	Observ.	<u>Sig.</u>	<u>Bg N</u>	<u>%NDs</u>	Transform	<u>Alpha</u>	Method
Boron (ug/l)	MW-3	52.07	n/a	11/1/2022	20	No	18	0	sqrt(x)	0.001504	Param Intra 1 of 2
Boron (ug/l)	MW-4	1549	n/a	11/1/2022	940	No	18	0	No	0.001504	Param Intra 1 of 2
Boron (ug/l)	MW-5	537.2	n/a	11/1/2022	420	No	17	0	No	0.001504	Param Intra 1 of 2
Boron (ug/l)	MW-8	577.9	n/a	11/1/2022	440	No	18	0	No	0.001504	Param Intra 1 of 2
Calcium (mg/l)	MW-3	23.56	n/a	11/1/2022	17	No	18	0	No	0.001504	Param Intra 1 of 2
Calcium (mg/l)	MW-4	97.16	n/a	11/1/2022	81	No	18	0	No	0.001504	Param Intra 1 of 2
Calcium (mg/l)	MW-5	132.9	n/a	11/1/2022	130	No	16	0	No	0.001504	Param Intra 1 of 2
Calcium (mg/l)	MW-6	48.81	n/a	12/13/2022	45	No	18	0	No	0.001504	Param Intra 1 of 2
Chloride (mg/l)	MW-3	2.43	n/a	11/1/2022	1ND	No	18	0	No	0.001504	Param Intra 1 of 2
Chloride (mg/l)	MW-4	19.57	n/a	11/1/2022	12	No	16	0	No	0.001504	Param Intra 1 of 2
Chloride (mg/l)	MW-5	19.46	n/a	11/1/2022	13	No	18	0	No	0.001504	Param Intra 1 of 2
Chloride (mg/l)	MW-6	2.954	n/a	11/1/2022	4.6	Yes	18	5.556	No	0.001504	Param Intra 1 of 2
Fluoride (mg/l)	MW-3	0.438	n/a	11/1/2022	0.25ND	No	18	38.89	n/a	0.005373	NP Intra (normality)
Fluoride (mg/l)	MW-4	0.259	n/a	11/1/2022	0.25ND	No	18	94.44	n/a	0.005373	NP Intra (NDs) 1 of 2
Fluoride (mg/l)	MW-5	0.272	n/a	11/1/2022	0.25ND	No	18	88.89	n/a	0.005373	NP Intra (NDs) 1 of 2
Fluoride (mg/l)	MW-6	0.338	n/a	11/1/2022	0.25ND	No	18	66.67	n/a	0.005373	NP Intra (NDs) 1 of 2
Fluoride (mg/l)	MW-8	0.26	n/a	11/1/2022	0.25ND	No	18	94.44	n/a	0.005373	NP Intra (NDs) 1 of 2
pH (S.U.)	MW-4	7.516	7.221	12/13/2022	7.27	No	17	0	No	0.000752	Param Intra 1 of 2
pH (S.U.)	MW-5	7.011	6.68	12/13/2022	6.81	No	18	0	No	0.000752	Param Intra 1 of 2
pH (S.U.)	MW-8	7.242	7.038	12/13/2022	7.05	No	18	0	No	0.000752	Param Intra 1 of 2
Sulfate (mg/l)	MW-3	29.71	n/a	11/1/2022	10	No	18	0	No	0.001504	Param Intra 1 of 2
Sulfate (mg/l)	MW-4	144.5	n/a	11/1/2022	79	No	18	0	No	0.001504	Param Intra 1 of 2
Sulfate (mg/l)	MW-5	267.4	n/a	11/1/2022	250	No	15	0	No	0.001504	Param Intra 1 of 2
Sulfate (mg/l)	MW-6	40.3	n/a	11/1/2022	26	No	18	0	No	0.001504	Param Intra 1 of 2
Sulfate (mg/l)	MW-8	149.9	n/a	11/1/2022	130	No	17	0	No	0.001504	Param Intra 1 of 2
Total Dissolved Solids (mg/l)	MW-3	183.4	n/a	11/1/2022	100	No	18	0	No	0.001504	Param Intra 1 of 2
Total Dissolved Solids (mg/l)	MW-4	414.6	n/a	11/1/2022	340	No	18	0	No	0.001504	Param Intra 1 of 2
Total Dissolved Solids (mg/l)	MW-5	545.9	n/a	12/13/2022	490	No	16	0	No	0.001504	Param Intra 1 of 2
Total Dissolved Solids (mg/l)	MW-6	251.5	n/a	12/13/2022	220	No	18	0	No	0.001504	Param Intra 1 of 2

Sanitas™ v.9.6.37 Software licensed to GREDELL Engineering. UG

Background Data Summary (based on square root transformation): Mean=5.086, Std. Dev.=1.013, n=18. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8996, critical = 0.858. Kappa = 2.104 (c=7, w=5, 1 of 2, event alpha = 0.05132). Report alpha = 0.0051504.

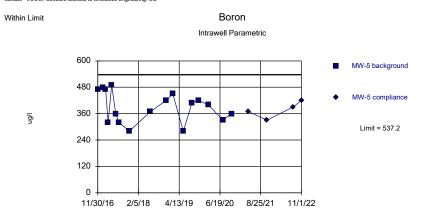
Prediction Limit Analysis Run 8/28/2023 11:30 AM View: Everything Minus Detrended Data SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SBMU-SPS EDD File 09-28-17

Sanitas™ v.9.6.37 Software licensed to GREDELL Engineering. UG

0

11/30/16 2/5/18

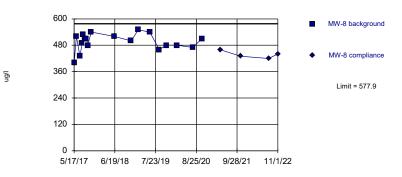
Within Limit


l/bn

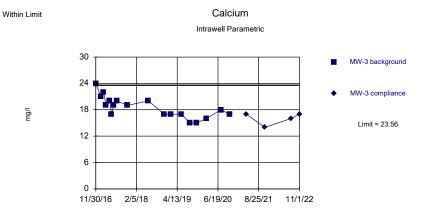
Background Data Summary: Mean=1162, Std. Dev.=184, n=18. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.948, critical = 0.858. Kappa = 2.104 (c=7, w=5, 1 of 2, event alpha = 0.05132). Report alpha = 0.001504.

Prediction Limit Analysis Run 8/28/2023 11:30 AM View: Everything Minus Detrended Data SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SBMU-SPS EDD File 09-28-17

4/13/19 6/19/20 8/25/21 11/1/22


Sanitas™ v.9.6.37 Software licensed to GREDELL Engineering. UG

Background Data Summary: Mean=390, Std. Dev.=69.19, n=17. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9407, critical = 0.851. Kappa = 2.127 (c=7, w=5, 1 of 2, event alpha = 0.05132). Report alpha = 0.001504. Sanitas™ v.9.6.37 Software licensed to GREDELL Engineering. UG

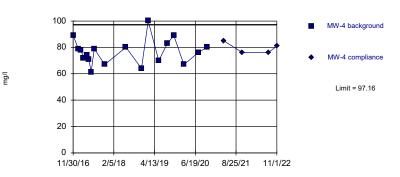


Background Data Summary: Mean=495.6, Std. Dev.=39.14, n=18. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9399, critical = 0.858. Kappa = 2.104 (c=7, w=5, 1 of 2, event alpha = 0.05132). Report alpha = 0.001504.

Sanitas™ v.9.6.37 Software licensed to GREDELL Engineering. UG

Background Data Summary: Mean=18.5, Std. Dev.=2.407, n=18. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9507, critical = 0.858. Kappa = 2.104 (c=7, w=5, 1 of 2, event alpha = 0.05132). Report alpha = 0.001504.

Prediction Limit Analysis Run 8/28/2023 11:30 AM View: Everything Minus Detrended Data SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SBMU-SPS EDD File 09-28-17


Sanitas[™] v.9.6.37 Software licensed to GREDELL Engineering. UG

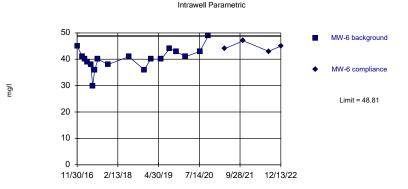
Within Limit

Calcium

Intrawell Parametric

Background Data Summary: Mean=76.61, Std. Dev.=9.769, n=18. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.96566, critical = 0.858. Kappa = 2.104 (c=7, w=5, 1 of 2, event alpha = 0.05132). Report alpha = 0.001504.

Prediction Limit Analysis Run 8/28/2023 11:30 AM View: Everything Minus Detrended Data SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SBMU-SPS EDD File 09-28-17


Calcium

Sanitas™ v.9.6.37 Software licensed to GREDELL Engineering. UG

Within Limit Calcium Intrawell Parametric 140 MW-5 background 112 MW-5 compliance 84 ng/l Limit = 132.9 56 28 0 4/13/19 6/19/20 11/30/16 2/5/18 8/25/21 11/1/22

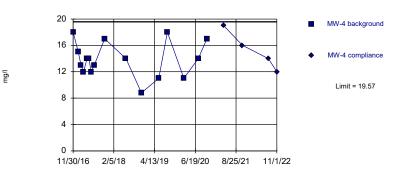

Background Data Summary: Mean=110.7, Std. Dev.=10.33, n=16. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9039, critical = 0.844. Kappa = 2.15 (c=7, w=5, 1 of 2, event alpha = 0.05132). Report alpha = 0.001504.

Sanitas^w v.9.6.37 Software licensed to GREDELL Engineering. UG

Background Data Summary: Mean=40.22, Std. Dev.=4.081, n=18. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9539, critical = 0.858. Kappa = 2.104 (c=7, w=5, 1 of 2, event alpha = 0.05132). Report alpha = 0.001504.

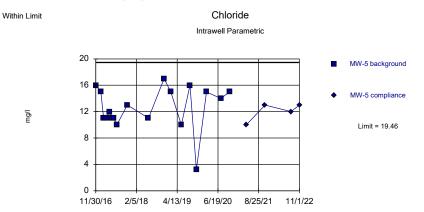
 $\label{eq:sense} Sanitas^{\rm su} \, v.9.6.37 \mbox{ Software licensed to GREDELL Engineering. UG} Hollow symbols indicate censored values.$

Background Data Summary: Mean=1.611, Std. Dev.=0.3894, n=18. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9507, critical = 0.858. Kappa = 2.104 (c=7, w=5, 1 of 2, event alpha = 0.05132). Report alpha = 0.001504.


Prediction Limit Analysis Run 8/28/2023 11:30 AM View: Everything Minus Detrended Data SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SBMU-SPS EDD File 09-28-17

Sanitas[™] v.9.6.37 Software licensed to GREDELL Engineering. UG

Chloride



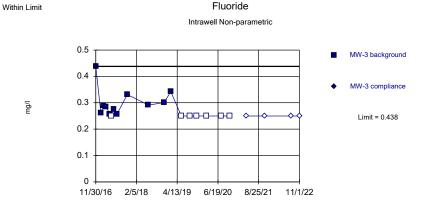
Background Data Summary: Mean=13.86, Std. Dev.=2.655, n=16. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9515, critical = 0.844. Kappa = 2.15 (c=7, w=5, 1 of 2, event alpha = 0.05132). Report alpha = 0.001504.

Prediction Limit Analysis Run 8/28/2023 11:30 AM View: Everything Minus Detrended Data SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SBMU-SPS EDD File 09-28-17

Sanitas™ v.9.6.37 Software licensed to GREDELL Engineering. UG

Background Data Summary: Mean=12.57, Std. Dev.=3.278, n=18. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8761, critical = 0.858. Kappa = 2.104 (c=7, w=5, 1 of 2, event alpha = 0.05132). Report alpha = 0.001504. Background Data Summary: Mean=1.883, Std. Dev.=0.509, n=18, 5.556% NDs. Normality test: Shapiro Wilk (@alpha = 0.01, calculated = 0.9587, critical = 0.858. Kappa = 2.104 (c=7, w=5, 1 of 2, event alpha = 0.05132). Report alpha = 0.001504.

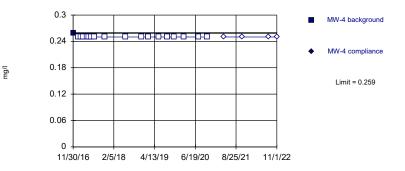
8/25/21


11/1/22

4/13/19 6/19/20

11/30/16 2/5/18

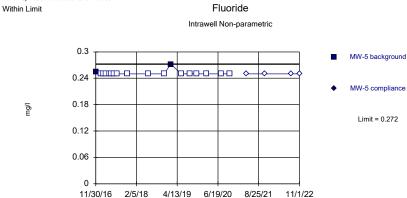
Prediction Limit Analysis Run 8/28/2023 11:30 AM View: Everything Minus Detrended Data SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SBMU-SPS EDD File 09-28-17


Sanitas $^{\rm W}$ v.9.6.37 Software licensed to GREDELL Engineering. UG Hollow symbols indicate censored values.

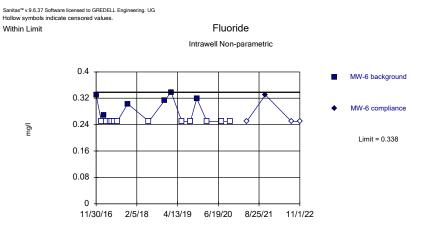
Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 18 background values. 38.89% NDs. Well-constituent pair annual alpha = 0.01072. Individual comparison alpha = 0.005373 (1 of 2).

Sanitas^w v.9.6.37 Software licensed to GREDELL Engineering. UG Hollow symbols indicate censored values. Within Limit

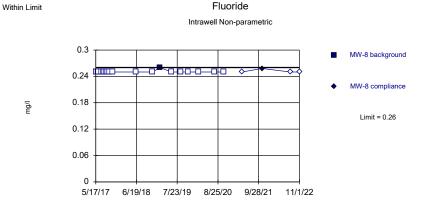
Fluoride Intrawell Non-parametric



Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 18 background values. 94.44% NDs. Well-constituent pair annual alpha = 0.01072. Individual comparison alpha = 0.005373 (1 of 2).


Prediction Limit Analysis Run 8/28/2023 11:30 AM View: Everything Minus Detrended Data SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SBMU-SPS EDD File 09-28-17

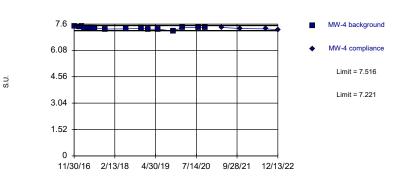
Prediction Limit Analysis Run 8/28/2023 11:30 AM View: Everything Minus Detrended Data SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SBMU-SPS EDD File 09-28-17



Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 18 background values. 88.89% NDs. Well-constituent pair annual alpha = 0.01072. Individual comparison alpha = 0.005373 (1 of 2).

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 18 background values. 66.67% NDs. Well-constituent pair annual alpha = 0.01072. Individual comparison alpha = 0.005373 (1 of 2).

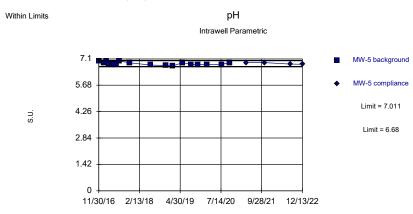
 $\label{eq:sense} \begin{array}{l} \mbox{Sanitas}^{\mbox{\tiny MV}} \ \mbox{v.9.6.37 Software licensed to GREDELL Engineering. UG} \\ \mbox{Hollow symbols indicate censored values.} \end{array}$



Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 18 background values. 94.44% NDs. Well-constituent pair annual alpha = 0.01072. Individual comparison alpha = 0.005373 (1 of 2).

Prediction Limit Analysis Run 8/28/2023 11:30 AM View: Everything Minus Detrended Data SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SBMU-SPS EDD File 09-28-17

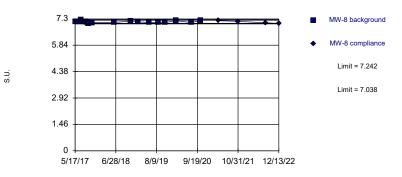
Sanitas™ v.9.6.37 Software licensed to GREDELL Engineering. UG


pН

Intrawell Parametric

Background Data Summary: Mean=7.369, Std. Dev.=0.06927, n=17. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9505, critical = 0.851. Kappa = 2.127 (c=7, w=5, 1 of 2, event alpha = 0.05132). Report alpha = 0.001504.

Prediction Limit Analysis Run 8/28/2023 11:30 AM View: Everything Minus Detrended Data SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SBMU-SPS EDD File 09-28-17


Sanitas™ v.9.6.37 Software licensed to GREDELL Engineering. UG

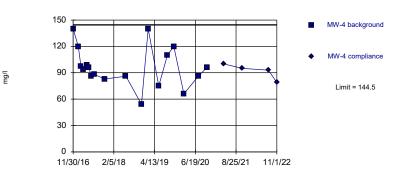
Background Data Summary: Mean=6.846, Std. Dev.=0.07853, n=18. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9237, critical = 0.858. Kappa = 2.104 (c=7, w=5, 1 of 2, event alpha = 0.05132). Report alpha = 0.001504. Sanitas™ v.9.6.37 Software licensed to GREDELL Engineering. UG



Background Data Summary: Mean=7.14, Std. Dev.=0.04826, n=18. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9628, critical = 0.858. Kappa = 2.104 (c=7, w=5, 1 of 2, event alpha = 0.05132). Report alpha = 0.001504. 0.001504.

Sanitas™ v.9.6.37 Software licensed to GREDELL Engineering. UG

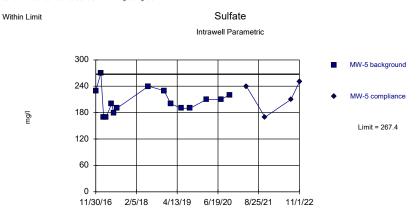
Background Data Summary: Mean=20.83, Std. Dev.=4.218, n=18. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9206, critical = 0.858. Kappa = 2.104 (c=7, w=5, 1 of 2, event alpha = 0.05132). Report alpha = 0.001504.


Prediction Limit Analysis Run 8/28/2023 11:31 AM View: Everything Minus Detrended Data SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SBMU-SPS EDD File 09-28-17

Sanitas[™] v.9.6.37 Software licensed to GREDELL Engineering. UG

Within Limit

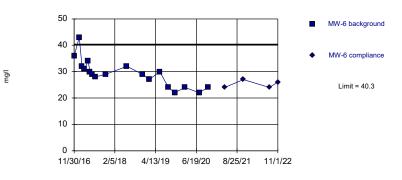
Sulfate



Background Data Summary: Mean=96.44, Std. Dev.=22.84, n=18. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9502, critical = 0.858. Kappa = 2.104 (c=7, w=5, 1 of 2, event alpha = 0.05132). Report alpha = 0.001504.

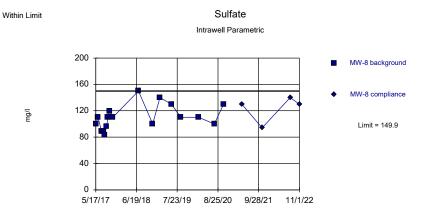
Prediction Limit Analysis Run 8/28/2023 11:31 AM View: Everything Minus Detrended Data SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SBMU-SPS EDD File 09-28-17

Sanitas™ v.9.6.37 Software licensed to GREDELL Engineering. UG



Background Data Summary: Mean=206.7, Std. Dev.=27.69, n=15. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9482, critical = 0.835. Kappa = 2.193 (c=7, w=5, 1 of 2, event alpha = 0.05132). Report alpha = 0.001504.

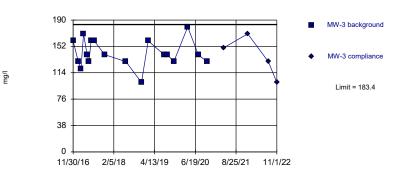
Sanitas[™] v.9.6.37 Software licensed to GREDELL Engineering. UG



Sulfate

Background Data Summary: Mean=29.22, Std. Dev.=5.264, n=18. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9321, critical = 0.858. Kappa = 2.104 (c=7, w=5, 1 of 2, event alpha = 0.05132). Report alpha = 0.001504.

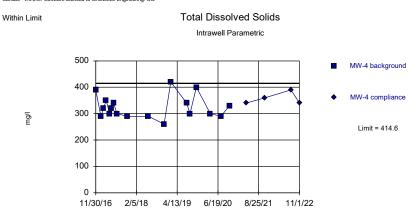
Sanitas™ v.9.6.37 Software licensed to GREDELL Engineering. UG


Background Data Summary: Mean=110.4, Std. Dev.=18.55, n=17. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9427, critical = 0.851. Kappa = 2.127 (c=7, w=5, 1 of 2, event alpha = 0.05132). Report alpha = 0.001504.

Prediction Limit Analysis Run 8/28/2023 11:31 AM View: Everything Minus Detrended Data SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SBMU-SPS EDD File 09-28-17

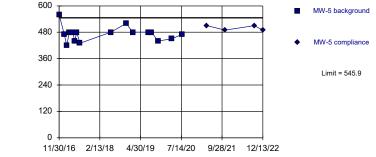
Sanitas[™] v.9.6.37 Software licensed to GREDELL Engineering. UG

Within Limit

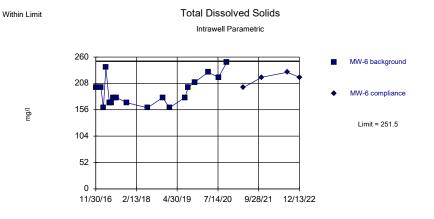

Total Dissolved Solids Intrawell Parametric

Background Data Summary: Mean=142.2, Std. Dev.=19.57, n=18. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9412, critical = 0.858. Kappa = 2.104 (c=7, w=5, 1 of 2, event alpha = 0.05132). Report alpha = 0.001504.

Prediction Limit Analysis Run 8/28/2023 11:31 AM View: Everything Minus Detrended Data SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SBMU-SPS EDD File 09-28-17


Sanitas™ v.9.6.37 Software licensed to GREDELL Engineering. UG

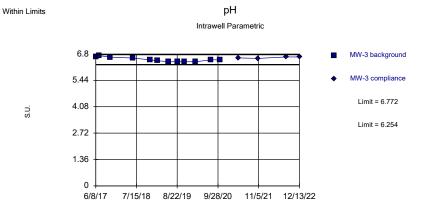
Background Data Summary: Mean=323.9, Std. Dev.=43.13, n=18. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8945, critical = 0.858. Kappa = 2.104 (c=7, w=5, 1 of 2, event alpha = 0.05132). Report alpha = 0.001504. Within Limit Total Dissolved Solids Intrawell Parametric


Sanitas™ v.9.6.37 Software licensed to GREDELL Engineering. UG

ng/

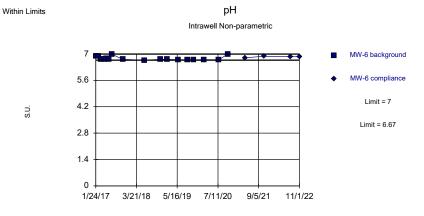
Background Data Summary: Mean=472.5, Std. Dev.=34.16, n=16. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8811, critical = 0.844. Kappa = 2.15 (c=7, w=5, 1 of 2, event alpha = 0.05132). Report alpha = 0.001504.

Sanitas[™] v.9.6.37 Software licensed to GREDELL Engineering. UG

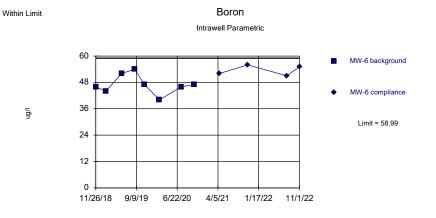


Background Data Summary: Mean=192.2, Std. Dev.=28.19, n=18. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9055, critical = 0.858. Kappa = 2.104 (c=7, w=5, 1 of 2, event alpha = 0.05132). Report alpha = 0.001504.

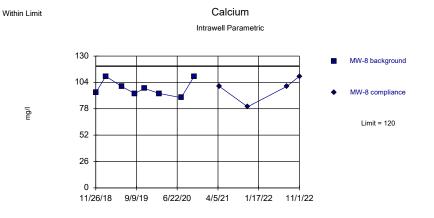
Intrawell Prediction Limit


	SBMU-Sikeston Power Station		Client: GREDELL Engineering		Data: SBMU-SPS EDD File 09-28-17				Printed 8/28/2023,		
Constituent	Well	Upper Lim.	Lower Lim.	<u>Date</u>	Observ.	<u>Sig.</u>	<u>Bg N</u>	<u>%NDs</u>	<u>Transform</u>	<u>Alpha</u>	Method
pH (S.U.)	MW-6	7	6.67	11/1/2022	6.85	No	17	0	n/a	0.01183	NP (normality) 1 of 2
pH (S.U.)	MW-3	6.772	6.254	12/13/2022	6.65	No	12	0	No	0.000752	Param 1 of 2
Boron (ug/l)	MW-6	58.99	n/a	11/1/2022	55	No	8	0	No	0.001504	Param 1 of 2
Chloride (mg/l)	MW-8	78.74	n/a	11/1/2022	51	No	8	0	No	0.001504	Param 1 of 2
Total Dissolved Solids (mg/l)	MW-8	547.4	n/a	11/1/2022	500	No	8	0	No	0.001504	Param 1 of 2
Calcium (mg/l)	MW-8	120	n/a	11/1/2022	110	No	8	0	No	0.001504	Param 1 of 2

Sanitas[™] v.9.6.37 Software licensed to GREDELL Engineering. UG

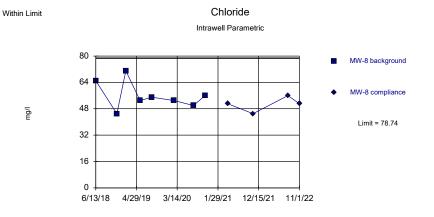

Background Data Summary: Mean=6.513, Std. Dev.=0.1115, n=12. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8763, critical = 0.805. Kappa = 2.322 (c=7, w=5, 1 of 2, event alpha = 0.05132). Report alpha = 0.001504.

Sanitas™ v.9.6.37 Software licensed to GREDELL Engineering. UG

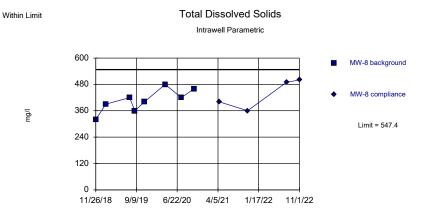

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limits are highest and lowest of 17 background values. Well-constituent pair annual alpha = 0.02359. Individual comparison alpha = 0.01183 (1 of 2).

Sanitas[™] v.9.6.37 Software licensed to GREDELL Engineering. UG

Background Data Summary: Mean=47, Std. Dev.=4.375, n=8. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9419, critical = 0.749. Kappa = 2.74 (c=7, w=5, 1 of 2, event alpha = 0.05132). Report alpha = 0.001504.


Sanitas[™] v.9.6.37 Software licensed to GREDELL Engineering. UG

Background Data Summary: Mean=98.38, Std. Dev.=7.909, n=8. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8713, critical = 0.749. Kappa = 2.74 (c=7, w=5, 1 of 2, event alpha = 0.05132). Report alpha = 0.001504.

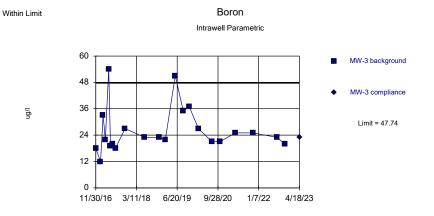

Prediction Limit Analysis Run 8/28/2023 11:57 AM View: 11th Ca mw8 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SBMU-SPS EDD File 09-28-17

Sanitas[™] v.9.6.37 Software licensed to GREDELL Engineering. UG

Background Data Summary: Mean=56, Std. Dev.=8.298, n=8. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9251, critical = 0.749. Kappa = 2.74 (c=7, w=5, 1 of 2, event alpha = 0.05132). Report alpha = 0.001504.

Sanitas[™] v.9.6.37 Software licensed to GREDELL Engineering. UG

Background Data Summary: Mean=406.3, Std. Dev.=51.53, n=8. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9779, critical = 0.749. Kappa = 2.74 (c=7, w=5, 1 of 2, event alpha = 0.05132). Report alpha = 0.001504.


Appendix 7b

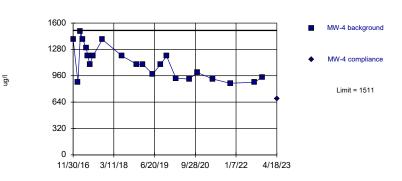
Prediction Limit Charts (First 2023 Semi-annual Event)

Prediction Limit

	SBMU-Sikeston Power Station		Client: GREDELL Engineering		Data: SBMU-SPS EDD File 09-28-17				Printed 12/20/202	3, 3:43 PM	
<u>Constituent</u>	Well	Upper Lim.	Lower Lim.	<u>Date</u>	Observ.	<u>Sig.</u>	<u>Bg N</u>	<u>%NDs</u>	Transform	<u>Alpha</u>	Method
Boron (ug/l)	MW-3	47.74	n/a	4/18/2023	23	No	22	0	sqrt(x)	0.001504	Param Intra 1 of 2
Boron (ug/l)	MW-4	1511	n/a	4/18/2023	680	No	22	0	No	0.001504	Param Intra 1 of 2
Boron (ug/l)	MW-5	518	n/a	4/18/2023	340	No	21	0	No	0.001504	Param Intra 1 of 2
Boron (ug/l)	MW-8	571.3	n/a	4/18/2023	420	No	22	0	No	0.001504	Param Intra 1 of 2
Calcium (mg/l)	MW-3	23	n/a	4/18/2023	15	No	22	0	No	0.001504	Param Intra 1 of 2
Calcium (mg/l)	MW-4	95.44	n/a	4/18/2023	72	No	22	0	No	0.001504	Param Intra 1 of 2
Calcium (mg/l)	MW-5	137.6	n/a	4/18/2023	120	No	21	0	No	0.001504	Param Intra 1 of 2
Chloride (mg/l)	MW-3	2.354	n/a	4/18/2023	1.2	No	22	9.091	No	0.001504	Param Intra 1 of 2
Chloride (mg/l)	MW-4	19.7	n/a	4/18/2023	10	No	20	0	No	0.001504	Param Intra 1 of 2
Chloride (mg/l)	MW-5	17.47	n/a	4/18/2023	13	No	21	0	No	0.001504	Param Intra 1 of 2
Chloride (mg/l)	MW-6	4.382	n/a	5/23/2023	4	No	22	4.545	sqrt(x)	0.001504	Param Intra 1 of 2
Chloride (mg/l)	MW-8	67.53	n/a	4/18/2023	44	No	21	0	No	0.001504	Param Intra 1 of 2
Fluoride (mg/l)	MW-3	0.438	n/a	4/18/2023	0.25ND	No	22	50	n/a	0.003707	NP Intra (normality)
Fluoride (mg/l)	MW-4	0.259	n/a	4/18/2023	0.25ND	No	22	95.45	n/a	0.003707	NP Intra (NDs) 1 of 2
Fluoride (mg/l)	MW-5	0.272	n/a	4/18/2023	0.25ND	No	22	90.91	n/a	0.003707	NP Intra (NDs) 1 of 2
Fluoride (mg/l)	MW-6	0.338	n/a	4/18/2023	0.25ND	No	22	68.18	n/a	0.003707	NP Intra (NDs) 1 of 2
Fluoride (mg/l)	MW-8	0.26	n/a	4/18/2023	0.25ND	No	22	90.91	n/a	0.003707	NP Intra (NDs) 1 of 2
pH (S.U.)	MW-4	7.499	7.225	4/18/2023	7.49	No	21	0	No	0.000752	Param Intra 1 of 2
pH (S.U.)	MW-5	6.996	6.699	4/18/2023	6.85	No	22	0	No	0.000752	Param Intra 1 of 2
pH (S.U.)	MW-6	7	6.67	4/18/2023	6.91	No	22	0	n/a	0.007415	NP Intra (normality)
pH (S.U.)	MW-8	7.241	7.033	5/23/2023	7.14	No	22	0	No	0.000752	Param Intra 1 of 2
Sulfate (mg/l)	MW-3	29.65	n/a	4/18/2023	12	No	22	0	No	0.001504	Param Intra 1 of 2
Sulfate (mg/l)	MW-4	138.1	n/a	4/18/2023	76	No	22	0	No	0.001504	Param Intra 1 of 2
Sulfate (mg/l)	MW-5	269	n/a	4/18/2023	210	No	19	0	No	0.001504	Param Intra 1 of 2
Sulfate (mg/l)	MW-6	38.7	n/a	4/18/2023	29	No	22	0	No	0.001504	Param Intra 1 of 2
Sulfate (mg/l)	MW-8	151.9	n/a	4/18/2023	110	No	21	0	No	0.001504	Param Intra 1 of 2
Total Dissolved Solids (mg/l)	MW-3	184	n/a	4/18/2023	120	No	22	0	No	0.001504	Param Intra 1 of 2
Total Dissolved Solids (mg/l)	MW-4	415.2	n/a	4/18/2023	330	No	22	0	No	0.001504	Param Intra 1 of 2
Total Dissolved Solids (mg/l)	MW-5	545.3	n/a	4/18/2023	500	No	20	0	No	0.001504	Param Intra 1 of 2
Total Dissolved Solids (mg/l)	MW-6	253	n/a	4/18/2023	240	No	22	0	No	0.001504	Param Intra 1 of 2

Sanitas™ v.9.6.37 Software licensed to GREDELL Engineering. UG

Background Data Summary (based on square root transformation): Mean=5.037, Std. Dev.=0.922, n=22. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8792, critical = 0.878. Kappa = 2.031 (c=7, w=5, 1 of 2, event alpha = 0.05132). Report alpha = 0.001504.

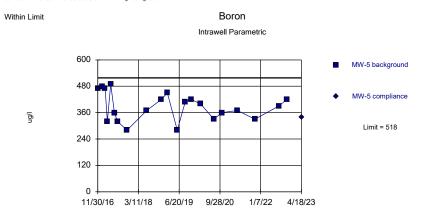

Prediction Limit Analysis Run 12/20/2023 3:42 PM View: Everything Minus Detrended Data SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SBMU-SPS EDD File 09-28-17

Sanitas™ v.9.6.37 Software licensed to GREDELL Engineering. UG

Within Limit

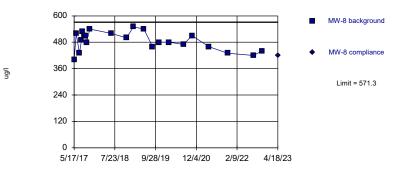
Boron

Intrawell Parametric

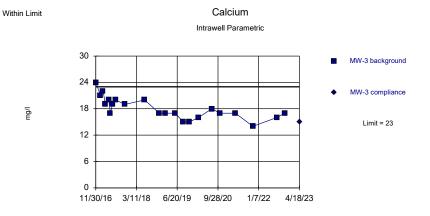

Background Data Summary: Mean=1115, Std. Dev.=195, n=22. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9191, critical = 0.878. Kappa = 2.031 (c=7, w=5, 1 of 2, event alpha = 0.05132). Report alpha = 0.001504.

Prediction Limit Analysis Run 12/20/2023 3:42 PM View: Everything Minus Detrended Data SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SBMU-SPS EDD File 09-28-17

Boron


Intrawell Parametric

Sanitas™ v.9.6.37 Software licensed to GREDELL Engineering. UG


Background Data Summary: Mean=387.6, Std. Dev.=63.79, n=21. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.959, critical = 0.873. Kappa = 2.044 (c=7, w=5, 1 of 2, event alpha = 0.05132). Report alpha = 0.001504. Sanitas™ v.9.6.37 Software licensed to GREDELL Engineering. UG

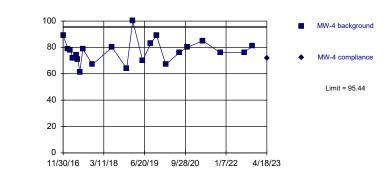
Background Data Summary: Mean=485, Std. Dev.=42.51, n=22. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9619, critical = 0.878. Kappa = 2.031 (c=7, w=5, 1 of 2, event alpha = 0.05132). Report alpha = 0.001504.

Sanitas™ v.9.6.37 Software licensed to GREDELL Engineering. UG

Background Data Summary: Mean=18.05, Std. Dev.=2.439, n=22. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9506, critical = 0.878. Kappa = 2.031 (c=7, w=5, 1 of 2, event alpha = 0.05132). Report alpha = 0.001504.

Prediction Limit Analysis Run 12/20/2023 3:42 PM View: Everything Minus Detrended Data SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SBMU-SPS EDD File 09-28-17

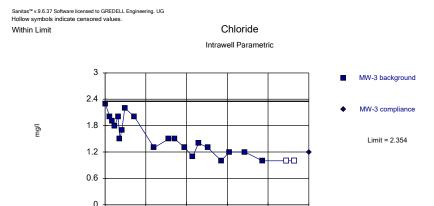
Sanitas™ v.9.6.37 Software licensed to GREDELL Engineering. UG


Within Limit

l/gm

Calcium

Intrawell Parametric


Background Data Summary: Mean=77.14, Std. Dev.=9.015, n=22. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9748, critical = 0.878. Kappa = 2.031 (c=7, w=5, 1 of 2, event alpha = 0.05132). Report alpha = 0.001504.

Prediction Limit Analysis Run 12/20/2023 3:42 PM View: Everything Minus Detrended Data SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SBMU-SPS EDD File 09-28-17

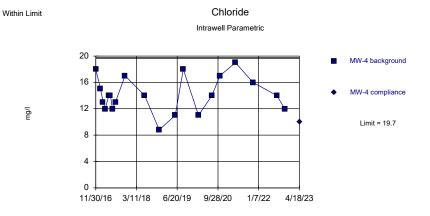
Sanitas™ v.9.6.37 Software licensed to GREDELL Engineering. UG

Within Limit Calcium Intrawell Parametric 140 MW-5 background 112 MW-5 compliance 84 ng/l Limit = 137.6 56 28 0 11/30/16 3/11/18 6/20/19 9/28/20 1/7/22 4/18/23

Background Data Summary: Mean=109.4, Std. Dev.=13.78, n=21. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9172, critical = 0.873. Kappa = 2.044 (c=7, w=5, 1 of 2, event alpha = 0.05132). Report alpha = 0.001504.

Background Data Summary: Mean=1.509, Std. Dev.=0.4162, n=22, 9.091% NDs. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9209, critical = 0.878. Kappa = 2.031 (c=7, w=5, 1 of 2, event alpha = 0.05132). Report alpha = 0.001504.

9/28/20

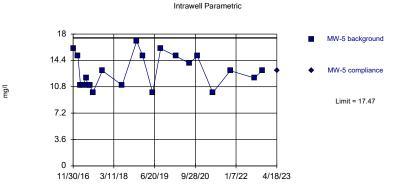

1/7/22

4/18/23

11/30/16 3/11/18 6/20/19

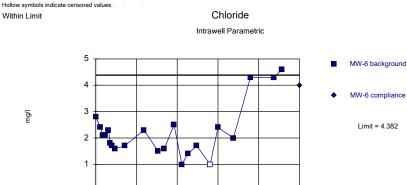
Sanitas™ v.9.6.37 Software licensed to GREDELL Engineering. UG

Sanitas™ v.9.6.37 Software licensed to GREDELL Engineering. UG


Background Data Summary: Mean=14.14, Std. Dev.=2.701, n=20. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9646, critical = 0.868. Kappa = 2.058 (c=7, w=5, 1 of 2, event alpha = 0.05132). Report alpha = 0.001504.

Prediction Limit Analysis Run 12/20/2023 3:42 PM View: Everything Minus Detrended Data SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SBMU-SPS EDD File 09-28-17

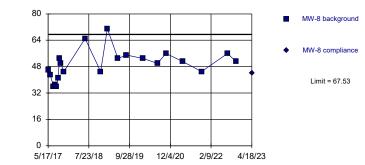
Sanitas™ v.9.6.37 Software licensed to GREDELL Engineering. UG


Within Limit

Chloride

Background Data Summary: Mean=12.9, Std. Dev=2.234, n=21. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.917, critical = 0.873. Kappa = 2.044 (c=7, w=5, 1 of 2, event alpha = 0.05132). Report alpha = 0.001504.

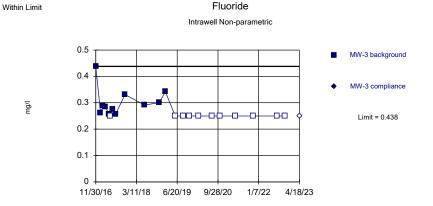
Prediction Limit Analysis Run 12/20/2023 3:42 PM View: Everything Minus Detrended Data SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SBMU-SPS EDD File 09-28-17



Background Data Summary (based on square root transformation): Mean=1.463, Std. Dev =0.3105, n=22, 4.545% NDs. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9, critical = 0.878. Kappa = 2.031 (c=7, w=5, 1 of 2, event alpha = 0.05132). Report alpha = 0.001504.

Sanitas™ v.9.6.37 Software licensed to GREDELL Engineering. UG

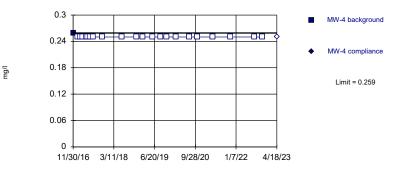
ng/



Chloride

Intrawell Parametric

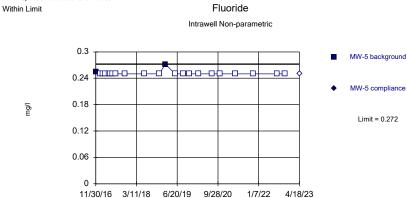
Background Data Summary: Mean=49.43, Std. Dev.=8.852, n=21. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9495, critical = 0.873. Kappa = 2.044 (c=7, w=5, 1 of 2, event alpha = 0.05132). Report alpha = 0.001504.


Sanitas $^{\rm W}$ v.9.6.37 Software licensed to GREDELL Engineering. UG Hollow symbols indicate censored values.

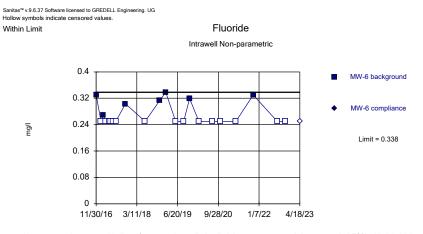
Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 22 background values. 50% NDs. Well-constituent pair annual alpha = 0.007401. Individual comparison alpha = 0.003707 (1 of 2).

Sanitas^w v.9.6.37 Software licensed to GREDELL Engineering. UG Hollow symbols indicate censored values. Within Limit

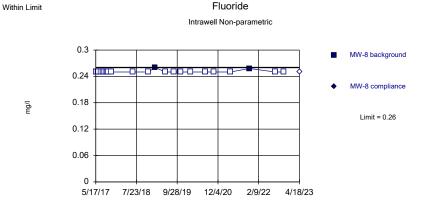
Fluoride Intrawell Non-parametric



Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 22 background values. 95.45% NDs. Well-constituent pair annual alpha = 0.00707(1 of 2).


Prediction Limit Analysis Run 12/20/2023 3:42 PM View: Everything Minus Detrended Data SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SBMU-SPS EDD File 09-28-17

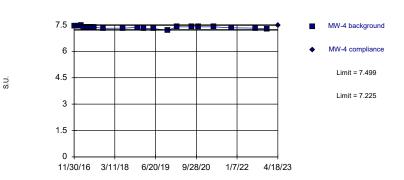
Prediction Limit Analysis Run 12/20/2023 3:42 PM View: Everything Minus Detrended Data SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SBMU-SPS EDD File 09-28-17



Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 22 background values. 90.91% NDs. Well-constituent pair annual alpha = 0.007401. Individual comparison alpha = 0.003707 (1 of 2).

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 22 background values. 68.18% NDs. Well-constituent pair annual alpha = 0.007401. Individual comparison alpha = 0.003707 (1 of 2).

Sanitas $^{\mbox{\tiny MV}}$ v.9.6.37 Software licensed to GREDELL Engineering. UG Hollow symbols indicate censored values.

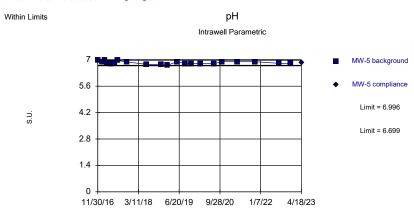


Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 22 background values. 90.91% NDs. Well-constituent pair annual alpha = 0.003707 (1 of 2).

Prediction Limit Analysis Run 12/20/2023 3:42 PM View: Everything Minus Detrended Data SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SBMU-SPS EDD File 09-28-17

Sanitas™ v.9.6.37 Software licensed to GREDELL Engineering. UG

Within Limits

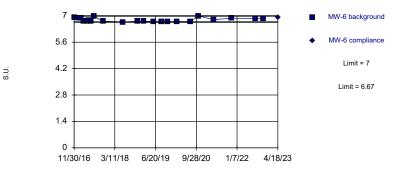

pН

Intrawell Parametric

Background Data Summary: Mean=7.362, Std. Dev.=0.06698, n=21. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9707, critical = 0.873. Kappa = 2.044 (c=7, w=5, 1 of 2, event alpha = 0.05132). Report alpha = 0.001504.

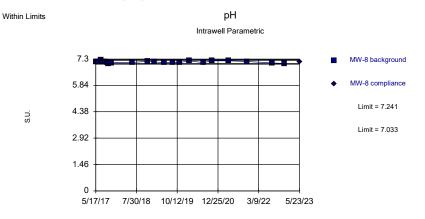
Prediction Limit Analysis Run 12/20/2023 3:42 PM View: Everything Minus Detrended Data SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SBMU-SPS EDD File 09-28-17

Sanitas™ v.9.6.37 Software licensed to GREDELL Engineering. UG



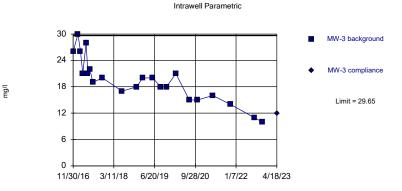
Background Data Summary: Mean=6.848, Std. Dev.=0.07322, n=22. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9291, critical = 0.878. Kappa = 2.031 (c=7, w=5, 1 of 2, event alpha = 0.05132). Report alpha = 0.001504.

Sanitas[™] v.9.6.37 Software licensed to GREDELL Engineering. UG


Within Limits

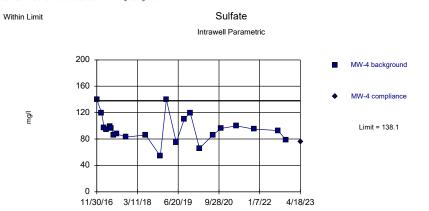
Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limits are highest and lowest of 22 background values. Well-constituent pair annual alpha = 0.0148. Individual comparison alpha = 0.007415 (1 of 2).

Sanitas™ v.9.6.37 Software licensed to GREDELL Engineering. UG


Background Data Summary: Mean=7.137, Std. Dev.=0.05121, n=22. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9651, critical = 0.878. Kappa = 2.031 (c=7, w=5, 1 of 2, event alpha = 0.05132). Report alpha = 0.001504.

Prediction Limit Analysis Run 12/20/2023 3:42 PM View: Everything Minus Detrended Data SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SBMU-SPS EDD File 09-28-17

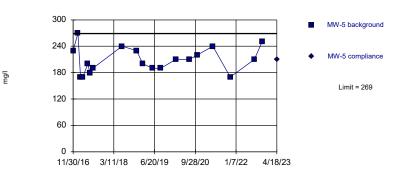
Sanitas™ v.9.6.37 Software licensed to GREDELL Engineering. UG


Sulfate

Background Data Summary: Mean=19.36, Std. Dev.=5.067, n=22. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9697, critical = 0.878. Kappa = 2.031 (c=7, w=5, 1 of 2, event alpha = 0.05132). Report alpha = 0.001504.

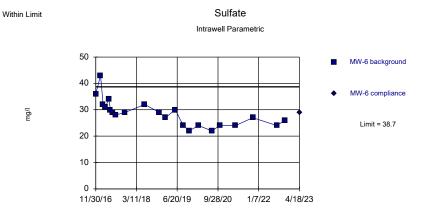
Prediction Limit Analysis Run 12/20/2023 3:42 PM View: Everything Minus Detrended Data SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SBMU-SPS EDD File 09-28-17

Sanitas™ v.9.6.37 Software licensed to GREDELL Engineering. UG



Background Data Summary: Mean=95.59, Std. Dev.=20.91, n=22. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9417, critical = 0.878. Kappa = 2.031 (c=7, w=5, 1 of 2, event alpha = 0.05132). Report alpha = 0.001504.

Sanitas[™] v.9.6.37 Software licensed to GREDELL Engineering. UG

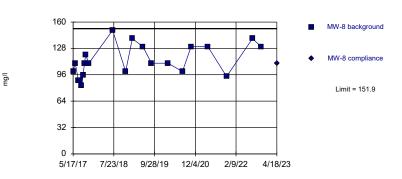


Sulfate

Background Data Summary: Mean=208.9, Std. Dev.=28.85, n=19. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9546, critical = 0.863. Kappa = 2.081 (c=7, w=5, 1 of 2, event alpha = 0.05132). Report alpha = 0.001504.

Sanitas™ v.9.6.37 Software licensed to GREDELL Engineering. UG

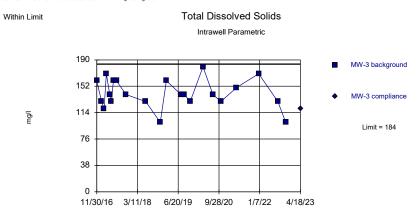
Background Data Summary: Mean=28.5, Std. Dev.=5.021, n=22. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9145, critical = 0.878. Kappa = 2.031 (c=7, w=5, 1 of 2, event alpha = 0.05132). Report alpha = 0.001504.


Prediction Limit Analysis Run 12/20/2023 3:42 PM View: Everything Minus Detrended Data SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SBMU-SPS EDD File 09-28-17

Sanitas[™] v.9.6.37 Software licensed to GREDELL Engineering. UG

Sanitas™ v.9.6.37 Software licensed to GREDELL Engineering. UG

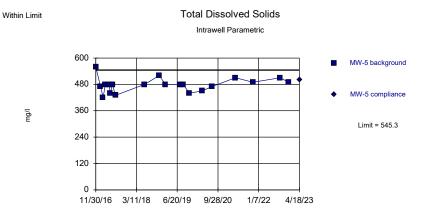
Within Limit


Sulfate

Background Data Summary: Mean=112.9, Std. Dev.=19.09, n=21. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9481, critical = 0.873. Kappa = 2.044 (c=7, w=5, 1 of 2, event alpha = 0.05132). Report alpha = 0.001504.

Prediction Limit Analysis Run 12/20/2023 3:42 PM View: Everything Minus Detrended Data SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SBMU-SPS EDD File 09-28-17

Sanitas™ v.9.6.37 Software licensed to GREDELL Engineering. UG

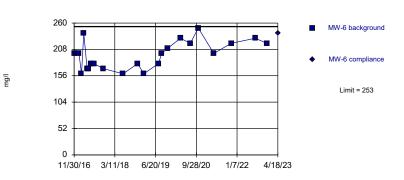


Background Data Summary: Mean=141.4, Std. Dev.=21, n=22. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9443, critical = 0.878. Kappa = 2.031 (c=7, w=5, 1 of 2, event alpha = 0.05132). Report alpha = 0.001504.

Total Dissolved Solids Within Limit Intrawell Parametric 500 MW-4 background 400 MW-4 compliance 300 ng/ Limit = 415.2 200 100 0 11/30/16 3/11/18 6/20/19 9/28/20 1/7/22 4/18/23

Background Data Summary: Mean=330, Std. Dev.=41.98, n=22. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9368, critical = 0.878. Kappa = 2.031 (c=7, w=5, 1 of 2, event alpha = 0.05132). Report alpha = 0.001504.

Sanitas™ v.9.6.37 Software licensed to GREDELL Engineering. UG

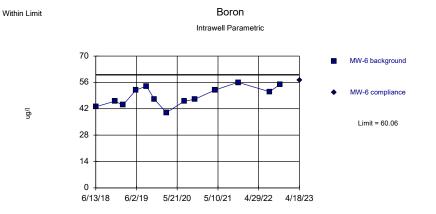

Background Data Summary: Mean=478, Std. Dev.=32.7, n=20. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9392, critical = 0.868. Kappa = 2.058 (c=7, w=5, 1 of 2, event alpha = 0.05132). Report alpha = 0.001504.

Prediction Limit Analysis Run 12/20/2023 3:42 PM View: Everything Minus Detrended Data SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SBMU-SPS EDD File 09-28-17

Sanitas™ v.9.6.37 Software licensed to GREDELL Engineering. UG

Within Limit

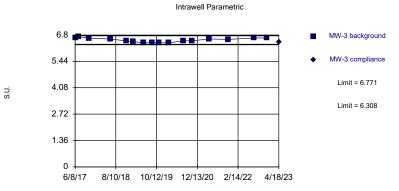
Total Dissolved Solids Intrawell Parametric



Background Data Summary: Mean=196.8, Std. Dev.=27.67, n=22. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9346, critical = 0.878. Kappa = 2.031 (c=7, w=5, 1 of 2, event alpha = 0.05132). Report alpha = 0.001504.

Prediction Limit

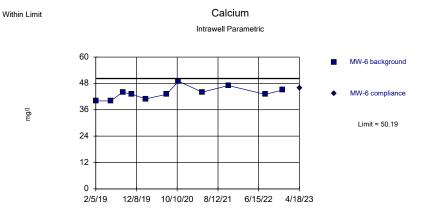
	SBMU-Sike	eston Power Station	n Client: GRED	ELL Engineering	g Data: SBN	/U-SPS	EDD F	ile 09-28-17	Printed 8/28/2023	, 3:04 PM	
Constituent	Well	Upper Lim.	Lower Lim.	Date	Observ.	<u>Sig.</u>	<u>Bg N</u>	<u>%NDs</u>	<u>Transform</u>	<u>Alpha</u>	Method
Calcium (mg/l)	MW-8	120.6	n/a	4/18/2023	92	No	16	0	No	0.001504	Param Intra 1 of 2
Total Dissolved Solids (mg/l)	MW-8	521.7	n/a	4/18/2023	440	No	16	0	No	0.001504	Param Intra 1 of 2
pH (S.U.)	MW-3	6.771	6.308	4/18/2023	6.45	No	16	0	No	0.000752	Param Intra 1 of 2
Calcium (mg/l)	MW-6	50.19	n/a	4/18/2023	46	No	11	0	No	0.001504	Param Intra 1 of 2
Boron (ug/l)	MW-6	60.06	n/a	4/18/2023	57	No	13	0	No	0.001504	Param Intra 1 of 2


Sanitas™ v.9.6.37 Software licensed to GREDELL Engineering. UG

Background Data Summary: Mean=48.69, Std. Dev.=4.99, n=13. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9532, critical = 0.814. Kappa = 2.279 (c=7, w=5, 1 of 2, event alpha = 0.05132). Report alpha = 0.001504.

Prediction Limit Analysis Run 12/20/2023 3:27 PM View: MW-6 B SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SBMU-SPS EDD File 09-28-17 Sanitas™ v.9.6.37 Software licensed to GREDELL Engineering. UG

Within Limits

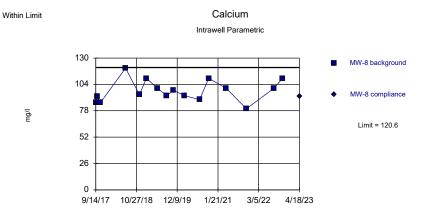


pН

Background Data Summary: Mean=6.539, Std. Dev.=0.1077, n=16. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.0034, critical = 0.844. Kappa = 2.15 (c=7, w=5, 1 of 2, event alpha = 0.05132). Report alpha = 0.001504.

Prediction Limit Analysis Run 12/20/2023 3:29 PM View: MW3 pH SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SBMU-SPS EDD File 09-28-17

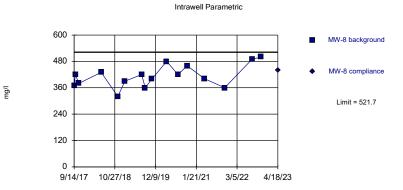
Sanitas[™] v.9.6.37 Software licensed to GREDELL Engineering. UG


Background Data Summary: Mean=43.55, Std. Dev.=2.77, n=11. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9367, critical = 0.792. Kappa = 2.4 (c=7, w=5, 1 of 2, event alpha = 0.05132). Report alpha = 0.001504.

Prediction Limit Analysis Run 8/28/2023 3:01 PM View: MW-6 Ca SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SBMU-SPS EDD File 09-28-17

Prediction Limit

	SBMU-Sike	eston Power Statio	n Client: GREE	ELL Engineering	g Data: SBN	MU-SPS	EDD F	ile 09-28-17	Printed 8/28/2023	3, 2:56 PM	
Constituent	Well	Upper Lim.	Lower Lim.	<u>Date</u>	Observ.	<u>Sig.</u>	<u>Bg N</u>	<u>%NDs</u>	<u>Transform</u>	<u>Alpha</u>	Method
Calcium (mg/l)	MW-8	120.6	n/a	4/18/2023	92	No	16	0	No	0.001504	Param Intra 1 of 2
Total Dissolved Solids (mg/l)	MW-8	521.7	n/a	4/18/2023	440	No	16	0	No	0.001504	Param Intra 1 of 2


Sanitas™ v.9.6.37 Software licensed to GREDELL Engineering. UG

Background Data Summary: Mean=97.56, Std. Dev.=10.71, n=16. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9582, critical = 0.844. Kappa = 2.15 (c=7, w=5, 1 of 2, event alpha = 0.05132). Report alpha = 0.001504.

Prediction Limit Analysis Run 8/28/2023 2:55 PM View: MW-8 Ca, TDS SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SBMU-SPS EDD File 09-28-17 Prediction Limit Analysis Run 8/28/2023 2:55 PM View: MW-8 Ca, TDS

SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SBMU-SPS EDD File 09-28-17

Background Data Summary: Mean=412.5, Std. Dev.=50.79, n=16. Normality test: Shapiro Wilk @alpha = 0.01,

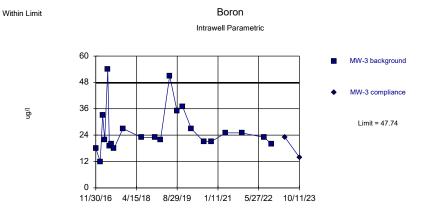
calculated = 0.9656, critical = 0.844. Kappa = 2.15 (c=7, w=5, 1 of 2, event alpha = 0.05132). Report alpha =

Sanitas™ v.9.6.37 Software licensed to GREDELL Engineering. UG

Within Limit

0.001504.

Total Dissolved Solids


Appendix 7c

Prediction Limit Charts (Second 2023 Semi-annual Event)

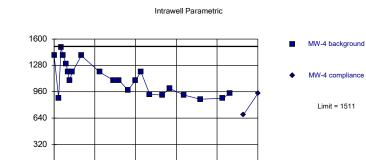
Prediction Limit

	SBMU-Sike	ston Power Station	Client: GREDE	ELL Engineering	Data: SBN	/U-SPS	EDD Fi	le 09-28-17	Printed 11/20/202	3, 3:16 PM	
<u>Constituent</u>	Well	Upper Lim.	Lower Lim.	Date	Observ.	<u>Sig.</u>	<u>Bg N</u>	<u>%NDs</u>	Transform	<u>Alpha</u>	Method
Boron (ug/l)	MW-3	47.74	n/a	10/11/2023	13.9	No	22	0	sqrt(x)	0.001504	Param Intra 1 of 2
Boron (ug/l)	MW-4	1511	n/a	10/11/2023	940	No	22	0	No	0.001504	Param Intra 1 of 2
Boron (ug/l)	MW-5	518	n/a	10/11/2023	405	No	21	0	No	0.001504	Param Intra 1 of 2
Boron (ug/l)	MW-8	571.3	n/a	10/11/2023	423	No	22	0	No	0.001504	Param Intra 1 of 2
Calcium (mg/l)	MW-3	23	n/a	10/11/2023	15.5	No	22	0	No	0.001504	Param Intra 1 of 2
Calcium (mg/l)	MW-4	95.44	n/a	10/11/2023	81.1	No	22	0	No	0.001504	Param Intra 1 of 2
Calcium (mg/l)	MW-5	137.6	n/a	10/11/2023	106	No	21	0	No	0.001504	Param Intra 1 of 2
Chloride (mg/l)	MW-3	2.354	n/a	10/11/2023	1ND	No	22	9.091	No	0.001504	Param Intra 1 of 2
Chloride (mg/l)	MW-4	19.7	n/a	10/11/2023	14	No	20	0	No	0.001504	Param Intra 1 of 2
Chloride (mg/l)	MW-5	17.47	n/a	10/11/2023	15	No	21	0	No	0.001504	Param Intra 1 of 2
Chloride (mg/l)	MW-6	4.382	n/a	10/11/2023	3J	No	22	4.545	sqrt(x)	0.001504	Param Intra 1 of 2
Chloride (mg/l)	MW-8	67.53	n/a	10/11/2023	44	No	21	0	No	0.001504	Param Intra 1 of 2
Fluoride (mg/l)	MW-3	0.438	n/a	10/11/2023	0.25ND	No	22	50	n/a	0.003707	NP Intra (normality)
Fluoride (mg/l)	MW-4	0.259	n/a	10/11/2023	0.25ND	No	22	95.45	n/a	0.003707	NP Intra (NDs) 1 of 2
Fluoride (mg/l)	MW-5	0.272	n/a	10/11/2023	0.25ND	No	22	90.91	n/a	0.003707	NP Intra (NDs) 1 of 2
Fluoride (mg/l)	MW-6	0.338	n/a	10/11/2023	0.25ND	No	22	68.18	n/a	0.003707	NP Intra (NDs) 1 of 2
Fluoride (mg/l)	MW-8	0.26	n/a	10/11/2023	0.25ND	No	22	90.91	n/a	0.003707	NP Intra (NDs) 1 of 2
pH (S.U.)	MW-4	7.499	7.225	10/11/2023	7.25	No	21	0	No	0.000752	Param Intra 1 of 2
pH (S.U.)	MW-5	6.996	6.699	10/11/2023	6.83	No	22	0	No	0.000752	Param Intra 1 of 2
pH (S.U.)	MW-6	7	6.67	10/11/2023	6.8	No	22	0	n/a	0.007415	NP Intra (normality)
pH (S.U.)	MW-8	7.241	7.033	10/11/2023	7.07	No	22	0	No	0.000752	Param Intra 1 of 2
Sulfate (mg/l)	MW-3	29.65	n/a	10/11/2023	11	No	22	0	No	0.001504	Param Intra 1 of 2
Sulfate (mg/l)	MW-4	138.1	n/a	10/11/2023	88	No	22	0	No	0.001504	Param Intra 1 of 2
Sulfate (mg/l)	MW-5	269	n/a	10/11/2023	172	No	19	0	No	0.001504	Param Intra 1 of 2
Sulfate (mg/l)	MW-6	38.7	n/a	10/11/2023	25	No	22	0	No	0.001504	Param Intra 1 of 2
Sulfate (mg/l)	MW-8	151.9	n/a	10/11/2023	102	No	21	0	No	0.001504	Param Intra 1 of 2
Total Dissolved Solids (mg/l)	MW-3	184	n/a	10/11/2023	122	No	22	0	No	0.001504	Param Intra 1 of 2
Total Dissolved Solids (mg/l)	MW-4	415.2	n/a	10/11/2023	335	No	22	0	No	0.001504	Param Intra 1 of 2
Total Dissolved Solids (mg/l)	MW-5	545.3	n/a	10/11/2023	435	No	20	0	No	0.001504	Param Intra 1 of 2
Total Dissolved Solids (mg/l)	MW-6	253	n/a	10/11/2023	250	No	22	0	No	0.001504	Param Intra 1 of 2

Sanitas™ v.9.6.37 Software licensed to GREDELL Engineering. UG

Background Data Summary (based on square root transformation): Mean=5.037, Std. Dev.=0.922, n=22. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8792, critical = 0.878. Kappa = 2.031 (c=7, w=5, 1 of 2, event alpha = 0.05132). Report alpha = 0.001504.

Prediction Limit Analysis Run 11/20/2023 3:13 PM View: Everything Minus Detrended Data SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SBMU-SPS EDD File 09-28-17


Sanitas™ v.9.6.37 Software licensed to GREDELL Engineering. UG

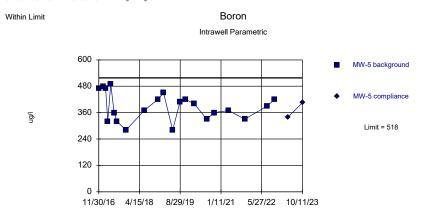
0

Within Limit

l/bn

Boron

Background Data Summary: Mean=1115, Std. Dev.=195, n=22. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9191, critical = 0.878. Kappa = 2.031 (c=7, w=5, 1 of 2, event alpha = 0.05132). Report alpha = 0.001504.

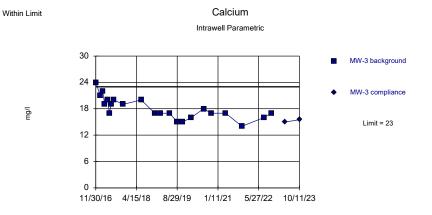

11/30/16 4/15/18 8/29/19 1/11/21 5/27/22 10/11/23

Prediction Limit Analysis Run 11/20/2023 3:13 PM View: Everything Minus Detrended Data SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SBMU-SPS EDD File 09-28-17

Boron


Intrawell Parametric

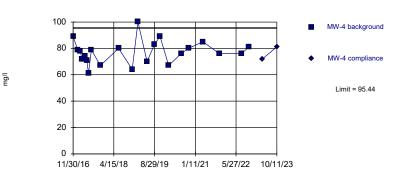
Sanitas™ v.9.6.37 Software licensed to GREDELL Engineering. UG


Background Data Summary: Mean=387.6, Std. Dev.=63.79, n=21. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.959, critical = 0.873. Kappa = 2.044 (c=7, w=5, 1 of 2, event alpha = 0.05132). Report alpha = 0.001504. Sanitas™ v.9.6.37 Software licensed to GREDELL Engineering. UG

Background Data Summary: Mean=485, Std. Dev.=42.51, n=22. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9619, critical = 0.878. Kappa = 2.031 (c=7, w=5, 1 of 2, event alpha = 0.05132). Report alpha = 0.001504.

Sanitas™ v.9.6.37 Software licensed to GREDELL Engineering. UG

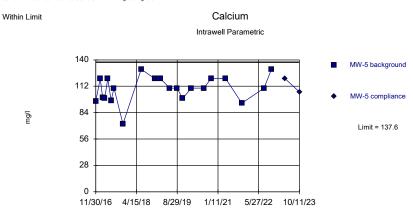
Background Data Summary: Mean=18.05, Std. Dev.=2.439, n=22. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9506, critical = 0.878. Kappa = 2.031 (c=7, w=5, 1 of 2, event alpha = 0.05132). Report alpha = 0.001504.

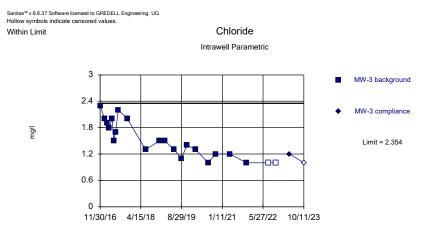

Prediction Limit Analysis Run 11/20/2023 3:13 PM View: Everything Minus Detrended Data SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SBMU-SPS EDD File 09-28-17

Sanitas™ v.9.6.37 Software licensed to GREDELL Engineering. UG

Within Limit

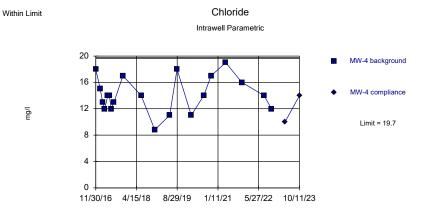
Calcium




Background Data Summary: Mean=77.14, Std. Dev.=9.015, n=22. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9748, critical = 0.878. Kappa = 2.031 (c=7, w=5, 1 of 2, event alpha = 0.05132). Report alpha = 0.001504.

Prediction Limit Analysis Run 11/20/2023 3:13 PM View: Everything Minus Detrended Data SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SBMU-SPS EDD File 09-28-17

Sanitas™ v.9.6.37 Software licensed to GREDELL Engineering. UG



Background Data Summary: Mean=109.4, Std. Dev.=13.78, n=21. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9172, critical = 0.873. Kappa = 2.044 (c=7, w=5, 1 of 2, event alpha = 0.05132). Report alpha = 0.001504.

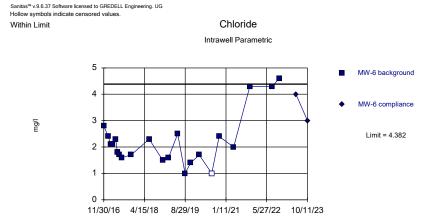
Background Data Summary: Mean=1.509, Std. Dev.=0.4162, n=22, 9.091% NDs. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9209, critical = 0.878. Kappa = 2.031 (c=7, w=5, 1 of 2, event alpha = 0.05132). Report alpha = 0.01504.

Sanitas™ v.9.6.37 Software licensed to GREDELL Engineering. UG

Background Data Summary: Mean=14.14, Std. Dev.=2.701, n=20. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9646, critical = 0.868. Kappa = 2.058 (c=7, w=5, 1 of 2, event alpha = 0.05132). Report alpha = 0.001504.

Prediction Limit Analysis Run 11/20/2023 3:13 PM View: Everything Minus Detrended Data SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SBMU-SPS EDD File 09-28-17

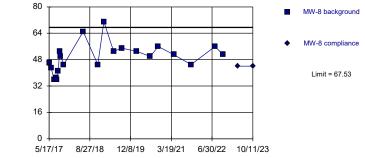
Sanitas™ v.9.6.37 Software licensed to GREDELL Engineering. UG



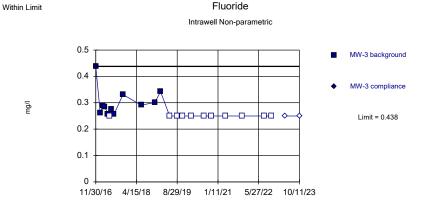
l/gm

Chloride

Background Data Summary: Mean=12.9, Std. Dev=2.234, n=21. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.917, critical = 0.873. Kappa = 2.044 (c=7, w=5, 1 of 2, event alpha = 0.05132). Report alpha = 0.001504.

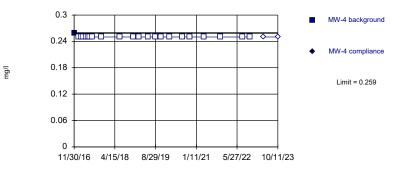

Prediction Limit Analysis Run 11/20/2023 3:13 PM View: Everything Minus Detrended Data SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SBMU-SPS EDD File 09-28-17

Background Data Summary (based on square root transformation): Mean=1.463, Std. Dev.=0.3105, n=22, 4.545% NDs. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9, critical = 0.878. Kappa = 2.031 (c=7, w=5, 1 of 2, event alpha = 0.05123). Report alpha = 0.001504. Within Limit Chloride Intrawell Parametric


Sanitas™ v.9.6.37 Software licensed to GREDELL Engineering. UG

ng/

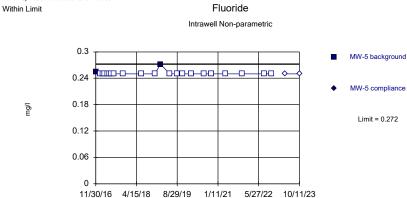
Background Data Summary: Mean=49.43, Std. Dev.=8.852, n=21. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9495, critical = 0.873. Kappa = 2.044 (c=7, w=5, 1 of 2, event alpha = 0.05132). Report alpha = 0.001504.

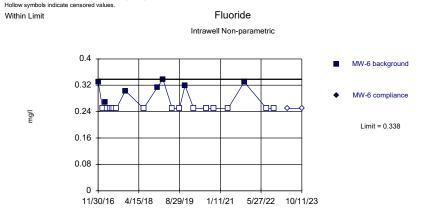

Sanitas^w v.9.6.37 Software licensed to GREDELL Engineering. UG Hollow symbols indicate censored values.

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 22 background values. 50% NDs. Well-constituent pair annual alpha = 0.007401. Individual comparison alpha = 0.003707 (1 of 2).

Sanitas[™] v.9.6.37 Software licensed to GREDELL Engineering. UG Hollow symbols indicate censored values. Within Limit Fluoride Intrawell Non-parametric

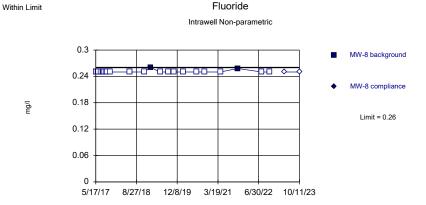
Sanitas™ v.9.6.37 Software licensed to GREDELL Engineering. UG




Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 22 background values. 95.45% NDs. Well-constituent pair annual alpha = 0.003707 (1 of 2).

Prediction Limit Analysis Run 11/20/2023 3:13 PM View: Everything Minus Detrended Data SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SBMU-SPS EDD File 09-28-17

Prediction Limit Analysis Run 11/20/2023 3:13 PM View: Everything Minus Detrended Data SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SBMU-SPS EDD File 09-28-17

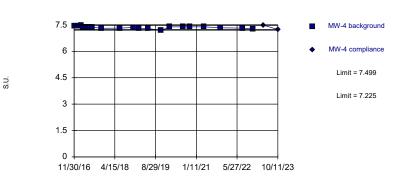


Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 22 background values. 68.18% NDs. Well-constituent pair annual alpha = 0.007401. Individual comparison alpha = 0.003707 (1 of 2).

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 22 background values. 90.91% NDs. Well-constituent pair annual alpha = 0.007401. Individual comparison alpha = 0.003707 (1 of 2).

Prediction Limit Analysis Run 11/20/2023 3:13 PM View: Everything Minus Detrended Data SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SBMU-SPS EDD File 09-28-17

Sanitas $^{\mbox{\tiny MV}}$ v.9.6.37 Software licensed to GREDELL Engineering. UG Hollow symbols indicate censored values.

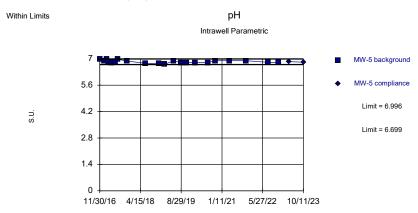


Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 22 background values. 90.91% NDs. Well-constituent pair annual alpha = 0.003707 (1 of 2).

Prediction Limit Analysis Run 11/20/2023 3:13 PM View: Everything Minus Detrended Data SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SBMU-SPS EDD File 09-28-17

Sanitas™ v.9.6.37 Software licensed to GREDELL Engineering. UG

Within Limits

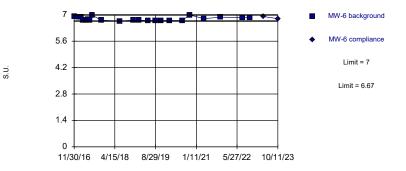

pН

Intrawell Parametric

Background Data Summary: Mean=7.362, Std. Dev.=0.06698, n=21. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9707, critical = 0.873. Kappa = 2.044 (c=7, w=5, 1 of 2, event alpha = 0.05132). Report alpha = 0.001504.

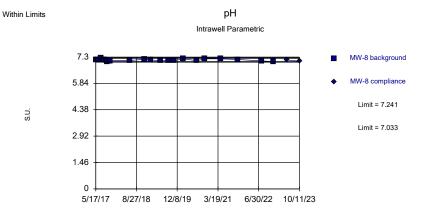
Prediction Limit Analysis Run 11/20/2023 3:13 PM View: Everything Minus Detrended Data SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SBMU-SPS EDD File 09-28-17

Sanitas™ v.9.6.37 Software licensed to GREDELL Engineering. UG



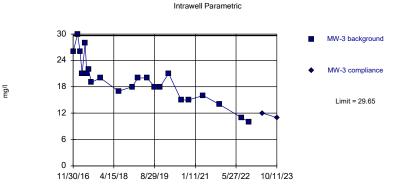
Background Data Summary: Mean=6.848, Std. Dev.=0.07322, n=22. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9291, critical = 0.878. Kappa = 2.031 (c=7, w=5, 1 of 2, event alpha = 0.05132). Report alpha = 0.001504.

Sanitas[™] v.9.6.37 Software licensed to GREDELL Engineering. UG


Within Limits

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limits are highest and lowest of 22 background values. Well-constituent pair annual alpha = 0.0148. Individual comparison alpha = 0.007415 (1 of 2).

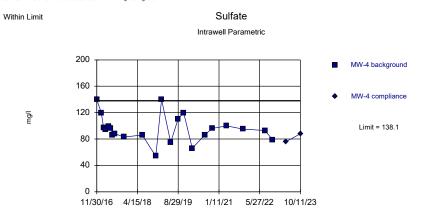
Sanitas™ v.9.6.37 Software licensed to GREDELL Engineering. UG


Background Data Summary: Mean=7.137, Std. Dev.=0.05121, n=22. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9651, critical = 0.878. Kappa = 2.031 (c=7, w=5, 1 of 2, event alpha = 0.05132). Report alpha = 0.001504.

Prediction Limit Analysis Run 11/20/2023 3:13 PM View: Everything Minus Detrended Data SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SBMU-SPS EDD File 09-28-17

Sanitas[™] v.9.6.37 Software licensed to GREDELL Engineering. UG

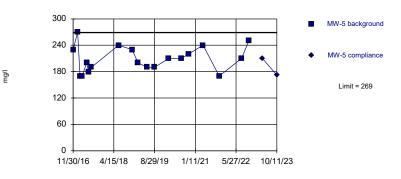
Within Limit


Sulfate

Background Data Summary: Mean=19.36, Std. Dev.=5.067, n=22. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9697, critical = 0.878. Kappa = 2.031 (c=7, w=5, 1 of 2, event alpha = 0.05132). Report alpha = 0.001504.

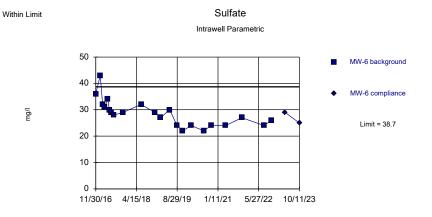
Prediction Limit Analysis Run 11/20/2023 3:13 PM View: Everything Minus Detrended Data SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SBMU-SPS EDD File 09-28-17

Sanitas™ v.9.6.37 Software licensed to GREDELL Engineering. UG



Background Data Summary: Mean=95.59, Std. Dev.=20.91, n=22. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9417, critical = 0.878. Kappa = 2.031 (c=7, w=5, 1 of 2, event alpha = 0.05132). Report alpha = 0.001504.

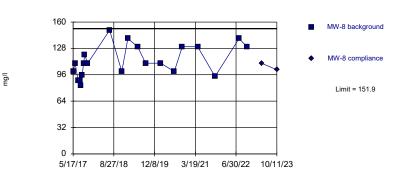
Sanitas[™] v.9.6.37 Software licensed to GREDELL Engineering. UG



Sulfate Intrawell Parametric

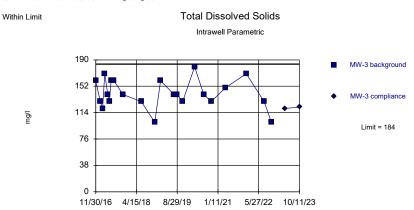
Background Data Summary: Mean=208.9, Std. Dev.=28.85, n=19. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9546, critical = 0.863. Kappa = 2.081 (c=7, w=5, 1 of 2, event alpha = 0.05132). Report alpha = 0.001504.

Sanitas™ v.9.6.37 Software licensed to GREDELL Engineering. UG


Background Data Summary: Mean=28.5, Std. Dev = 5.021, n=22. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9145, critical = 0.878. Kappa = 2.031 (c=7, w=5, 1 of 2, event alpha = 0.05132). Report alpha = 0.001504.

Prediction Limit Analysis Run 11/20/2023 3:13 PM View: Everything Minus Detrended Data SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SBMU-SPS EDD File 09-28-17

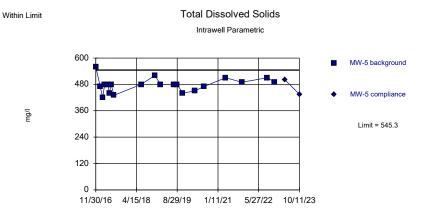
Sanitas[™] v.9.6.37 Software licensed to GREDELL Engineering. UG


Sulfate

Background Data Summary: Mean=112.9, Std. Dev.=19.09, n=21. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9481, critical = 0.873. Kappa = 2.044 (c=7, w=5, 1 of 2, event alpha = 0.05132). Report alpha = 0.001504.

Prediction Limit Analysis Run 11/20/2023 3:13 PM View: Everything Minus Detrended Data SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SBMU-SPS EDD File 09-28-17

Sanitas™ v.9.6.37 Software licensed to GREDELL Engineering. UG

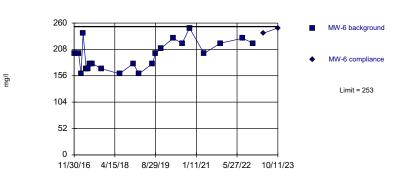


Background Data Summary: Mean=141.4, Std. Dev.=21, n=22. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9443, critical = 0.878. Kappa = 2.031 (c=7, w=5, 1 of 2, event alpha = 0.05132). Report alpha = 0.001504.

Sanitas™ v.9.6.37 Software licensed to GREDELL Engineering. UG **Total Dissolved Solids** Within Limit Intrawell Parametric 500 MW-4 background 400 MW-4 compliance 300 ng/ Limit = 415.2 200 100 0 11/30/16 4/15/18 8/29/19 1/11/21 5/27/22 10/11/23

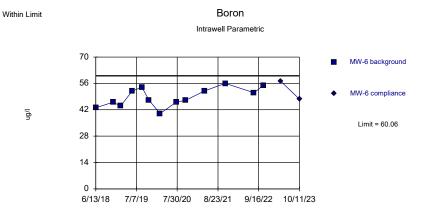
Background Data Summary: Mean=330, Std. Dev.=41.98, n=22. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9368, critical = 0.878. Kappa = 2.031 (c=7, w=5, 1 of 2, event alpha = 0.05132). Report alpha = 0.001504.

Sanitas™ v.9.6.37 Software licensed to GREDELL Engineering. UG

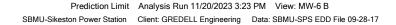

Background Data Summary: Mean=478, Std. Dev.=32.7, n=20. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9392, critical = 0.868. Kappa = 2.058 (c=7, w=5, 1 of 2, event alpha = 0.05132). Report alpha = 0.001504.

Prediction Limit Analysis Run 11/20/2023 3:13 PM View: Everything Minus Detrended Data SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SBMU-SPS EDD File 09-28-17

Sanitas™ v.9.6.37 Software licensed to GREDELL Engineering. UG


Within Limit

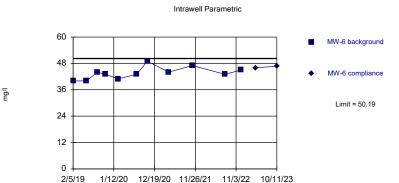
Total Dissolved Solids Intrawell Parametric



Background Data Summary: Mean=196.8, Std. Dev.=27.67, n=22. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9346, critical = 0.878. Kappa = 2.031 (c=7, w=5, 1 of 2, event alpha = 0.05132). Report alpha = 0.001504.

Sanitas™ v.9.6.37 Software licensed to GREDELL Engineering. UG

Background Data Summary: Mean=48.69, Std. Dev.=4.99, n=13. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9532, critical = 0.814. Kappa = 2.279 (c=7, w=5, 1 of 2, event alpha = 0.05132). Report alpha = 0.001504.



Calcium

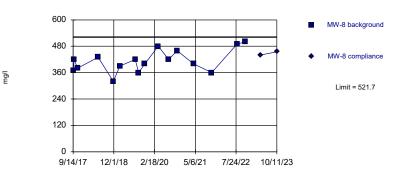
Sanitas™ v.9.6.37 Software licensed to GREDELL Engineering. UG

Within Limit

Calcium

Background Data Summary: Mean=43.55, Std. Dev.=2.77, n=11. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9367, critical = 0.792. Kappa = 2.4 (c=7, w=5, 1 of 2, event alpha = 0.05132). Report alpha = 0.001504.

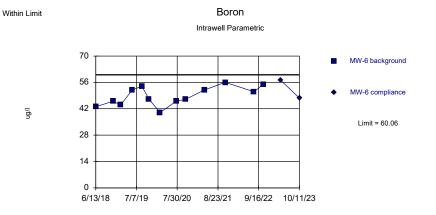
Prediction Limit Analysis Run 11/20/2023 3:23 PM View: MW-6 Ca SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SBMU-SPS EDD File 09-28-17


Sanitas™ v.9.6.37 Software licensed to GREDELL Engineering. UG

Background Data Summary: Mean=97.56, Std. Dev.=10.71, n=16. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9582, critical = 0.844. Kappa = 2.15 (c=7, w=5, 1 of 2, event alpha = 0.05132). Report alpha = 0.001504.

Sanitas™ v.9.6.37 Software licensed to GREDELL Engineering. UG

Total Dissolved Solids Intrawell Parametric

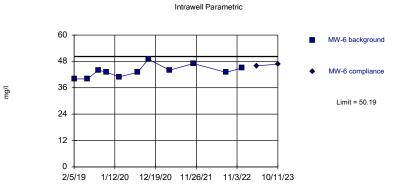

Background Data Summary: Mean=412.5, Std. Dev.=50.79, n=16. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.96566, critical = 0.844. Kappa = 2.15 (c=7, w=5, 1 of 2, event alpha = 0.05132). Report alpha = 0.001504.

Within Limit

Prediction Limit

	SBMU-Sike	ston Power Station	Client: GREDI	ELL Engineering	Data: SBN	IU-SPS	EDD Fi	le 09-28-17	Printed 11/20/202	3, 3:25 PM	
Constituent	Well	Upper Lim.	Lower Lim.	Date	Observ.	<u>Sig.</u>	<u>Bg N</u>	<u>%NDs</u>	<u>Transform</u>	<u>Alpha</u>	Method
Calcium (mg/l)	MW-8	120.6	n/a	10/11/2023	96.5	No	16	0	No	0.001504	Param Intra 1 of 2
Total Dissolved Solids (mg/l)	MW-8	521.7	n/a	10/11/2023	455	No	16	0	No	0.001504	Param Intra 1 of 2

Sanitas™ v.9.6.37 Software licensed to GREDELL Engineering. UG

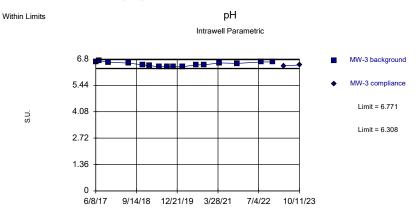


Background Data Summary: Mean=48.69, Std. Dev.=4.99, n=13. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9552, critical = 0.814. Kappa = 2.279 (c=7, w=5, 1 of 2, event alpha = 0.05132). Report alpha = 0.001504.

Prediction Limit Analysis Run 11/20/2023 3:26 PM View: MW-6 B SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SBMU-SPS EDD File 09-28-17 Sanitas™ v.9.6.37 Software licensed to GREDELL Engineering. UG

Within Limit

Calcium

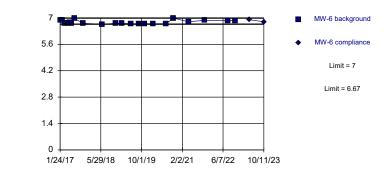

Background Data Summary: Mean=43.55, Std. Dev.=2.77, n=11. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9367, critical = 0.792. Kappa = 2.4 (c=7, w=5, 1 of 2, event alpha = 0.05132). Report alpha = 0.001504.

Prediction Limit Analysis Run 11/20/2023 3:26 PM View: MW-6 Ca SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SBMU-SPS EDD File 09-28-17

Prediction Limit

	SBMU-Sikes	ton Power Station	Client: GREDE	LL Engineering	Data: SBM	IU-SPS	EDD Fi	le 09-28-17	Printed 11/20/2023	3, 3:29 PM	
Constituent	Well	Upper Lim.	Lower Lim.	<u>Date</u>	Observ.	<u>Sig.</u>	<u>Bg N</u>	<u>%NDs</u>	<u>Transform</u>	<u>Alpha</u>	Method
Calcium (mg/l)	MW-8	120.6	n/a	10/11/2023	96.5	No	16	0	No	0.001504	Param Intra 1 of 2
Total Dissolved Solids (mg/l)	MW-8	521.7	n/a	10/11/2023	455	No	16	0	No	0.001504	Param Intra 1 of 2
Boron (ug/l)	MW-6	60.06	n/a	10/11/2023	47.6	No	13	0	No	0.001504	Param Intra 1 of 2
Calcium (mg/l)	MW-6	50.19	n/a	10/11/2023	46.7	No	11	0	No	0.001504	Param Intra 1 of 2
pH (S.U.)	MW-3	6.771	6.308	10/11/2023	6.49	No	16	0	No	0.000752	Param Intra 1 of 2
pH (S.U.)	MW-6	7	6.67	10/11/2023	6.8	No	21	0	n/a	0.007998	NP Intra (normality)

Sanitas™ v.9.6.37 Software licensed to GREDELL Engineering. UG



Background Data Summary: Mean=6.539, Std. Dev.=0.1077, n=16. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9034, critical = 0.844. Kappa = 2.15 (c=7, w=5, 1 of 2, event alpha = 0.05132). Report alpha = 0.001504.

Sanitas[™] v.9.6.37 Software licensed to GREDELL Engineering. UG

Within Limits

S.U.

pН

Intrawell Non-parametric

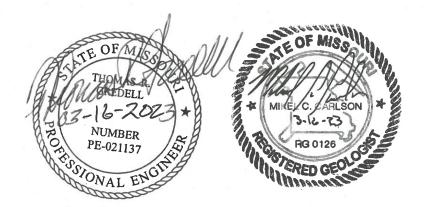
Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limits are highest and lowest of 21 background values. Well-constituent pair annual alpha = 0.01596. Individual comparison alpha = 0.007998 (1 of 2).

Prediction Limit Analysis Run 11/20/2023 3:27 PM View: MW3 pH SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SBMU-SPS EDD File 09-28-17 Prediction Limit Analysis Run 11/20/2023 3:28 PM View: ph mw8 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SBMU-SPS EDD File 09-28-17

Appendix 8

Alternate Source Demonstration

1505 East High Street Jefferson City, Missouri 65101 Telephone (573) 659-9078 www.ger-inc.biz


GREDELL Engineering Resources, Inc.

Sikeston Board of Municipal Utilities Sikeston Power Station Detection Monitoring Program for Bottom Ash Pond – Chloride in MW-6 Alternate Source Demonstration

Sikeston Power Station 1551 West Wakefield Avenue Sikeston, MO 63801

March 2023

PROFESSIONAL ENGINEER'S CERTIFICATION

40 CFR 257.94(e)(2) Alternate Source Demonstration

I, Thomas R. Gredell, P.E., a professional engineer licensed in the State of Missouri, hereby certify in accordance with 40 CFR 257.94(e)(2) to the accuracy of the alternate source demonstration described in the following report for the Sikeston Board of Municipal Utilities, Sikeston Power Station, Bottom Ash Pond CCR unit. The report demonstrates that the statistically significant increase of Chloride in MW-6 is not the result of a release from the Bottom Ash Pond and is attributable to an alternate source. This demonstration successfully meets the requirements of 40 CFR 257.94(e) as found in federal regulation 40 CFR 257, Subpart D – Standards for the Disposal of Coal Combustion Residuals in Landfills and Surface Impoundments. In addition, the demonstration was made using EPA Unified Guidance (Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities Unified Guidance: EPA 530/R-09-007) and generally accepted methods.

Name:	Thomas R. Gree	dell, P.E.	Staat
Signature:	Juna	all s	HOMAS R:
Date:	03-16-2		GREDELL
	umber: PE-02113 ration: Missouri	B7 PROFESS	NUMBER PE-021137

Sikeston Board of Municipal Utilities Sikeston Power Station Detection Monitoring Program for Bottom Ash Pond - Chloride in MW-6 Alternate Source Demonstration

March 2023

Table of Contents

1.0	INTRODUCTION	1
2.0	OBSERVATIONS AND DATA COLLECTION	2
3.0	SUMMARY OF DATA ANALYSIS AND FINDINGS	4
4.0	CONCLUSIONS AND RECOMMENDATIONS	8
5.0	LIMITATIONS	9
6.0	REFERENCES	10

List of Figures

Figure 1 – Site Map and Sampling Locations

Figure 2 – Site Location Map with High-Yield Wells and Chloride Data

List of Tables

Table 1 – Analytical Results and Prediction Limit Summary......3Table 2 – Chloride Results in Upgradient Irrigation, Industrial and Municipal Wells.......7

List of Appendices

- Appendix 1a Laboratory Analytical Results and Quality Control Report, November 1, 2022 Sample Event
- Appendix 1b Laboratory Analytical Results and Quality Control Report, December 13, 2022 Retest Event
- Appendix 2 Geologic Drilling Logs for High-Yield Wells Near SPS

Appendix 3a – 2020 Sikeston Public Well Assessment Reports (CARES)

Appendix 3b – 2014 Sikeston Public Well Assessment Reports (CARES)

1.0 INTRODUCTION

This Alternate Source Demonstration (ASD) Report has been prepared to address the results of the semi-annual sampling event initiated on November 1, 2022 at the Sikeston Board of Municipal Utilities (SBMU) Sikeston Power Station's (SPS) Bottom Ash Pond, a coal combustion residual (CCR) surface impoundment. Following receipt of final analytical data, it was apparent that the reported concentration of Total Dissolved Solids (TDS) in sample MW-5 and Chloride, TDS, and Calcium in sample MW-6 exceeded their respective prediction limits. Consequently, retesting for the aforementioned well constituent pairs was initiated on December 13, 2022. Following receipt of final analytical data from the retesting event, it was confirmed that the Chloride concentration in sample MW-6 represents a statistically significant increase (SSI) over background for this well. The retesting of MW-5 did not confirm an SSI. SBMU-SPS requested that Gredell Engineering conduct an evaluation of the confirmed SSI of Chloride in MW-6 and develop an ASD, if warranted.

As stated in §257.94(e)(2), an owner or operator may demonstrate that a source other than the CCR unit caused the apparent SSI over background for a constituent. The owner or operator must complete the written demonstration within 90 days of detecting an SSI over background to include obtaining a certification from a qualified professional engineer verifying the accuracy of the information in the report. If a successful demonstration is completed within the 90-day period, the owner of the CCR unit may continue with a detection monitoring program. The owner or operator must also include the certified demonstration in the annual groundwater monitoring report required by §257.90(e).

Gredell Engineering has completed an evaluation of the groundwater sampling events, analytical data results, and other potential factors, for the SBMU SPS Bottom Ash Pond groundwater monitoring system to determine if an alternate source is the cause of the apparent SSI of Chloride in MW-6. This report presents the results of that evaluation and includes supporting documentation.

2.0 OBSERVATIONS AND DATA COLLECTION

The Bottom Ash Pond groundwater monitoring system consists of five wells, designated MW-3, MW-4, MW-5, MW-6, and MW-8 (Figure 1). Monitoring wells MW-3, MW-4, MW-5, and MW-6 were installed in April 2016, and sampled on an approximate monthly basis beginning in November 2016 and ending in July 2017 to establish an initial background database. Monitoring well MW-8 was installed in April 2017 and was sampled at an increased frequency beginning in May 2017 and ending in September 2017. Additional information regarding these wells is available in the Groundwater Monitoring, Sampling and Analysis Plan (GMSAP) for the site.

The background data base for the Bottom Ash Pond is periodically updated in general accordance with U.S. Environmental Protection Agency (USEPA) Unified Guidance for statistical analysis of groundwater monitoring data (USEPA, 2009). The results of the eight initial background sampling events and ten additional sampling events included in updates to the background data base were evaluated in accordance with §257.93, and intra-well analysis using prediction limits was determined to be the most appropriate statistical analysis approach for detection monitoring. Following receipt of final analytical data reports from the contract laboratory, the reported concentration for each detection monitoring constituent from each well is compared to its respective prediction limit. If a constituent concentration exceeds the respective prediction limit for a particular well or is outside the predicted range (in the case of pH), SSI over background is suspected.

The statistical method selected and certified for evaluation of groundwater monitoring data at this site incorporates a 1-of-2 retesting strategy in accordance with Unified Guidance for statistical analysis of groundwater monitoring data (USEPA, 2009). Therefore, a suspected SSI is confirmed if, and only if, the constituent concentration in a second statistically independent sample (retest) from the same well is also demonstrated to exceed the prediction limit.

The SPS initiated its semiannual detection groundwater sampling event for the Bottom Ash Pond on November 1, 2022. The contracted laboratory received the samples on November 3, 2022 and issued final analytical results on November 22, 2022 (Appendix 1a). However, the TDS result for sample MW-5 and the Chloride, TDS, and Calcium results for sample MW-6 appeared elevated relative to their respective prediction limits for these well constituent pairs. Consequently, retesting was initiated for these well constituent pairs on December 13, 2022. The analytical laboratory received these samples on December 15, 2022 and issued the analytical report for the retesting event on December 30, 2022 (Appendix 1b).

The following table summarizes the analytical results for TDS in MW-5 and Chloride, TDS, and Calcium in MW-6 from the November 1, 2022 sampling and December 13, 2022 retesting events. Prediction limits for these well constituent pairs are also presented. The apparent SSIs of TDS in MW-5, and TDS and Calcium in MW-6 were not confirmed by retesting, however the Chloride concentration in

MW-6 represents a confirmed SSI. Therefore, an evaluation is presented to determine if an alternate source is the cause of the elevated Chloride concentration in MW-6 relative to its respective baseline data.

Sampling Event Date	Well Constituent Pair	Analytical Result (mg/L)	Prediction Limit (mg/L)	SSI Suspected or Confirmed?
	MW-5 TDS	670	539.8	Suspected
November 1, 2022	MW-6 Chloride	4.6	2.956	Suspected
	MW-6 TDS	330	251.5	Suspected
	MW-6 Calcium	50	48.81	Suspected
	MW-5 TDS	490	539.8	Not Confirmed
December 13, 2022	MW-6 Chloride	4.0	2.956	Confirmed
	MW-6 TDS	220	251.5	Not Confirmed
	MW-6 Calcium	45	48.81	Not Confirmed

Table 1 -- Analytical Results and Prediction Limit Summary

3.0 SUMMARY OF DATA ANALYSIS AND FINDINGS

The USEPA provides Unified Guidance for statistical analysis of groundwater monitoring data (USEPA, 2009). This Unified Guidance document was reviewed to assess the validity of the apparent SSI of Chloride in MW-6. Chapter 4 of the Unified Guidance discusses groundwater monitoring programs and statistical analysis of the associated data. A key component of statistical analysis is "*to determine whether or not the increase is actually due to a contaminant release*". Three of these considerations are pertinent to the data associated with Chloride testing, MW-6 sampling, and the Bottom Ash Pond groundwater monitoring system and are listed below.

- 1. Chapter 4, page 4-8: Did the test correctly identify an actual release of an indicator or hazardous constituent?
- 2. Chapter 4, page 4-8: Could observed SSIs for naturally occurring analytes be due to longer term (i.e., seasonal, or multi-year) variation?
- 3. Chapter 4, page 4-9: Are any of these contaminants observed upgradient of the regulated units?

Each of these considerations were evaluated to determine the validity of the apparent SSI for Chloride in MW-6. The results of this evaluation are discussed below.

Unified Guidance Consideration 1

Since completion of the hydrogeologic site characterization (Gredell Engineering, 2017), the piezometers installed for the characterization were converted to monitoring wells MW-1 through MW-6. As documented in that report, 12 groundwater maps were developed showing the direction of flow and hydraulic gradient based on the monthly groundwater elevations. These groundwater maps demonstrate a consistent west-southwestern direction of flow showing minimal variation in hydraulic gradient over the 12-month period extending from May 2016 to April 2017. Moreover, three additional monitoring wells (MW-7 through MW-9) were installed in locations shown on Figure 1 to provide sufficient downgradient monitoring of the ash ponds at the SPS and to further refine and confirm overall groundwater flow direction. Based on over five years of monitoring since 2016, the groundwater data consistently demonstrate that MW-6 is not downgradient of the Bottom Ash Pond and groundwater flow direction remains consistently to the west-southwest.

MW-6 was installed to monitor spatial variability of groundwater geochemistry upgradient of the Bottom Ash Pond. Based on the weight of evidence that MW-6 is not hydraulically downgradient from the Bottom Ash Pond, the well is not positioned to detect a release from the pond. Therefore, the conclusion to the first consideration question from Unified Guidance listed above is negative.

The analytical results for MW-6 could <u>not</u> have identified an actual release of Chloride from the Bottom Ash Pond.

Unified Guidance Consideration 2

Boswell et al. (1968) published a study of the Quaternary Aquifers in the Mississippi Embayment which documented characteristics of the alluvial aquifer underlying the regulated units (i.e., the Bottom Ash Pond and Fly Ash Pond) at the site. The study stated that while the chief source of recharge is precipitation, recharge also occurs from the upward movement of groundwater from underlying aquifers. While the alluvial and Wilcox Aquifers are discussed separately, Luckey (1985) notes that the alluvial aquifer and the underlying Wilcox Aquifer commonly are hydraulically interconnected. The hydraulic connection between the alluvial aquifer and Wilcox Aquifer is further demonstrated by the potentiometric contour maps presented by Luckey (1985), which demonstrate a similar flow direction (west-southwest) in both aquifers in the Sikeston area.

Drilling records for high-yield wells (Appendix 2) at the SPS and in areas east generally document permeable sand and gravel at and near the contact between the alluvial aquifer and the underlying Wilcox Aquifer. These permeable sands and gravels and the lack of a laterally continuous low-permeability aquitard between the two aquifers permit the upward movement and mixing of water between these aquifers near the SPS.

It is also noted that the high-yield Sikeston Municipal wells (Appendix 3) at Plant 3, which is located approximately one-half mile east of the SPS, are 142 to 145 feet deep and screened in the lower part of the alluvial aquifer. Appendix 3 documents between 30 and 34 feet of drawdown or reduction in hydraulic head in the alluvial aquifer as a result municipal well pumping. This reduction in hydraulic head results in an upward hydraulic gradient from the underlying Wilcox Aquifer. The rate of upward movement of groundwater from the Wilcox into the alluvial aquifer undoubtedly increases as these high-yield wells withdraw groundwater.

High-yield irrigation wells are common to support crop farming in southeast Missouri. Luckey and Fuller (1980) state that the alluvium is the only aquifer that is used for irrigation in the area. As shown on Figure 2, the irrigation wells near the SPS are generally 140 feet deep or less and are screened in the lower part of the alluvial aquifer. Demand on the aquifer increased in 2021 due to lower annual precipitation (43.63 inches) relative to calendar years 2020 and 2019 (56.04 and 57.38 inches, respectively). Even less precipitation occurred during the first 8 months 2022 (28.2 inches), compared to the first 8 months of 2021 (32.12 inches), 2020 (42.96 inches), and 2019 (41.32 inches). This additional demand on irrigation to support farming resulted in more drawdown on the alluvial aquifer in 2021 and 2022 relative to previous years. The additional drawdown reduces hydraulic head relative to the underlying Wilcox Aquifer and results in greater

upward flow of groundwater from the Wilcox, which then mixes and interacts with groundwater in the alluvial aquifer.

Boswell et al. (1968) also states that the alluvial aquifer contains appreciable quantities of Chloride ranging from 0.3 to 1,870 mg/L, owing to chemical dissolution of soil and rocks. Such concentrations suggest that the Chloride concentration in MW-6 (4.6 mg/L) may be naturally occurring. Combined with the increased demand on groundwater in 2021 and 2022, the recent increase in Chloride is likely a temporal variation resulting from upward movement, co-mingling, and geochemical interaction of groundwater from the underlying Wilcox Aquifer. This geochemical variation is not represented by the background data set for the Bottom Ash Pond monitoring system. Consequently, the conclusion to the second consideration question from Unified Guidance listed above is affirmative.

Unified Guidance Consideration 3

Relatively high concentrations of Chloride are documented in irrigation wells, industrial supply wells, and SBMU municipal (i.e., public drinking water supply) wells located upgradient of the regulated units. Data published by the Missouri Department of Natural Resources in their 2020 Annual Water Quality Report for the SBMU municipal water system summarize location and construction of the public drinking water supply wells (Appendix 3). Several additional publications were reviewed to determine the natural occurrence and variability of Chloride in the alluvial and Wilcox Aquifers.

Luckey and Fuller (1980) presented comprehensive hydrogeologic data for the unconsolidated aquifers in southeastern Missouri. This study inventoried and sampled over 800 irrigation, high-yield industrial, and municipal wells and included data on the alluvial and Wilcox Aquifers underlying the regulated units (i.e., Bottom Ash Pond and Fly Ash Pond) at the SPS. While the alluvial and Wilcox Aquifers are typically discussed separately in the technical literature, Luckey (1985) states that these two aquifers commonly are hydraulically interconnected. This hydraulic connection between aquifers is also demonstrated by the drilling records in Appendix 2, which document permeable sand and gravel at the alluvium/Wilcox contact.

Luckey and Fuller (1980) summarize analytical data for Chloride in the alluvial and Wilcox Aquifers in the Sikeston area. Seven wells located upgradient of the Bottom Ash Pond were included in their study. Four of these wells were identified as irrigation or industrial supply wells and three were SBMU municipal wells located closer to the SPS.

Similarly, Brahana et al. (1985) presented a study of groundwater quality based on comprehensive sampling and analysis of samples from 42 wells set in the unconsolidated aquifers

of the Northern Mississippi Embayment. The locations of these and other wells are indicated on Figure 2. Chloride data from these wells is summarized in Table 2 and on Figure 2.

Well Type	Owner	Well Location	Formation	Chloride Concentration (mg/L)	Data Source
	Roth	T26N R14E S11CBC	Alluvium	4.8	
Irrigation or Industrial	Drury Dev.	T26N R14E S15CCD	Alluvium	5.3	
Supply	Miner	T26N R14E S16DDD	Alluvium	13	Luckey and Fuller
Supply	Scott	T26N R14E S15DBB	Alluvium	9.8	(1980)
	Sikeston ID #19120	T26N R14E S19CDD	Wilcox	17	
Municipal	Sikeston ID #26235	T26N R14E S19DCB	Wilcox	7.8	
wuncipar	Sikeston ID #2700	T26N R14E S19CDD	Wilcox	5.4	
	Sikeston ID #5941	T26N R14E S19CDD	Wilcox	5.2	Brahana et al. (1985)

Table 2 – Chloride Results in Upgradient Irrigation, Industrial and Municipal Wells

These data demonstrate that local concentrations of Chloride up gradient of the site range from 4.8 mg/L to 17 mg/L. Therefore, the conclusion to the third consideration question from Unified Guidance listed above is affirmative.

4.0 CONCLUSIONS AND RECOMMENDATIONS

Gredell Engineering concludes that the confirmed SSI of Chloride in MW-6 is not the result of a release from the Bottom Ash Pond and is attributable to an alternate source. The following supports this conclusion:

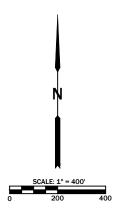
- MW-6 is not hydraulically downgradient of the Bottom Ash Pond and is not positioned to identify
 a release of an indicator (Chloride) from the regulated unit. Groundwater flow direction is
 consistently from the east-northeast to the west-southwest as documented during all
 monitoring events at the SPS.
- The reported Chloride concentration in MW-6 is within the range of naturally occurring concentrations and is due to temporal variation resulting from chemical dissolution of Chloride from soil or rocks, and variable upward groundwater movement from the underlying Wilcox Aquifer over a longer term (i.e., multi-year) than accounted for during the background sampling period of the regulated unit's monitoring system.
- Chloride is present in high-capacity wells located upgradient of the regulated units. Chloride concentrations range from 4.8 to 17 mg/L, as reported by the United States Department of the Interior Geological Survey and the Missouri Department of Natural Resources.

Based on these conclusions, Gredell Engineering recommends continuance of semi-annual detection monitoring in accordance with §257.94.

5.0 LIMITATIONS

This report has been prepared for the exclusive use of the client and GREDELL Engineering Resources, Inc. for the specific project discussed in accordance with generally accepted environmental practices common to this locale at this time. The report is applicable only to this specific project and identified site conditions as they existed at the time of report preparation. The use of this report by others to develop independent interpretations of data or conclusions not explicitly stated in this report are the sole responsibility of those firms or individuals.

This report is not a guarantee of subsurface conditions. Variations in subsurface conditions may be present that were not identified during this or previous investigations. Interpretations of data and recommendations made in this report are based on observations of data that were available and referred to in this report unless otherwise noted. No other warranties, expressed or implied, are provided.


6.0 **REFERENCES**

- Boswell, E.H., Cushing, E.M., and Hosman, R.L., 1968, Quaternary Aquifers in the Mississippi Embayment *with a discussion of* Quality of the Water, by H.G. Jeffery: U.S. Geological Survey Professional Paper 448-E, 15p.
- Brahana, J.V., Mesko, T.O., Busby, J.F., and Kraemer, T.F., 1985, Ground-Water Quality Data from the Northern Mississippi Embayment – Arkansas, Missouri, Kentucky, Tennessee, and Mississippi. United States Geological Survey Open-File Report 85-683, 1985
- Freeze, R.A. and Cherry J.A., 1979, *Groundwater*. Prentice-Hall, Inc. Englewood Cliffs, New Jersey, 604 p.
- GREDELL Engineering Resources, Inc., 2017, Sikeston Power Station Site Characterization for Compliance with Missouri State Operating Permit #MO-0095575. Prepared for Sikeston Board of Municipal Utilities, May 31, 2017.
- GREDELL Engineering Resources, Inc., 2019, Sikeston Power Station 2018 Annual Groundwater Monitoring and Corrective Action Report for Bottom Ash Pond for Compliance with USEPA 40 CFR 257.90(e). Prepared for Sikeston Board of Municipal Utilities, January 30, 2019.
- Luckey, R.R. and Fuller, D.L., 1980, Hydrogeologic Data for the Mississippi Embayment of Southeastern Missouri. United States Department of the Interior Geological Survey in cooperation with Missouri Department of Natural Resources, Division of Geology and land Survey Open-File Report 79-421, Rolla, Missouri, January 1980.
- Luckey, R.R., 1985, Water Resources of the Southeast Lowlands, Missouri. United States Geological Survey Water-Resources Investigations Report 84-4277, Rolla, Missouri, 1985.
- Sanitas Statistical Software, © 1992-2019 SANITAS TECHNOLOGIES, Alamosa Colorado 81101-0012.
- USEPA, 2009, Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities Unified Guidance: EPA 530/R-09-007, Office of Resource Conservation and Recovery, Program Implementation and Information Division, Washington, D.C.

Figures

WELL I MW-3 MW-4 MW-5 MW-6 MW-8

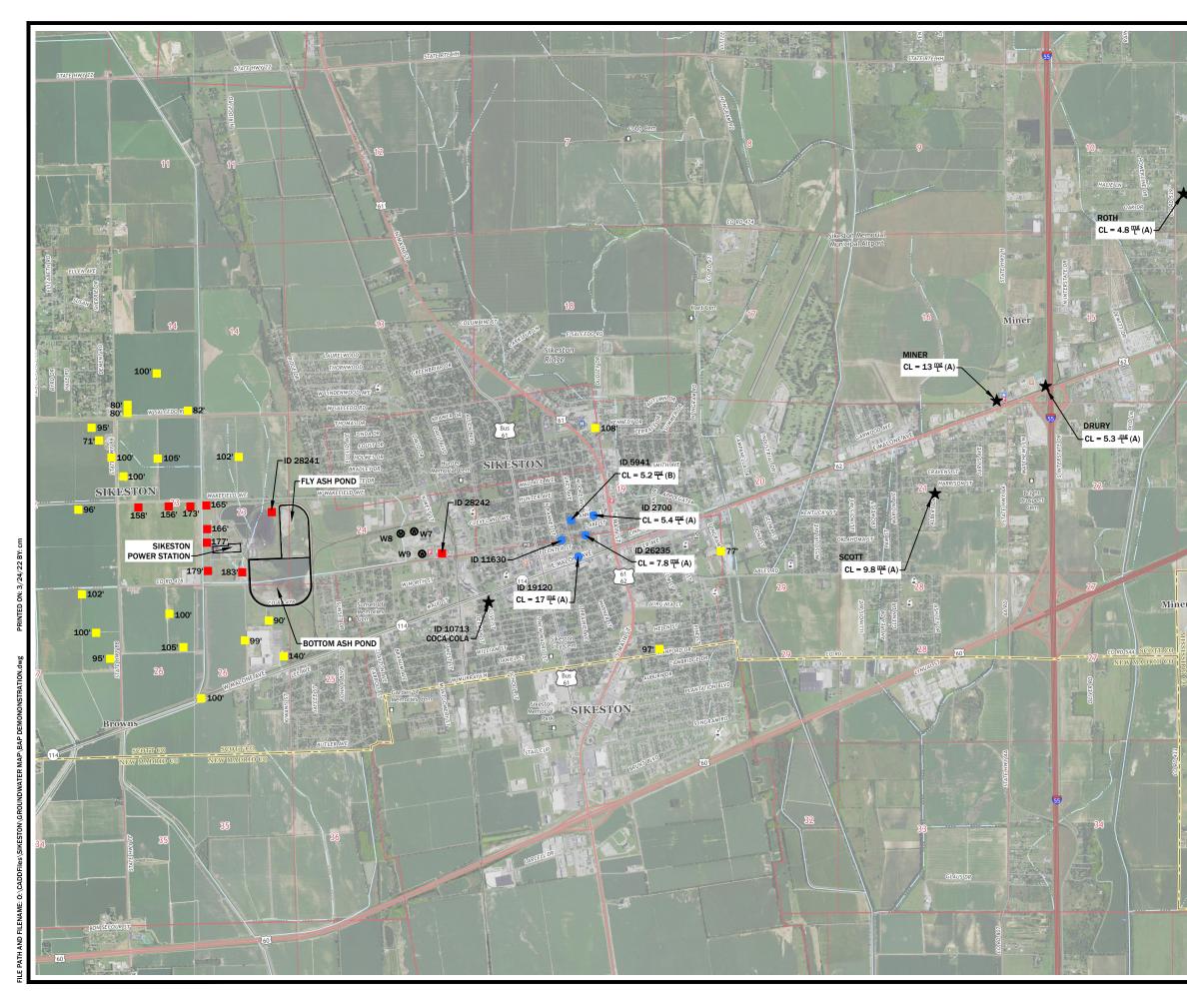
LEGEND	
PROPERTY LINE	PL
GROUNDWATER CONTOUR	
MONITORING WELL	MW
UP GRADIENT MONITORING LOCATION	UG
DOWN GRADIENT MONITORING LOCATION	DG
GENERAL FLOW DIRECTION	

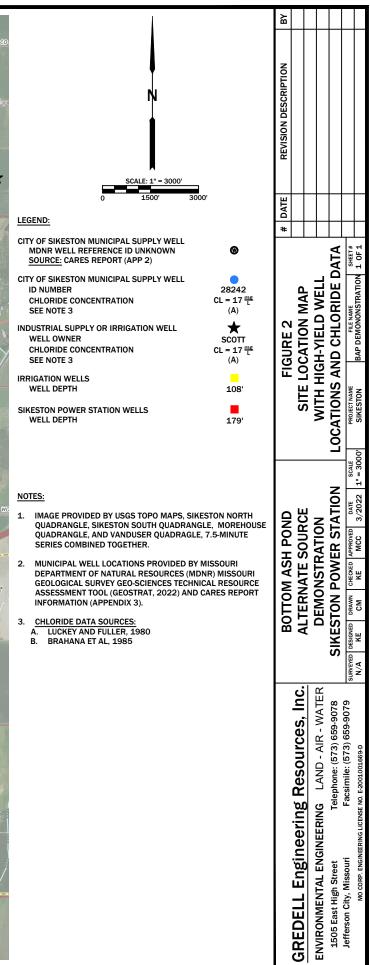
- NOTES:

 1. IMAGE PROVIDED BY BING MAPS.

 2. MONITORING WELL LOCATIONS, CASING ELEVATIONS & UNDERGROUND CULVERT ELEVATIONS SURVEYED BY BOWEN ENGINEERING & SURVEYING.

 3. GROUNDWATER ELEVATIONS MEASURED BY SIKESTON POWER STATION STAFF ON AUGUST 3, 2022.


 4. MAP DEVELOPMENT BASED ON CONTOURS GENERATED BY SURFER® SOFTWARE.


 5. RANGE OF HYDRAULIC GRADIENT AS DETERMINED BY SURFER® SOFTWARE

 4. MAP DEVELOPMENT BASED ON CONTOURS GENERATED BY SURFER® SOFTWARE

GROUNDWATER ELEVATION	CASING ELEVATION	NORTHING	EASTING
296.52	308.55	381130.00	1079946.62
293.79	305.61	380804.62	1077766.95
294.40	305.91	379858.94	1078477.85
295.47	307.72	379874.77	1079384.36
293.87	304.77	380311.20	1077940.08
	ELEVATION 296.52 293.79 294.40 295.47	ELEVATION ELEVATION 296.52 308.55 293.79 305.61 294.40 305.91 295.47 307.72	ELEVATION ELEVATION NORTHING 296.52 308.55 381130.00 293.79 305.61 380804.62 294.40 305.91 379858.94 295.47 307.72 379874.77

THE GEOLOGIST WHO REVIEWED AND APPROVED THIS REPORT ASSUMES RESPONSIBILITY ONLY FOR GEOLOGIC INTERPRETATIONS OF DATA APPEARING ON THE PAGE AND DISCLAMIS PURSUANT TO SECTION 256.456 RSMO ANY RESPONSIBILITY FOR ALL OTHER PLANS, SPECIFICATIONS, ESTIMATES, REPORTS OR OTHER DOCUMENTS OR INSTRUMENTS NOT PREPARED UNDER THE SUPFERVISION OF THE GEOLOGIST RELATING	TO OR INTENDED TO BE USED FOR ANY PART OR PARTS OF THE PROJECT TO WHICH THIS FIGURE REFERS.
АР	SHEET # 1 OF 1
FIGURE 1 GROUNDWATER CONTOUR MAP AUGUST 3, 2022	CHECKED APPROVED DATE SCALE PROJECT NAME FILE NAME THE NAME OF 20022 AS NOTED SIKESTON/GWMAP/BAP BAP ALT DEMONSTRATION 1 0F 1
FIG GROUNDWATE AUGUS	PROJECT NAME SIKESTON/GWMAP/BAP
NOL	SCALE AS NOTED S
SIKESTON POWER STATION BOTTOM ASH POND - CHLORIDE IN MW-6 ALTERNATE SOURCE DEMONSTRATION	CHECKED APPROVED DATE SCALE KE MCC 10/2022 AS NOTED
SIKESTON POWER STATION BOTTOM ASH POND - CHLORIDE IN MW-6 RNATE SOURCE DEMONSTRA	APPROVED MCC
N POW M ASH RIDE I URCE	
ESTON BOTTO CHLO VTE SO	ED DRAWN CM
SIµ ∟TERN	URVEYED DESIGNED DRAWN
neering Resources, Inc. SINEERING LAND - AIR - WATER Telephone: (573) 659-9078	JETIEFSOIL ULY, MISSOULI FASSITITIE: (37.3) 033-301.9 SURVES MO CORP. ENGINEERING LICENSE NO. E-2001001669-0 NA

Appendices

Appendix 1a

Laboratory Analytical Results and Quality Control Reports November 1, 2022 Sample Event

Pace Analytical Services, LLC 2231 W. Altorfer Drive Peoria, IL 61615 (800)752-6651

November 22, 2022

Luke St Mary Sikeston BMU, Sikeston Power Station 1551 W Wakefield Sikeston, MO 63801

RE: SIKESTON FLY BOTTOM ASH APP III

Dear Luke St Mary:

Please find enclosed the analytical results for the **7** sample(s) the laboratory received on **11/4/22 10:00 am** and logged in under work order **FK01101**. All testing is performed according to our current TNI accreditations unless otherwise noted. This report cannot be reproduced, except in full, without the written permission of Pace Analytical Services, LLC.

If you have any questions regarding your report, please contact your project manager. Quality and timely data is of the utmost importance to us.

Pace Analytical Services appreciates the opportunity to provide you with analytical expertise. We are always trying to improve our customer service and we welcome you to contact the Director of Client Services, Lisa Grant, with any feedback you have about your experience with our laboratory at 309-683-1764 or lisa.grant@pacelabs.com.

pail of Schindler

Gail Schindler Project Manager (309) 692-9688 x1716 gail.schindler@pacelabs.com

SAMPLE RECEIPT CHECK LIST

Items not applicable will be marked as in compliance

Work Order FK01101 YES Samples received within temperature compliance when applicable YES COC present upon sample receipt YES COC completed & legible YES Sampler name & signature present YES Unique sample IDs assigned YES Sample collection location recorded YES Date & time collected recorded on COC YES Relinquished by client signature on COC YES COC & labels match YES Sample labels are legible YES Appropriate bottle(s) received YES Sufficient sample volume received YES Sample containers received undamaged NO Zero headspace, <6 mm present in VOA vials NO Trip blank(s) received YES All non-field analyses received within holding times NO Short hold time analysis

YES

YES

Current PDC COC submitted

Case narrative provided

Case Narrative

MW-3 TDS was originally analyzed within hold time but results did not meet acceptance criteria. The sample was reanalyzed outside hold time with passing QC.

Pace Analytical Services, LLC 2231 W. Altorfer Drive Peoria, IL 61615 (800)752-6651

Sample: FK01101-01 Name: MW-3 Matrix: Ground Wa							Sampled: 11/01/2 Received: 11/04/2 PO #: 30965		
Parameter	Result	Unit	Qualifier	Prepared	Dilution	MRL	Analyzed	Analyst	Method
Anions - PIA									
Chloride	< 1.0	mg/L		11/11/22 19:36	1	1.0	11/11/22 19:36	CRD	EPA 300.0 REV 2.1
Fluoride	< 0.250	mg/L		11/11/22 19:36	1	0.250	11/11/22 19:36	CRD	EPA 300.0 REV 2.1
Sulfate	10	mg/L		11/13/22 12:29	5	5.0 11/13/22 12:29		LAM	EPA 300.0 REV 2.1
General Chemistry - PIA									
Solids - total dissolved solids (TDS)	100	mg/L	н	11/09/22 14:09	1	17	11/09/22 15:02	HRF	SM 2540C
<u> Total Metals - PIA</u>									
Boron	20	ug/L		11/08/22 09:10	5	10	11/11/22 10:10	JMW	EPA 6020A
Calcium	17000	ug/L		11/08/22 09:10	5	200	11/10/22 17:30	JMW	EPA 6020A
Sample: FK01101-02 Name: MW-4 Matrix: Ground Wa							Sampled: 11/01/2 Received: 11/04/2 PO #: 30965		
Parameter	Result	Unit	Qualifier	Prepared	Dilution	MRL	Analyzed	Analyst	Method
Anions - PIA									
Chloride	12	mg/L		11/11/22 20:30	5	5.0	11/11/22 20:30	CRD	EPA 300.0 REV 2.1
Fluoride	< 0.250	mg/L		11/11/22 20:12	1	0.250	11/11/22 20:12	CRD	EPA 300.0 REV 2.1
Sulfate	79	mg/L		11/11/22 20:48	25	25	11/11/22 20:48	CRD	EPA 300.0 REV 2.1
Concret Chamister DIA									
General Chemistry - PIA									
General Chemistry - PIA Solids - total dissolved solids (TDS)	340	mg/L		11/07/22 09:30	1	26	11/07/22 10:54	HRF	SM 2540C
Solids - total dissolved	340	mg/L		11/07/22 09:30	1	26	11/07/22 10:54	HRF	SM 2540C
Solids - total dissolved solids (TDS)	340 940	mg/L ug/L		11/07/22 09:30 11/08/22 09:10	1	26 10	11/07/22 10:54 11/11/22 10:14	HRF	SM 2540C EPA 6020A

Sample: FK01101-03 Name: MW-5 Matrix: Ground Wa							Sampled: 11/01/2 Received: 11/04/2 PO #: 30965		
Parameter	Result	Unit	Qualifier	Prepared	Dilution	MRL	Analyzed	Analyst	Method
Anions - PIA									
Chloride	13	mg/L		11/11/22 21:24	10	10	11/11/22 21:24	CRD	EPA 300.0 REV 2.1
Fluoride	< 0.250	mg/L		11/11/22 21:06	1	0.250	11/11/22 21:06	CRD	EPA 300.0 REV 2.1
Sulfate	250	mg/L		11/11/22 21:42	100	100	11/11/22 21:42	CRD	EPA 300.0 REV 2.1
<u> General Chemistry - PIA</u>									
Solids - total dissolved solids (TDS)	670	mg/L		11/07/22 11:55	1	26	11/07/22 12:59	HRF	SM 2540C
<u> Total Metals - PIA</u>									
Boron	420	ug/L		11/08/22 09:10	5	10	11/11/22 10:17	JMW	EPA 6020A
Calcium	130000	ug/L		11/08/22 09:10	5	200	11/10/22 17:38	JMW	EPA 6020A
Sample: FK01101-04 Name: MW-6 Matrix: Ground Wa							Sampled: 11/01/2 Received: 11/04/2 PO #: 30965		
Parameter	Result	Unit	Qualifier	Prepared	Dilution	MRL	Analyzed	Analyst	Method
Anions - PIA									
Chloride	4.6	mg/L		11/11/22 22:01	1	1.0	11/11/22 22:01	CRD	EPA 300.0 REV 2.1
Sulfate	26	mg/L		11/11/22 22:55	10	10	11/11/22 22:55	CRD	EPA 300.0 REV 2.1
<u> General Chemistry - PIA</u>									
Fluoride	< 0.250	mg/L		11/17/22 15:02	1	0.250	11/17/22 15:02	ANK	SM 4500F C 1997
Solids - total dissolved solids (TDS)	330	mg/L		11/07/22 11:55	1	26	11/07/22 12:59	HRF	SM 2540C
<u> Total Metals - PIA</u>									
<u>Total Metals - PIA</u> Boron	55	ug/L		11/08/22 09:10	5	10	11/11/22 10:21	JMW	EPA 6020A

Sample: FK01101-05 Name: MW-8 Matrix: Ground Wa							Sampled: 11/01/2 Received: 11/04/2 PO #: 30965		
Parameter	Result	Unit	Qualifier	Prepared	Dilution	MRL	Analyzed	Analyst	Method
Anions - PIA									
Chloride	51	mg/L		11/11/22 23:31	10	10	11/11/22 23:31	CRD	EPA 300.0 REV 2.1
Fluoride	< 0.250	mg/L		11/11/22 23:13	1	0.250	11/11/22 23:13	CRD	EPA 300.0 REV 2.1
Sulfate	130	mg/L		11/13/22 12:47	25	25	11/13/22 12:47	LAM	EPA 300.0 REV 2.1
<u> General Chemistry - PIA</u>									
Solids - total dissolved solids (TDS)	500	mg/L		11/07/22 11:55	1	26	11/07/22 12:59	HRF	SM 2540C
<u> Total Metals - PIA</u>									
Boron	440	ug/L		11/08/22 09:10	5	10	11/11/22 10:25	JMW	EPA 6020A
Calcium	110000	ug/L		11/08/22 09:10	5	200	11/10/22 17:45	JMW	EPA 6020A
Sample: FK01101-06 Name: DUPLICATE Matrix: Ground Wa							Sampled: 11/01/2 Received: 11/04/2 PO #: 30965		
Parameter	Result	Unit	Qualifier	Prepared	Dilution	MRL	Analyzed	Analyst	Method
Anions - PIA									
Chloride	51	mg/L		11/12/22 00:07	10	10	11/12/22 00:07	CRD	EPA 300.0 REV 2.1
Fluoride	< 0.250	mg/L		11/11/22 23:49	1	0.250	11/11/22 23:49	CRD	EPA 300.0 REV 2.1
Sulfate	120	mg/L		11/12/22 00:25	100	100	11/12/22 00:25	CRD	EPA 300.0 REV 2.1
General Chemistry - PIA									
Solids - total dissolved				11/07/22 11:55	1	26	11/07/22 12:59	HRF	SM 2540C
solids (TDS)	520	mg/L		11/07/22 11:00	·	20		T II V	
	520	mg/L		1101122 11:55	·	20			
solids (TDS)	520	mg/∟ ug/L		11/08/22 09:10	5	10	11/11/22 10:28	JMW	EPA 6020A

Sample: FK01101- Name: FIELD BL/ Matrix: Ground						Sampled: 11/01/2 Received: 11/04/2 PO #: 30965	22 10:00	
Parameter	Result	Unit	Qualifier Prepare	d Dilution	MRL	Analyzed	Analyst	Method
Anions - PIA								
Chloride	< 1.0	mg/L	11/12/22 0	0:43 1	1.0	11/12/22 00:43	CRD	EPA 300.0 REV 2.1
Fluoride	< 0.250	mg/L	11/12/22 0	0:43 1	0.250	11/12/22 00:43	CRD	EPA 300.0 REV 2.1
Sulfate	< 1.0	mg/L	11/12/22 0	0:43 1	1.0	11/12/22 00:43	CRD	EPA 300.0 REV 2.1
<u> General Chemistry - PIA</u>								
Solids - total dissolved solids (TDS)	37	mg/L	11/07/22 1	1:55 1	17	11/07/22 12:59	HRF	SM 2540C
<u> Total Metals - PIA</u>								
Boron	< 10	ug/L	11/09/22 0	7:40 5	10	11/11/22 11:34	JMW	EPA 6020A
Calcium	< 200	ug/L	11/09/22 0	7:40 5	200	11/10/22 18:14	JMW	EPA 6020A

NOTES

Specifications regarding method revisions, method modifications, and calculations used for analysis are available upon request. Please contact your project manager.

* Not a TNI accredited analyte

Certifications

- CHI McHenry, IL 4314-A W. Crystal Lake Road, McHenry, IL 60050 TNI Accreditation for Drinking Water and Wastewater Fields of Testing through IL EPA Accreditation No. 100279 Illinois Department of Public Health Bacterial Analysis in Drinking Water Approved Laboratory Registry No. 17556
- PIA Peoria, IL 2231 W. Altorfer Drive, Peoria, IL 61615

TNI Accreditation for Drinking Water, Wastewater, Solid and Hazardous Material Fields of Testing through IL EPA Accreditation No. 100230 Illinois Department of Public Health Bacterial Analysis in Drinking Water Approved Laboratory Registry No. 17553 Drinking Water Certifications/Accreditations: Iowa (240); Kansas (E-10338); Missouri (870) Wastewater Certifications/Accreditations: Arkansas (88-0677); Iowa (240); Kansas (E-10338) Solid and Hazardous Material Certifications/Accreditations: Arkansas (88-0677); Iowa (240); Kansas (E-10338)

- SPMO Springfield, MO 1805 W Sunset Street, Springfield, MO 65807 USEPA DMR-QA Program
- STL Hazelwood, MO 944 Anglum Rd, Hazelwood, MO 63042 TNI Accreditation for Wastewater, Solid and Hazardous Material Fields of Testing through KS KDHE Certification No. E-10389 TNI Accreditation for Wastewater, Solid and Hazardous Material Fields of Testing through IL EPA Accreditation No. - 200080 Illinois Department of Public Health Bacterial Analysis in Drinking Water Approved Laboratory, Registry No. 171050 Missouri Department of Natural Resources - Certificate of Approval for Microbiological Laboratory Service - No. 1050

Qualifiers

H Test performed after the expiration of the appropriate regulatory/advisory maximum allowable hold time.

Dail g Schindler

Certified by: Gail Schindler, Project Manager

PACE ANALYTICAL SERVICES WWW.PACELABS.COM

REGULATORY PROGRAM (CIRCLE):	NPDES
MORBCA	RCRA
CCDD	TACO: RES OR IND/COMM

CHAIN OF CUSTODY RECORD

STATE WHERE SAMPLE COLLECTED MO

									LIENT (PLEA								
(1) CLIENT SIKESTON BMU POWER S	TATION		PROJEC		R		DJECT LOC		PURCHAS	E ORDER #	(3) AN	LYSIS	REQUE	STED		(FOR LAB USE ONLY)
<u> </u>		1				B	оттом	ASH	-		\sim	/					ENDIAL 7
ADDRESS 1551 W WAKEFIELD				NUMBER 75-3131			E-MAIL		DATE S	HIPPED							LOGIN # TROILOF I
																	LOGGED BY:
CITY				T)		MATRIX TY			TYPES:							CLIENT: SIKESTON BMU, SIKESTON POWER STATION	
STAT SIKESTON, MO 63801		S	EASE PRIN					WW- WASTEWATER DW- DRINKING WATER GW. GPOUND WATER								PROJECT: SIKESTON BOTTOM ASH	
CONTACT PERSON		-			CC	Jwe	2		GW- GROUND W WWSL- SLUDGE NAS- NON AQUE	OUS SOLID	Ĩ						2022
MR LUKE ST MARY			IPLER'S		/				LCHT-LEACHATE OIL-OIL SO-SOIL SOL-SOLID		- C - C - C - C - C - C - C - C - C - C						PROJ. MGR.: GJ SCHINDLER
				2nd	1. 0	Jo			SOL-SOLID		S04,						
		25	C	-							L.	4					
2 SAMPLE DESCRIPTION (UNIQUE DESCRIPTION AS IT WILL APPEAR ON THE ANALYTICAL	REPORT)		DATE LECTED		ME ECTED	SAMPL GRAB	E TYPE COMP	MATRIX	BOTTLE	PRES CODE	ີ ເ	U.					REMARKS
										CLIENT PROVIDED	0	B					ALMARKS
MW-3		11-	1-22	07	51	x		GW	2	3,6	x	x					
MW-4		11-	1-22	112	11	x		GW	2	3,6	x	x					
MW-5		11-	1-22	10	10	x		GW	2	3,6	x	x					
MW-6		11-	11-1-22 0843			x		GW	2	3,6	x	x					
MW-8		11-	1-22	10	43	x		GW	2	3,6	x	x					
DUPLICATE		11-	1-22			x		GW	2	3,6	x	x					
FIELD BLANK		11-	1-22	10	0	x		DI	2	3,6	x	x					
	The second se	HNO3	4 - NA	н	5 – NA2	28203	6 – UNPF	RESERVED	7 – OTHER								
5 TURNAROUND TIME REQUESTED (PLEASE CIRC (RUSH TAT IS SUBJECT TO PDC LABS APPROVAL AND	CLE) NORM SURCHARGE)	AL R	USH			DATE RES		6	l understand	that by initia	at by initialing this box I give the lab permission to proceed with analysis, even though it ma						ceed with analysis even though it may
RUSH RESULTS VIA (PLEASE CIRCLE) EMAIL	PHONE					012-012-022-			not meet all	sample confi	ormanc	e requir	ements	as defi	ined in th	ne rece	aiving facility's Sample Acceptance stable to report to all regulatory authorities.
EMAIL IF DIFFERENT FROM ABOVE: PHONE # IF DIFFE	RENT FROM ABOVI	:							PROCEED V					•		200-00-00 Period	
RELINQUISHED BY: (SIGNATURE)	DATE		ſ	1	RECEIVE	D BY: (SIG	NATURE)	JL		DATE				>	COMM	ENTS:	(FOR LAB USE ONLY)
Mish Pate	TIME									TIME	1		8).			
RELINQUISHED BY: (SIGNATURE)	DATE				RECEIVE	D BY: (SIGI			-	DATE		~	-	-			
	TIME						,				-		SAM		EMPERA	TURE	
	Sales and the									TIME							D PRIOR TO RECEIPT
RELINQUISHED BY: (SIGNATURE)	DATE		1	1	RECEIVE	D BY: (Slot	NATURE)	A		DATE	11	5h	SAM	IPLE A	RECEN	NCE N	IONCONFORMANT
	TIME			(A)	HA		9	MIN	Dil	TIME	14.	700			NEEDE		Upg YORN
			AMONTO O					v_{\parallel}	M	K	N	Ø	DAT	E AND	TIME TA	KEN F	ROM SAMPLE BOTTLE

Appendix 1b

Laboratory Analytical Results and Quality Control Reports December 13, 2022 Retest Event

Pace Analytical Services, LLC 2231 W. Altorfer Drive Peoria, IL 61615 (800)752-6651

December 30, 2022

Luke St Mary Sikeston BMU, Sikeston Power Station 1551 W Wakefield Sikeston, MO 63801

RE: SIKESTON BOTTOM ASH RESAMPLES

Dear Luke St Mary:

Please find enclosed the analytical results for the **4** sample(s) the laboratory received on **12/15/22 4:00 pm** and logged in under work order **FL03252**. All testing is performed according to our current TNI accreditations unless otherwise noted. This report cannot be reproduced, except in full, without the written permission of Pace Analytical Services, LLC.

If you have any questions regarding your report, please contact your project manager. Quality and timely data is of the utmost importance to us.

Pace Analytical Services appreciates the opportunity to provide you with analytical expertise. We are always trying to improve our customer service and we welcome you to contact the Director of Client Services, Lisa Grant, with any feedback you have about your experience with our laboratory at 309-683-1764 or lisa.grant@pacelabs.com.

Dail of Schindler

Gail Schindler Project Manager (309) 692-9688 x1716 gail.schindler@pacelabs.com

SAMPLE RECEIPT CHECK LIST

Items not applicable will be marked as in compliance

Work Order FL03252 YES Samples received within temperature compliance when applicable YES COC present upon sample receipt YES COC completed & legible YES Sampler name & signature present YES Unique sample IDs assigned YES Sample collection location recorded YES Date & time collected recorded on COC YES Relinquished by client signature on COC YES COC & labels match YES Sample labels are legible YES Appropriate bottle(s) received YES Sufficient sample volume received YES Sample containers received undamaged NO Zero headspace, <6 mm present in VOA vials YES Trip blank(s) received YES All non-field analyses received within holding times NO Short hold time analysis YES Current PDC COC submitted NO Case narrative provided

Sample: FL03252-0	1						Sampled: 12/13/2	22 12:43	
Name: MW-5							Received: 12/15/2		
Matrix: Ground W	ater - Grab						PO #: 30965		
Parameter	Result	Unit	Qualifier	Prepared	Dilution	MRL	Analyzed	Analyst	Method
General Chemistry - PIA									
Solids - total dissolved solids (TDS)	490	mg/L		12/16/22 14:41	1	26	12/16/22 15:25	HRF	SM 2540C
Sample: FL03252-02	2						Sampled: 12/13/2	22 00:00	
Name: MW-5 DUPI	ICATE						Received: 12/15/2	22 16:00	
Matrix: Ground W	ater - Grab						PO #: 30965		
Parameter	Result	Unit	Qualifier	Prepared	Dilution	MRL	Analyzed	Analyst	Method
General Chemistry - PIA									
Solids - total dissolved solids (TDS)	460	mg/L	М	12/16/22 14:41	1	26	12/16/22 15:25	HRF	SM 2540C
Sample: FL03252-0	3						Sampled: 12/13/2	22 10:54	
Name: MW-6							Received: 12/15/2	22 16:00	
Matrix: Ground W	ater - Grab						PO #: 30965		
Parameter	Result	Unit	Qualifier	Prepared	Dilution	MRL	Analyzed	Analyst	Method
Anions - PIA									
Chloride	4.0	mg/L		12/23/22 23:56	1	1.0	12/23/22 23:56	LAM	EPA 300.0 REV 2.1
General Chemistry - PIA									
Solids - total dissolved solids (TDS)	220	mg/L		12/16/22 14:41	1	26	12/16/22 15:25	HRF	SM 2540C
<u> Total Metals - PIA</u>									
Calcium	45000	ug/L		12/20/22 12:10	5	200	12/21/22 10:30	JMW	EPA 6020A

Sample: FL03252-0 Name: FIELD BLA Matrix: Ground V							Sampled: 12/13/2 Received: 12/15/2 PO #: 30965		
Parameter	Result	Unit	Qualifier	Prepared	Dilution	MRL	Analyzed	Analyst	Method
Anions - PIA									
Chloride	< 1.0	mg/L		12/24/22 00:32	1	1.0	12/24/22 00:32	LAM	EPA 300.0 REV 2.1
<u> General Chemistry - PIA</u>									
Solids - total dissolved solids (TDS)	< 17	mg/L		12/16/22 14:41	1	17	12/16/22 15:25	HRF	SM 2540C
<u>Total Metals - PIA</u>									
Calcium	< 200	ug/L		12/27/22 09:01	5	200	12/27/22 14:40	JMW	EPA 6020A

NOTES

Specifications regarding method revisions, method modifications, and calculations used for analysis are available upon request. Please contact your project manager.

* Not a TNI accredited analyte

Certifications

- CHI McHenry, IL 4314-A W. Crystal Lake Road, McHenry, IL 60050 TNI Accreditation for Drinking Water and Wastewater Fields of Testing through IL EPA Accreditation No. 100279 Illinois Department of Public Health Bacterial Analysis in Drinking Water Approved Laboratory Registry No. 17556
- PIA Peoria, IL 2231 W. Altorfer Drive, Peoria, IL 61615

TNI Accreditation for Drinking Water, Wastewater, Solid and Hazardous Material Fields of Testing through IL EPA Accreditation No. 100230 Illinois Department of Public Health Bacterial Analysis in Drinking Water Approved Laboratory Registry No. 17553 Drinking Water Certifications/Accreditations: Iowa (240); Kansas (E-10338); Missouri (870) Wastewater Certifications/Accreditations: Arkansas (88-0677); Iowa (240); Kansas (E-10338) Solid and Hazardous Material Certifications/Accreditations: Arkansas (88-0677); Iowa (240); Kansas (E-10338)

SPMO - Springfield, MO - 1805 W Sunset Street, Springfield, MO 65807 USEPA DMR-QA Program

STL - Hazelwood, MO - 944 Anglum Rd, Hazelwood, MO 63042 TNI Accreditation for Wastewater, Solid and Hazardous Material Fields of Testing through KS KDHE Certification No. E-10389 TNI Accreditation for Wastewater, Solid and Hazardous Material Fields of Testing through IL EPA Accreditation No. - 200080 Illinois Department of Public Health Bacterial Analysis in Drinking Water Approved Laboratory, Registry No. 171050 Missouri Department of Natural Resources - Certificate of Approval for Microbiological Laboratory Service - No. 1050

Qualifiers

M Analyte failed to meet the required acceptance criteria for duplicate analysis.

Dail g Schindler

Certified by: Gail Schindler, Project Manager

PACE ANALYTICAL SERVICES WWW.PACECLABS.COM

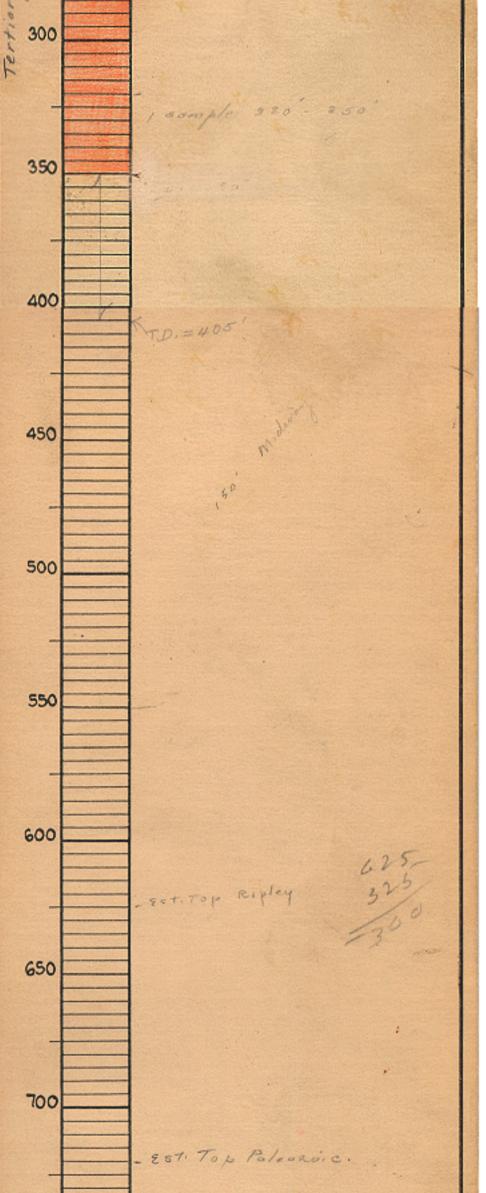
Pace

NPDES
RCRA
TACO: RES OR IND/COMM

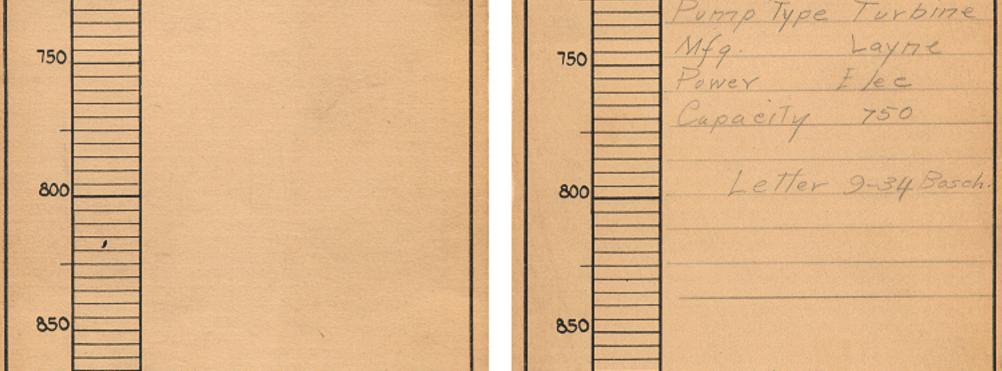
CHAIN OF CUSTODY RECORD

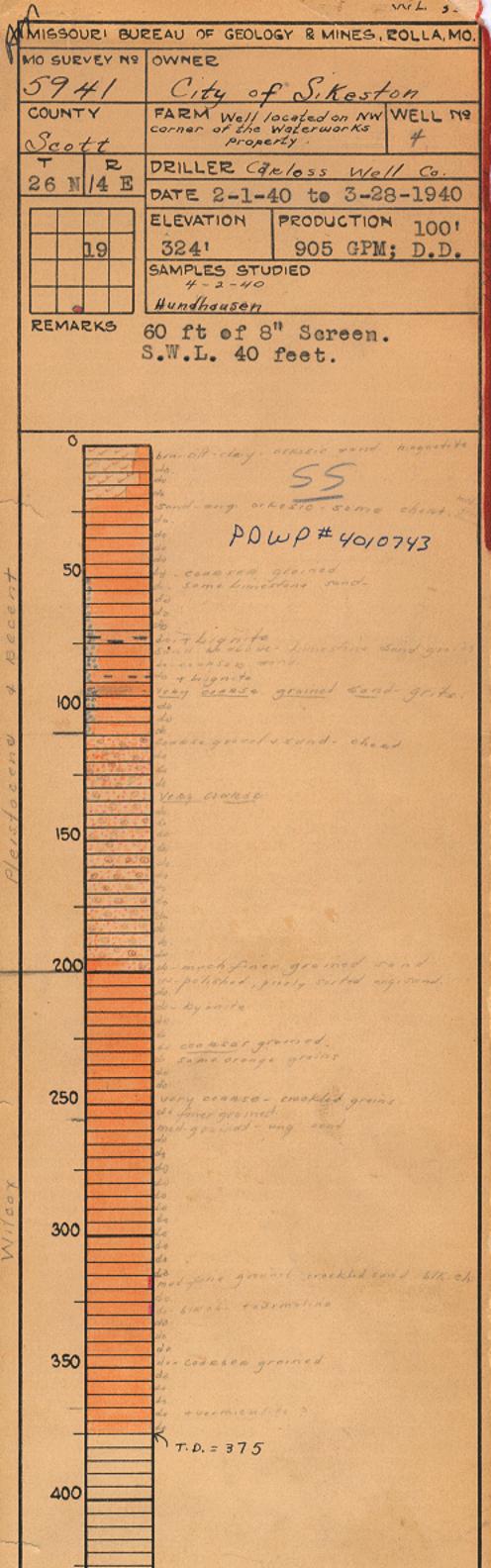
STATE WHERE SAMPLE COLLECTED IL

		LIGHTED AREA	S MUST BE	E COMPLET	ED BY CL	IENT (PLEAS	SE PRINT)	\square						(FOR LAB USE ONLY)		
1) SIKESTON POWER STATION	PROJECT	NUMBER	FRO	ECTEOORI				(3)) ANA	LYSIS F	REQUES	TED		(4) FLAD - 011		
	PHONE N	UMBER		E-MAIL		DATE SH	HIPPED		Τ					LOGIN # FL03252-04		
1551 W WAKEFIELD	573-47	573-475-3131			1 ⁻¹									LOGGED BY:		
STAT SIKESTON, MO 63801		Anthony Devster				MATRIX TYP WW. WASTENITER DW. ENGINEER WW. WASTENITER DW. ENGINEER WW. SILUDOE WW. WASTENITER WW. SILUDOE WW. WASTENITER WW. WASTENITER								STATION SIKESTON BOTTOM ASH 2022 RESAMPLES		
CONTACT PERSON MR LUKE ST MARY	SAMPLER'S SIGNATURE	lees	L-			OIL-OIL SO-SOIL SOL-SOLID		OIL-OIL			CA					GJ SCHINDLER
SAMPLE DESCRIPTION 2 (UNIQUE DESCRIPTION AS IT WILL APPEAR ON THE ANALYTICAL REPORT)	DATE COLLECTED	TIME COLLECTED	SAMPL GRAB	E TYPE COMP	MATRIX TYPE	BOTTLE COUNT	PRES CODE CLIENT PROVIDED	TDS	СĽ,					REMARKS		
MW-5	12-13-22	laus	x		GW	1	6	X								
MW-5 MW-5 DUPLICATE	12-13-22		x		GW	1	6	X								
MW-6	12-13-22	1054	x		GW	2	3,6	X	X							
FIELD BLANK	12-13-22	1054	X		DI	2	3,6	X	X			100				
		0														
				-												
								_								
				-				_								
							<u> </u>									
CHEMICAL PRESERVATION CODES.	3 – HNO3 4 – NA	AOH 5 – NA	DATE RE		RESERVED	7 – OTHEF										
5 TURNAROUND TIME REQUESTED (PLEASE CIRCLE) NO (RUSH TAT IS SUBJECT TO PACE LABS APPROVAL AND SURCHARGE RUSH RESULTS VIA (PLEASE CIRCLE) EMAIL PHONE	RMAL RUSH		NEED		6									roceed with analysis, even though it may reiving facility's Sample Acceptance ptable to report to all regulatory authorities.		
EMAIL IF DIFFERENT FROM ABOVE: PHONE # IF DIFFERENT FROM AB	OVE:					PROCEED	WITH ANAL	YSIS AN	ND QUA	ALIFY RI	ESULTS:					
RELINQUISHED BY: (SIGMATURE)	-14-22	RECEIN	/ED BY: (SI	GNATURE)			DA			-(8	COM	MENTS	: (FOR LAB USE ONLY)		
TIME	5900	0				-	TIN			`				H		
RELINQUISHED BY: (SIGNATURE) DATE	0	RECEI	VED BY: (SI	GNATURE)												
		RECEN		IGNATURE)				5	-10	S	AMPLE(S	S) RECE	EIVED (NONCONFORMANT		
ကို INQUISHED BY: (SIGNATURE) DATE				\cap	//	1		1/19			EPORT I	S NEED	DED	I FROM SAMPLE BOTTLE		
of of		9	u	-14	M	\sim		10	00	5 °	AIEAN	JIME	TAKEN			
				1							C	301	vit	ev		
		V		V												

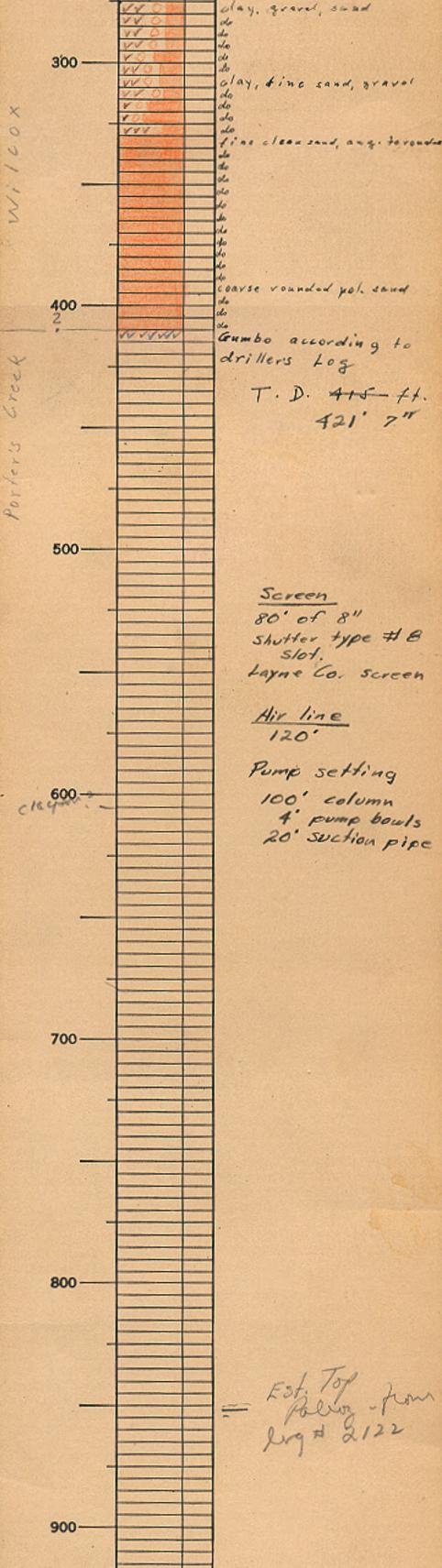

Appendix 2

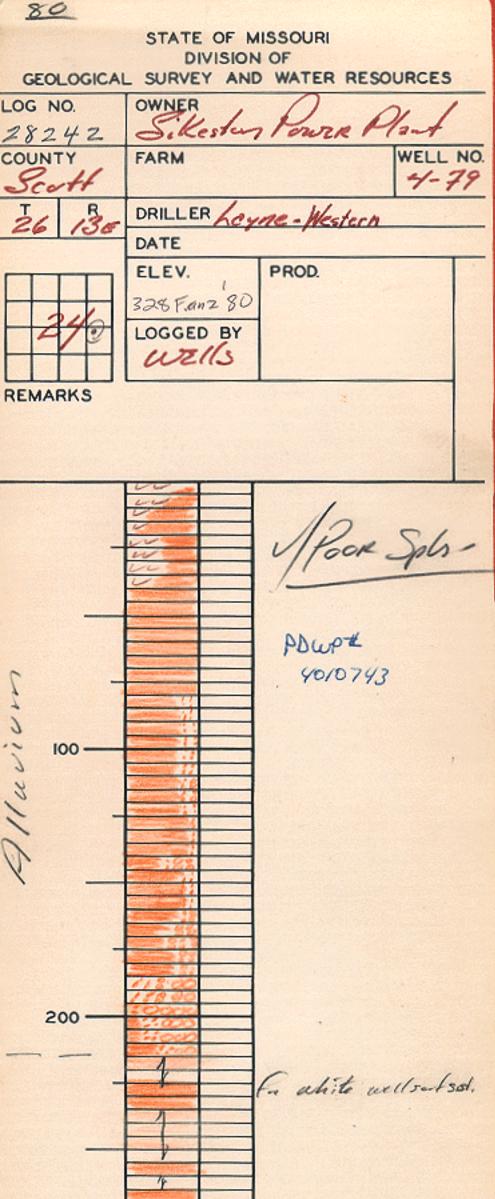
Geologic Drilling Logs for High-Yield Wells Near SPS


164 WL-81-5p15 STATE OF MISSOURI DIVISION OF GEOLOGICAL SURVEY AND WATER RESOURCES LOG NO. OWNER City of Sikeston 19120 COUNTY WELL NO. FARM Scott 6 Т 148 DRILLER Layne - Arkansas Co 26 DATE 8-10-60 ELEV Browning PROD. 1641 GPM. 330 NDEX SHEET NO. LOGGED BY Julells 8-26-60 0 REMARKS 307 - 4 18" esg 34" hole @ bottom. SWL. 66' BRN, MOD. CRSU 50 clo 5 5 clo de w/oce GRAN -SD. MED - VICESE W/ SRAW. cl. do PDWP# 10 4010743 10 do SO BEN, MED lo Genry. de de cíc do Cr6 Allovion de SD-CASTO BARN 100de do de de do 10 do w/pea GRAVEL yellow In la vierse. 200do highly polished dewy GAMME de do de 20 do de do 50. offer to oce CRSP. sillyer office to met. sille gray. 300 W. loox de. 11 su-gray alta to exse-silly -sugray alta locase so-meil to care. 50. alta to Occo deese. silly. do inc? 400 sil Tep. Portons -Creech TD /09

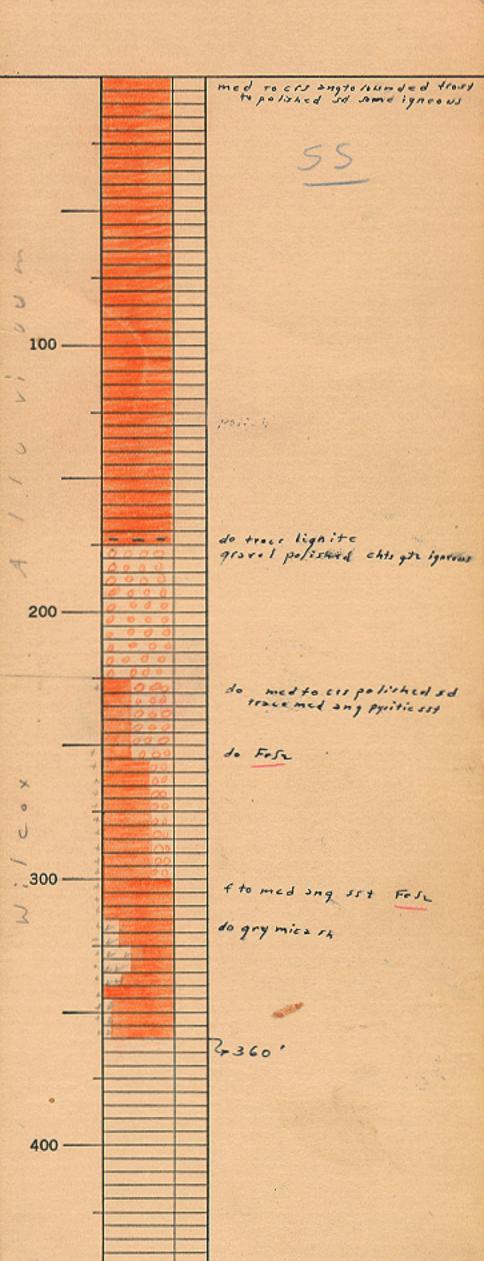

W1-79-2P15 STATE OF MISSOURI DIVISION OF GEOLOGICAL SURVEY AND WATER RESOURCES OWNER LOG NO. ð Sikeston Water Works CI 26235 FARM & ble N. of Wala & Light WELL NO. COUNTY Scott Plent in alley. DRILLER hayne Arkansas R 26 14E 16-6-69 - Splaker: 23-6-69 Sikesten North DATE ELEVS; /ver men PROD. test 1500 gpm 44 ft dd 9 327 LOGGED BY loly 1-69 REMARKS SWL 68 CHY & SOIL - BRN JERY MAND. BRW. Ulfa- fu- Stanger SAND - CLENEL - Well Sort In- Ned NO 10 SHAN. CLEMA UTTA- Ins . wellsort 00 SHAND CLEAN SIFA well Sortes do de Mulo - cum. In - ces cre. 00. Dans. CLORA - for crie wellout Ho - - Poorly sorter | - FN- derse - oce Gran, Do PDupt Do. Do. 4010743 AN- Crse 100 . Do w/ ace v/ene 5 Gran. No IN. V/erie w/ Gran. Po Do w/PER Grovel. Do - Busicelly erse CRSE - Wlocc crant' P.G. Crie - Vicrie - Wil Gran & Pra Grav. Crse- ulcrie 120 Do . w/aran 00 20 00 men - erse wi uferse i Gran 120 SAND-MED. WIGHAN ! Poo Good. PU 200 -SAND - Cras w/Bran. 00 erse-vierse wigram i Pon Grave. MED- crse wi Gran ? Pon Gravel. mal- viene w/P.G do In eno w/RG. Probles Dirty CLAY. BAN al Pepples. SAND+ FA-Med. SILTY. 20 AND- Ulfa- for

MISSUEL BUREAU OF GEOLGY & MINES, POLLA, MO MISSENT BUREAU OF SEOLOGY & MILLS, ROLLA, MO Lon Swanner Water MO SURVEY NO OWNER MO SURVEY Nº OWNER 2700 City of Sikeston FARM Municipal Plant 2700 City of Sikeston COUNTY WELL Nº WELL Nº COUNTY Scott of Sikeston Scatt 3 @ Municipal Plank 3 T DRILLER Cortess well supply Co. R R DRILLER Corliss Well Co. 2618 14E 26N/4E DATE DATE Dec. 1932 Dec. 1932 ELEVATION PRODUCTION ELEVATION PRODUCTION 327 327 750 G.P.M. SAMPLES STUDIED 19 SAMPLES STUDIED 2-15-38 Hundhausen Farrar REMARKS From sples. submitted. REMARKS Elev. 300 27-11A S.W.4. = 27' sand, subrang. artisora magne 0 Sand, polished in the larger gran save rounded tragments It granite with a small and of green of dark colored PDWP# do + garnet 4010743 iquedes rock POWP # 70/0743 - marnet - marnetita Much coarser & less royuded igneous rock. Fragments chiefly granitie in small. Very Rive sand in small. schles. Igneous schutes 50 50 8/23/62 adort mixed with this Tome 590 cond. 220 micromhog off 7.2 Chiefly medium gramed said same coarse material as tem from USES above. 100 100 ANAL, NO.2091 T.D.S. 153.0 CL. 6.3 SOA 1.4 150 150 - silverped prosiling mallant, here have al 200 200 0000 100 mpla 194 to 218 Chiefly drob brownish grey day Tangrey clay - Lognate 150mplo \$15'- to 2.50' - Clear angular gt2 and medium course ung. sand some of the langer 250 grains are poliched 250 250 150mp/2 260 10 920 one sole





WL 83 5 STATE OF MISSOURI **DIVISION OF** GEOLOGICAL SURVEY AND WATER RESOURCES LOG NO. OWNER City of Sikeston 11,630 COUNTY FARM WELL I Scott 5 14R т DRILLER Layne Arkansas 26 ZEE 7-651 DATE 8-1551 ELEV. 330 PROD. 880 gpm 335 Banks LOGGED BY S. Marin Korie August 29,57 0 REMARKS 32'05 330' of 12" csg 60' of 8" csg 80' of 8" screen \$0'05 32" & 330'0 \$ 17 Hale At. Water tank SWL 2 soil and sond do soud, igneous frage gravel, coarse sand rounded sand do do do coarse sand, graves eurl do rounded sand, grand U do PDWP# 4 to 20 10 4010743 do do graval of isucius fragma 100 -(1) -4 2 to gravel, coarse coarse sand sand 3 10 0.6 8 rover = de, to . stated Plei uto coarse cand do gravel, coarce sand to de L medium usause can avoid coerce sand avol 200 -L h do sand de do ho de 20 de de do. chay 40



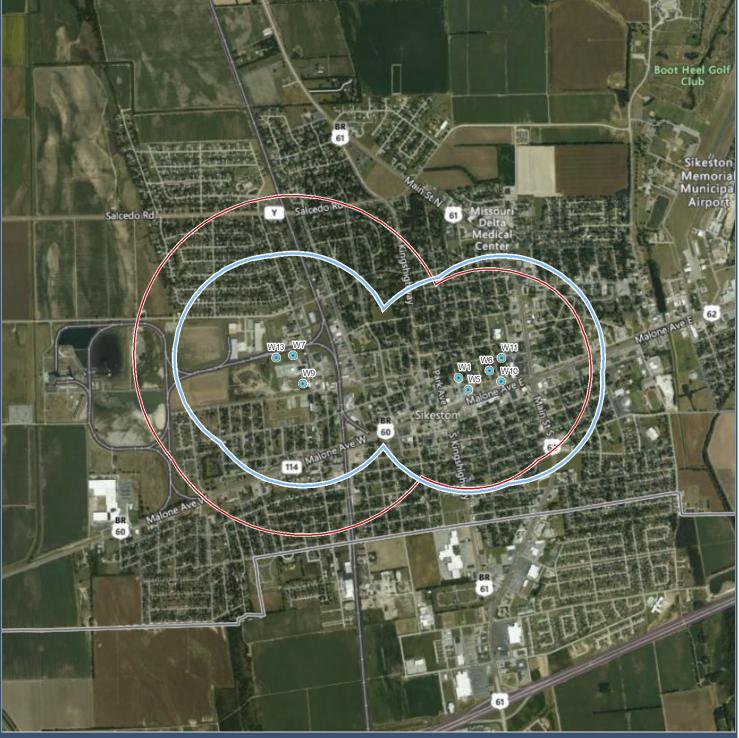
17 STATE OF MISSOURI DIVISION OF GEOLOGICAL SURVEY AND WATER RESOURCES LOG NO. OWNER illestan Vower 28241 COUNTY WELL NO. FARM Scott R DRILLER Layne-WESTERR 26 DATE ELEV. PROD. 3 05 FANZ 80 LOGGED BY with. REMARKS 80'W, 15'N of Well #2 lecation PDWPZ 4010743 2 Havien 100 . Noxidize, hematice If yell sd. 200 Wilc

wilcox 300 Mf. white sol. 6, PC 400

WL 715 STATE OF MISSOURI DIVISION OF GEOLOGICAL SURVEY AND WATER RESOURCES LOG NO. OWNER KESTON ROOM Coca - COLA BOTTLING Co. 107/3 COUNTY FARM WELL NO. SCOTT - ar Loss Welling DRILLER R 14E 26 DATE mar. 1949 ELEV. Brawning PROD. 328 Rentes LOGGED BY McNes 19 62 5/11/49 REMARKS

Appendix 3a

2020 Sikeston Public Well Assessment Reports (CARES)


General System Information PWSS No. 4010743

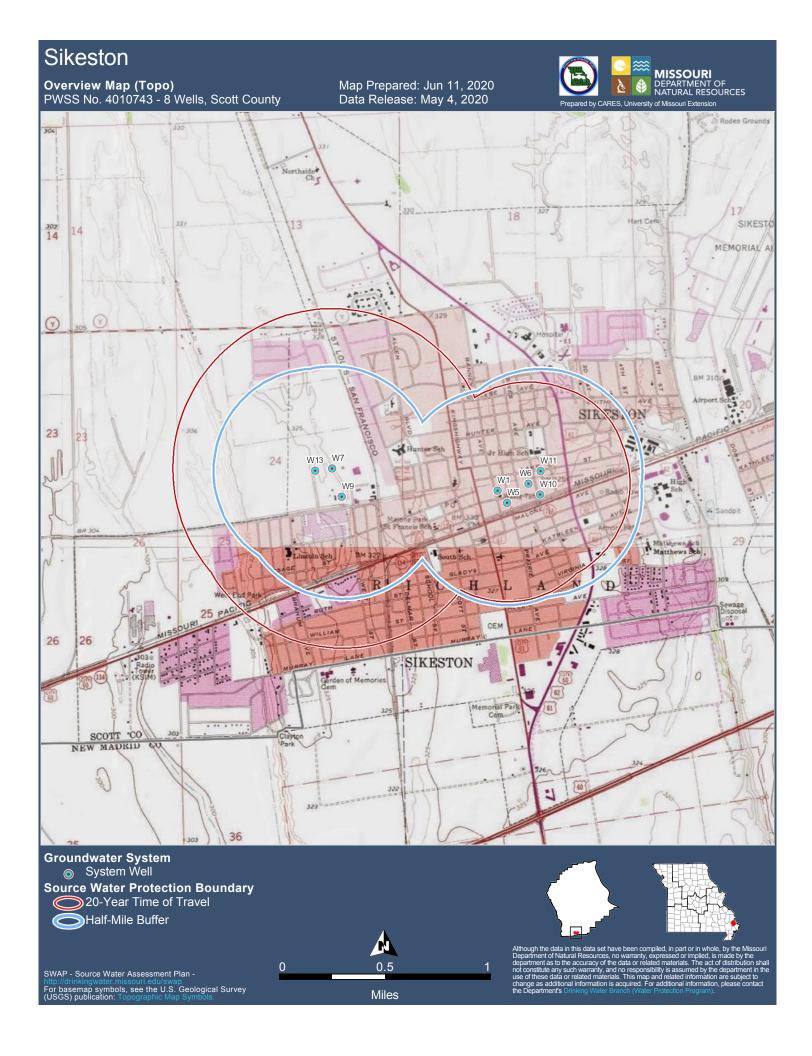
PVVSS NO. 4010743	Prepared by CARES, University of Missouri Extension
Name	Sikeston
PWSSID	MO4010743
Population Served	16,393
Primary County Served	Scott
Service Connections	7,908
Source(s) of Water	Southeast Missouri Lowlands Groundwater Province
System Classification	Community (C)
Primary Source Type	Groundwater (GW)
System Type	Municipality
System Treatment	4-log Treatment of Viruses, Fluoridation, Greensand Filtration, Sedimentation, Gaseous Pre-Chlorination, Permanganate, Slat Tray Aeration, Gaseous Post-Chlorination, Diffused Aeration, (Pre) pH Adjustment, pH Adjustment, Rapid Sand Filtration
DNR Region of Operations	Southeast Regional Office
Source Water/Wellhead Protection Plan	No
Drinking Water Watch	Drinking Water Watch
Reference Maps	
Although the data in this data a accuracy of the data or related materials. This map and relate Protection Program).	set have been compiled, in part or in whole, by the Missouri Department of Natural Resources, no warranty, expressed or implied, is made by the department as to the d materials. The act of distribution shall not constitute any such warranty, and no responsibility is assumed by the department in the use of these data or related d information are subject to change as additional information is acquired. For additional information, please contact the Department's Drinking Water Branch (Water

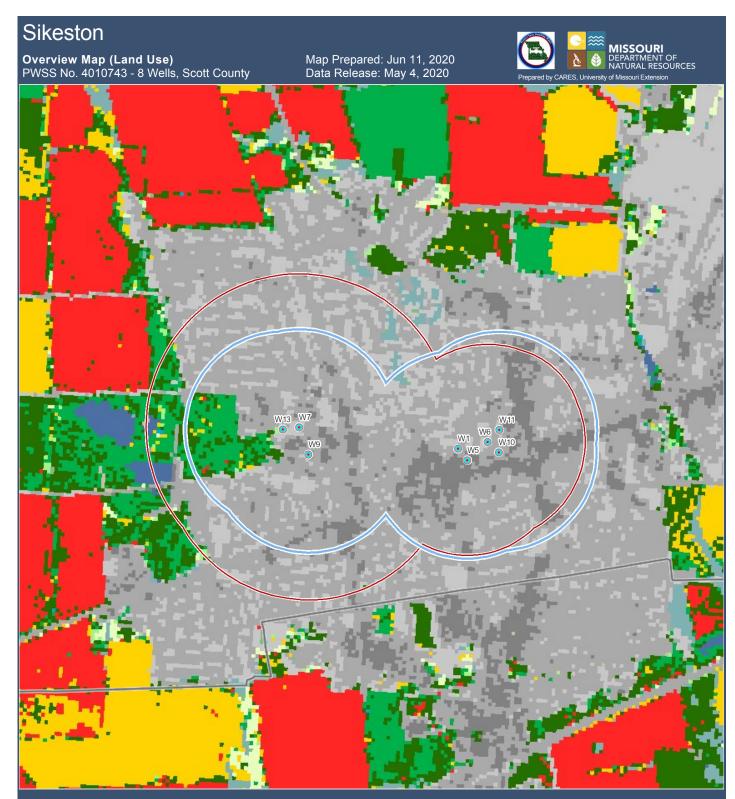
Overview Map (Aerial) PWSS No. 4010743 - 8 Wells, Scott County Map Prepared: Jun 11, 2020 Data Release: May 4, 2020

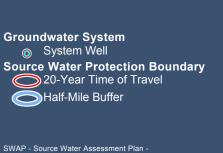
Groundwater System System Well Source Water Protection Boundary 20-Year Time of Travel Half-Mile Buffer

SWAP - Source Water Assessment Plan http://drinkingwater.missouri.edu/swap Aerial Photos: Bing Maps, Microsoft. Jun 11, 2020.

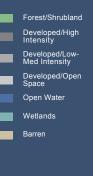
Miles


0.5


 \cap



Although the data in this data set have been compiled, in part or in whole, by the Missouri Department of Natural Resources, no warranty, expressed or implied, is made by the department as to the accuracy of the data or related materials. The act of distribution shall not constitute any such warranty, and no responsibility is assumed by the department in the use of these data or related materials. This map and related information are subject to change as additional information is acquired. For additional information, please contact the Department's Drinking Water Branch (Water Protection Program).



http://drinkingwater.missouri.edu/swap Aerial Photos: Bing Maps, Microsoft. Jun 11, 2020. Land Use

0

Corn
Cotton
Rice
Soybeans
Other Crop
Other Hay/Non Alfalfa
Grassland/Pasture

Although the data in this data set have been compiled, in part or in whole, by the Missouri Department of Natural Resources, no warranty, expressed or implied, is made by the department as to the accuracy of the data or related materials. The act of distribution shal not constitute any such warranty, and no responsibility is assumed by the department in the use of these data or related materials. This map and related information are subject to change as additional information is acquired. For additional information, please contact the Department's Dinking Water Branch (Water Protection Program).

Miles

0.5

Sikeston				· · · · · · · · · · · · · · · · · · ·
Land Use Statistics PWSS No. 4010743		Map Prepared: Jun 11, 2020 Data Release: May 4, 2020	Prepared by CARES, U	MISSOURI DEPARTMENT OF NATURAL RESOURCES
Land Use	% Land Area, 2017	% Land Area, 2018	% Land Area, 2019	Avg. % Land Area
Corn	0	0	0	0
Cotton	0	0	0	0
Rice	0	0	0	0
Soybeans	0	0.04	0	0.01
Other Crop	0	0	0	0
Other Hay/Non-Alfalfa	0	0	0	0
Grassland/Pasture	0	0	0	0
Forest/Shrubland	0	0	0	0
Developed/High Intensity	23.04	22.78	23.04	22.95
Developed/Low-Med Intensity	62.14	61.83	61.3	61.76
Developed/Open Space	14.82	15.35	15.66	15.27
Open Water	0	0	0	0
Wetlands	0	0	0	0
Barren	0	0	0	0
Although the data in this data set have been con accuracy of the data or related materials. The a materials. This map and related information are	mpiled, in part or in whole, by the N act of distribution shall not constitu subject to change as additional inf	Missouri Department of Natural Resources, te any such warranty, and no responsibility formation is acquired. For additional informa	no warranty, expressed or implied, is assumed by the department in th tion, please contact the Departmen	is made by the department as to the e use of these data or related t's Drinking Water Branch (Water

Sikeston					SOURI
Well/Intake Data - PW Scott County, Sheet 1 c		Sheet Prepared	d: Jun 11, 2020	DEPA	ARTMENT OF JRAL RESOURCES
Well Number Local Well Name Well ID # DGLS ID #	W1 Well #1, Plant #2 13051 0011630	W5 Well #6, Plant #2 13049 0019120	W6 Well #7, Plant #2 13048 0026235	W7 Well #8, Plant #3 13047	W9 Well #10, Plant #3 13045
Status	Active	Active	Active	Active	Emergency
Latitude	36.879040	36.878180	36.879540	36.880623	36.878620
Longitude	-89.586450	-89.585580	-89.583700	-89.601124	-89.600250
12-Digit Hydrologic Unit	080202010305	080202010305	080202010305	080202040604	080202040604
County	Scott	Scott	Scott	Scott	Scott
MoDNR Region	Southeast	Southeast	Southeast	Southeast	Southeast
Groundwater Province ¹	Southeast Missouri Lowlands Gr	Southeast Missouri Lowlands Gr	Southeast Missouri Lowlands Gr	Southeast Missouri Lowlands Gr	Southeast Missouri Lowlands Gr
Source Aquifer(s) ²	Wilcox aquifer	Wilcox aquifer	Wilcox aquifer	Alluvial aquifer	Alluvial aquifer
Confined/Unconfined ³	Unconfined	Unconfined	Unconfined	Unconfined	Unconfined
Regional Drilling Area ⁴	Area 5	Area 5	Area 5	Area 5	Area 5
Total Dissolved Solids ⁵	undetermined	undetermined	undetermined	undetermined	undetermined
Date Drilled (year)	1951	1960	1969	1976	1959
Material (C/U)	Unconsolidated	Unconsolidated	Unconsolidated	Unconsolidated	Unconsolidated
Casing Base Formation	Wilcox	Wilcox	Wilcox	Alluvium	Alluvium
Total Depth Formation	Midway	Wilcox	Midway	Alluvium	Alluvium
Total Depth	421	401	404	145	142
Ground Elevation (ft)	327	326	326	325	325
Casing Depth (ft)	331	307	309	108	119
Casing Size (in) Casing Type	12	18	18	18 Steel	12 Steel
Screen Length (ft)	81	80	80	30	21
Screen Size (in)	8	12	12	12	12
Static Water Level (ft)		66	65	27	30
Well Yield (gpm)	600	1100	1450	1300	1000
Head (ft)	90	69	105	57	34
Draw Down (ft)	60	54	59	33	
Pump Test Date (year)	1975	1960	1992	1976	1987
Pump Type Pump Manufacturer	Vertical Turbine	Vertical Turbine	Vertical Turbine	Vertical Turbine	Vertical Turbine
Pump Depth (ft)	150	135	170	84	64
Pump Capacity (gpm)	863	1500	1600	1350	1150
Pump Meter (Y/N)					
GWUDISW (Y/N)					
Surface Drainage State Approved (Y/N)					
Liquefaction Risk	High	– High	– – – – – – – – – – – – – – – – – – –	High	High
Landslide Risk	Low	Low	Low	Low	Low
Collapse Risk	Low	Low	Low	Low	Low
Flood Risk	Low	Low	Low	Low	Low
Surface Contamination Risk	Low	Low	Low	Moderate	Moderate
Conduit Flow Risk ⁶	K6	K6	K6	K6	K6

Although the data in this data set have been compiled, in part or in whole, by the Missouri Department of Natural Resources, no warranty, expressed or implied, is made by the department as to the accuracy of the data or related materials. The act of distribution shall not constitute any such warranty, and no responsibility is assumed by the department in the use of these data or related materials. This map and related information are subject to change as additional information is acquired. For additional information, please contact the Department's Drinking Water Branch (Water Branch (Water Branch))

Well/Intake Data - PWSS No. 4010743 Scott County, Sheet 2 of 2

Sheet Prepared: Aug 12, 2020

Well WunberW10W11W13Uccal Well RamWell #11, Plant #3Well #13 Plant #3DGLS ID #StatusActiveActiveLatitude36, 87877036, 88044036, 87047036, 880459Longitude49, 526260-89, 6263012-Digt Hydrologic Unit080202010305080202040604CountySoutheastSoutheastGroundwater ProvincelSoutheastSoutheastGroundwater ProvincelSoutheastSoutheastGroundwater ProvincelUnconfinedUnconfinedUnconfinedUnconfinedUnconfinedGroundwater ProvincelUnconfinedUnconfinedGroundwater Provincel19871991Coaling State (n)100100Ground Elevation (f)30391Ground Elevation (f)30301<	Scott County, Sheet 2 of 2				Prepared by CARES, University of Missouri Extension
Well D# DCLS D #130441304318782DCLS D #StatusActiveActiveActiveLatitude36.87877036.8044036.80459Longfuide49.582680-89.56261500201030512-Digit Hydrologic Unit080202010305080202010305080202040604CountyScottScottScottGroundwater Province1SoutheastSoutheastSoutheastGroundwater Province1ConfinedUnconfinedUnconfinedConfinedUnconfinedUnconfinedUnconfinedRegional Drilling AreafArea 5Area 5Area 5Area 5Area 5Area 5Area 5Area 5Area 5Area 5Areaf 5Area 5Area 5Areaf 5Area 5Area 5Area 5Area 5Area 5Areaf 5Area 5Area 5Areaf 5Area 5Area 5Areaf 5Area 5Area 5Areaf 7MicoxAlterial (Vino1987Cota 100001000C	Well Number	W10	W11	W13	
DGLS ID #ActiveActiveStatusActiveActiveLatitude36.87377036.880459Longitude-99.582680-99.60261512-Digit Hydrologic UI08020201030508020204604CountyScottScottGroundwster ProvingSoutheastSoutheastSource Aquifer(s)2WilcoxAlluviaConfined/LongingAreadInconfinedUnconfinedIorolingAreadInconfinedUnconfinedDate Drilling AreadParsArea 5Total Dissolved SolidsUndeterminedUnconfinedDate Drilling AreadInconsolidatedUnconsolidatedDate Drilling AreadInconsolidatedUnconsolidatedDate Drilling AreadInconsolidatedUnconsolidatedDate Drilling AreadInconsolidatedUnconsolidatedDate Drilling AreadInconsolidatedUnconsolidatedConfined/LocalityUnconsolidatedUnconsolidatedDate Drilling AreadInfo1991Date Drilling AreadInfoSource Aquifer(s)2UnconsolidatedDate Drilling AreadInfoSource Aquifer(s)2UnconsolidatedDate Drilling AreadInfoDate Drilling AreadInfoSource Aquifer(s)2UnconsolidatedDate Drilling AreadInfoDate Drilling AreadInfoDate Drilling AreadInfoDate Drilling AreadInfoDate Drilling AreadInfoDate Drilling AreadInfo	Local Well Name	Well #11, Plant #1	Well #12	Well #13 Plant #3	
StatusActiveActiveActiveActiveLatitude36.87877036.8044036.86459Longitude95.9268095.92620180.920210305802020160412-Digit Hydrologic UniScottScottScottBoundesterSoutheastSoutheastSoutheastGrundwater ProvincelSoutheastSoutheastSoutheastSource Aquifer(s) ² WilcoxWilcoxAlluvialConfinedUnconfinedUnconfinedUnconfinedRegional Drilling AreafArea 5Area 5Total Dissolve SourceMilcoxMilcoxAlluvianDaterilled (year)19871991O13Material (C/U)UnconsolidatedUnconsolidatedUnconsolidatedCostal Basel SourceWilcoxMilcoxAlluviumTotal Depth FormatioWilcoxWilcoxAlluviumTotal Depth (1)300292111Casing Base FormatioVilcoxSteelSteelCasing Save (1)10012	Well ID #	13044	13043	18782	
Latitude36.87877036.88044036.880459Longitude-89.582680-89.582630-89.602615CourtyScottScottScottCourtyScottScottScottGroundwater ProvinelSutheastSoutheast MissouriCourhards MissouriCourdigrif(s)2WilcoxWilcoxAluvialConfined/Unconfined3UnconfinedUnconfinedUnconfinedConfined/Unconfined4UnconfinedUnconfinedUnconfinedDate Drilled (year)198719912013Casing Base FormationWilcoxMiloxAluviantTotal Disolve Soligs4undet erminedUnconsolidatedCosing Date FormationWilcoxAluviantTotal Depth FormationWilcoxAluviantTotal Depth formationWilcoxAluviantTotal Depth formationYilcoxWilcoxAluviantTotal Depth formation102222Casing Dapth (ft)300292111Casing Size (in)161816Casing TypeSteelSteelSteelScreen Size (in)101210Pump Test Date (year)19971991Pump Test Date (year)19971991Pump Test Date (year)16010Pump Test Date (year)16010Pump Test Date (year)16010Pump Test Date (year)19971991Pump Test Date (year)160100Pump Depth (ft)<	DGLS ID #				
Longitude99.58268069.58268069.6021512-bigt Hydrologic UN6020201030508020204064CountyScottScottScottMoDNR RegionSoutheastSoutheastSoutheastGroundwater Province1SoutheastSoutheast MissouriConfined7WilcoxMilcoxAlluvialConfined7WilcoxMilcoxAlluvialConfined7UnconfinedUnconfinedUnconfinedRegion1D/Illing AreaArea 5Area 5Area 5Total Dissolved Solids5undeterminedUnconsolidatedUnconsolidatedMaterial (CV)UnconsolidatedUnconsolidatedUnconsolidatedMaterial (CV)UnconsolidatedUnconsolidatedUnconsolidatedGround Elevation (ff)30039116Ground Elevation (ff)30029211Casing Sase FormationWilcoxXileviumTotal Depth FormationWilcoxXileviumGround Elevation (ff)30029211Casing Size (ff)1616Casing Size (ff)16280State Water Level (ff)658031Hydre Level (ff)1022400Head (ff)109400Pump Teyt Deta100100Pump Teyt Deta100100Pump Teyt Deta100100Pump Deta100100Pump Deta100100Pump Deta100100Pump Deta100100	Status	Active	Active	Active	
12-Digit Hydrologic Unit080202010305080202010305080202040604CourtyScottScottScottMoDNR RegionSoutheastSoutheastSoutheastGroundwater ProvincelCowlandsCowlandsCowlandsSource Aquifer(s)2WilcoxWilcoxAlluvialConfined/Unconfined3UnconfinedUnconfinedUnconfinedRegional Drilling Area4Area 5Area 5Area 5Total Disolved Solids5undeterminedundeterminedUndeterminedDate Drilled (year)198719912013Material (C/U)UnconsolidatedUnconsolidatedUnconsolidatedCasing Base FormationWilcoxAlluviumMicoxTotal Depth FormationWilcoxWilcoxAlluviumTotal Depth FormationWilcoxVilcoAlluviumTotal Depth FormationWilcoxVilcoxAlluviumTotal Depth FormationWilcoxVilcoxAlluviumTotal Depth Formation161816Casing Size (in)161816Casing Size (in)1012	Latitude	36.878770	36.880440	36.880459	
CountyScottScottScottScottMaDNR RegionSoutheastSoutheastSoutheastSoutheastGroundwater ProvincelSoutheast MissouriSoutheast MissouriSoutheast MissouriSource Aquifer(s)2WilcoxAlluvialConfined/UnconfinedUnconfinedUnconfinedRegional Drilling Area4Area 5Area 5Area 5Area 5Area 5Total Dissolved Solids ⁵ undeterminedundeterminedDate Drilled (year)198719912013Material (C/U)UnconsolidatedUnconsolidatedCasing Base FormationWilcoxWilcoxAlluviumTotal Depth FormationWilcoxWilcoxAlluviumTotal Depth FormationWilcoxWilcoxAlluviumCasing Size (in)161816Casing Size (in)161810Screen Length (ff)808011Screen Length (ff)10628352400Head (ff)1099469Draw Down (ff)174174100Pump TypeVertical TurbineVertical TurbinePump TypeVertical Turbine	Longitude	-89.582680	-89.582630	-89.602615	
MoDNR RegionSoutheastSoutheast MissouSoutheast MissouSoutheast MissouGroundwater ProvinedSoutheast MissouSoutheast MissouSoutheast MissouSource Aquifer(s)2WiloxWiloxAlluvialConfined/UnconfinedUnconfinedUnconfinedUnconfinedRegional Drilling Area4Area 5Area 5Area 5Total Dissolved Solids5UndeterminedUndeterminedDate Drilled (year)198719912013Casing Base FormationWiloxWiloxAlluviumTotal Depth FormationWiloxWiloxAlluviumTotal Depth FormationWiloxWiloxAlluviumTotal Depth formationSoutheast255252Casing Base formationSoutheastSteelSteelScreen Length (ft)300292111Casing Size (in)161816Casing TypeSteelSteelSteelScreen Size (in)10012	12-Digit Hydrologic Unit	080202010305	080202010305	080202040604	
MoDNR RegionSoutheastSoutheast MissouSoutheast MissouSoutheast MissouGroundwater ProvinedSoutheast MissouSoutheast MissouSoutheast MissouSource Aquifer(s)2WiloxWiloxAlluvialConfined/UnconfinedUnconfinedUnconfinedUnconfinedRegional Drilling Area4Area 5Area 5Area 5Total Dissolved Solids5UndeterminedUndeterminedDate Drilled (year)198719912013Casing Base FormationWiloxWiloxAlluviumTotal Depth FormationWiloxWiloxAlluviumTotal Depth FormationWiloxWiloxAlluviumTotal Depth formationSoutheast255252Casing Base formationSoutheastSteelSteelScreen Length (ft)300292111Casing Size (in)161816Casing TypeSteelSteelSteelScreen Size (in)10012	County	Scott	Scott	Scott	
Groundwater Provine-alSoutheast MissouiSoutheast MissouiSoutheast MissouiSoutheast MissouiSource Aquifer(s)2WilcoxWilcoxAlluvialConfined/Unconfined3UnconfinedUnconfinedUnconfinedRegional Drilling Area4Area 5Area 5Area 5Total Dissolved Solid5undeterminedundeterminedDate Drilled (year)198719912013Material (C/U)UnconsolidatedUnconsolidatedUnconsolidatedUnconsolidatedUnconsolidatedTotal Depth FormationWilcoxAlluviumTotal Depth Formation391160Ground Elevation (ft)325325Casing Depth (ft)300292111Casing Size(in)1618Casing TypeSteelSteelScreen Size (in)1012Static Water Level (ft)6580Daw Down (ft)43	•	Southeast	Southeast	Southeast	
Construct quark Construct quark Regional Drilling Area ⁴ UnconfinedUnconfinedUnconfinedRegional Drilling Area ⁴ Area 5Area 5Area 5Total Dissolved Solids ⁵ undeterminedundeterminedundeterminedDate Drilled (year)198719912013Material (C/U)UnconsolidatedUnconsolidatedUnconsolidatedCasing Base FormationWilcoxWilcoxAlluviumTotal Depth FormationWilcoxWilcoxAlluviumTotal Depth FormationWilcoxWilcoxAlluviumTotal Depth Ground Elevation (ft)325325325Casing Base formation161816Casing Size (in)161816Casing TypeSteelSteelSteelScreen Length (ft)8080110Screen Length (ft)10628352400Head (ft)1099469Draw Down (ft)43	-		Southeast Missouri Lowlands	Southeast Missouri Lowlands	
Confined/UnconfinedUnconfinedUnconfinedUnconfinedRegional Drilling Area4Area 5Area 5Area 5Total Dissolved Solids5undeterminedundeterminedUnconsolidatedDate Drilled (year)198719912013Material (CV)UnconsolidatedUnconsolidatedUnconsolidatedCasing Base FormationWilcoxWilcoxAlluviumTotal Depth FormationWilcoxWilcoxAlluviumTotal Depth formation (ft)325325325Casing Size (in)161816Casing Size (in)161816Casing Size (in)1012	Source Aquifer(s) ²	Wilcox	Wilcox	Alluvial	
National bining Netal Note of the instant of the insten tof the instant of the instant of the instant of the instant		Unconfined	Unconfined	Unconfined	
Number of the second	Regional Drilling Area ⁴	Area 5	Area 5	Area 5	
Material (C/U)UnconsolidatedUnconsolidatedUnconsolidatedCasing Base FormationWilcoxWilcoxAlluviumTotal Depth FormationWilcoxWilcoxAlluviumTotal Depth390391160Ground Elevation (ti)325325325Casing Depth (ft)300292111Casing Size (in)161816Casing TypeSteelSteelSteelScreen Length (ft)8080110Screen Size (in)1012	Total Dissolved Solids ⁵	undetermined	undetermined	undetermined	
Casing Base Formation Wilcox Wilcox Alluvium Total Depth Formation Wilcox Wilcox Alluvium Total Depth 390 391 160 Ground Elevation (ft) 325 325 325 Casing Depth (ft) 300 292 111 Casing Size (in) 16 18 16 Casing Type Steel Steel Steel Screen Length (ft) 80 80 110 Screen Size (in) 10 12	Date Drilled (year)	1987	1991	2013	
Casing Base Formation Wilcox Wilcox Alluvium Total Depth Formation Wilcox Wilcox Alluvium Total Depth 390 391 160 Ground Elevation (ft) 325 325 325 Casing Depth (ft) 300 292 111 Casing Size (in) 16 18 16 Casing Type Steel Steel Steel Screen Length (ft) 80 80 110 Screen Size (in) 10 12		Unconsolidated	Unconsolidated	Unconsolidated	
Total Depth Wilcox Alluvium Total Depth 390 391 160 Ground Elevation (ft) 325 325 325 Casing Depth (ft) 300 292 111 Casing Size (in) 16 18 16 Casing Type Steel Steel Steel Screen Length (ft) 80 80 110 Screen Ligth (ft) 65 80 31 Vell Yield (gpm) 1062 835 2400 Head (ft) 109 94 69 Draw Down (ft) 43	· · ·	Wilcox	Wilcox	Alluvium	
Total Depth 390 391 160 Ground Elevation (ft) 325 325 325 Casing Depth (ft) 300 292 111 Casing Size (in) 16 18 16 Casing Type Steel Steel Steel Screen Length (ft) 80 80 110 Screen Size (in) 10 12	•	Wilcox	Wilcox	Alluvium	
Ground Elevation (ft) 325 325 325 Casing Depth (ft) 300 292 111 Casing Size (in) 16 18 16 Casing Type Steel Steel Steel Screen Length (ft) 80 80 110 Screen Size (in) 10 12		390	391	160	
Casing Depth (ft) 300 292 111 Casing Size (in) 16 18 16 Casing Type Steel Steel Steel Screen Length (ft) 80 80 110 Screen Light (ft) 65 80 31 Well Yield (gpm) 1062 835 2400 Head (ft) 109 94 69 Draw Down (ft) 43		325	325	325	
Casing Size (in) 16 18 16 Casing Type Steel Steel Steel Screen Length (ft) 80 110 Screen Size (in) 10 12 Static Water Level (ft) 65 80 31 Well Yield (gpm) 1062 835 2400 Head (ft) 109 94 69 Draw Down (ft) 43	· · /				
Casing Type Steel Steel Steel Screen Length (ft) 80 110 Screen Size (in) 10 12 Static Water Level (ft) 65 80 31 Well Yield (gpm) 1062 835 2400 Head (ft) 109 94 69 Draw Down (ft) 43					
Screen Length (ft) 80 80 110 Screen Size (in) 10 12	- , ,				
Screen Size (in) 10 12 Static Water Level (ft) 65 80 31 Well Yield (gpm) 1062 835 2400 Head (ft) 109 94 69 Draw Down (ft) 43		80			
Static Water Level (ft) 65 80 31 Well Yield (gpm) 1062 835 2400 Head (ft) 109 94 69 Draw Down (ft) 43	- · · /				
Well Yield (gpm) 1062 835 2400 Head (ft) 109 94 69 Draw Down (ft) 43				31	
Head (ft) 109 94 69 Draw Down (ft) 43					
Draw Down (ft)43					
Pump Test Date (year)19871991Pump TypeVertical TurbineVertical TurbinePump Manufacturer	. ,				
Pump TypeVertical TurbineVertical TurbineVertical TurbinePump Manufacturer	()		1991		
Pump Depth (ft)174174100Pump Capacity (gpm)100010001000Pump Meter (Y/N)GWUDISW (Y/N)Surface DrainageState Approved (Y/N)Liquefaction RiskHighHighLandslide RiskLowLowLowCollapse RiskLowLowLowFlood RiskLowLowLowSurface Contamination RiskLowLowModerate			Vertical Turbine	Vertical Turbine	
Pump Capacity (gpm)100010001000Pump Meter (Y/N)	Pump Manufacturer				
Pump Meter (Y/N)	Pump Depth (ft)	174	174	100	
GWUDISW (Y/N)	Pump Capacity (gpm)	1000	1000	1000	
Surface DrainageState Approved (Y/N)Liquefaction RiskHighLandslide RiskLowLowLowCollapse RiskLowLowLowFlood RiskLowLowLowSurface Contamination RiskLowLowLowNoterate	Pump Meter (Y/N)				
State Approved (Y/N)Liquefaction RiskHighHighLandslide RiskLowLowCollapse RiskLowLowFlood RiskLowLowSurface Contamination RiskLowLowModerateNoterate	GWUDISW (Y/N)				
Liquefaction RiskHighHighHighLandslide RiskLowLowLowCollapse RiskLowLowLowFlood RiskLowLowLowSurface Contamination RiskLowLowModerate	Surface Drainage				
Landslide RiskLowLowLowCollapse RiskLowLowLowFlood RiskLowLowLowSurface Contamination RiskLowLowModerate	State Approved (Y/N)				
Collapse RiskLowLowLowFlood RiskLowLowLowSurface Contamination RiskLowLowModerate	Liquefaction Risk	High	High	High	
Flood RiskLowLowLowSurface Contamination RiskLowLowModerate	Landslide Risk	Low	Low	Low	
Surface Contamination Low Low Moderate	Collapse Risk	Low	Low	Low	
Risk Low Moderate	Flood Risk	Low	Low	Low	
Conduit Flow Risk ⁶ K6 K6 K6	Surface Contamination Risk	Low	Low	Moderate	
	Conduit Flow Risk ⁶	K6	K6	K6	

Contaminant Summary

Sheet Prepared: Jun 11, 2020

PWS	S No. 4010743		ropuro	a. ouri 11, 2020	Prepared by C	ARES, University of Missouri Extension
57 pr	otential contaminant sources in the listed database	es (mult	tiple da	tabases may list the sa		
- P	Database			Database		
~	ACRES (Assessment, Cleanup And Redevelopment Exchange System)			MN-TEMPO (Minnesota - Permit	ting Compliance	& Enforcement)
~	AIR (Integrated Compliance Information System-Air)		V	MO-DNR (Missouri Department		
~	AIRS/AFS (Air Facility System)		~	NCDB (National Compliance Da		1003)
	AIRS/AQS (Air Quality System)		V	NPDES (National Pollutant Discl		System)
	BR (Biennial Reporters)		•	OTAQREG (Office Of Transporta	•	
	BRAC (Base Realignment And Closure)			RADINFO (Radiation Informatio		
V	CAMDBS (Clean Air Markets Division Business Systems)			RBLC (Ract/Bact/Laer Clearingh	•	
•	CEDRI (Compliance And Emissions Data Reporting Interface)		V	RCRAINFO (Resource Conserv		very Act Information System)
	ECRM (Enforcement Criminal Records Management)		•	RFS (Renewable Fuel Standard)		
	E-GGRT (Electronic Greenhouse Gas Reporting Tool)			RMP (Risk Management Plan)		
	EGRID (Emissions & Generation Resource Integrated Database)		1	SEMS (Superfund Enterprise Ma	inagement System	m)
V	EIA-860 (Energy Information Administration-860 Database)		~	SFDW (Safe Drinking Water Inf		
V	EIS (Emission Inventory System)		•	SSTS (Section Seven Tracking S		.,
•	FFDOCKET (Federal Facility Hazardous Waste Compliance Docket)			STATE (State Systems)	5,000,000	
V				TRIS (Toxics Release Inventory	System)	
•	LMOP (Landfill Methane Outreach Program)			TSCA (Toxic Substances Control		
		nd				antony and holow)
	LUST-ARRA (Leaking Underground Storage Tank - American Recovery An Reinvestment Act)		~	SWIP (Source Water Inventory I	-roject Field Inve	entory - see Delow)
60 pr	otential contaminant sources in the SWIP Field Inv	/entory:				
count	Site Type	,	Count	Site Type		
0	Airport or abandoned airfield		0	Laundromat		
0	Animal feedlot			Livestock auction		
0	Apartments and condominiums			Machine or metalworking shop		
0	Asphalt plant			Manufacturing (general)		
6	Auto repair shop		0	Material stockpile (industrial)		
8	Automotive dealership		0	Medical institution		
0	Barber and beauty shop		0	Metal production facility		
0	Boat yard and marina		0	Mining operation		
0	CAFO		7	Other		
0	Campground		1	Paint store		
2	Car wash			Park land		
0	Cement Plant			Parking lot		
0	Cemetery		1	Petroleum production or storage		
0	Communication equipment mfg		0	Pharmacies		
0	Country club		0	Photography shop or processing	lah	
3	Dry cleaner		0	Pit toilet	180	
1	Dumping and/or burning site		0	Plastic material and synthetic m	ifα	
0	Electric equipment mfg or storage		1	Print shop	ing	
0	Electric substation		0	Railroad yard		
0	Farm machinery storage		0	Recycling/reduction facility		
3	Feed/Fertilizer/Co-op		0	Research lab		
3 2	Fire station		0	Restaurant		
2	Funeral service and crematory		1	Sawdust pile		
2 1	Funiture manufacturer		0	Sawdust pile		
0	Furniture repair or finishing shop		0	Sports and hobby shop		
0	Garden and/or nursery		0	Swimming pool		
0	Garden, nursery, and/or florist		0	Tailing pond		
0	Gasoline service station					
0	Golf courses		5	Tank (above-ground fuel) Tank (other)		
0	Government office		0	Tank (pesticide)		
0	Grain bin		6	Tank (underground fuel)		
3	Hardware and lumber store		0	Trucking terminal		
0	Hardware and lumber store Hazardous waste (Federal facility)		1	Veterinary service		
1			-			
0	Highway maintenance facility		0	Wastewater treatment facility		
0	Jewelry or metal plating shop		2	Well (abandoned)		
0	Junk yard or salvage yard		1	Well (domestic)		
0	Lagoon (commercial)		0	Well (irrigation)		
0	Lagoon (industrial)		0	Well (livestock)		
-	Lagoon (municipal)		0	Well (monitoring)		
0				147 H / H H		
0	Lagoon (residential)		0	Well (public water supply)		
-			0 0	Well (public water supply) Well (unknown)		

Although the data in this data set have been compiled, in part or in whole, by the Missouri Department of Natural Resources, no warranty, expressed or implied, is made by the department as to the accuracy of the data or related materials. The act of distribution shall not constitute any such warranty, and no responsibility is assumed by the department in the use of these data or related materials. This map and related information are subject to change as additional information is acquired. For additional information, please contact the Department's Drinking Water Branch (Water materials. This map and related information are subject to change as additional information is acquired. For additional information, please contact the Department's Drinking Water Branch (Water

Susceptibility Determination PWSS No. 4010743

Sheet Prepared: Jun 11, 2020

Date containing numeric values correspond to the number of individual wells or surface water intakes. S # S # E # S CROUND WATER Celogical and Hydrogeological Assessment Criteria Are any system wells deemed by the Public Drinking Water Branch to be under the direct influence of surface water? O	The Missouri Department of Natural Resources (MoDNR) has assembled this information to assess the susceptibility of drinking water sources to contamination. There are many unforseen and unpredictable factors that may cause a source to be contaminated. MoDNR routinely monitors all public supplies to ensure public health is protected. Public water systems and local communities are encouraged to take all measures possible to reduce the susceptibility of their drinking water source to chemical contamination. For more information, call 1-800-361-4827.	Minimally Susceptible	Moderately Susceptible	Highly Susceptible	Undetermined
Geological and Hydrogeological Assessment Criteria Are any system wells deemed by the Public Drinking Water Branch to be under the direct influence of surface water? Are any system wells draw water from a source with high total dissolved solids (TDS)? Are any system wells located proximal to known subsurface or groundwater contamination? Do any system wells located proximal to known subsurface or groundwater contamination? Do any system wells located proximal to known subsurface or groundwater contamination? Do any system wells stoated proximal to known subsurface or groundwater contamination? Do any system wells stoated proximal to known subsurface or groundwater contamination from surface sources is: Based on known stratigraphic relationships for each well, the risk of contamination from surface sources is: O any system wells exhibit stouctural defects, construction deficiencies, or other conditions that might allow contamination to enter the well at the wellhead? Are security measures in place to provent nutulhorized tampering with all system wells? Does the system have back-up, emergency power available? Monitoring Assessment Criteria Have any system wells behibited consistent detections for any of the following parameters in raw water? Volatie Organic Chemicals (VOC): Nitrates/Nitrice: Rationuclides: Bacteria/Viruses/Microbial Pathogens: Natural Hazard Assessment Criteria <td></td> <td>SC</td> <td>ы S</td> <td>SL</td> <td>2</td>		SC	ы S	SL	2
Are any system wells deemed by the Public Drinking Water Branch to be under the direct influence of surface water? Are any system wells potentially prone to karst conditions or solution flow? Do any system wells forw aware from a succer with high total dissolved solids (TDS)? Are any system wells forwawre from a nuconfined aquife? Based on known stratigraphic relationships for each well, the risk of contamination from surface sources is: Well Construction and Maintenance Assessment Criteria Are all system wells state-approved? Do any system wells atta-approved? Do any system wells atthe structural defects, construction deficiencies, or other conditions that might allow contamination to enter the well at the wellhead? Are security measures in place to prevent unautorized tampering with all system wells? Does the system have back-up, emergency power available? Montoring Assessment Criteria Have any system wells exhibited consistent detections for any of the following parameters in raw water? Volatie Organic Chemicals (VOC): Synthetic Organic Chemicals (VOC): Synthetic Organic Chemicals (SOC): Inorganic Compounds (IOC): Nitrates/Nitrites: Radionuclides: Bacteria/Viruses/Microbial Pathogens: Natural Hazard Assessment Criteria The number of system wells located in a region prone to flooding. The number of system wells located in a region that may experience the following conditions in the event of a large-scale arthiquake. Potential laudiside risk: Potential laudiside risk	GROUND WATER				
Are any system wells potentially prone to karst conditions or solution flow? Do any system wells draw water from a source with high total dissolved solids (TDS)? Are any system wells draw water from an unconfined aquifer? Based on known stratigraphic relationships for each well, the risk of contamination? Well Construction and Maintenance Assessment Criteria Are all system wells state-approved? Do any system wells exhibit structural defects, construction deficiencies, or other conditions that might allow Ontamination to enter the well at the wellhened? Are security measures in place to prevent unauthorized tampering with all system wells? Does the system have back-up, emergency power available? Monitoring Assessment Criteria Have any system (Corpanic Chemicals (SOC): Inorganic Compounds (IOC): Nitrates/Nitrites: Radionuclides: Bacteria/Viruses/Microbial Pathogens: Natural Hazer Assessment Criteria The number of system wells located in a region prone to flooding. The number of system wells located in a region prone to flooding. The number of system wells located in a region that may experience the following conditions in the event of a large-scale earthylaxe. Potential landslide risk: Potential sources of contamination sits within the wellhead protection	Geological and Hydrogeological Assessment Criteria				
Do any system wells located proximal to known subsurface or groundwater contamination? Do any system wells located proximal to known subsurface or groundwater contamination? Do any system wells located proximal to known subsurface or groundwater contamination? Do any system wells located proximal to known subsurface or groundwater contamination? Do any system wells located proximal to known subsurface or groundwater contamination? Based on known stratigraphic relationships for each well, the risk of contamination from surface sources is: Well Construction and Maintenance Assessment Criteria Are all system wells state-approved? Do any system wells state-approved? Do any system wells exhibit structural defects, construction deficiencies, or other conditions that might allow contamination to enter the well at the wellhead? Are security measures in place to prevent unauthorized tampering with all system wells? Does the system have back-up, emergency power available? Monitoring Assessment Criteria Have any system wells exhibited consistent detections for any of the following parameters in raw water? Volatile Organic Chemicals (SOC): Inorganic Compounds (IQC); Nitrates/Nitrites: Radionuclides: Bacteria/Viruses/Microbial Pathogens: Patential Inquefaction risk: Potential Inquefaction risk: P	Are any system wells deemed by the Public Drinking Water Branch to be under the direct influence of surface water?	\bigcirc	\bigcirc	\bigcirc	
Are any system wells located proximal to known subsurface or groundwater contamination? Image: Contamination of the risk of contamination from surface sources is: Image: Contamination of the risk of contamination from surface sources is: Based on known stratigraphic relationships for each well, the risk of contamination from surface sources is: Image: Contamination to enter file well at the well ead? Are all system wells state-approved? Image: Contamination to enter file well at the wellhead? Image: Contamination to enter file well at the wellhead? Are serving measures in place to prevent unauthorized tampering with all system wells? Image: Contamination to enter file well at the wellhead? Monitoring Assessment Criteria Image: Contamination to enter file well at the well ead? Have any system wells exhibited consistent detections for any of the following parameters in raw water? Image: Contamination (VOC): Synthetic Organic Chemicals (SOC): Image: Contamination to enter file wells at the well so contamination to a large-scale Bacteria/Viruses/Microbial Pathogens: Image: Contamination to enter file wells the aregion prone to flooding. The number of system wells located in a region that may experience the following conditions in the event of a large-scale earthquake. Image: Contamination exist within the well head protection area: Potential landslide risk: Image: Contamination exist within the well head protection area: Potential subsurface	Are any system wells potentially prone to karst conditions or solution flow?		\bigcirc	\bigcirc	
Do any system wells draw water from an unconfined aquifer? Based on known stratigraphic relationships for each well, the risk of contamination from surface sources is: Well Construction and Maintenance Assessment Criteria Are all system wells state-approved? Do any system wells subtriate-approved? Do any system wells construction deficiencies, or other conditions that might allow contamination to enter the well at the wellhead? Are security measures in place to prevent unauthorized tampering with all system wells? Does the system wells exhibited consistent detections for any of the following parameters in raw water? Volatile Organic Chemicals (VOC): Synthetic Organic Chemicals (SOC): Inorganic Compounds (IOC): Nitrates/Nitrites: Radionuclides: Batcria/Viruses/Microbial Pathogens: Natural Hazer dassessment Criteria The number of system wells located in a region prone to flooding. The number of system wells located in a region prone to flooding. The number of system wells located in a region that may experience the following conditions in the event of a large-scale earthquake. Potential liquefaction risk: Potential liquefaction risk: Potential liquefaction risk: Potential liquefaction risk: Potential source collapse/instability risk: Are any system wells hocated in a region drone to flooding aprolonged drought? Do all system wells hocated in an area with a high density of transportation corrifors: A system well is located in an area that may have improperly maintained or faulty on-site septic systems: Additional Assessment Criteria Does the system have a memergency interconnection with a neighboring public water system? O O O O O O O O O O O O O O O O O O O	Do any system wells draw water from a source with high total dissolved solids (TDS)?		\bigcirc	\bigcirc	
Based on known stratigraphic relationships for each well, the risk of contamination from surface sources is: 	Are any system wells located proximal to known subsurface or groundwater contamination?	\bigcirc	\bigcirc	\bigcirc	
Well Construction and Maintenance Assessment Criteria Are all system wells state-approved? Do any system wells exhibit structural defects, construction deficiencies, or other conditions that might allow contamination to enter the well at the wellhead? Are security measures in place to prevent unauthorized tampering with all system wells? Does the system have back-up, emergency power available? Monitoring Assessment Criteria Have any system wells exhibited consistent detections for any of the following parameters in raw water? Volatile Organic Chemicals (VOC): Synthetic Organic Chemicals (SOC): Inorganic Compounds (ICC): Nitrates/Nitrites: Radionuclides: Bacteria/Vinses/Microbial Pathogens: Natural Hazard Assessment Criteria The number of system wells located in a region prone to flooding. The number of system wells located in a region that may experience the following conditions in the event of a large-scale earthquake. Potential liquefaction risk: 0 Potential subsurface collapse/instability risk: 0 Are any system wells prone to declining water levels during a prolonged drought? 0 Do all system wells incated in an rea with in the wellhead protection area: 0 0 A system wells incated in an area with a high density of transportation corridors:	Do any system wells draw water from an unconfined aquifer?		\bigcirc	\bigcirc	
Are all system wells state-approved? Image: Construction deficiencies, or other conditions that might allow contamination to enter the well at the wellhead? Are security measures in place to prevent unauthorized tampering with all system wells? Image: Construction of the well at the wellhead? Does the system have back-up, emergency power available? Image: Construction of the well at the wellhead? Montoring Assessment Criteria Image: Construction of the following parameters in raw water? Volatile Organic Chemicals (VOC): Image: Construction of the following parameters in raw water? Volatile Organic Chemicals (VOC): Image: Construction of the following parameters in raw water? Nitrates/Nitrites: Image: Construction of the following parameters in raw water? Natural Hazard Assessment Criteria Image: Construction of system wells located in a region prone to flooding. The number of system wells located in a region that may experience the following conditions in the event of a large-scale earthquake. Image: Construction? Potential luquefaction risk: Image: Construction? Image: Construction? Potential sources of contamination exist within the wellead protection area: Image: Construction? Image: Construction? Potential sources of contamination exist within the wellead protection area: A system well is located in an area that may have improperly maintaind or faulty on-site septic systems: Image: Constru	Based on known stratigraphic relationships for each well, the risk of contamination from surface sources is:	6	3	\bigcirc	
Do any system wells exhibit structural defects, construction deficiencies, or other conditions that might allow contamination to enter the well at the wellhead? Are security measures in place to prevent unauthorized tampering with all system wells? Does the system have back-up, emergency power available? Monitoring Assessment Criteria Have any system wells exhibited consistent detections for any of the following parameters in raw water? Volatile Organic Chemicals (VOC): Synthetic Organic Chemicals (SOC): Inorganic Compounds (IOC): Nitrates/Nitrites: Radionuclides: Bacteria/Nitrises: Bacteria/Nitrises: Bacte	Well Construction and Maintenance Assessment Criteria				
contamination to enter the well at the wellhead? Image: Contamination to enter the well at the wellhead? Are security measures in place to prevent unauthorized tampering with all system wells? Image: Contamination to enter the wellhead? Monitoring Assessment Criteria Image: Contamination to enter the well to envious the total to	Are all system wells state-approved?	\bigcirc	\bigcirc	\bigcirc	0
Does the system have back-up, emergency power available? Image: Comparison of the following parameters in raw water? Have any system wells exhibited consistent detections for any of the following parameters in raw water? Image: Comparison of the following parameters in raw water? Volatile Organic Chemicals (VOC): Image: Compounds (IOC): Image: Compounds (IOC): Synthetic Organic Chemicals (SOC): Image: Compounds (IOC): Image: Compounds (IOC): Nitrates/Nitrites: Image: Compounds (IOC): Image: Compounds (IOC): Natural Hazard Assessment Criteria Image: Compounds (IOC): Image: Compounds (IOC): The number of system wells located in a region prone to flooding. Image: Compounds (IOC): Image: Compounds (IOC): Potential liquefaction risk: Image: Compounds (IOC): Image: Compounds (IOC): Image: Compounds (IOC): Potential liquefaction risk: Potential liquefaction risk: Image: Compounds (IOC): Image: Compounds (IOC): Potential subsurface collapse/instability risk: Image: Compounds (IOC): Image: Compounds (IOC): Image: Compounds (IOC): Potential subsurface collapse/instability risk: Image: Compounds (IOC): Image: Compounds (IOC): Image: Compounds (IOC): Do all system wells prone to declining water levels during a prolonged drought? Image: Compounds (IOC):	Do any system wells exhibit structural defects, construction deficiencies, or other conditions that might allow contamination to enter the well at the wellhead?				0
Monitoring Assessment Criteria Have any system wells exhibited consistent detections for any of the following parameters in raw water? Volatile Organic Chemicals (VOC): Synthetic Organic Chemicals (SOC): Inorganic Compounds (IOC): Nitrates/Nitrites: Radionuclides: Bacteria/Viruses/Microbial Pathogens: Natural Hazard Assessment Criteria The number of system wells located in a region prone to flooding. The number of system wells located in a region that may experience the following conditions in the event of a large-scale earthquake. Potential liquefaction risk: Potential landslide risk: Potential landslide risk: Potential loussurface collapse/instability risk: Are any system wells prone to declining water levels during a prolonged drought? Do all system wells have lighthing surge protection? Potential Contamination exist within the wellhead protection area: A system well is located in an area with a high density of transportation corridors: A system well is located in an area that may have improperly maintained or faulty on-site septic systems: Asystem well is located in an area that may have improperly maintained or faulty on-site septic systems: A system well is located in an area that may have improperly maintained or faulty on-site septic systems:	Are security measures in place to prevent unauthorized tampering with all system wells?		\bigcirc	\bigcirc	
Have any system wells exhibited consistent detections for any of the following parameters in raw water? Image: Compounds (IOC): Synthetic Organic Chemicals (SOC): Image: Compounds (IOC): Inorganic Compounds (IOC): Image: Compounds (IOC): Nitrates/Nitrites: Image: Compounds (IOC): Radionuclides: Image: Compounds (IOC): Bacteria/Viruses/Microbial Pathogens: Image: Compounds (IOC): Natural Hazard Assessment Criteria Image: Compounds (IOC): The number of system wells located in a region prone to flooding. Image: Compounds (IOC): The number of system wells located in a region prone to flooding. Image: Compounds (IOC): Potential liquefaction risk: Image: Compounds (IOC): Potential liquefaction risk: Image: Compounds (IOC): Potential liquefaction risk: Image: Compounds (IOC): Potential subsurface collapse/instability risk: Image: Compounds (IOC): Are any system wells prone to declining water levels during a prolonged drought? Image: Compounds (IOC): Do all system wells have lightning surge protection? Image: Compounds:	Does the system have back-up, emergency power available?	\bigcirc	\bigcirc	\bigcirc	0
Volatile Organic Chemicals (VOC):Image: Compounds (IOC):Synthetic Organic Chemicals (SOC):Image: Compounds (IOC):Nitrates/Nitrites:Image: Compounds (IOC):Nitrates/Nitrites:Image: Compounds (IOC):Radionuclides:Image: Compounds (IAC):Bacteria/Viruses/Microbial Pathogens:Image: Compounds (IAC):Natural Hazard Assessment CriteriaImage: Compounds (IAC):The number of system wells located in a region prone to flooding.Image: Compounds (IAC):The number of system wells located in a region that may experience the following conditions in the event of a large-scale earthquake.Image: Compounds (IAC):Potential liquefaction risk:Image: Compounds (IAC):Image: Compounds (IAC):Potential liquefaction risk:Image: Compounds (IAC):Image: Compounds (IAC):Potential subsurface collapse/instability risk:Image: Compounds (IAC):Image: Compounds (IAC):Are any system wells prone to declining water levels during a prolonged drought?Image: Compound (IAC):Image: Compound (IAC):Do all system wells have lightning surge protection?Image: Compound (IAC):Image: Compound (IAC):Image: Compound (IAC):Potential Contamination exist within the wellhead protection area:Image: Compound (IAC):Image: Compound (IAC):Image: Compound (IAC):Potential is located in an area with a high density of transportation corridors:Image: Compound (IAC):Image: Compound (IAC):Image: Compound (IAC):Asystem well is located in an area that may have improperly maintained or faulty on-site septic systems:Image: Compound (IAC):Image: Com	Monitoring Assessment Criteria				
Volatile Organic Chemicals (VOC):Image: Compounds (IOC):Synthetic Organic Chemicals (SOC):Image: Compounds (IOC):Nitrates/Nitrites:Image: Compounds (IOC):Nitrates/Nitrites:Image: Compounds (IOC):Radionuclides:Image: Compounds (IAC):Bacteria/Viruses/Microbial Pathogens:Image: Compounds (IAC):Natural Hazard Assessment CriteriaImage: Compounds (IAC):The number of system wells located in a region prone to flooding.Image: Compounds (IAC):The number of system wells located in a region that may experience the following conditions in the event of a large-scale earthquake.Image: Compounds (IAC):Potential liquefaction risk:Image: Compounds (IAC):Image: Compounds (IAC):Potential liquefaction risk:Image: Compounds (IAC):Image: Compounds (IAC):Potential subsurface collapse/instability risk:Image: Compounds (IAC):Image: Compounds (IAC):Are any system wells prone to declining water levels during a prolonged drought?Image: Compound (IAC):Image: Compound (IAC):Do all system wells have lightning surge protection?Image: Compound (IAC):Image: Compound (IAC):Image: Compound (IAC):Potential Contamination exist within the wellhead protection area:Image: Compound (IAC):Image: Compound (IAC):Image: Compound (IAC):Potential is located in an area with a high density of transportation corridors:Image: Compound (IAC):Image: Compound (IAC):Image: Compound (IAC):Asystem well is located in an area that may have improperly maintained or faulty on-site septic systems:Image: Compound (IAC):Image: Com					
Synthetic Organic Chemicals (SOC): Inorganic Compounds (IOC): Nitrates/Nitrites: Radionuclides: Bacteria/Viruses/Microbial Pathogens:Image: Compounds (IOC): Image: Compounds (IOC): Nitrates/Nitrites: Radionuclides: Bacteria/Viruses/Microbial Pathogens:Image: Compounds (IOC): Image: Compounds (IOC): Image: Compounds (IOC): Natrates/Nitrites: Radionuclides: Bacteria/Viruses/Microbial Pathogens:Image: Compounds (IOC): Image: Compounds (IOC): Image: Compounds (IOC): Image: Compounds (IOC): Natrates/Nitrites: Natrates/Nitrites: Natrates/Nitrites: Pathon: Potential Iquefaction risk: Potential Industified risk: Potential Industified risk: Potential Subsurface collapse/instability risk: Are any system wells prone to declining water levels during a prolonged drought? Do all system wells have lightning surge protection? Potential Contamination exist within the wellhead protection area: A system well is located in an area with a high density of transportation corridors: A system well is located in an area that may have improperly maintained or faulty on-site septic systems: Additional Assessment Criteria Does the system have a wellhead/source water protection plan endorsed by the Department of Natural Resources? Does the system have a mergency interconnection with a neighboring public water system? Image: Composite on the system?Image: Composite on the system?			\bigcirc		
Inorganic Compounds (IOC): Nitrates/Nitrites: Radionuclides: Bacteria/Viruses/Microbial Pathogens:Image: Compounds (IOC): Natural Hazard Assessment CriteriaImage: Compounds (IOC): Natural Hazard Assessment Criteria <td></td> <td>Ŏ</td> <td>Ŏ</td> <td>Õ</td> <td>ŏ</td>		Ŏ	Ŏ	Õ	ŏ
Nitrates/Nitrites: Radionuclides: Bacteria/Viruses/Microbial Pathogens:Image: Content of		ŏ	ŏ	ŏ	ŏ
Bacteria/Viruses/Microbial Pathogens: Image: Content in the example of the examp		ŏ	ŏ	ŏ	ŏ
Bacteria/Viruses/Microbial Pathogens: Image: Content in the example of the examp	Radionuclides:	ŏ	ŏ	ŏ	ŏ
The number of system wells located in a region prone to flooding. Image: Control in the event of a large-scale of the event event event event event event event event ev	Bacteria/Viruses/Microbial Pathogens:	Ŏ	ŏ	ŏ	ŏ
The number of system wells located in a region that may experience the following conditions in the event of a large-scale earthquake. Image: State in the image: State in the event of a large-scale earthquake. Potential liquefaction risk: Image: State in the event of a large-scale earthquake. Image: State in the event of a large-scale earthquake. Potential landslide risk: Image: State in the event of a large-scale earthquake. Image: State in the event of a large-scale earthquake. Potential landslide risk: Image: State in the event of a large-scale earthquake. Image: State in the event of a large-scale earthquake. Potential subsurface collapse/instability risk: Image: State in the event of a large-scale earthquake. Image: State in the event of a large-scale earthquake. Are any system wells prone to declining water levels during a prolonged drought? Image: State in the event of a large protection? Image: State in the event of a large-scale earthquake. Image: State in the event of a large-scale earthquake. Image: State in the event of the event event of the event event event of the event of the event of the event event event event event of the event of the event ev	Natural Hazard Assessment Criteria				
The number of system wells located in a region that may experience the following conditions in the event of a large-scale earthquake. Image: State in the image: State in the event of a large-scale earthquake. Potential liquefaction risk: Image: State in the event of a large-scale earthquake. Image: State in the event of a large-scale earthquake. Potential landslide risk: Image: State in the event of a large-scale earthquake. Image: State in the event of a large-scale earthquake. Potential landslide risk: Image: State in the event of a large-scale earthquake. Image: State in the event of a large-scale earthquake. Potential subsurface collapse/instability risk: Image: State in the event of a large-scale earthquake. Image: State in the event of a large-scale earthquake. Are any system wells prone to declining water levels during a prolonged drought? Image: State in the event of a large protection? Image: State in the event of a large-scale earthquake. Image: State in the event of a large-scale earthquake. Image: State in the event of the event event of the event event event of the event of the event of the event event event event event of the event of the event ev	The number of system wells located in a region prone to flooding.	8	\bigcirc	\bigcirc	\bigcirc
Potential landslide risk: Potential subsurface collapse/instability risk:Image: Collapse instability risk:Image: Collapse instability risk:Are any system wells prone to declining water levels during a prolonged drought? Do all system wells have lightning surge protection?Image: Collapse instability risk:Potential Contaminant Inventory Assessment CriteriaImage: Collapse instability risk:Image: Collapse instability risk:Potential Sources of contamination exist within the wellhead protection area: A system well is located in an area with a high density of transportation corridors: A system well is located in an area that may have improperly maintained or faulty on-site septic systems:Image: Collapse instability risk:Additional Assessment CriteriaImage: Collapse instability risk: Image: Collapse instability risk:Image: Collapse instability risk:Does the system have a wellhead/source water protection plan endorsed by the Department of Natural Resources? Does the system have an emergency interconnection with a neighboring public water system?Image: Collapse instability risk:	The number of system wells located in a region that may experience the following conditions in the event of a large-scale		0	Ŭ	
Potential subsurface collapse/instability risk: Are any system wells prone to declining water levels during a prolonged drought?Do all system wells have lightning surge protection? Potential Contaminant Inventory Assessment Criteria Potential sources of contamination exist within the wellhead protection area: A system well is located in an area with a high density of transportation corridors: A system well is located in an area that may have improperly maintained or faulty on-site septic systems: Does the system have a wellhead/source water protection plan endorsed by the Department of Natural Resources? Does the system have an emergency interconnection with a neighboring public water system?	Potential liquefaction risk:		\bigcirc	8	
Are any system wells prone to declining water levels during a prolonged drought? Image: Contential System wells have lightning surge protection? Do all system wells have lightning surge protection? Image: Contential System Vells have lightning surge protection? Potential Contaminant Inventory Assessment Criteria Image: Contential System Vells Is located in an area with a high density of transportation corridors: A system well is located in an area that may have improperly maintained or faulty on-site septic systems: Image: Contential System Vells Is Isocated in an area that may have improperly maintained or faulty on-site septic systems: Additional Assessment Criteria Image: Contential System have a wellhead/source water protection plan endorsed by the Department of Natural Resources? Image: Contential System Isocated in a mergency interconnection with a neighboring public water system?	Potential landslide risk:	8	\bigcirc	\bigcirc	\bigcirc
Do all system wells have lightning surge protection? Image: Contaminant Inventory Assessment Criteria Potential Contaminant Inventory Assessment Criteria Image: Contamination exist within the wellhead protection area: Potential sources of contamination exist within the wellhead protection area: Image: Contamination exist within the wellhead protection area: A system well is located in an area with a high density of transportation corridors: Image: Contamination exist within the wellhead protection area: A system well is located in an area that may have improperly maintained or faulty on-site septic systems: Image: Contamination exist within the wellhead protection plan endorsed by the Department of Natural Resources? Does the system have a wellhead/source water protection plan endorsed by the Department of Natural Resources? Image: Contamination exist with a neighboring public water system?	Potential subsurface collapse/instability risk:	8	\bigcirc	\bigcirc	\bigcirc
Potential Contaminant Inventory Assessment Criteria Potential sources of contamination exist within the wellhead protection area: A system well is located in an area with a high density of transportation corridors: A system well is located in an area that may have improperly maintained or faulty on-site septic systems: A dditional Assessment Criteria Does the system have a wellhead/source water protection plan endorsed by the Department of Natural Resources? Does the system have an emergency interconnection with a neighboring public water system?	Are any system wells prone to declining water levels during a prolonged drought?	\bigcirc	\bigcirc	\bigcirc	0
Potential sources of contamination exist within the wellhead protection area: Image: Contamination exist within the wellhead protection area: A system well is located in an area with a high density of transportation corridors: Image: Contamination exist within the wellhead protection area: A system well is located in an area with a high density of transportation corridors: Image: Contamination exist within the wellhead protection corridors: A system well is located in an area that may have improperly maintained or faulty on-site septic systems: Image: Contamination exist within the wellhead protection plan endorsed by the Department of Natural Resources? Does the system have a wellhead/source water protection plan endorsed by the Department of Natural Resources? Image: Contamination exist water system?	Do all system wells have lightning surge protection?		\bigcirc	\bigcirc	
A system well is located in an area with a high density of transportation corridors: A system well is located in an area that may have improperly maintained or faulty on-site septic systems: Additional Assessment Criteria Does the system have a wellhead/source water protection plan endorsed by the Department of Natural Resources? Does the system have an emergency interconnection with a neighboring public water system?	Potential Contaminant Inventory Assessment Criteria				
A system well is located in an area that may have improperly maintained or faulty on-site septic systems: Additional Assessment Criteria Does the system have a wellhead/source water protection plan endorsed by the Department of Natural Resources? Image: Comparison of the system have an emergency interconnection with a neighboring public water system?	Potential sources of contamination exist within the wellhead protection area:	\bigcirc		\bigcirc	\bigcirc
A system well is located in an area that may have improperly maintained or faulty on-site septic systems: Additional Assessment Criteria Does the system have a wellhead/source water protection plan endorsed by the Department of Natural Resources? Image: Comparison of the system have an emergency interconnection with a neighboring public water system?	A system well is located in an area with a high density of transportation corridors:	\bigcirc	1	7	
Does the system have a wellhead/source water protection plan endorsed by the Department of Natural Resources?	A system well is located in an area that may have improperly maintained or faulty on-site septic systems:	\bigcirc	\bigcirc	\bigcirc	0
Does the system have a wellhead/source water protection plan endorsed by the Department of Natural Resources?			_		
Does the system have an emergency interconnection with a neighboring public water system?				\bigcirc	\bigcirc
		Õ	Ő	Õ	Õ
		by the de	partme	nt as to	the

Map Prepared: Jun 11, 2020 Data Release: May 4, 2020

Notes PWSS No. 4010743

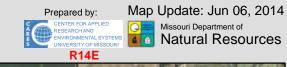
> For additional information about Missouri's regional groundwater provinces, please visit the Missouri Department of Natural Resources' Water Resources Center Web page or contact the Missouri Geological Survey.

² Source aquifers are determined from well log information, where available, and on general water quality characteristics for the regional groundwater province within which each well is located. Source aquifers for wells with little or no well log information are inferred based on best available information.

Additional Source Aquifer Notes:

- Water sources labeled "Cincinnatian, Pennsylvanian, or Devonian/Silurian" are not regionally extensive aquifer systems in Missouri. These represent isolated, localized water-bearing formations. Broad water quality descriptions are Not currently available for these sources. "Precambrian" water sources exhibit water quality characteristics similar to the St. Francois aquifer.
- The Springfield Plateau aquifer is regionally extensive only in southwest and west-central Missouri. Aquifers labeled "Mississippian" or "Springfield Plateau (equivalent)" refer to wells that draw water from the same geological formations that comprise the Springfield Plateau aquifer, but are located in areas of the state not hydraulically connected to the regional aquifer system. Broad water quality generalizations are not available for these isolated, localized water-bearing units.
- ³ Unconfined aquifers are generally more vulnerable to surface or shallow subsurface contamination and warrant additional protections around the wellhead. Confined aquifers are not as vulnerable to surface or shallow subsurface contamination, but may exhibit naturally elevated levels of dissolved minerals, radionuclides, or variations in other water quality parameters such as dissolved oxygen and pH.
- 4 Please refer to 10 CSR 23-3.090 and 10 CSR 23-3.100 for additional information about well construction standards for Missouri's regional well drilling areas.
- ⁵ TDS1 Total dissolved solids information is currently only available for the Ozark and Springfield Plateau aquifers. Information is based on broad, regional groundwater quality trends, rather than on well-specific monitoring.
- ⁶ K6 This well is not constructed in materials prone to conduit or solution flow.

Although the data in this data set have been compiled, in part or in whole, by the Missouri Department of Natural Resources, no warranty, expressed or implied, is made by the department as to the accuracy of the data or related materials. The act of distribution shall not constitute any such warranty, and no responsibility is assumed by the department in the use of these data or related materials. This map and related information are subject to change as additional information is acquired. For additional information, please contact the Department's Drinking Water Branch (Water

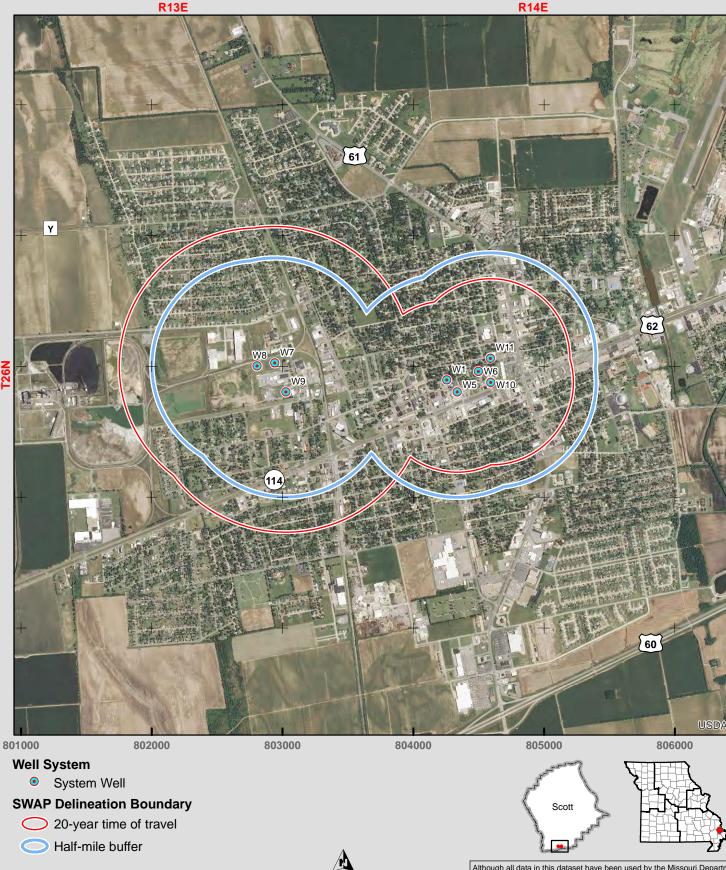

Appendix 3b

2014 Sikeston Public Well Assessment Reports (CARES)

Sikeston PWSS No. 4010743

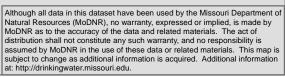
8 Wells, Scott County

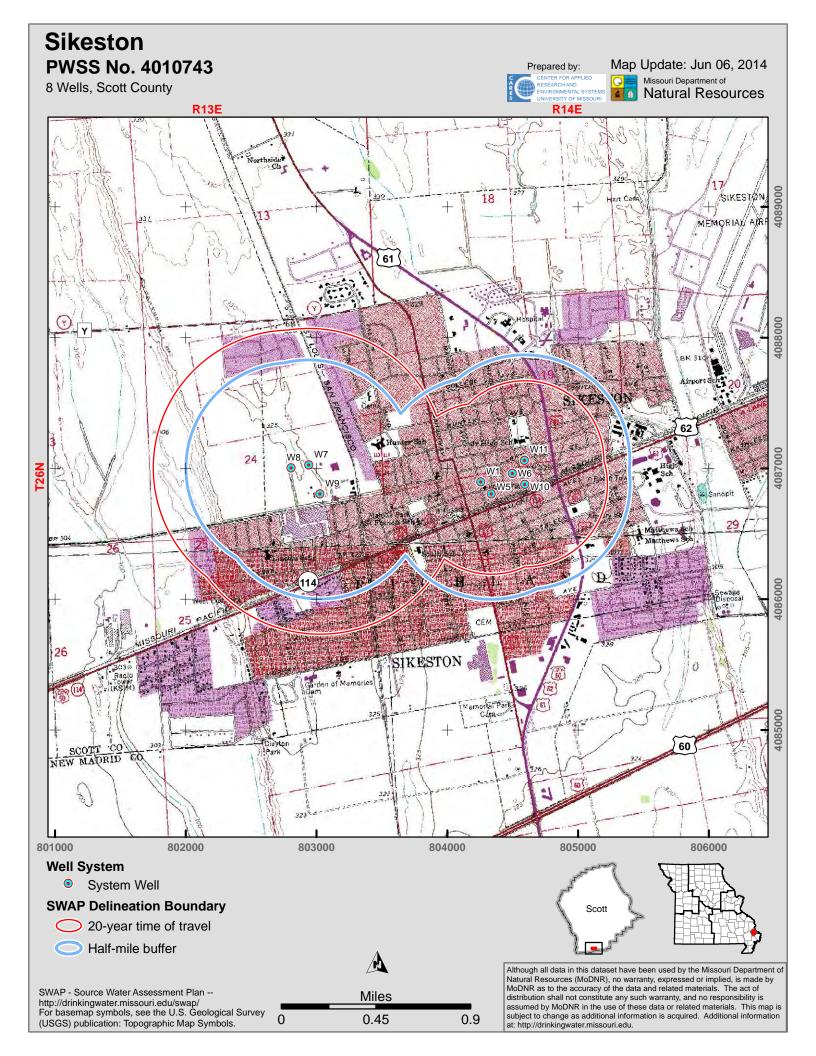
136N


4089000

4088000

4087000


4086000


1085000

0.9

SWAP - Source Water Assessment Plan http://drinkingwater.missouri.edu/swap/		Miles	
Aerial photos: USDA National Agriculture Inventory Program (NAIP), 2012.	0	0.45	

Sikeston					
PWSS No. 4010743	(a		_	Prepared by:	et Update: Jun 09, 20
Scott County, sheet 1	of 2		C R	CENTER FOR APPLIED RESEARCH AND ENVIRONMENTAL SYSTEMS ENVIRONMENTAL SYSTEMS	Missouri Department of Natural Resource
8 wells			<u> </u>		Natural Resource
Well Number	W1	W5	W6	W7	W8
Extended PWS #	4010743101	4010743105	4010743106	4010743107	4010743108
_ocal Well Name	Well #1, Plant #2	Well #6, Plant #2	Well #7, Plant #2	Well #8, Plant #3	Well #9, Plant #3
Well ID #	13051	13049	13048	13047	13046
DGLS ID #	0011630	0019120	0026235		
Facility Type	City	City	City	City	City
Status	Active	Active	Active	Active	Active
_atitude	36.87904	36.87818	36.87954	36.8806231803	36.880473182
Longitude	-89.58645	-89.58558	-89.5837	-89.6011240613	-89.6026440566
Location Method	GPS	GPS	GPS	GPS	GPS
Method Accuracy (ft)	38	43	43	43	39
USGS 7.5 Quadrangle	Sikeston North	Sikeston North	Sikeston North	Sikeston North	Sikeston North
County	Scott	Scott	Scott	Scott	Scott
MoDNR Region	Southeast	Southeast	Southeast	Southeast	Southeast
Date Drilled (year)	1951	1960	1969	1976	1976
Material (C/U)	Unconsolidated	Unconsolidated	Unconsolidated	Unconsolidated	Unconsolidated
Base of Casing Formation	Wilcox	Wilcox	Wilcox	Alluvium	Alluvium
Total Depth Formation	Midway	Wilcox	Midway	Alluvium	Alluvium
Total Depth	421	401	404	145	143
Ground Elevation (ft)					
Top Seal					
Bottom Seal					
Casing Depth (ft)	331	307	309	108	108
Casing Size (in)	12	18	18	18	18
Casing Type				Steel	Steel
Elev. of Casing Top (ft)					
Outer Casing Depth (ft)					
Outer Casing Size (in)				<u> </u>	<u> </u>
Screen Length (ft)	81	80	80	30	30
Screen Size (in)	8	12	12	12	12
Static Water Level (ft)	60	66	65	27	27
Well Yield (gpm)	600	1100	1450	1300	1300
Head (ft)					
Draw Down (ft)	60	54	59	33	34
Pump Test Date (year)	1975	1960	1992	1976	
Pump Type	Vertical Turbine	Vertical Turbine	Vertical Turbine	Vertical Turbine	Vertical Turbine
Pump Manufacturer				<u> </u>	<u> </u>
Pump Depth (ft)	150	135	170	84	84
Pump Capacity (gpm)	863	1500	1600	1350	1350
Pump Meter (Y/N)					
VOC Detection (Y/N)	N	N	N	N	N
Nitrate Detection (Y/N)	Ν	Ν	Ν	Ν	Ν
Chlorination (Y/N)	Y	Y	Y	Y	Y
Filtration (Y/N)	Y	Y	Y	Y	Y
GWUDISW (Y/N)					
Surface Drainage					
State Approved(Y/N)					
Date Abandoned (year)					
Date Plugged (year)					

PWSS No. 4010743

Scott County, sheet 2 of 2

8 wells

Q

Sheet Update: Jun 09, 2014

Missouri Department of **Matural Resources**

Well Number	W9	W10	W11
Extended PWS #	4010743109	4010743110	4010743111
Local Well Name	Well #10, Plant #3	Well #11, Plant #1	Well #12
Well ID #	13045	13044	13043
DGLS ID #			10010
Facility Type	City	City	City
Status	Active	Active	Active
Latitude	36.87862	36.87877	36.88044
Longitude	-89.60025	-89.58268	-89.58263
Location Method	GPS	GPS	GPS
Method Accuracy (ft)	65	44	45
USGS 7.5 Quadrangle	Sikeston North	Sikeston North	Sikeston North
County	Scott	Scott	Scott
MoDNR Region	Southeast	Southeast	Southeast
Date Drilled (year)	1959	1987	1991
Material (C/U)	Unconsolidated	Unconsolidated	Unconsolidated
Base of Casing Formation	Alluvium	Wilcox	Wilcox
Total Depth Formation	Alluvium	Wilcox	Wilcox
Total Depth	142	390	382
Ground Elevation (ft)			001
Top Seal			
Bottom Seal			
	110	200	202
Casing Depth (ft)	119	300	292
Casing Size (in)	12	16	18
Casing Type	Steel	Steel	Steel
Elev. of Casing Top (ft)		·	
Outer Casing Depth (ft)			- <u></u>
Outer Casing Size (in)		<u></u>	
Screen Length (ft)	21	80	80
Screen Size (in)	12	10	12
Static Water Level (ft)	30	65	
Well Yield (gpm)	1000	1062	
Head (ft)			
Draw Down (ft)		43	
Pump Test Date (year)	1987	1987	
Pump Type	Vertical Turbine	Vertical Turbine	Vertical Turbine
	venical ruibine	ventical furbine	
Pump Manufacturer			
Pump Depth (ft)	64	174	174
Pump Capacity (gpm)	1150	1000	1000
Pump Meter (Y/N)			
VOC Detection (Y/N)	Ν	Ν	Ν
Nitrate Detection (Y/N)	Ν	Ν	Ν
Chlorination (Y/N)	Y	Y	Y
Filtration (Y/N)	Y	Y	Y
GWUDISW (Y/N)			
Surface Drainage			
State Approved(Y/N)			
Date Abandoned (year)			
Date Plugged (year)			
Date Flugged (year)			

PWSS No. 4010743

Scott County, sheet 1 of 4

162 potential contaminant sources

G

Sheet Update: Jun 09, 2014

Missouri Department of Natural Resources 4 9

Map C.No.	CARES ID	Site Name	Туре		Location Code	Accuracy Code	Method Code	Database Code
C1	140966	Elanco Products			UN	NV	UN	Dealcov
C2	108627	Scott-New Madrid Electric Coop			UN	NV	UN	Chemcov
C3	108628	Coleman Plant			UN	NV	UN	Chemcov
C4	108630	Sikeston Bd of Municipal Utilities			UN	NV	UN	Chemcov
C5	110225	Board Of Municipal Utilities			UN	NV	UN	Tanks
C6	110226	Board Of Municipal Utilities			UN	NV	UN	Tanks
C7	110379	Boyer Construction Company			UN	NV	UN	Tanks
C8	110498	Bridger Equipment Company			UN	NV	UN	Tanks
C9	110543	Brown Sand & Gravel Co, Inc			UN	NV	UN	Tanks
C10	111299	Charles Terrell			UN	NV	UN	Tanks
C11	111413	City Garage			UN	NV	UN	Tanks
C12	111527	City Of Miner			UN	NV	UN	Tanks
C13	111831	Community Shelter Workshop			UN	NV	UN	Tanks
C14	111964	Cooney Equipment Company			UN	NV	UN	Tanks
C15	112305	Dekalb Ag Research			UN	NV	UN	Tanks
C16	112309	Dekalb-pfizer Genetics			UN	NV	UN	Tanks
C17	112488	Don King Equipment			UN	NV	UN	Tanks
C18 C19	113154 113947	Ferrell Excavating			UN UN	NV NV	UN UN	Tanks Tanks
C19 C20	113947	Hale Auction Company Holiday 66 Service			UN	NV	UN	Tanks
C20	114332	Home Oil Co			UN	NV	UN	Tanks
C22	114397	Hucks #139			UN	NV	UN	Tanks
C22	114828	Joe Williams			UN	NV	UN	Tanks
C23	115060	Kellett Oil Co.			UN	NV	UN	Tanks
C25	115145	Kimo's Office Building			UN	NV	UN	Tanks
C26	115609	Lewis Bros Bakeries, Inc			UN	NV	UN	Tanks
C27	115921	Malone & Hyde Drug Dist-never Owned			UN	NV	UN	Tanks
C28	116354	Mhtd Dist Garage			UN	NV	UN	Tanks
C29	116376	Mid South Tractor Parts			UN	NV	UN	Tanks
C30	117395	Par Gas (sinclair)			UN	NV	UN	Tanks
C31	117520	Pepsi Cola			UN	NV	UN	Tanks
C32	118701	Santie Wholesale Oil Co			UN	NV	UN	Tanks
C33	118714	Saunders System Inc			UN	NV	UN	Tanks
C34	118760	Scott Co R-v School Dist			UN	NV	UN	Tanks
C35	118765	Scott-new Madrid-mississippi El Cor			UN	NV	UN	Tanks
C36	118815	Semo Motor Company			UN	NV	UN	Tanks
C37	118816	Semo Nursing Center Inc			UN	NV	UN	Tanks
C38	119100	Sikeston			UN	NV	UN	Tanks
C39	119102	Sikeston Coca-cola Bottling Co			UN	NV	UN	Tanks
C40	119103	Sikeston Concrete Prods Co, Inc			UN	NV	UN	Tanks
C41	119104	Sikeston General Oil Co			UN	NV	UN	Tanks
C42	119106	Sikeston Maint Shed			UN	NV	UN	Tanks
C43	119107	Sikeston Pepsi Cola			UN	NV	UN	Tanks
C44	119381	Southwestern Bell			UN	NV	UN	Tanks
C45	120481	Todd Corporation			UN	NV	UN	Tanks
C46	120611	Trigg Shell			UN	NV	UN	Tanks
C47	120622	Troop E Satellite			UN	NV	UN	Tanks
C48	120761	Union Pacific			UN	NV	UN	Tanks
C49	120798	United Parcel Service, Inc			UN	NV	UN	Tanks
C50	120840	Uptown Shell			UN	NV	UN	Tanks
Code A2 A3 A4 A5 A6 A0 Z1	Block/Gro Street Ca Nearest Primary 5 Digitizatio Other Ad ZIP Code Census - 19	Interline G2 Kinematic Mode S2 Street Intersection G3 Differential Post Processing UN Street Name G4 Precise Positioning Service UN on G5 Signal Averaging dress Matching G6 Real Time Differential Processing Centroid Interpolation 90 I1 Topo Map	Other Land Survey Quarter Description Unknown	BL Bu CF Ce IN Inte LS Lay MG Ma MA Ma OT Ott PL Pill RD Ro	e ad	t (Gate)	Act Code m km ft yd mi UN NF	Curacy Codes Metric Meters Kilometers English Feet Yards Unknown Site not found at
C1 C2 C3	Block Ce Block/Gr Tract Cer	oup Centroid I3 Satellite Imagery		WL We	nk, Standpipe, o ell known	or lower	NV	database position Site position not verified

PWSS No. 4010743

Scott County, sheet 2 of 4

162 potential contaminant sources

G

Sheet Update: Jun 09, 2014

Missouri Department of Natural Resources 4 9

Map C.No.	CARES ID	Site Name	Туре	Location Code	n Accuracy Code	Method Code	Database Code
C51	120845	U-pump-it		UN	NV	UN	Tanks
C52	121651	Woodtruss		UN	NV	UN	Tanks
C53	121750	Quality Plating		UN	NV	UN	SMARS
C54	122606	Jerry James Trailers Inc.		UN	NV	UN	HW Gen
C55	123286	Scott-new Madrid-mississippi Electric		UN	NV	UN	HW Gen
C56	123833	Cooney Equipment Co.		UN	NV	UN	HW Gen
C57	123835	Semo Motor Co.		UN	NV	UN	HW Gen
C58	123836	Sikeston Dry Cleaners		UN	NV	UN	HW Gen
C59	123890	Todd, Inc.	Liener Entry	UN	NV	UN	HW Gen
C60	124108	Satterfield Body Shop	Hazar Entry	CF	33 ft	12	HW Gen
C61 C62	124665 124814	Missouri Delta Community Hospital Auto Tire & Parts		UN UN	NV NV	UN UN	HW Gen HW Gen
C62	124014	Stricker Body Shop		UN	NV	UN	HW Gen
C63	125054	At&t		UN	NV	UN	HW Gen
C65	125753	King Cleaners		UN	NV	UN	HW Gen
C66	125930	Mid-south Tractor Parts		UN	NV	UN	HW Gen
C67	126133	Carnell's Body Shop		UN	NV	UN	HW Gen
C68	126233	Mo Dept Of Transportation		UN	NV	UN	HW Gen
C69	126406	Heritage American Homes		UN	NV	UN	HW Gen
C70	127163	One Day Cleaners		UN	NV	UN	HW Gen
C71	127545	Kelpro, Inc.		UN	NV	UN	HW Gen
C72	127758	Chamberlain's Amoco		UN	NV	UN	HW Gen
C73	127798	Canedy Sign Co., Inc.		UN	NV	UN	HW Gen
C74	127851	Faultless Cleaners		UN	NV	UN	HW Gen
C75	128391	Don King Salvage		UN	NV	UN	HW Gen
C76	128417	Bootheel Diesel Fuel Injection		UN	NV	UN	HW Gen
C77	128903	Sikeston Light And Water		UN	NV	UN	HW Gen
C78	128972	Missouri Highway & Transportation Dept.		UN	NV	UN	HW Gen
C79	129213	Media Press		UN	NV	UN	HW Gen
C80	129679	Dekalb Plant Genetics		UN	NV	UN	HW Gen
C81	129840	Quality Plating % Usepa Region Vii		UN	NV	UN	HW Gen
C82	130016	Central States Coca-cola		UN	NV	UN	HW Gen
C83	130088	Curtis H. Cline		UN	NV	UN	HW Gen
C84	130731	Dekalb Corp		UN	NV	UN	HW Gen
C85	132505	HANDY STREET CALCIUM ARSENATE SITE		UN	NV	UN	CERCLIS
C86	132606	MRM INDUSTRIES		UN	NV	UN	CERCLIS
C87	135413	Dekalb Agresearch Inc		UN	NV	UN	APCP
C88	136492	Mcmullin Gin Co Inc		UN	NV	UN	APCP
C89	136493	Sikeston Cotton Oil Mill Inc		UN	NV	UN	APCP
C90	136501	Missouri Delta Community Hospital		UN	NV	UN	APCP
C91	136502	Old Coal-fired Generator		UN	NV	UN	APCP
C92	136503	Sikeston Power Station		UN	NV	UN	APCP
C93	136505	Hendrick Concrete Products Corp		UN	NV	UN	APCP
C94	136506	Sikeston Woodworking		UN	NV	UN	APCP
C95	136510	Daily Standard		UN	NV	UN	APCP
C96	136514	Crowder Gin Company, Inc		UN	NV	UN	APCP APCP
C97	136517 136521	Marnor Aluminum Processing Inc Mrm Industries Inc		UN	NV NV	UN	APCP
C98 C99	136521 136528	Faultless Cleaners Inc		UN UN	NV NV	UN UN	APCP
C99 C100	136526	Sikeston		UN	NV	UN	APCP
0100	130337	Method Codes		Location Co			curacy Codes
Code	Address Ma	tching (Geocoding) Code Global Positioning System	Code Other	BL Building		Code	Metric
A2 A3	Block/Gr Street Ce	oup G1 Static Mode Interline G2 Kinematic Mode	P1 Land Survey	CF Center of Facilit IN Intersection	у	m km	Meters Kilometers
A3 A4 A5	Nearest \$	Street Name G4 Precise Positioning Ser	ssing S2 Quarter Description vice UN Unknown	LS Lagoon or Pond MG Main Access Po	int (Gate)	ft	English Feet
A6	Digitizatio	on G5 Signal Averaging	vice	MA Main Office	ant (Gale)	yd	Yards
AO Z1	ZIP Code	dress Matching G6 Real Time Differential F Centroid Interpolation	rocessing	OT Other PL Pile		mi UN	Miles Unknown
C1	Census - 19 Block Ce	90 I1 Topo Map	000)	RD Road TK Tank, Standpipe	, or Tower	NF	Site not found at database position
01							Site position not

PWSS No. 4010743

Scott County, sheet 3 of 4

162 potential contaminant sources

G

Sheet Update: Jun 09, 2014

Missouri Department of Natural Resources 4 8

C.No.	CARES ID	Site Name	Туре	Location Code	Accuracy Code	Method Code	Database Code
C101	136539	King Laundry And Dry Cleaners		UN	NV	UN	APCP
C102	136540	Sikeston Dry Cleaners		UN	NV	UN	APCP
C103	385324	Magic Car Wash	Car wash	BL	33 ft	12	CARES
C104	385325	Williams Auto Sales	Auto repair shop	BL	33 ft	12	CARES
C105	385326	Rogers Auto Sales	Automotive dealership	BL	33 ft	12	CARES
C106	385327	The House of Color	Paint store	BL	33 ft	12	CARES
C107	385328	Drakes Auto Sales	Automotive dealership	BL	33 ft	12	CARES
C108	385329	Hucks	Tank (underground fuel)	BL	33 ft	12	CARES
C109	385330	Jim's Auto Sales	Automotive dealership	BL	33 ft	12	CARES
C110	385331	Cox's Car Wash	Car wash	BL	33 ft	12	CARES
C111	385332	Sinclair Gas	Tank (above-ground fuel)	BL	33 ft	12	CARES
C112	385333	Midtown Motors C&C Motors	Automotive dealership	CF	33 ft	12	CARES
C113 C114	385334 385335		Automotive dealership Print shop	BL BL	33 ft 33 ft	2 2	CARES CARES
C114	385336	Moll Priniting Company Feeders Supply	Feed/Fertilizer/Co-op	BL	33 ft	12	CARES
C116	385338	Meeks Print Shop	Other	BL	33 ft	12	CARES
C117	385339	Cornell's Collision Repair	Auto repair shop	BL	33 ft	12	CARES
C117	385340	FG Convienience Store	Tank (underground fuel)	BL	33 ft	12	CARES
C118	385340 385341	Rhodes Convienience Store	Tank (underground fuel)	BL	33 ft	12	CARES
C120	385342	Animal Health Center	Veterinary service	BL	33 ft	12	CARES
C121	385343	Elite Car Wash	Other	BL	33 ft	12	CARES
C122	385344	Sikeston Fire Department	Fire station	BL	33 ft	12	CARES
C123	385345	Allsops Woodworking	Furniture manufacturer	BL	33 ft	12	CARES
C124	385346	Sonny's Solid Waste	Tank (above-ground fuel)	CF	33 ft	12	CARES
C125	385349	Auto Repair	Auto repair shop	BL	33 ft	12	CARES
C126	385350		Well (domestic)	WL	33 ft	12	CARES
C127	385351	Riggs Building Supplies and Home Center	Hardware and lumber store	BL	33 ft	12	CARES
C128	385352	Sabona Mfg.	Manufacturing (general)	BL	33 ft	12	CARES
C129	385353	Janitrol/Janitor Supply	Other	BL	33 ft	12	CARES
C130	385354	Patriot/Heritage Homes	Manufacturing (general)	BL	33 ft	12	CARES
C131	385355	Sheltered Workshop	Sawdust pile	CF	33 ft	12	CARES
C132	385356	Aramark	Dry cleaner	BL	33 ft	12	CARES
C133	385357		Other	тк	33 ft	12	CARES
C134	385358	Riggs Wholesale Co.	Hardware and lumber store	BL	33 ft	12	CARES
C135	385359	Electric Substation	Other	CF	33 ft	12	CARES
C136	385440	Sikeston Auto Service	Auto repair shop	BL	33 ft	12	CARES
C137	385441	Sinclair Service Station	Tank (above-ground fuel)	BL	33 ft	12	CARES
C138	385442	Phillips 66	Tank (underground fuel)	BL	33 ft	12	CARES
C139	385443	Sikeston Laundry and Drycleaners	Dry cleaner	BL	33 ft	12	CARES
C140	385444	C & K Building Materials	Hardware and lumber store	BL	33 ft	12	CARES
C141	385445	King Laudry and Cleaners	Dry cleaner	BL	33 ft	12	CARES
C142	385446	Moll Printing Co.	Other	BL	33 ft	12	CARES
C143	385447	Premier Motor	Automotive dealership	BL	33 ft	12	CARES
C144	385448	Amoco	Tank (underground fuel)	BL	33 ft	12	CARES
C145	385449	Griffs Auto Sales	Automotive dealership	BL	33 ft	12	CARES
C146	385450	Beaver Janitor Supply	Other	ТК	33 ft	12	CARES
C147	385451	Blanchard Funeral Parlor	Funeral service and crematory	BL	33 ft	12	CARES
C148	385452	Service Station	Tank (underground fuel)	BL	33 ft	12	CARES
C149	385453	Cargill	Feed/Fertilizer/Co-op	CF	33 ft	12	CARES
C150	385454		Tank (above-ground fuel)	ТК	33 ft	12	CARES
Code A2 A3 A4 A5 A6 A0 Z1 C1 C2	Block/Gr Street Ce Nearest Primary 3 Digitizati Other Ad ZIP Code Census - 19 Block Ce	enterline G2 Kinematic Mode Street Intersection G3 Differential Post Processing Street Name G4 Precise Positioning Service on G5 Signal Averaging dress Matching G6 Real Time Differential Processing e Centroid Interpolation 90 I1 Topo Map	Code Other Description UN Unknown BL CF P1 Land Survey IN LS UN Unknown MG MA PL RD TK WL	Location Coc Building Center of Facility Intersection Lagoon or Pond Main Access Poir Main Office Other Pile Road Tank, Standpipe, Well	nt (Gate)	Ac Code m km ft yd mi UN NF NV	curacy Codes Metric Meters Kilometers English Feet Yards Miles Unknown Site not found at database position Site position not

PWSS No. 4010743

Scott County, sheet 4 of 4

162 potential contaminant sources

Q

Sheet Update: Jun 09, 2014

Missouri Department of Natural Resources

162	potential c	contaminant sources	UNI	VERSITY OF MISSOURI	s 📕 🔮	Natural I	Resources
Map C.No.	CARES ID	Site Name	Туре	Location Code	Accuracy Code	Method Code	Database Code
C151	385455	Sikeston Seed Co., Inc.	Feed/Fertilizer/Co-op	BL	33 ft	12	CARES
C152	385456	H & H Small Engine Repair	Auto repair shop	BL	33 ft	12	CARES
C153	385457	Auto Repair	Auto repair shop	BL	33 ft	12	CARES
C154	385458	J J Auto Sales	Automotive dealership	BL	33 ft	12	CARES
C155	385459	Sikeston City Dump	Dumping and/or burning site	CF	33 ft	12	CARES
C156	385460	William Farr and Purnell Funeral Home	Funeral service and crematory	BL	33 ft	12	CARES
C157	385461		Well (abandoned)	BL	33 ft	12	CARES
C158	385462		Well (abandoned)	BL	33 ft	12	CARES
C159	385463	Sikeston Fire Station	Fire station	BL	33 ft	12	CARES
C160	385464		Tank (above-ground fuel)	ТК	33 ft	12	CARES
C161	385465	Sikeston Highway Maintenence Facility	Highway maintenance facility	CF	33 ft	12	CARES
C162	385466	Shell	Petroleum production or storage	BL	33 ft	12	CARES

M		Method Codes		Location Codes		Accuracy Codes			
Code A2 A3 A4 A5 A6 A0 Z1 C1 C2 C3	Address Matching (Geocoding) Block/Group Street Centerline Nearest Street Intersection Primary Street Name Digitization Other Address Matching ZIP Code Centroid Census - 1990 Block Centroid Block/Group Centroid Tract Centroid	Code G1 G2 G3 G4 G5 G6 I1 I2 I3	Global Positioning System Static Mode Kinematic Mode Differential Post Processing Precise Positioning Service Signal Averaging Real Time Differential Processing Interpolation Topo Map Aerial Photography (DOQQ) Satellite Imagery	Code P1 S2 UN	Other Land Survey Quarter Description Unknown	BL F ILS GA OT LD RD K UN	Building Center of Facility Intersection Lagoon or Pond Main Access Point (Gate) Main Office Other Pile Road Tank, Standpipe, or Tower Well Unknown	Code m km ft yd mi UN NF NV	Metric Meters English Feet Yards Miles Unknown Site not found at database position Site position not verified

PWSS No. 4010743

Contaminant Summary Sheet

162 potential contaminant sources

Q

Sheet Update: Jun 09, 2014

Missouri Department of **a** Natural Resources

102	2 potential contaminant sources		
16	2 Potential Contaminant Sources in the Listed Databa	ses:	
	AFS (EPA AIRS Facility Sites)		Perchlo (MoDNR Perchlorate Sites in Missouri)
16	APCP (MoDNR Air Pollution Control Program Sites)		Pest Ap (MDA Licensed Pesticide Applicators)
10			
~	APF (MoDNR Active Permitted Landfills & Transfer Stations)		RCRIS (EPA Resource Conservation and Recovery Information System
2	CERCLIS (EPA CERCLIS)		Silos (USGS Minuteman II Missile Silos)
3	Chemcov (VA Selected Chemical Sites)	1	SMARS (MoDNR Superfund Management and Registry System)
1	Dealcov (MDA Pesticide Dealer Locations)	48	Tanks (MoDNR Petroleum Tank Database)
	Dioxin (MoDNR Confirmed Dioxin List)		Tier 2 (MERC Tier II Reports)
	Grain B (USDA Former Grain Bin Sites)		Tire D (MoDNR Resolved and Unresolved Waste Tire Dumps)
31	HW Gen (MoDNR Hazardous Waste Generators)		TRI (EPA Toxic Release Inventory)
	HW Tran (MoDNR Hazardous Waste Transporters)		VCP (MoDNR Voluntary Cleanup Program Sites)
	LUST (MoDNR Leaking Underground Storage Tanks)		WQIS (MoDNR Water Quality Information System)
	MoDOT (MoDOT Highway Maintenance Facilities)		
	PADS (EPA PCB Activity Data Base System)	60	SWIP Field Inventory (see below)
	······································		
60	Potential Contaminant Sources in the SWIP Field Inve	entory	
0	Airport or abandoned airfield	0	Machine or metalworking shop
0	Animal feedlot	2	Manufacturing (general)
0	Apartments and condominiums	0	Material stockpile (industrial)
0	Asphalt plant	0	Medical institution
6	Auto repair shop	0	Metal production facility
8	Automotive dealership	0	Mining operation
0	Barber and beauty shop	7	Other
0	Boat yard and marina	1	Paint store
0	CAFO	0	Park land
0	Campground	0	Parking lot
2	Car wash	1	Petroleum production or storage
0	Cement Plant	0	Pharmacies
0	Cemetery	0	Photography shop or processing lab
0	Communication equipment mfg	0	Pit toilet
0	Country club	0	Plastic material and synthetic mfg
3	Dry cleaner	1	Print shop
1	Dumping and/or burning site	0	Railroad yard
0	Electric equipment mfg or storage	0	Recycling/reduction facility
0	Electric substation	0	Research lab
0	Farm machinery storage	0	Restaurant
3 2	Feed/Fertilizer/Co-op Fire station	1	Sawdust pile School
2	Funeral service and crematory	0	Sports and hobby shop
2 1	Funiture manufacturer	0	Swimming pool
0	Furniture repair or finishing shop	0	Tailing pond
0	Garden and/or nursery	5	Tank (above-ground fuel)
0	Garden, nursery, and/or florist	0	Tank (other)
0	Gasoline service station	0	Tank (pesticide)
0	Golf courses	6	Tank (underground fuel)
0	Government office	0	Trucking terminal
0	Grain bin	1	Veterinary service
3	Hardware and lumber store	0	Wastewater treatment facility
0	Hazardous waste (Federal facility)	2	Well (abandoned)
1	Highway maintenance facility	1	Well (domestic)
0	Jewelry or metal plating shop	0	Well (irrigation)
0	Junk yard or salvage yard	0	Well (livestock)
0	Lagoon (commercial)	0	Well (monitoring)
0	Lagoon (industrial)	0	Well (public water supply)
0	Lagoon (municipal)	0	Well (unknown)
0	Lagoon (residential)		
~	Landfill (municipal)		
0			
0	Laundromat		

PWSS No. 4010743

Susceptibility Determination Sheet

Sheet Update: Mar 14, 2014

Missouri Department of	
Natural Resources	5

8 wells Stream Stre						
The Missouri Department of Natural Resources (MoDNR) has assembled this information to assess the susceptibility of drinking water sources to contamination. There are many unforseen and unpredictable factors that may cause a source to be contaminated. MoDNR routinely monitors all public supplies to ensure public health is protected. Public water systems and local communities are encouraged to take all measures possible to reduce the susceptibility of their drinking water source to chemical contamination. For more information, call 1-800-361-4827.	Not Susceptible	Moderately Susceptible	Highly Susceptible	Incomplete Data		
A system is highly susceptible because of construction deficiencies if:						
A well was not constructed according to plans approved by MoDNR-PDWB,				Х		
A well was not cased to a depth approved by MoDNR,				Х		
A well casing is not of sufficient weight,				Х		
A well is not sufficiently sealed (grouted) around the casing, or A well has developed holes in the casing or other flaws that compromise its integrity.				х		
A system is highly susceptible due to direct influence of surface water if:						
A well has tested positive for surface water indicators such as algae or high turbidity.				Х		
A system is highly susceptible to surface contaminants if:						
A well casing does not extend 12 inches above the well house floor, or				х		
18 inches above the ground surface,						
A well casing does not extend four feet above the 100-year flood level, or four feet above the highest known flood elevation,				Х		
A well is not provided with a properly screened vent, or				Х		
All openings in a well casing are not properly sealed.				Х		
A system is highly susceptible based on detection histories if:						
Volatile Organic Chemicals (VOCs) have been detected in a well,	Х					
Synthetic Organic Chemicals (SOCs) have been detected in a well,				Х		
Inorganic Chemicals (IOCs) have been detected in a well above naturally occurring levels,				Х		
Nitrates have been detected at or above one-half the MCL,	Х					
Bacteria has been consistently detected in a well, or				Х		
Viruses or microbiological contaminants are detected in a well.				Х		
A system is highly susceptible to weather, vandalism, and sabotage if:						
A well is not in a locked well house of adequate construction.				X (1)		
A system is moderately susceptible due to local geology if:						
A producing aquifer is less than 100 feet below the surface,	Х					
A producing aquifer has conduit flow conditions due to surficial karst topography,				Х		
A producing aquifer is not overlain by an impermeable confining layer,				Х		
A producing aquifer is overlain by a conductive (>5X10e-4) formation (including soil), or				Х		
A producing aquifer is confined, but there are open wells nearby penetrating that layer.				Х		
A system is moderately susceptible to contaminants if:						
Any contaminants listed in Appendix F-a are found in the source water area,		X (2)				
Septic systems are present in the source water area,				Х		
A well is indirectly connected to a surface water body,				Х		
A submersible well pump cannot be ruled out from containing PCBs or PHAs, or				Х		
There is a high density of transportation corridors in the source water area.				Х		
A system is highly susceptible to contamination if:						
Any contaminant sites identified in the source water area are known to have contaminated groundwater that may migrate toward a well.				Х		
 (1) This system was not assessed to determine if adequate security devices such as padlocks, gates, and lighting are in place to deter vandals and saboteurs. All water systems should have this type of protection in place. (2) A well (or wells) serving this system has been determined to be susceptible due to the presence of potential contaminant sources. The water system and the wellhead protection team should take extra care to ensure that all potential contaminants in the source water area are handled properly to avoid contamination of the drinking water supply. 						