

Sikeston Power Station 2025 Annual Groundwater Monitoring Report For Fly Ash Pond Compliance with USEPA 40 CFR 257.90(e)

Prepared for:

Sikeston Power Station 1551 West Wakefield Avenue Sikeston, Missouri 63801

Sikeston Power Station 2025 Annual Groundwater Monitoring and Corrective Action Report for Fly Ash Pond Compliance with USEPA 40 CFR 257.90(e)

Prepared for:

Sikeston Board of Municipal Utilities 1551 West Wakefield Avenue Sikeston, Missouri 63801

July 2025

Prepared by:

GREDELL Engineering Resources, Inc.
1505 East High Street
Jefferson City, Missouri 65101
Phone: (573) 659-9078
www.ger-inc.biz

Sikeston Power Station 2025 Annual Groundwater Monitoring Report for Fly Ash Pond Compliance with USEPA 40 CFR 257.90(e)

July 2025

Table of Contents

1.0	EXECUTIVE SUMMARY	i
2.0	INTRODUCTION	1
3.0 3.	GROUNDWATER MONITORING SYSTEM 1 Installation or Decommissioning of Monitoring Wells	
4.0 4.	DETECTION AND ASSESSMENT SAMPLING SUMMARY 1 Field Quality Assurance/Quality Control	
5.0 5. 5. 5. 5.	1 Laboratory Quality Control	6
6.0 6. 6. 6.	1 Detection Monitoring Statistical Procedures	9 10 10 11
7.0	RECOMMENDATIONS	13
8.0	SUMMARY	14
9.0	LIMITATIONS	15
10.0	O REFERENCES	16

List of Figures

- Figure 1 Groundwater Contour Map September 25, 2024
- Figure 2 Groundwater Contour Map April 16, 2025
- Figure 3 Groundwater Contour Map May 6, 2025

List of Tables

- Table 1 Fly Ash Pond Groundwater Sampling Event Summary, and Statistical Evaluations for Detection and Assessment Monitoring
- Table 2 Groundwater Monitoring Constituents
- Table 3 Groundwater Monitoring Well Summary
- Table 4 Historical Groundwater Level Summary
- Table 5 Water Levels and Field Parameter Summaries (September 25, 2024, April 16, 2024, and May 6, 2025)
- Table 6 Relative Percent Difference Summaries (September 25, 2024, and May 6, 2025)
- Table 7 Alternate Data Sets
- Table 8 Intra-Well Prediction Limit Summaries
- Table 9 Groundwater Protection Standards for Assessment Monitoring Constituents

List of Appendices

- Appendix 1 Field Sampling Notes
- Appendix 2 Laboratory Analytical Results
- Appendix 3 Laboratory Quality Assurance/Quality Control Data
- Appendix 4 Fly Ash Pond Groundwater Quality Data Base
- Appendix 5 Statistical Power Curves
- Appendix 6 Time Series Plots
- Appendix 7 Box and Whiskers Plots
- Appendix 8 Prediction Limit Charts Detection Constituents
- Appendix 9 Assessment Monitoring Statistical Evaluation Summary
- Appendix 10 Monitoring Well NE-3 Installation Records

1.0 EXECUTIVE SUMMARY

This report has been developed to fulfill the requirements of the United States Environmental Protection Agency (USEPA) 40 CFR 257 Subpart A – Classification of Solid Waste Disposal Facilities and Practices (CCR Rule), which requires owners or operators to provide an Annual Groundwater Monitoring Report. Sikeston Board of Municipal Utilities (SBMU) provides this report of groundwater sampling activities completed between September 2024 and June 2025 for the Fly Ash Pond (FAP) at the Sikeston Power Station (SPS).

At the start of the current reporting period the FAP was in assessment monitoring status, which also includes detection monitoring. Detection monitoring statistical evaluations are completed after each sampling event to determine if SSIs relative to the baseline data are apparent. Results from the 12th semiannual Compliance/Detection Monitoring (5th Assessment Monitoring) event for CCR rule groundwater sampling compliance suggested six apparent SSIs of pH (MW-1R, MW-3, MW-9, and MW-10); TDS (MW-1R); and Boron (MW-10). The results from the 13th Compliance/Detection (6th Assessment) event confirmed SSIs pH (MW-1R, and MW-9); and TDS (MW-1R), and suggested apparent (unconfirmed) SSIs (Boron, Calcium and Sulfate at MW-1R; Boron, Sulfate, and TDS at MW-7). As a result, the FAP will remain in assessment monitoring when the 14th semiannual Compliance/Detection Monitoring (7th Assessment Monitoring) event, which is conducted for both detection and assessment monitoring constituents (§257 Appendix III & IV).

Since assessment monitoring was established for the FAP and verification sampling was completed in accordance with §257.95(d)(1), statistical evaluations are completed to determine if assessment monitoring constituents are present at Statistically Significant Levels (SSLs) relative to the Groundwater Protection Standards (GWPS). Following the assessment monitoring conducted during the 12th and 13th CCR compliance groundwater sampling events initiated on September 25, 2024 and April 16, 2025, SSLs of Molybdenum (in MW-1R, MW-7, and MW-9) and Cobalt (MW-1R) were confirmed.

Table 1. Fly Ash Pond Groundwater Sampling Event Summary and Statistical Evaluations for Detection and Assessment Monitoring

Event Name and Purpose	Event Start	Final Data Received from Laboratory	Constituents Sampled	Apparent SSIs Detection Monitoring Constituents	Confirmed SSIs Detection Monitoring Constituents	Verified SSLs Assessment Constituents over GWPS*	Statistical Analysis Results Completed
12 th CCR Compliance Sampling Event (2 nd 2024 Semi- annual Detection and Assessment Monitoring Event)	9/25/2024	10/21/2024	Appendix III & IV Constituents	pH (MW-1R, MW- 3, MW-9, MW- 10) TDS (MW-1R) & Boron (MW-10)	pH (MW-1R, MW-3, MW-9)	Molybdenum: MW-1R, MW-7, MW-9 Cobalt: MW-1R	10/31/2024
13 th CCR Compliance Sampling Event (1 st 2025 Semi- annual Detection and Assessment Monitoring Event)	4/16/2025 & 5/6/2025	5/20/2025	Appendix III & detected IV Constituents (Appendix III & As, Ba, Co, FI, Li, Mo, & Se)	MW-1R (Boron, Calcium. Sulfate) MW-7 (Boron, Sulfate TDS)	pH (MW-1R, MW-9) & TDS (MW-1R)	Molybdenum: MW-1R, MW-7, MW-9 Cobalt: MW-1R	5/30/25

^{*}GWPS = Groundwater Protection Standards

Following confirmation of Cobalt and Molybdenum SSLs above Groundwater Protection Standards (GWPS), a Nature and Extent Characterization for Molybdenum and Cobalt and an Assessment of Corrective Measures were completed. In May 2025, SPS selected the most appropriate corrective measure based on the ACM and public comments (GER, 2025b & c), and will initiate corrective action monitoring in 2025.

2.0 INTRODUCTION

The Sikeston Power Station (SPS), owned and operated by the Sikeston Board of Municipal Utilities (SBMU), is an electric power producer and distributor located within the western city limits of Sikeston, in southern Scott County, Missouri. The SBMU-SPS began operation in 1981 and produces approximately 235 megawatts of electricity. The facility's two coal ash surface impoundments are located immediately east of the power station and are on properties owned and controlled by SBMU. The Fly Ash Pond (FAP) measures approximately 30 acres in size and borders the north edge of the Bottom Ash Pond (BAP), which measures approximately 61 acres. The FAP is subject to the alternate compliance schedule specified by the United States Environmental Protection Agency (USEPA) under 40 CFR Part 257.100(e)(5)(ii) ((§257.100(e)(5)(ii)) due to its initial inactive status and the Response to Partial Vacatur (the Direct Final Rule). This report, prepared by GREDELL Engineering Resources, Inc. (GER), pertains specifically to the FAP.

Pursuant to USEPA's §257 Federal Criteria for Classification of Solid Waste Disposal Facilities and Practices, Subpart D – Standards for Disposal of Coal Combustion Residuals (CCR) in Landfills and Surface Impoundments (ponds), the establishment of a groundwater monitoring system and routine detection sampling and reporting is required at all coal ash surface impoundments. The purpose of a monitoring well system is to evaluate the quality of groundwater as it passes beneath the waste mass within an impoundment. Groundwater samples are collected and analyzed on a semi-annual basis in accordance with §257.93, or as otherwise detailed in a site-specific Groundwater Monitoring and Sampling Plan (GMSAP) (GER, 2018; & 2025a). Analytical data also are subjected to statistical analysis in accordance with §257.93(f), with the results included in this Annual Groundwater Monitoring Report in accordance with §257.90(e).

If detection monitoring results suggest that a statistically significant increase (SSI) in one or more constituents for detection monitoring listed in §257 Appendix III (Table 2) has occurred, a written demonstration is required to determine if the SSI is attributable to alternate causative factors. If a successful demonstration is not made, an assessment monitoring program must be initiated as required under §257.95. If assessment monitoring is required, and results suggest that one or more concentrations of the assessment monitoring constituents listed in §257 Appendix IV (Table 2) are present at a statistically significant level (SSL) above GWPS, a written demonstration is required to determine if the SSL(s) is/are attributable to alternate causative factors. If a successful demonstration is not made, nature and extent of the release must be characterized in accordance with §257.95(g)(1), to support an Assessment of Corrective Measures as required by §257.96. Following confirmation of Cobalt and Molybdenum SSLs above Groundwater Protection Standards (GWPS), a Nature and Extent Characterization (GER, 2023b) of Molybdenum and Cobalt and an Assessment of Corrective Measures (GER, 2025b) were completed. In May 2025, SPS selected the most appropriate corrective measure based on the ACM and public comments (GER, 2025c)

This report describes the results of the following semi-annual events:

- 12th Compliance Sampling Event (2nd 2024 Detection and Assessment Event) and
- 13th Compliance Sampling Event (1st 2025 Detection and Assessment Event).

As summarized on Table 1, these events were initiated in September 2024 (12th event) and April 16 and May 6, 2025 (13th event). Included is a description of the sampling events, groundwater elevations, water table maps, field activity summaries, final analytical data, and statistical analysis results.

3.0 GROUNDWATER MONITORING SYSTEM

The groundwater monitoring system for the FAP consists of six wells following the addition of MW-10 in early 2023. Well locations are depicted on Figures 1, 2 and 3. The wells are identified as MW-1R, MW-2, MW-3, MW-7, MW-9, and MW-10. Monitoring wells MW-2 and MW-3 are located hydraulically upgradient of the FAP, whereas MW-1R, MW-7, MW-9, and MW-10 are located hydraulically downgradient of the FAP. Monitoring wells MW-2 and MW-3 were installed on April 26 and 27, 2016 by Smith & Company of Poplar Bluff, Missouri during hydrogeologic characterization of the site (GER, 2017). Monitoring wells MW-7 and MW-9 were installed on April 18, 2017, and November 13, 2017, respectively, by Bulldog Drilling, Inc. of Dupo, Illinois to serve as additional downgradient monitoring wells. Monitoring well MW-1R was installed on September 3, 2021, by Bulldog Drilling, Inc. to replace MW-1. Monitoring well MW-10 was installed on February 9, 2023, by Bulldog Drilling, Inc. to serve as a downgradient compliance well at the facility boundary.

Table 3 presents a construction summary of the wells comprising the FAP groundwater monitoring system. Figures 1, 2 and 3 depict groundwater contour maps of the uppermost aquifer for the 12th (Figure 1) and 13th (Figures 2 and 3) semi-annual CCR compliance groundwater sampling events. Groundwater elevations have been monitored regularly in each well since installation and these historical water levels are summarized on Table 4. Figures 1, 2 and 3 confirm that groundwater in the uppermost aquifer continues to move in a west-southwesterly direction, consistent with the conclusions of the Site Characterization Report (GER, 2017) and the historical data in Table 4. All groundwater wells are equipped with dedicated tubing for use with a peristaltic pump. The FAP groundwater monitoring system is described in more detail in the revised site-specific GMSAP for this facility (GER, 2018; & 2025a).

3.1 Installation or Decommissioning of Monitoring Wells

No monitoring wells were installed or decommissioned for the FAP detection and/or assessment groundwater monitoring systems since the previous Annual Groundwater Monitoring Report (GER, 2024). However, monitoring well NW-3, installed during the Nature and Extent Characterization (GER, 2023b), and MW-4, previously used for BAP detection monitoring will be added to the monitoring system for the FAP beginning the third quarter of 2025. The groundwater monitoring system wells are identified as MW-1R, MW-2, MW-3, MW-4, MW-7, MW-9, MW-10, and NE-3. MW-2 and MW-3 are located hydraulically upgradient of the Fly Ash Pond whereas MW-1R, MW-4, MW-7, MW-9, MW-10, and NE-3 are located hydraulically downgradient of the Fly Ash Pond.

4.0 DETECTION AND ASSESSMENT SAMPLING SUMMARY

The 12th and 13th CCR compliance groundwater sampling events for the FAP were completed by SPS environmental staff. The 12th CCR compliance groundwater sampling event (2nd 2024 semi-annual event) was initiated in September 2024 and the 13th event (1st 2025 semi-annual event) was initiated in April 2025. Following the April 2025 event, the samples were damaged in transit necessitating collection of replacement samples for 13th event on May 6, 2025.

Assessment Monitoring was established for the SBMU-SPS FAP in November 2022 in accordance with §257.94(e). Following receipt of final data for the seventh CCR compliance groundwater sampling event, statistical analysis confirmed SSIs of pH at MW-1R and MW-3, and Boron at MW-7 on September 2, 2022. In accordance with §257.95(b), assessment monitoring was initiated on November 2, 2022, concurrently with detection monitoring. While in assessment monitoring status, semi-annual sampling events for the FAP will generally be conducted simultaneously for both assessment and detection monitoring.

In accordance with §257.95(d)(2), GWPS were established as specified in §257.95(h) for all detected §257 Appendix IV constituents. Statistical results for the 12th and 13th detection groundwater sampling events are discussed in detail in Section 6.0. Assessment monitoring statistical results for the 12th and 13th compliance events (5th and 6th assessment monitoring events) are presented in Appendix 9.

Field procedures for the groundwater compliance sampling events were conducted in accordance with the GMSAP for this facility (GER, 2018; & 2025a). Field notes documenting the groundwater sampling events are presented in Appendix 1. The field sampling notes are summarized in Table 5, including initial and final water level measurements, purge volumes, and pH. Laboratory analytical reports for each sampling event, including field blank, and sample duplicate results, are included in Appendix 2. Quality Assurance/Quality Control (QA/QC) documentation is presented in Appendix 3. A summary of baseline (data set used as the basis for comparison to compliance samples), detection, and assessment monitoring analytical data for each well, including field parameters, is presented in Appendix 4.

4.1 Field Quality Assurance/Quality Control

Field QA/QC during each sampling event included the collection of one field blank and one field duplicate sample. The duplicates during the 12th and 13th events were collected at MW-1R. The samples and their duplicates collected during the sampling events were analyzed for detection and assessment monitoring constituents. Duplicate results and Relative Percent Differences (RPDs) calculated to assess laboratory reproducibility are summarized in Table 6. Rinsate blanks were not collected because dedicated sampling equipment was used. Samples were shipped to Teklab, Inc. Environmental Laboratory facility located in Collinsville, Illinois using standard chain-of-custody documentation/procedures. Teklab subcontracted the Radium analysis to Summit Environmental Technologies, Inc.

Samples collected during the 12th event were received by the primary facility on September 27, 2024, and subsequently analyzed for six (pH is field measured) detection monitoring and fourteen assessment monitoring constituents listed in §257 Appendix III and IV (Table 2) and required under §257.94(b). Final analytical results were received on October 21, 2024.

Samples collected during the 13th event were received by the primary facility on April 17, 2024, but the shipment was damaged, and the samples were not within thermal preservation requirements. Therefore, samples for the 13th event were re-collected on May 6, 2025, and samples were received by the primary facility on May 8, 2025, and subsequently analyzed for detection monitoring and the seven previously detected assessment monitoring constituents (arsenic, barium, cobalt, lithium, molybdenum, selenium and fluoride; Table 9-1 in Appendix 9). Final analytical results were received May 20, 2025.

5.0 ANALYTICAL SUMMARY

Analytical data reports for each monitoring well sampled during the 12th and 13th compliance groundwater sampling events are provided in Appendix 2. The data pertain to groundwater quality results from the uppermost aquifer in the area bordering the FAP, along with sample duplicate and field blank results.

5.1 Laboratory Quality Control

Laboratory analyses of the groundwater samples collected during the 12th and 13th events were completed by Teklab, Inc. Environmental Laboratories. The results were accompanied by appropriate QA/QC documentation. That documentation is presented in Appendix 3.

5.2 Precision and Accuracy

Precision is a measure of the reproducibility of analytical results, generally expressed as an RPD. Laboratory quality control procedures to measure precision consist of laboratory control sample (LCS) analysis and analysis of matrix spike/matrix spike duplicates (MS/MSD). These analyses are used to define analytical variability. Accuracy is defined as the degree of agreement between the measured amount of a species and the amount actually present, expressed as a percentage. It is generally determined by calculating the percent recoveries for analyses of surrogate compounds, laboratory control samples, continuing calibration check standards and matrix spike samples. Acceptable percent recoveries are established for SW-846 and USEPA methods. Field and laboratory blank analyses are also used to address measurement bias.

The analyses were performed within appropriate hold times except as noted below, and both initial and continuing calibrations met acceptance criteria for all analyses. Similarly, method blanks and LCS analyses met acceptance criteria. The case narratives for the 12th and 13th event analytical reports indicate that quality controls met acceptance criteria with the following exceptions:

12th Compliance Sampling Event (2nd 2024 Detection and Assessment Monitoring Event):

- The MW-3 result for Chloride is flagged "J" because the analyte detected was below quantitation limits.
- The Combined Radium results (all samples) are flagged "U" because results were not detected above the MDL.

13th Compliance Sampling Event (1st 2025 Detection and Assessment Monitoring Event (May 2025)):

- The MW-1R, MW-2, MW-3, and MW-10 results for Fluoride are flagged "J" because the analyte detected was below quantitation limits.
- The MW-3 result for Chloride is flagged "J" because the analyte detected was below quantitation limits.
- The MW-1R result for Calcium is flagged "S" because the Spike Recovery was outside recovery limits.
- All quality controls met for verification sampling event.

Additional QA/QC comments include the following:

- Field Duplicates: Analyses of duplicate samples are used to define the total variability of
 the sampling/analytical system as a whole. One field duplicate was collected during each
 monitoring event. The RPD was calculated for all detected chemical parameters. A
 summary table showing the results of the RPD calculations is included as Table 6. Using
 a tolerance level of ±20 percent, all calculated RPDs are within acceptable ranges for each
 detected parameter reported during the 12th and 13th events.
- Field Blank: One field blank was incorporated into the data set for each sampling event. Results for the field blanks (Appendix 2) documented no reportable concentrations during the 12th and 13th events.
- Trip Blank: One trip blank was incorporated into the data set for each sampling event.
 These laboratory-prepared trip blanks also accompanied the sample containers from the
 time they were shipped from the lab to SPS and until the samples arrived back at Teklab,
 Inc. (Teklab) for analysis. Results for the trip blanks (Appendix 2) documented no
 reportable concentrations during the 12th and 13th events.
- Laboratory Blanks: Method blanks, artificial, and matrix-less samples are analyzed to
 monitor the laboratory system for interferences and contamination from glassware,
 reagents, etc. Method blanks are taken throughout the entire sample preparation process.
 They are included with each batch of extractions or digestions prepared, or with each 20
 samples, whichever was more frequent. Reference to Appendix 3 should be made for
 comments related to these and other laboratory control samples.

5.3 Representativeness

Representativeness expresses the degree to which sample data accurately and precisely reflect site conditions. Representativeness of the data is determined by comparing actual sampling procedures to those delineated in the field sampling plan, comparing results from field duplicate samples, and reviewing the results of field blanks.

Approved sampling procedures are described in the GMSAP (GER, 2018; 2021; & 2025a), and were followed. Approved sampling procedures should be reviewed annually. Review of field blank data, duplicate analysis results, and RPDs do not suggest representativeness issues (Table 6 and Appendix 2). Groundwater sampling data are evaluated using appropriate statistical analysis methodologies and is conducted separately for each constituent in each monitoring well in accordance with §257.93(f) and the performance standards in §257.93(g).

5.4 Comparability

Comparability expresses the confidence with which one data set can be compared to another data set measuring the same property. Comparability is ensured by using established and approved sample collection techniques and analytical methods, consistent basis of analysis, consistent reporting units, and analyzing standard reference materials.

5.5 Completeness

Completeness is a measure of the amount of valid data obtained from a measurement system compared to the amount expected under controlled laboratory conditions. Completeness is defined as the valid data percentage of the total tests requested. Valid data are defined as those where the sample arrived at the laboratory intact, properly preserved, in sufficient quantity to perform the requested analyses, and accompanied by a completed chain-of-custody form (Appendix 3). Furthermore, the sample must have been analyzed within the specified holding time and in such a manner that analytical QC acceptance criteria are met.

6.0 STATISTICAL ANALYSIS

As discussed in Section 3.0, the FAP is in assessment monitoring status at the time of this report, and sampling activities for detection and assessment monitoring were conducted concurrently during the 12th and 13th compliance groundwater monitoring events.

The statistical analysis method used to evaluate detection monitoring data within the uppermost aquifer for the FAP monitoring system at SBMU-SPS consists of intra-well analysis using prediction limits to ascertain if detection monitoring constituent concentrations have increased (or pH changed) significantly.

The statistical analysis methods for the FAP assessment monitoring data consists of intra-well analysis using confidence interval comparison of assessment monitoring constituent concentrations to GWPS (Appendix 9). It is noted that confidence intervals are the recommended general statistical strategy in compliance/assessment monitoring or corrective action monitoring according to Unified Guidance (USEPA, 2009).

Groundwater sampling data are evaluated using appropriate statistical analysis methodologies and is conducted separately for each constituent in each monitoring well in accordance with §257.93(f) and the performance standards in §257.93(g).

6.1 Detection Monitoring Statistical Procedures

A complete background data set has been obtained for groundwater, representing the uppermost aquifer, moving below the FAP at the SPS. Data from the groundwater compliance sampling events is periodically added to the background data set to create the baseline data set that is the basis for comparison to compliance (detection) data. The baseline data is presented in Appendix 2. The baseline data was used to evaluate detection monitoring compliance results during the 12th and 13th groundwater compliance sampling events initiated at the SPS FAP in September 2024 and April 2025, respectively. Data from each event is compared to a comprehensive baseline data set resulting from previous sampling events. The baseline data set for MW-1R is based on eight rounds of background data collected from October 2021 to March 2022, and the baseline data set for MW-10 is based on eight rounds of background data collected from February 2023 to November 2023. The baseline data sets for MW-2, MW-3, MW-7, and MW-9 are generally based on thirteen rounds of background data collected from March 2018 to April 2021. Updates to the baseline data set are permitted every two years, but SSIs will not be included in baseline unless they are unconfirmed in accordance with Unified Guidance (USEPA, 2009). The next baseline update may be conducted following the 13th groundwater compliance sampling event or later in accordance with Unified Guidance.

Statistical analysis was performed in accordance with §257.93 using Sanitas© for Ground Water. The groundwater analytical results from the 12th and 13th detection monitoring events were

compared to the respective intra-well prediction limits at the 99 percent confidence level (Table 8) to determine if SSIs over baseline were apparent in the data sets.

6.2 Exploratory Data Analysis and Detection Data Screening

Exploratory Data Analysis (EDA) of the data refers to a collection of descriptive and graphical statistical tools used to explore and understand a data set (ITRC, 2013). Generally, EDA includes a numerical summary and graphical displays such as Time Series Plots, Box and Whisker Plots, Histograms and Probability Plots. EDA methods were supplemented with outlier and trend analysis tools included with Sanitas© software.

6.2.1 Detection Data Outlier Screening

The detection monitoring data were initially evaluated for possible outliers using the EDA outputs, which included Time Series Plots, Box and Whisker Plots, Histograms and Probability Plots. Procedures have been developed and provide the basis for the 'statistical' evaluation of possible outliers. The procedures have been documented in previous annual reports for the FAP (GER, 2023). Using these outlier analysis procedures, three outliers were confirmed in the detection monitoring baseline database (two associated with Fluoride, and one with TDS, all in MW-2). In total, the three confirmed outliers represent less than one percent of the 476 data points, which include 364 data points for MW-2, MW-3, MW-7, and MW-9 (7 constituents x 4 wells x 13 sampling events), and 112 individual data points for MW-1R and MW-10 (7 constituents x 2 wells x 8 sampling events). It is noted that Sanitas© also identified two outliers associated with MW-1R (pH and Fluoride) and one outlier with MW-10 (Fluoride). These data were not removed because these baseline data sets contain only eight observations, and they were collected over a period of less than one year. Because the range of natural annual/seasonal variation is almost certainly greater than the variance in these data sets, it is premature to remove any data until more than eight samples are collected over a period greater than one year. Therefore, all baseline data for MW-1R and MW-10 were retained as recommended by Unified Guidance (USEPA, 2009) when no basis for likely error or discrepancy can be identified. Following future updates to the baseline data set, the identification of potential outliers will be re-evaluated.

By contrast, the baseline data set used to evaluate the data from MW-2, MW-3, MW-7, and MW-9 are based on 13 rounds of data. Thirteen data points results in a more robust data set that includes some natural annual/seasonal variation and allows for removal of potential outliers while maintaining a sample population of n = eight or more. Accordingly, EDA performed with Sanitas© to conduct outlier analysis allowed for identification and screening of three outliers (two Fluoride values and one TDS value in MW-2) from the baseline data sets for these four wells.

6.2.2 Detection Data Trend Screening

The confirmed outliers were removed from the baseline data sets, as appropriate, prior to trend testing. The Sen's Slope/Mann-Kendall (non-parametric) trend test within Sanitas© was selected

to identify statistically significant downward or upward trends in the detection monitoring baseline data for each of the FAP groundwater monitoring system wells. Trend testing identified several trends in the data, however, significant increasing trends in constituent concentrations, and both decreasing and increasing significant trends in pH are of primary interest for detection monitoring at this site. During the baseline database update in 2023, an increasing trend in TDS at upgradient well MW-2 was determined to be significant at the 98% confidence level by Sanitas©.

Following Trend analysis, trend correction was performed for TDS in MW-2. Trend elimination is accomplished by iteratively removing early data from the set and re-checking for trends. Removed values are indicated in Appendix 4, and the data range for the resulting alternate data set is summarized in Table 7. The resulting alternate data set was tested using Sanitas© to verify successful trend elimination.

6.3 Detection Monitoring Statistical Results

The results of the statistical analysis for the detection monitoring data from the 12th and 13th sampling events are described below. A complete database summarizing the sample results, screened data, dates of sampling, and the purpose of sampling event, as per §257.90(e)(3), is provided in Appendix 4. A statistical power curve, based on the updated baseline data for detection monitoring, is provided in Appendix 5. Time-series plots of baseline data for all detection and assessment monitoring constituents are presented in Appendix 6. Box and whiskers plots for all detection and assessment monitoring data are presented in Appendix 7. Prediction limit charts for detection monitoring data are provided in Appendix 8.

The statistical analysis for the 12th FAP groundwater sampling event suggested six apparent (unconfirmed) detection constituent SSIs (pH at MW-1R, MW-3, MW-9, & MW-10; TDS at MW-1R; and Boron at MW-10), but only three SSIs were confirmed. The confirmed SSIs are associated with pH (MW-1R, MW-3, and MW-9) as summarized in Table 1.

The statistical analysis for the 13th FAP groundwater sampling event suggests six apparent (unconfirmed) detection constituent SSIs (Boron and Sulfate at MW-1R and MW-7; Calcium at MW-1R; and TDS at MW-7), but only three SSIs were confirmed. The confirmed SSIs are associated with pH (MW-1R, & MW-9), and TDS (MW-1R) as summarized in Table 1. The associated prediction limits for these and all other well constituent pairs are summarized in Table 8.

6.4 Assessment Monitoring Statistical Results

The §257 Appendix IV - Constituents for Assessment Monitoring were not compared to baseline values because at least one concentration was greater than the GWPS (Table 9). These comparisons would be performed in accordance with §257.95(e) and (f), if the possibility of returning to Detection Monitoring status appeared probable, by using Sanitas© to calculate

prediction intervals based on the established baseline data for Appendix III and IV constituents to determine if concentrations are below baseline values.

The analytical results for §257 Appendix IV - Constituents for Assessment Monitoring were evaluated to determine if SSLs over GWPS (Table 9) are apparent. Sanitas© was used to calculate confidence intervals based on the monitoring data following traditional data review, quality control, and outlier testing (Appendix 9). Sanitas© identified three outliers in the Appendix IV database, all associated with Arsenic (one value at MW-1R) and Selenium (two values at MW-2), which were subsequently removed from the Appendix IV database prior to calculating confidence intervals.

Confidence Intervals were calculated for each well constituent pair as summarized in Appendix 9. If the lower confidence interval is greater than the GWPS, an SSL is apparent. Four SSLs were identified in the data sets. The SSLs reported for are:

- Cobalt (MW-1R) and
- Molybdenum (MW-1R, MW-7, and MW-9).

Trend analysis was also conducted to determine if the SSLs are symptomatic of increasing concentrations of these constituents with time. Results of the trend analysis are provided in Appendix 9, and they demonstrate the following about the constituent well pairs with apparent SSLs over GWPS:

- Barium concentrations at MW-7 and MW-9 are increasing with statistically significant trends,
- Fluoride concentrations at MW-7 and MW-9 are decreasing with a statistically significant trend,
- Lithium concentrations at MW-7 and MW-9 are increasing with a statistically significant trend,
- Molybdenum concentrations at MW-7, and MW-9 are decreasing with statistically significant trends,
- Molybdenum and Cobalt concentrations at MW-1R do not have statistically significant trends, and
- Selenium concentrations at MW-7 are decreasing with a statistically significant trend.

7.0 RECOMMENDATIONS

Based on the results of the data evaluations, concentrations of several detection and assessment monitoring constituents have increased relative to the baseline database. Therefore, assessment monitoring must continue in accordance with §257.95. Additionally, Cobalt and Molybdenum were detected at SSLs above GWPS necessitating corrective measures to address the following:

- Prevent release of constituents of concern above their GWPS from the FAP;
- Remediate the constituents identified by groundwater monitoring to be above their GWPS, and;
- Restore groundwater in the affected area to conditions that do not exceed GWPS for those constituents.

In summary, GER recommends:

- 1. Continue Assessment and Detection Monitoring for the FAP in accordance with the CCR Rule §257.98 with the monitoring well system established in accordance with §257.91;
- 2. Continue construction and implementation of the selected remedy (GER, 2025b & c) in accordance with §257.98; and
- 3. Initiate Corrective Action Sampling in August 2025 in accordance with §257.98.
 - a. The Corrective Action Sampling System consists of MW-1R, MW-2, MW-3, MW-4, MW-7, MW-9, MW-10, and NE-3.

8.0 SUMMARY

The 12th and 13th semi-annual sampling events for the FAP were initiated by SPS environmental staff for detection and assessment monitoring on September 25, 2024, and April 16, 2025, respectively. Three detection constituent SSIs (pH in MW-1R, MW-3, and MW-9)) were confirmed with the 12th event results, and three detection constituent SSIs (pH in MW-1R, MW-3, and MW-9 and Calcium in MW-1R) were apparent with the 13th event results as summarized in Table 1.

The 12th and 13th semi-annual sampling event results both confirmed the presence of four assessment monitoring constituent SSLs above GWPS (Molybdenum in MW-1R, MW-7, and MW-9, and Cobalt in MW-1R) as summarized in Table 1. As a result of the SSLs, SPS continues assessment monitoring for the FAP, and has selected corrective measures to prevent release of constituents of concern above their GWPS from the FAP, remediate the constituents identified by groundwater monitoring to be above their GWPS, and restore groundwater in the affected area to conditions that do not exceed GWPS for those constituents.

The Remedy Selection Report (GER, 2025c) was completed in May 2025, in accordance with §257.95(g)(3). SPS will continue detection and assessment monitoring of the FAP in accordance with §257.94 & 95 and establish corrective action monitoring in accordance with §257.98 during the next Assessment Sampling event (scheduled for late 2025).

9.0 LIMITATIONS

This report has been prepared for the exclusive use of the client and GREDELL Engineering Resources, Inc. for the specific project discussed in accordance with generally accepted environmental practices common to this locale at this time. No other warranties, expressed or implied, are provided.

Interpretations of data and recommendations made in this report are based on observations of data that were available and referred to in this report unless otherwise noted. The report is applicable only to this specific project and known site conditions as they existed at the time of report preparation.

This report is not a guarantee of subsurface conditions. Variations in subsurface conditions may be present that were not identified during this or previous investigations. The use of this report and interpretations of data or conclusions developed by others are the sole responsibility of those firms or individuals.

10.0 REFERENCES

GER, 2017, Sikeston Power Station Site Characterization for Compliance with Missouri State Operating Permit #MO-0095575, dated May 2017.

GER, 2018, Sikeston Power Station Groundwater Monitoring and Sampling Plan for Compliance with Missouri State Operating Permit #MO-0095575, dated September 2018.

GER, 2019, Sikeston Power Station 2019 Annual Groundwater Monitoring Report for Fly Ash Pond Compliance with USEPA §257.90(e), dated August 1, 2019.

GER, 2020, Sikeston Power Station 2020 Annual Groundwater Monitoring Report for Fly Ash Pond Compliance with USEPA §257.90(e), dated August 2020.

GER, 2021, Sikeston Power Station Groundwater Monitoring and Sampling Plan for Compliance with Missouri State Operating Permit #MO-0095575, revised November 1, 2021.

GER, 2021, Sikeston Power Station 2021 Annual Groundwater Monitoring Report for Fly Ash Pond Compliance with USEPA §257.90(e), dated August 2021.

GER, 2022, Sikeston Power Station 2022 Annual Groundwater Monitoring Report for Fly Ash Pond Compliance with USEPA §257.90(e), dated August 2022.

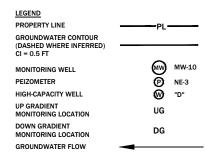
GER, 2023a, Sikeston Power Station 2023 Annual Groundwater Monitoring Report for Fly Ash Pond Compliance with USEPA §257.90(e), dated July 2023.

GER, 2023b, Technical Memorandum Regarding Nature and Extent Characterization (NEC), Sikeston Power Station, Scott County, Missouri, dated November 2023.

GER, 2024, Sikeston Power Station 2024 Annual Groundwater Monitoring Report for Fly Ash Pond Compliance with USEPA §257.90(e), dated July 2024.

GER, 2025a, Sikeston Power Station Groundwater Monitoring and Sampling Plan for Compliance with Missouri State Operating Permit #MO-0095575, revised June 2025.

GER, 2025b, Sikeston Power Station Fly Ash Pond Assessment of Corrective Measures, dated March 2025.


GER, 2025c, Sikeston Power Station Fly Ash ACM Remedy Selection Report, dated May 2025.

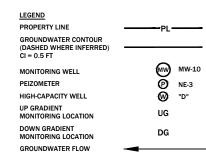
ITRC, 2013, Interstate Technology Regulatory Council – Groundwater Statistics for Monitoring and Compliance – Statistical Tools for the Project Life Cycle (ITRC GSMC-1 - Welcome: Using this Online Guidance (itrcweb.org)). Published December 2013.Sanitas© for Ground Waters Statistical Software, © 1992-2023 SANITAS TECHNOLOGIES, Alamosa Colorado 81101-0012.

U.S. Environmental Protection Agency, March 2009, Statistical Analysis of Groundwater Monitoring *Data at RCRA Facilities Unified Guidance*: USEPA 530/R-09-007, Office of Resource Conservation and Recovery, Program Implementation and Information Division, Washington, D.C.

FIGURES

- NOTES:
 1. IMAGE PROVIDED BY BING MAPS.
 2. MONITORING WELL LOCATIONS, CASING ELEVATIONS & UNDERGROUND CUIVERT ELEVATIONS SURVEYED BY BOWEN ENGINEERING & SURVEYING.
 3. GROUNDWATER ELEVATIONS MEASURED BY SIKESTON POWER STATION STAFF ON THE DATE INDICATED.
 4. MAP DEVELOPMENT BASED ON CONTOURS GENERATED BY SURFER® SOFTWARE.
 5. RANGE OF GROUNDWATER FLOW GRADIENT AS DETERMINED BY SURFER® SOFTWARE 1.00 0.003 FT./FT. TO 0.001 FT./FT.

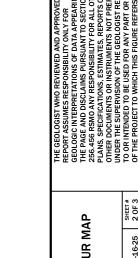
MONITORING WELL ID	GROUNDWATER ELEVATION (FEET)	CASING ELEVATION (FEET)	NORTHING	EASTING
MW-1R	294.69	314.34	382926.45	1078801.61
MW-2	295.61	308.01	383207.42	1079751.30
MW-3	295.10	308.55	381130.00	1079946.62
MW-7	294.13	315.03	381584.50	1078847.00
MW-9	294.53	314.68	382429.94	1078825.60
MW-10	291.93	304.28	381324.39	1076261.22



SIKESTON POWER STATION FLY ASH POND 2025 ANNUAL GROUNDWATER MONITORING & REPORT

RESOURCES

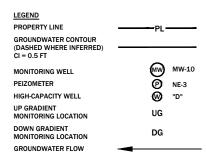
GALLE ENGINEERING RES



- NOTES:

 1. IMAGE PROVIDED BY BING MAPS.
 2. MONITORING WELL LOCATIONS, CASING ELEVATIONS & UNDERGROUND CULVERT ELEVATIONS SURVEYED BY BOWEN ENGINEERING & SURVEYING.
 3. GROUNDWATER ELEVATIONS MEASURED BY SIKESTON POWER STATION STAFF ON THE INDICATED DATE.
 4. MAP DEVELOPMENT BASED ON CONTOURS GENERATED BY SURFER® SOFTWARE.

AS
3 FT./FT.


NITORING WELL ID	GROUNDWATER ELEVATION (FEET)	CASING ELEVATION (FEET)	NORTHING	EASTING
MW-1R	298.57	314.34	382926.45	1078801.61
MW-2	299.61	308.01	383207.42	1079751.30
MW-3	299.22	308.55	381130.00	1079946.62
MW-7	297.95	315.03	381584.50	1078847.00
MW-9	298.40	314.68	382429.94	1078825.60
MW-10	295.18	304.28	381324.39	1076261.22
20	200.20	0020	0020200	20.0202.22

SIKESTON POWER STATION FLY ASH POND 2025 ANNUAL GROUNDWATER MONITORING & REPORT

SECURCES RESOURCES ENGINEERING

- NOTES:

 1. IMAGE PROVIDED BY BING MAPS.
 2. MONITORING WELL LOCATIONS, CASING ELEVATIONS & UNDERGROUND CULVERT ELEVATIONS SURVEYED BY BOWEN ENGINEERING & SURVEYING.
 3. GROUNDWATER ELEVATIONS MEASURED BY SIKESTON POWER STATION STAFF ON THE DATE INDICATED.
 4. MAP DEVELOPMENT BASED ON CONTOURS GENERATED BY SURFER® SOFTWARE.

	BT SURFER® SUFTWARE.
5.	RANGE OF GROUNDWATER FLOW GRADIENT AS
	DETERMINED BY SURFER® SOFTWARE 0.0003 FT./FT.
	TO 0.001 FT./FT.

IONITORING WELL ID	GROUNDWATER ELEVATION (FEET)	CASING ELEVATION (FEET)	NORTHING	EASTING
MW-1R	298.57	314.34	382926.45	1078801.61
MW-2	299.61	308.01	383207.42	1079751.30
MW-3	299.22	308.55	381130.00	1079946.62
MW-7	297.95	315.03	381584.50	1078847.00
MW-9	298.40	314.68	382429.94	1078825.60
MW-10	295.18	304.28	381324.39	1076261.22

NO !	GROUNDV
WATER	_

SIKESTON POWER STAT FLY ASH POND 2025 ANNUAL GROUNDW MONITORING & REPOF

GARENG RESOURCES

TABLES

Annual Groundwater Monitoring Report for Fly Ash Pond USEPA 40 CFR 257.90(e) SBMU - Sikeston Power Station Scott County, Missouri

Table 2
Groundwater Monitoring Constituents

USEPA 40 CFR 257							
Appendix III	-	Appendix IV -					
Constituents for Detection	on Monitoring	Constituents for Assessment M	onitoring				
Chemical Constituent	Method	Chemical Constituent	Method				
pH (S.U.)		Antimony (μg/L)	SW 6020 A				
Boron (µg/L)	SW 6020 A	Arsenic (μg/L)	SW 6020 A				
Calcium (mg/L)	SW 6020 A	Barium (µg/L)	SW 6020 A				
Chloride (mg/L)	EPA 300.0 REV 2.1	Beryllium (µg/L)	SW 6020 A				
Fluoride (mg/L)	EPA 300.0 REV 2.1	Cadmium (μg/L)	SW 6020 A				
Sulfate (mg/L)		Chromium (µg/L)	SW 6020 A				
Total Dissolved Solids (mg/L) SM 2540C		Cobalt (μg/L)	SW 6020 A				
		Fluoride (mg/L)	EPA 300 REV 2.1				
		Lead (µg/L)	SW 6020 A				
		Lithium (µg/L)	SW 6010 A				
		Mercury (µg/L)	SW 6020 A				
		Molybdenum (µg/L)	SW 6020 A				
		Selenium (µg/L)	SW 6020 A				
		Thallium (μg/L)	SW 6020 A				
		Radium 226 and 228 combined (pCi/L)	EPA 903.1 & 904.0				

NOTES:

- 1. S.U. = Standard Unit.
- 2. μ g/L = micrograms per liter.
- 3. mg/L = milligrams per liter.
- 4. pCi/L = picocurie per liter.

Prepared by: KAE Checked by: JTF Approved by: MCC

Annual Groundwater Monitoring Report for Fly Ash Pond USEPA 40 CFR 257.90(e) SBMU - Sikeston Power Station Scott County, Missouri

Table 3 Groundwater Monitoring Well Summary

Monitoring Well ID ^{1,2}	Northing Location ^{3,4}	Easting Location ^{3,4}	Ground Surface Elevation ^{3,4} (feet)	Top of Riser Elevation ^{3,4} (feet)	Well Depth ⁵ (feet)	Base of Well Elevation ⁶ (feet)	Screen Length ⁷ (feet)	Top of Screen Elevation (feet)
MW-1*	383119.51	1078467.90	310.41	312.77	37.84	274.93	10	285.1
MW-2	383207.42	1079751.30	305.53	308.01	37.42	270.59	10	280.8
MW-3	381130.00	1079946.62	306.11	308.55	37.21	271.34	10	281.5
MW-7	381584.50	1078847.00	312.70	315.03	37.37	277.66	10	287.9
MW-9	382429.94	1078825.60	311.85	314.68	37.28	277.40	10	287.6
MW-1R	382926.45	1078801.61	311.41	314.34	38.16	276.10	10	286.4
MW-10	381324.39	1076261.22	300.70	304.28	33.58	270.70	10	280.7

NOTES:

- 1. Refer to Figure 1 for monitoring well locations.
- 2. Refer to Sikeston Power Station On-Site Operating Record for well construction diagrams.
- 3. Monitoring well survey data provided by Bowen Engineering & Surveying, Inc.
- 4. Horizontal Datum: Missouri State Plane Coordinates NAD 83 (Feet), Vertical Datum: NAVD 88 (Feet).
- 5. Depth measurements relative to surveyed point on top of well casing.
- 6. Sump installed at base of screen (0.2 feet length).
- 7. Actual screen length (9.7 feet) is the machine-slotted section of the 10-foot length of Schedule 40 PVC pipe.
- 8. * = MW-1 removed from Fly Ash Pond Monitoring System following installation and completion of background sampling of MW-1R on March 2, 2022.
- 9. MW-10 added to Fly Ash Pond Monitoring System following installation and completion of Background sampling on November 3, 2023.

Prepared by: KAE Checked by: MCC Approved by: KAE

Annual Groundwater Monitoring Report for Fly Ash Pond USEPA 40 CFR 257.90(e) SBMU - Sikeston Power Station Scott County, Missouri

Table 4 Historical Groundwater Level Summary

Well ID	MW-1*	MW-2	MW-3	MW-7	MW-9	MW-1R	MW-10
Date			Groundwa	ter Elevation (fe			
05/12/16	297.50	298.66	298.13	NM	NM	NI	NI
06/28/16	296.60	298.01	297.58	NM	NM	NI	NI
07/15/16	296.57	297.86	297.37	NM	NM	NI	NI
08/08/16	295.62	297.06	297.05	NM	NM	NI	NI
09/08/16	296.06	297.27	296.76	NM	NM	NI	NI
10/05/16	295.86	296.96	296.40	NM	NM	NI	NI
11/01/16	295.47	296.66	296.10	NM	NM	NI	NI
11/30/16	295.45	296.60	296.03	NM	NM	NI	NI
01/24/17	NM	NM	296.35	NM	NM	NI	NI
01/26/17	295.77	296.76	296.35	NM	NM	NI	NI
02/22/17	NM	NM	296.00	NM	NM	NI	NI
02/24/17	295.47	296.40	296.00	NM	NM	NI	NI
03/20/17	296.11	296.96	296.45	NM	NM	NI	NI
04/19/17	296.04	296.86	296.35	NM	NM	NI	NI
04/27/17	NM	NM	296.72	NM	NM	NI	NI
05/17/17	NM	NM	297.81	NM	NM	NI	NI
06/08/17	NM	NM	297.81	NM	NM	NI	NI
07/13/17	NM	NM	296.98	NM	NM	NI	NI
10/31/17	NM	NM	295.22	NM	NM	NI	NI
03/21/18	295.92	296.96	296.65	295.83	296.13	NI	NI
04/15/18	297.07	297.86	297.60	296.95	297.18	NI	NI
05/23/18	296.78	298.01	297.62	296.66	296.98	NI	NI
06/13/18	NM	NM	297.33	NM	NM	NI	NI
06/27/18	296.37	297.61	297.21	296.26	296.56	NI	NI
08/01/18	295.22	296.60	296.15	295.08	295.48	NI	NI
09/05/18	294.79	296.11	295.68	294.71	295.01	NI	NI
11/06/18	295.01	296.21	295.74	294.85	295.17	NI	NI
11/26/18	NM	NM	295.63	NM	NM	NI	NI
12/12/18	295.12	296.21	295.79	295.06	295.36	NI	NI
01/08/19	295.66	296.72	296.38	295.53	295.80	NI	NI
02/05/19	NM	NM	296.73	NM	NM	NI	NI
02/22/19	297.70	298.67	298.35	297.59	297.84	NI	NI
03/27/19	297.69	298.93	298.51	297.58	297.93	NI	NI
04/16/19	298.15	299.29	298.93	298.01	298.38	NI	NI
05/14/19	298.27	299.66	299.25	298.15	298.52	NI	NI
05/28/19	NM	NM	298.95	NM	NM	NI	NI
06/12/19	297.82	299.24	298.82	297.76	298.10	NI	NI
07/17/19	297.32	298.77	298.38	297.25	297.55	NI	NI
07/24/19	297.40	298.80	298.41	297.33	297.65	NI	NI
08/14/19	296.61	298.15	297.80	296.65	296.96	NI	NI
08/28/19	NM	NM	297.55	NM	NM	NI	NI
09/16/19	296.24	297.70	297.22	296.14	296.50	NI	NI
09/24/19	296.09	297.53	297.05	295.98	296.33	NI	NI
10/10/19	295.92	297.29	296.84	295.80	296.13	NI	NI
10/22/19	295.92	297.24	296.80	295.74	296.12	NI	NI
11/04/19	NM	NM	297.34	NM	NM	NI	NI
01/28/20	297.61	298.73	298.34	297.42	297.80	NI	NI
02/18/20	NM	NM	299.00	NM	NM	NI	NI
03/30/20	NM	NM	300.09	NM	NM	NI	NI
04/06/20	299.16	300.40	300.00	298.99	299.41	NI	NI
05/21/20	298.50	300.02	299.55	NM	298.71	NI	NI
09/22/20	296.53	297.97	297.47	296.33	296.78	NI	NI
12/08/20	296.63	298.00	NM	NM	NM	NI	NI
01/26/21	290.03 NM	298.00 NM	NM	296.51	296.82	NI	NI
04/17/21	297.32	298.49	298.05	297.08	297.48	NI	NI
10/20/21	295.36	296.55	296.03	295.08	295.53	295.69	NI
04/09/22	295.30 NM	298.06	297.60	296.78	297.18	297.29	NI
08/02/22	NM	297.01	296.55	295.38	295.85	296.04	NI
11/02/22	NM	295.79	295.24	293.38	293.63	294.96	NI
03/12/23	NM	295.79	295.24	294.33	294.76	294.96	NM
12/11/23	NM	296.31	295.81	295.80	295.28	295.44	292.83
04/23/24	NM	296.71	295.81	294.86	295.28	295.44	292.83
09/25/24	NM						
09/25/24	NM	295.61 299.61	295.10 299.22	294.13	294.53	294.69 298.57	291.93 295.18
	-	299.61	299.22 298.61	297.95	298.40 297.78	298.57 297.94	295.18
05/06/25	NM	L 299.09	Z90.01	297.33	Z31.10	Z31.34	<u>∠∀4.33</u>

NOTES:

- 1. Refer to Figure 1 for monitoring well locations.
- 2. Refer to Sikeston Power Station On-Site Operating Record for well construction diagrams.
- 3. NM Not Measured.
- 4. NI Not Installed.
- 5. Maximum and minimum groundwater elevations are shaded.
- 6. * = MW-1 removed from Fly Ash Pond Monitoring System following completion of background sampling of MW-1R on March 2, 2022.
- 7. MW-10 added to Fly Ash Pond Monitoring System following completion of background sampling on November 3, 2023.

Annual Groundwater Monitoring Report for Fly Ash Pond USEPA 40 CFR 257.90(e) SBMU - Sikeston Power Station Scott County, Missouri

Table 5 Water Levels and Field Parameter Summary

12th Compliance Sampling Event initiated September 25, 2024

Monitoring Well I.D.	Hydraulic Position	Initial Water Level (ft, BTOC ²)	Final Water Level (ft, BTOC ²)	Minimum ³ Purge Vol. (ml ⁴)	Actual Purge Vol. (ml ⁴)	pH (S.U.⁵)
MW-2	Upgradient	12.40	12.40	300	4,200	6.24
MW-3	Upgradient	13.45	13.45	300	6,660	6.82
MW-7	Downgradient	20.90	20.90	300	2,460	7.40
MW-9	Downgradient	20.15	20.15	300	3,040	7.06
MW-1R	Downgradient	19.65	19.65	300	6,040	6.46
MW-10	Downgradient	12.35	12.35	300	4,040	7.21

NOTES:

- 1. Sequence of sampling is MW-1R, MW-9, MW-7, MW-2, MW-10 then MW-3.
- 2. BTOC: Below Top of Casing
- 3. Purge calculations based on 1/4" ID tubing and complete evacuation of single tubing volume.
- 4. ml: milliliter
- 5. S.U.: Standard Unit.

Event initiated April 16, 2025

Monitoring Well I.D.	Hydraulic Position	Initial Water Level (ft, BTOC ²)	Final Water Level (ft, BTOC²)	Minimum ³ Purge Vol. (ml ⁴)	Actual Purge Vol. (ml ⁴)	pH (S.U.⁵)
MW-2	Upgradient	8.40	8.40	300	4,000	6.36
MW-3	Upgradient	9.33	9.33	300	4,120	6.33
MW-7	Downgradient	17.08	17.08	300	5,740	7.25
MW-9	Downgradient	16.28	16.28	300	4,080	6.87
MW-1R	Downgradient	15.77	15.77	300	4,520	6.32
MW-10	Downgradient	9.10	9.10	300	10,980	7.09

NOTES:

- 1. Sequence of sampling is MW-1R, MW-9, MW-7, MW-3, MW-2 then MW-10.
- 2. BTOC: Below Top of Casing
- 3. Purge calculations based on 1/4" ID tubing and complete evacuation of single tubing volume.
- 4. ml: milliliter
- 5. S.U.: Standard Unit.

13th Compliance Sampling Event initiated May 6, 2025

Monitoring Well I.D.	Hydraulic Position	Initial Water Level (ft, BTOC²)	Final Water Level (ft, BTOC ²)	Minimum ³ Purge Vol. (ml ⁴)	Actual Purge Vol. (ml ⁴)	pH (S.U.⁵)
MW-2	Upgradient	8.92	8.92	300	4,460	6.33
MW-3	Upgradient	9.94	9.94	300	4,460	6.61
MW-7	Downgradient	17.70	17.70	300	4,240	7.27
MW-9	Downgradient	16.90	16.90	300	4,500	7.00
MW-1R	Downgradient	16.40	16.40	300	5,120	6.38
MW-10	Downgradient	9.95	9.95	300	7,400	7.08

NOTES:

- 1. Sequence of sampling is MW-1R, MW-9, MW-7, MW-3, MW-10, then MW-2.
- 2. BTOC: Below Top of Casing
- 3. Purge calculations based on 1/4" ID tubing and complete evacuation of single tubing volume.
- 4. ml: milliliter
- 5. S.U.: Standard Unit.

Annual Groundwater Monitoring Report for Fly Ash Pond USEPA 40 CFR 257.90(e) SBMU - Sikeston Power Station Scott County, Missouri

Table 6 Relative Percent Differences Summary

12th Compliance Sampling Event

Chemical Parameter	Units	MW-1R	DUP	Relative Percent Difference
Total Dissolved Solids	mg/L	520	502	3.5
Sulfate	mg/L	242	249	2.9
Fluoride	mg/L	< 0.25	< 0.25	NA
Chloride	mg/L	16.6	17.3	4.1
Barium	μg/L	26.6	29.3	9.7
Boron	μg/L	3,700	3,770	1.9
Calcium	mg/L	103.0	106.0	2.9
Cobalt	μg/L	13.6	14.4	5.7
Lithium	μg/L	10.2	10.9	6.6
Molybdenum	μg/L	166	165	0.6

13th Compliance Sampling Event

Chemical Parameter	Units	MW-1R	DUP	Relative Percent Difference
Total Dissolved Solids	mg/L	576	596	3.4
Sulfate	mg/L	289	302	4.4
Fluoride	mg/L	J 0.10	J 0.11	9.5
Chloride	mg/L	18.3	19.0	3.8
Barium	mg/L	48.4	49.4	2.0
Boron	μg/L	4,690	4,850	3.4
Calcium	mg/L	S 116.0	121.0	4.2
Cobalt	ug/L	15.0	16.8	11.3
Lithium	μg/L	11.2	12.4	10.2
Molybdenum	μg/L	208	233	11.3

NOTES:

- 1. S.U. = Standard Unit.
- 2. μ g/L = micrograms per liter.
- 3. mg/L = milligrams per liter.
- 4. pCi/L = picoCuries per liter.
- 5. Relative Percent Difference tolerance = 20%. Not calculated if sample or Dup is below Reporting Limit.
- 6. Qualifiers:
 - a. "J" Analyte detected below quantitation limits
 - b. "S" Analyte spike recovery outside recovery limits

Prepared by: CMH Checked by: KAE Approved by: KAE

 $\label{prepared by: GREDELL Engineering Resources, Inc.} Prepared by: GREDELL Engineering Resources, Inc. \\$

Annual Groundwater Monitoring Report for Fly Ash Pond USEPA 40 CFR 257.90(e) SBMU - Sikeston Power Station Scott County, Missouri

Table 7 Alternate Data Sets

12th and 13th Compliance Sampling Events

Constituent-Well Pair ¹		Proposed Background Data Base	Background
Well ID	Constituent	(to eliminate trending data) ²	set size (n)
MW-2	TDS	August 2018 through September 2020	8

Notes:

1. Constituent-well pairs identified based on Mann-Kendall Sen's Slope Trend Analysis of data set summarized in Appendix 4.

Prepared by: KAE Checked by: JTF

Approved by: KAE

Annual Groundwater Monitoring Report for Fly Ash Pond USEPA 40 CFR 257.90(e) SBMU - Sikeston Power Station Scott County, Missouri

Table 8 Intra-Well Prediction Limit Summaries

12th and 13th Compliance Sampling Events

Chemical Parameter	Units	MW-1R	MW-2	MW-3	MW-7	MW-9	MW-10
40 CFR 257 Appendix III Constituents for							
Detection Monitoring							
pH Upper	S.U.	6.58	6.405	6.626	7.420	7.477	7.143
pH Lower	S.U.	6.48	6.013	6.359	7.148	7.237	6.684
Chloride	mg/L	21.7	7.525	1.641	14.94	22.51	24.59
Fluoride	mg/L	0.366	0.272	0.386	0.831	1.101	0.42
Sulfate	mg/L	249.2	21.42	21.29	259	279.2	215.5
Total Dissolved Solids	mg/L	512.1	171.5	166.7	584.1	653	530.8
Boron	μg/L	3,875	59.94	33.39	2,352	6,408	383.1
Calcium	mg/L	112.4	24.21	19.08	144	97.23	94.97

NOTES:

- 1. MW-1R prediction limits based on eight rounds of background data spanning October 2021 to Mach 2022.
- 2. MW-10 prediction limits based on eight rounds of background data spanning February 2023 to November 2023.
- 2. Prediction limits for MW-2, MW-3, MW-7, and MW-9 based on 13 rounds of background data spanning March 2018 to April 2021, except where detrending or outlier removal was necessary (Appendix 4).
- 3. Prediction limits summarized from Sanitas outputs provided in Appendix 8.

Prepared by: KAE Checked by: JTF

Approved by: KAE

Annual Groundwater Monitoring Report for Fly Ash Pond USEPA 40 CFR 257.90(e) SBMU - Sikeston Power Station Scott County, Missouri

Table 9
Groundwater Protection Standards for Assessment Monitoring Constituents

Constituent	Units	MCL or Health-Based GWPS
Antimony	ug/L	6
Arsenic	ug/L	10
Barium	ug/L	2000
Beryllium	ug/L	4
Cadmium	ug/L	5
Chromium	ug/L	100
Cobalt	ug/L	6
Fluoride	mg/L	4
Lead	ug/L	15
Lithium	ug/L	40
Mercury	ug/L	2
Molybdenum	ug/L	100
Selenium	ug/L	50
Thallium	ug/L	2
Radium 226/228 (Combined)	pCi/L	5

NOTES:

- 1. ug/L micrograms per liter.
- 2. mg/L milligrams per liter.
- 3. pCi/L picocuries per liter.
- 4. MCL Maximum Contaminant Level per CFR 40 Subchapter D Part 141 subpart G Section 141.62 & 141.66, or Part 257 subpart D Section 257.95(h)(2).

APPENDICES

Appendix 1

Field Sampling Notes

Field Instrumentation Calibration Log

Callbrated by: Facility: Ameren RIEC Ash Ponds - Groundwater Monitoring

	Field Instr	uments:	In-Situ SmarTROLL	MP or In-Situ	AquaTROLL 4	00		· -		HF scientific, in	c. Micro TPI Fie	ld F	ortable Tu	rbidimeter				
		S/N #:	893508	E .		_		_	_			_						
	Date	Time	pH Standards (S.U.)	pH Measure- ments (S.U.JmV)	Specific Conductance Standard (µS/cm)	e	Specific Conductance Measurement (µS/cm)	Oxidation Reduction Potential Standard (mV))	Oxidation Reduction Potential Measurement (mV)	Dissolved (%		ygen	Turbidity Standards (NTU)	A	Turbidity Aeasurements (NTU)		
bration	9/25/24	0635	4.00 @ 25.00°C Standard is = 4 @ 15 °C	4.01	1413 @25,00°C		1413.3	220 mV at 25,00°C		229.7	Temperature (°C)	4	20.35	0.02		. 0 Ĺ		
Beginning of Day Calibration			7.00 @25.00°C Standard is 7 @ 25 °C	1 is = 7.00 = 20.54		=	20.71	Tap Water Source	=	SBMU	10.0	1007	9:97					
ginning o			10.00 @25.00°c Standard is =	10.04	2500		2	Standard is 219 mV @			Barometric Pressure (mm/Hg)	#	751.13	1000	=	1080		
8				-201.3					1		Measurement Temperature	=	100.02		H			
×			4.00 @ 25 00 °C Standard is = 7 @ 25 °C	14349	1413 @25.00°C		1423.5	220 mV at 25.00°C		129@	(°C)		26.89	0.02	=	0,11		
End of Day Check	9/25/24	1430	7.00 @25.00°C	7.00	2	ı	@	25,00 C	= -	=	= -	229@ 20776	Tap Water Source		SBMU	10.0	=	10.10
End of [10.00 @25.00°C	10.04	1413		20.61°C	Standard is 229mV @ 25°C			Barometric Pressure (mm/Hg)	903	751.03	1000		1024		
			Standard is = 10 @ 25 °C	210.5	25°C			25℃			Measurement	=	101.01	1000		1027		

The In-Situ SmarTROLL MP Field Meter and In-Situ AquaTROLL 400 measure Temperature, Specific Conductance, Dissolved Oxygen, pH, and Oxidation Reduction Potential. Notesi The HF scientific, inc. Micro TPI Field Portable Turbidimeter measures Turbidity. Dissolved oxygen is calibrated via % saturation method, however, field measurements are recorded as mg/L.

I certify that the aforementioned meters were calibrated within the my colacturers specifications.

CHAIN OF CUSTODY pg. 1 of 1 Work order #_

TEKLAB, INC. 5445 Horseshoe Lake Road - Collinsville, IL 62234 - Phone: (618) 344-1004 - Fax: (618) 344-1005

Client:	Sikeston Board of I	Municipal Utilities												E [= NC	, ICE	FOR	2 4	BIII	°C	NLY	TG# _		_
Address:	107 E Malone Ave								1					AB [∭ FI	FLD				FUN	LM	500	<u> </u>	1421			
City / State /	Zip Sikeston, MO 638	01							La	bΝ	lote	s:															
Contact:	Luke St. Mary		Phone:		(573)	475-3	119		L									_	= -			-	-				
	lstmary@sbmu.net		Fax:				_		CI	en	t Co	mme	ents	Cd Ca	0-7	100)	Ch A		oh Li	Ma S	ο TI (I	CP/M	iS) an	ıd Ha			
re these samples re there any requ	known to be involved in litiknown to be hazardous? It ired reporting limits to be ment section.	f yes, include deta net on the request No	ails of the h ted analysis	azaro ?. If	ı. yes, p	Yes olease	provid	de	100				DC D	-	20.(,								ESTE	-D		
Proj	ect Name/Number		Sample	Coll	ecto	r's N	ame	:	-	N	/AT	RIX	\dashv	-1	- 1	-1	INL	ICA	157	INAL	-131					T	T
ly Ash Pond (FAF	?)									ଦ୍ର							Ra2			ᆲ		1					
Results	Requested	Billing Instru	uctions	# a	nd Ty	pe of	Cont	ainers	 출	UNO.	큵			Chloride	Field pH	Fluoride	26/22	Sulfate	TDS	tal N							
	1-2 Day (100% Surcharge) 3 Day (50% Surcharge)			UNP	HNO3				Aqueous	Groundwater	Blank			oride	1 pH	ride	Ra226/228 (SUB)	ate	Š	Total Metals							
Lab Use Only	Sample Identification	Date/Time		1	2	+	+	+	+	X		-		Х	Х	Х	Х	Х	Х	Х							
	MW-1R	9/25/24	8:40			+	-	\vdash	4			-	+-	X	X	Х	X	X	х	Х							Ť
	MVV-2	9/25/24	1101	1		\perp	_	Ш	_	X		_	-	X	X	X	X	Х	Х	Х			-				7
	MVV-3	9/25/24	1347	1	3			Ш		X			4			X	X	X	X	X		-		-	_	+	+
	MW-7	9/25/24	1014	1	3					X				X	Х				X	X		-	-		-	+	+
	MVV-9	9/25/24	0936	1	3					X				X	X	X	Х	X				1			_	+	+
	MW-10	9/25/24	1247	1	3	П				X				X	Х	X	Х	X	X				-	-	_	4	-
	Duplicate	9/25/24		1	3			П		X				Х	Х	Х	Х	X	X	X						_	_
	Trip Blank	1,01,01		1	3	\top		\sqcap			X			Х		X	Х	X	Х	Х						_	_
	Field Blank	9/25/24	1014	1	3	\forall		\Box	X					Х		X	X	X	X	X						_	_
		1/10/1-1		H	\vdash	\top	\top	Ħ	┪																		
	D. II. Lind D.			I_	ate/	Γime			\dagger	-			R	ecei	ved E	Зу				T			- [Date/1	ime		
	Relinquished By					,																					_
				_	_				\top																		
						_			+																		

The individual signing this agreement on behalf of the client, acknowledges that he/she has read and understands the terms and conditions of this agreement, and that he/she has the authority to sign on behalf of the client. See www.teklabinc.com for terms and conditions.

BottleOrder:

Facility: SBMU SPS - CCR Groundwater Monitoring
Monitoring Well ID: MW-1R
Name (Field Staff): AD TL/AP Date: 9-25-24
Date. 1-23 27
Access: Accessibility: Good Fair Poor Poor
Well clear of weeds and/or debris?: Yes No
Well identification clearly visible?: Yes No
Remarks:
Concrete Pad: Condition of Concrete Pad: Good Inadequate
Depressions or standing water around well?: Yes No
Remarks:
Protective Outer Casing: Material = 4" x 4" Steel Hinged Casing with Hasp
Condition of Protective Casing: Good Damaged
Condition of Locking Cap: Good Damaged
Condition of Lock: Good Damaged
Condition of Weep Hole: Good Damaged
Remarks:
Well Riser: Material = 2" Diameter, Schedule 40 PVC, Flush Threaded
Condition of Riser: Good Damaged
Condition of Riser Cap: Good Damaged
Measurement Reference Point: Yes No
Remarks:
Dedicated Purging/Sampling Device: Type = 1/4 " ID Semi-Rigid Polyethylene & 0.170" ID Flexible Silicone Tubing
Condition: Good Damaged Missing
Remarks:
Monitoring Well Locked/Secured Post Sampling?: Yes No
Remarks:
Field Cartification Mini-Parell Lab Tech: 9-25-24
Field Certification # Control Signed Title Date

Monito	oring Well ID	MW-	IR_Fac	cility: SBMI	J Sikeston F	ower Statio	on - Groundv	vater Monito	ring	e ·			
Initial Wat	er Level (fee	t btoc):	19.6	5		Date:	9-25	24					
Initial Grou	ındwater Ele	vation (NAVE	088):			Air Pressu	re in Well?	Y /6)				
PURGE IN	FORMATIC	N											
Date:	9-21	5-24											
Name (Sa	mple Collect	or): _AD	JJL) AP									
Method of	Well Purge:	Low Flow	/ Perstaltic	Pump	De	dicated Tub	oing? (Y) / N					
Time Purging Initiated: 8:20 One (1) Well Volume (mL): NA													
Beginning Water Level (feet btoc): 19.65 Total Volume Purged (mL):													
Beginning Groundwater Elevation (NAVD88): Well Purged To Dryness?													
Well Total Depth (feet btoc): 38.25 Water Level after Sampling (feet btoc): 19.65													
(i.e., pump is off)													
Time Sampling Completed:													
PURGE S	TABILIZATI	ON DATA					10:11:			F			
Time	Purge Rate	Cumulative Volume	Temp (°C)	Specific Conductance	Dissolved Oxygen	pH (S.U.)	Oxidation Reduction Potential	Turbidity (NTU)	Water Level	Note (e.g., opa	acity,		
0	(mL/min)	(mL)		(μS/cm)	(mg/L)		(mV)	11 3/1	(feet btoc)	color, o	dor)		
8:22	250	500	18.30	104.51	1.01	6.46	11961	7.93	19.65	WATET	Take.		
8:24	250	1500	17.60	686.69	0.99	6.47	11939	8.41	19.65	white	lake		
8:28	250	2000	17.41	722.98	0.81	6.47	1134.8	12 59	19.65	1361-60-	Chl		
8:30	260	2520	17.4)	133.27	0.66	6.47	1126.4	1272	19.65	A Shirto +	Jakes		
8:32	250	3020	17.45	726.11	0.69	6.46	1123.9	12.94	19.65	Whitet	Take		
8:34	250	357 h	1751	7080	0 67	1.47	11197	3.86	1265	White	lakes		
8:36	250	4020	17.50	131.53	0.61	6.47	1114.1	2.51	19.65	whitet	lake		
8:38	260	5540	17.49	125.46	0.61	6.46	1128.4	1.77	19.65	whole f	lakes		
8:36 8:38	250	6040	17.56	131.53 125.40 136.59	0.67	6.46	11777	1.55	19.65	Whote-	fake		
									-				
			-							-			
				1									
										56			
								-		1000	100		

btoc - below top of casing

Facility:	SBMU Sikeston	Power Station -	CCR Groundwa	ter Monitoring		Monitoring W	ell ID: MN	1-1R
Sampling Informa	ition:							
Method of Samplin	g: Low Flow -	Perstaltic Pump	& Tubing				Dedicated:	(Y) / N
Water Level @ Sar	2	19.6	5					
Monitoring Event:	Annual ()	Semi-Annua	Quarte	rly ()	Мо	nthly()	Other ()	
Final Purge Stabliz	ation Sampling D	Data:						1
Date Sample Time 9-25-24	Sample Rate (mL/min)	Temp (°C)	Specific Conductance (µS/cm)	Dissolved (mg/l		pH (S.U.)	Oxidation Reduction Potential (mV)	Turbidity (NTU)
8:40	250	17.56	734.59	0.67		6.46	1122.2	1.55
Instrument Calibr See instrument cal 1 - In-Situ SmarTr 2 - HF scientific, in	ibration log of da oll Multi-Probe Fi	eld Meter (Temp	erature, Specifi	-		ed Oxygen, pł	ન, Oxidation Redu	uction Potentia
General Informati	on:		1 /					
Weather Condition	s @ time of sam	pling: C	loudy					
)/ 			111					
Sample Characteri	stics:	odor/	whitef	lakes				
Sample Collection	Order:	Per SAP			27			
Comments and Ob	servations:	. Sam	ele			3		
			· ·					<i>y</i>
	¥					1	±	
		9	130				2:	143
-								
ă.								
).							
I certify that sampli	ng procedures w	ere in accordance	cyyith applicab	le EPA and S	tate protoc	cols		
Date: 9-25-	24 By: 4	Dicio +	owell	(Title:	Lab	Tech	
	C		Page	e 2 of 2				

Facility: SBMU SPS – CCR Groundwater Monitoring Monitoring Well ID: MW-2
Name (Field Staff): AD JOL AP
Date: 9-25-24
Access:
Accessibility: Good Fair Poor Poor
Well clear of weeds and/or debris?: Yes No
Well identification clearly visible?: Yes No
Remarks:
Concrete Pad: Condition of Concrete Pad: Good Inadequate
Depressions or standing water around well?: Yes No
Remarks:
Protective Outer Casing: Material = 4" x 4" Steel Hinged Casing with Hasp
Condition of Protective Casing: Good Damaged
Condition of Locking Cap: Good Damaged
Condition of Lock: Good Lock Damaged
Condition of Weep Hole: Good Damaged
Remarks:
Well Riser: Material = 2" Diameter, Schedule 40 PVC, Flush Threaded
Condition of Riser: . Good Damaged
Condition of Riser Cap: Good Damaged
Measurement Reference Point: Yes No
Remarks:
Dedicated Purging/Sampling Device: Type = ½ " ID Semi-Rigid Polyethylene & 0.170" ID Flexible Silicone Tubing
Condition: Good Damaged Missing
Remarks:
Monitoring Well Locked/Secured Post Sampling?: Yes No
Remarks:
Field Certification Alicia Powell Lab Tech 9-25-24
Signed Title Date

Monito	ring Well ID	MW	-2 Fac	SBMI	J Sikeston P	ower Static	n - Groundv	vater Monitor	ring	
Initial Wate	er Level (fee	t btoc):	12.4			Date:	1-25-	24		
Initial Grou	ndwater Ele	evation (NAVE	088):			Air Pressu	re in Well?	Y /)	
PURGE IN	FORMATIC	N								
Date:	9-25	-24	,							
Name (Sar	nple Collect	tor): <u>AD</u>	JL/:	AP						
Method of	Well Purge:	Low Flow	v Perstaltic I	Pump	De	dicated Tub	oing? (Y / N		
Time Purgi	ng Initiated:	/	0:45		On	e (1) Well \	/olume (mL)	:	NA	
Beginning '	Water Leve	l (feet btoc):	12	2.4	Tot	tal Volume	Purged (mL)	:	4200)
Beginning	Groundwate	er Elevation (N	NAVD88):		We	ell Purged T	o Dryness?		Y 🚳	
Well Total	Depth (feet	btoc):	fter Samplin	g (feet btoc):	12	.4				
Casing Dia	ımeter (feet)): 2" Sch 40	0 PVC			(i.	e, pump is o	off)		
		-			Tin	ne Samplin	g Completed	l:	_11:2	20
PURGE S	TABILIZATI	ON DATA		r=====================================)9					r
Time	Purge Rate (mL/min)	Cumulative Volume (mL)	Temp (°C)	Specific Conductance (µS/cm)	Dissolved Oxygen (mg/L)	pH (S.U.)	Oxidation Reduction Potential (mV)	Turbidity (NTU)	Water Level (feet btoc)	Notes (e.g., opacity, color, odor)
10:47		580	25.33	189.0	3.00	6.40	468.6	2.62	12.4	uellow flak
10:49	250	1080	26.73	198.19	1.04	4.25	750.D	2.86	12.4	clear
10:51	260	1600	20.32	198.81	0,99	6.28	761.8	2.95	12.4	Elgar
10:53	250	2000	20.05	198.68	0.89	6.27	731.3	2.62	12.4	Clear
10:55	270	2640	20.04		0.85	6.27	724.9	2.11	12.4	Clear
10:57	250	3140	20.00	196.12	0.82	6.24	715.8	2.09	12.4	Ckar
10:59	250	3640	20.03	195.21	0.77	6.25	681.5		12.4	clear
16:01	280	4200	19.99	193.92	0.75	6.24	693.4	1.73	12.4	Clear
					нь-					
										Ti .

Facility:	SBMU Sikeston	Power Station -	CCR Groundwa	ter Monitoring	Monitoring W	ell ID; // V	V-2
Sampling Informa	ation:			.9			
Method of Samplin	g: Low Flow -	Perstaltic Pump	& Tubing			Dedicated	(¥) / N
Water Level @ Sa	mpling (feet btoc)	12.4					
Monitoring Event:	Annual ()	Semi-Annua	Quarte	rly () M	onthly ()	Other ()	
Final Purge Stabliz	zation Sampling D	ata;					
Date Sample Time 9-25-24	Sample Rate (mL/min)	Temp (°C)	Specific Conductance (µS/cm)	Dissolved Oxygen (mg/L)	pH (S.U.)	Oxidation Reduction Potential (mV)	Turbidity (NTU)
11:01	286	19.99	193.92	0.75	4.24	693.4	1.73
2 - HF scientific, ii	libration log of da oll Multi-Probe Fi nc. Micro TPI Fiel	eld Meter (Temp	perature, Specifi	ng instruments: c Conductance, Dissol	ved Oxygen, p	H, Oxidation Red	duction Potentia
General Informati	ion:		1 0/2				
Weather Condition	is @ time of sam	oling: Pa	non clo	nay			
Sample Characterion	istics: 10	oling: pa odor, ge Per SAP	llowflat	Kes	300		
Comments and Ob	oservations:	· · · · · ·		(f 3a)			
				(a) (a) (b) (b)	V		
7			Fc 90				
±1	36	10 (0)	3 1				i i
		•	* 5	10			Б
A							
-				11			
				le EPA and State proto		,	
Date: <u>9-25-</u>	24 By: 7	lucia	Powell	Title	La	b Teah.	<u>. </u>

Page 2 of 2

Facility: Monitorin	SBMU SPS - CCR Gi g Well ID: W			
	eld Staff): AD/JL	/AP		
Date: <u>9</u>	-25-24			
Access: Accessit	oility: Good _	Fair	Poor	
	ar of weeds and/or debri		 No	
	ntification clearly visible		No	
Remarks				
Concrete Pad:		Good	Inadequate	
Depress	ions or standing water a	round well?: Yes _	No _	
Remarks	s:			
Protective Out	er Casing: Materia	al = 4" x 4" Steel Hing	ed Casing with Hasp	2
Conditio	n of Protective Casing:	Good	Damaged	
Conditio	n of Locking Cap:	Good V	Damaged	
Conditio	n of Lock:	Good 🗸	Damaged	
Conditio	n of Weep Hole:	Good V	Damaged	
Remarks	s:		1	
Well Riser: Ma	aterial = <u>2" Diameter, S</u>	chedule 40 PVC, Flus	h Threaded	
Conditio	n of Riser:	Good	Damaged	
Conditio	n of Riser Cap:	Good V	Damaged	
Measure	ement Reference Point:	Yes	No	
Remark	s:			
Dedicated Pur	ging/Sampling Device:	Type = ½ " ID Semi-R Silicone Tubing		0.170" ID Flexible
Conditio	nt Good 🗸	Damaged	Missing	
Remark	s:			
Monitori	ng Well Locked/Secured	Post Sampling?	res No_	
Remark	s:			
Field Certification	Aliciatorne	el labte	oh	9-25-24
	Signed	Title		Date

Prepared by: GREDELL Engineering Resources, Inc.

January 2017

Monitoring Well ID: MW-3 Facility: SBMU Sikeston Power Station - Groundwater Monitoring												
Initial Wate	er Level (fee	t btoc):	13.45	5		Date: 6	7-25-2	4				
Initial Grou	ndwater Ele	vation (NAVE	088):			Air Pressur	re in Well?	Y /)			
PURGE IN	FORMATIO	N										
Date:												
Name (Sample Collector): AD JTL/AP												
Method of \	Method of Well Purge: Low Flow Perstaltic Pump Dedicated Tubing? Y / N											
Time Purging Initiated: /:/9 One (1) Well Volume (mL): NA												
12114												
Beginning Groundwater Elevation (NAVD88): Well Purged To Dryness? Y N												
Well Total Depth (feet btoc): 37.2 Water Level after Sampling (feet btoc): 13.45												
Casing Diameter (feet): 2" Sch 40 PVC Time Sampling Completed:												
PURGE ST	TABILIZATIO						Oxidation			N /		
Time	Purge Rate	Cumulative Volume	Temp	Specific Conductance	Dissolved Oxygen	pН	Reduction	Turbidity	Water Level	Notes (e.g., opacity,		
\	(mL/min)	(mL)	(°C)	(µS/cm)	(mg/L)	(S.U.)	Potential (mV)	(NTU)	(feet btoc)	color, odor)		
1:21		500	24.98	166.39	1.67	6.79	652.40	\$9.14	13.45	Clear		
1:23	250	1000	2086	174.38	0.87	6.77	668.8	6.79	13.45	clear		
1:25	230	1460	20,00	176.51	0.78	6.76	702.8	6.46	13.45	Clear		
1:27	250	1960	19.42	177.67	0.69	6.75	809.0	6.10	13.45	Clear		
1:29	220	2400	19.39	174.58	0.64	4.76	877.2	7.78	13.45	clear		
1:31		3900	D					2.16	13.45	Clear		
1:33	250	30603	rao					3.85	13.45	clear		
1:35	220	3840	10 11	.00.01	2.0	101	7.600.41	2.78	13.45	clear		
1:37	139	4300	Garage Village	172.54	0.52	6.81	10824	3.38	13.45	1		
1:39		4780	19.06	172.63	0.52	6.81	1062.3		13.45			
1:41	240	5260	19.11	16997	0.51	6.80	1064.4	2.40	13.45			
1:43	220	5700	19.01	111.84	0.50	6.80	1019.6	2.36	13.45	clear		
1:45	260	6220		170.79		6,82	1005.2	2.29	13.45			
1:47	220	6660	19.06	170.21	0.50	6.82	1066.8	2.61	13.45	clear		
1:49												
									-			
I					Ι				Į.			

btoc - below top of casing

Facility:	SBMU Sikeston F	Power Station - (CCR Groundwa	ter Monitoring	Monitoring W	rell ID: MV	1-3
Sampling Informa	ation:						
Method of Samplin	g: Low Flow -	Perstaltic Pump	& Tubing			Dedicated:	(Y) / N
Water Level @ Sa	mpling (feet btoc):	13.45	5				
Monitoring Event:	Annual ()	Semi-Annua	Quarte	rly()	Monthly ()	Other ()	
Final Purge Stabliz	ation Sampling D	ata:					
Date Sample Time 9-25-24	Sample Rate (mL/min)	Temp (°C)	Specific Conductance (µS/cm)	Dissolved Oxygen (mg/L)	pH (S.U.)	Oxidation Reduction Potential (mV)	Turbidity (NTU)
1:47	#32 AP	19.06	170.21	0.50	6.82	1006.8	2.61
Instrument Calibr See instrument cal 1 - In-Situ SmarTr 2 - HF scientific, in	libration log of dail oll Multi-Probe Fie	eld Meter (Temp	erature, Specifi	ng instruments: c Conductance, Disso	olved Oxygen, p	H, Oxidation Red	uction Potentia
General Informati	on:			,			
Weather Condition	is @ time of samp	ling: <i>far</i>	tly clo	ndy			
Sample Characteri	stics: 10	odor/c	kar				
Sample Collection	Order:	Per SAP				· · · · · · · · · · · · · · · · · · ·	
Charmont and Oh		98	VW7	3 4			3. 1 3
Comments and Ob	Too.	dost to	on hot	stop rea	dina		
Sta	ted re	ding of	+ 1:37		J		
	0/40/10	J. J.	7				
W 2 5		Ä		a a			
)	6 II N		E	9			
	8	×		8			<u> </u>
		-			12	_ %	
W		11		22			
I certify that sampl	ing procedures we	ere in accordanc	ce with applicab	le EPA and State pro	tocols.		
Date: 9-25-	24 By: A	licio f	owell	Title	= Lal	Tech.	

Page 2 of 2

Facility: SBMU SPS – CCR Groundwater Monitoring Well ID: MW-7	ing
Monitoring Well ID: MW-7 Name (Field Staff): AD JL IAP	
Date: 9-25-24	
Access: Accessibility: Good Fair	
Well clear of weeds and/or debris?: Yes	No
	No
Well identification clearly visible?: Yes	N0
Remarks:	90
Concrete Pad: Condition of Concrete Pad: Goo	od Inadequate
Depressions or standing water around well?: Yes	s No
Remarks:	
Protective Outer Casing: Material = 4" x 4" Steel Hi	nged Casing with Hasp
Condition of Protective Casing: Good	Damaged
Condition of Locking Cap: Good	Damaged
Condition of Lock: Good	Damaged
Condition of Weep Hole: Good	Damaged
Remarks:	
Well Riser: Material = 2" Diameter, Schedule 40 PVC, FI	ush Threaded
Condition of Riser: Good	Damaged
Condition of Riser Cap: Good	Damaged
Measurement Reference Point: Yes	No
Remarks:	
Dedicated Purging/Sampling Device: Type = ½ " ID Semi Silicone Tub	
Condition: Good Damaged	Missing
Remarks:	7
Monitoring Well Locked/Secured Post Sampling?	Yes No
Remarks:	
Field Certification Alicia Powell Lab	Tech 9-25-24
Signed Title	Date

Signed

Monitor	ring Well ID:	MW	- 7 _Fac	cility: SBML	J Sikeston P	ower Statio	n - Groundw	ater Monitor	ing		
Initial Wate	r Level (feet	t btoc):	20.9			Date:	7-25-2	24			
Initial Grou	ndwater Ele	vation (NAVE	088):			Air Pressu	re in Well?	YN			
PURGE IN	FORMATIO										
Date:		5-24	. 1 1	10							
Name (San	nple Collect	or): <u>41</u>	JIL	HP							
Method of \	Well Purge:		v Perstaltic I	Pump	Dec	dicated Tub	oing? (Y)/ N			
Time Purgi	ng Initiated:		0.04		On	e (1) Well \	/olume (mL)	;	NA		
Beginning Water Level (feet btoc): 20.9 Total Volume Purged (mL): 2460											
Beginning (Groundwate	r Elevation (N	NAVD88):		We	ell Purged T	o Dryness?		Y 🕥		
Well Total	Depth (feet	btoc):	37.35		Wa				20,	9	
Casing Dia	meter (feet)	: 2" Sch 4	0 PVC				e., pump is o		10:3	રત	
					Tim	ne Sampling	g Completed	l .	10.5	<u> </u>	
	ABILIZATIO Purge	ON DATA Cumulative		Specific	Dissolved		Oxidation		Water	Notes	
Time	Rate (mL/min)	Volume (mL)	Temp (°C)	Conductance (µS/cm)	Oxygen (mg/L)	pH (S.U.)	Reduction Potential	Turbidity (NTU)	Level (feet btoc)	(e.g., opacity, color, odor)	
10:06	(11.6)(1111)	500	22.92	731.24	2.72	7.35	(mV) 946.5	1.26	20.9	white flakes	
10:08	240	980	19.07	134.55	0.52	7.40	545.6	1.16	20.9	clear	
10:10	250	1480	18.53	741.95	0.47	7.41	499.3	1.32	20.9	Clear	
10:12	240	1960	18.35	741.13	0.40	7.41	494.6	1.13	20.9	clear	
1044	250	2460	18.20	742.40	0.40	7.40	494.5	0.96	20.9	Clear	
							-				

Facility:	SBMU Sikeston	Power Station -	CCR Groundwa	ter Monitoring	Monitoring W	ell ID; MV	V-7
Sampling Informa	ition:						
Method of Samplin	g: Low Flow -	Perstaltic Pump	& Tubing			Dedicated:	(Y) / N
Water Level @ Sa	mpling (feet btoc)	20.9					
Monitoring Event:	Annual ()	Semi-Annua	l (🔰 Quarter	rly () Mo	onthly ()	Other ()	
Final Purge Stabliz	ation Sampling D	ata: •					
Date Sample Time 9-25-24	Sample Rate (mL/min)	Temp (°C)	Specific Conductance (µS/cm)	Dissolved Oxygen (mg/L)	pH (S.U.)	Oxidation Reduction Potential (mV)	Turbidity (NTU)
10:14	250	18.20	742.40	0.40	7.40	494.5	0.96
2 - HF scientific, in	ibration log of dai oll Multi-Probe Fi nc. Micro TPI Fiel	eld Meter (Temp	erature, Specifi	ng instruments: c Conductance, Dissolv	ved Oxygen, pł	H, Oxidation Red	uction Potentia
General Information Weather Condition		oling: Partly C	loudy				
Sample Character	stics: 10	odor/s	ome whit	e flakes c	lear		
Sample Collection	Order: 🏃	Per SAP		3511			<u> </u>
Comments and Ok	ash dra	,	nning f	Past Samy Ken.	ple loc	ation	5
I certify that samp			\sim	le EPA and State proto	ocols.		
Date: 9/25/	24 By: #	Flicia		Title:	Lai	5 Teah	

Facility: SBMU SPS – CCR Groundwater Monitoring
Monitoring Well ID: MW-9 Name (Field Staff): ADITLIAP
Date: 9/25/24
Access:
Accessibility: Good Fair Poor Poor
Well clear of weeds and/or debris? Yes No
Well identification clearly visible?: Yes No
Remarks:
Concrete Pad: Condition of Concrete Pad: Good Inadequate
Depressions or standing water around well?; Yes No
Remarks:
Protective Outer Casing: Material = 4" x 4" Steel Hinged Casing with Hasp
Condition of Protective Casing: Good Damaged
Condition of Locking Cap: Good Damaged
Condition of Lock: Good Damaged
Condition of Weep Hole: Good Damaged
Remarks:
Well Riser: Material = 2" Diameter, Schedule 40 PVC, Flush Threaded
Condition of Riser: Good Damaged
Condition of Riser Cap: Good Damaged
Measurement Reference Point: Yes No
Remarks:
Dedicated Purging/Sampling Device: Type = 1/4 " ID Semi-Rigid Polyethylene & 0.170" ID Flexible Silicone Tubing
Condition: Good Damaged Missing
Remarks:
Monitoring Well Locked/Secured Post Sampling?: Yes Yes Y
Remarks:
Field Certification Alicia Powell Lab Tuch. 9/25/24
Signed Title Date

Monito	ring Well ID	MW-	9 Fac	cility: SBMU	J Sikeston P	ower Static	n - Groundw	ater Monitor	ring	
Initial Wate	r Level (fee	t btoc):	20.15			Date	9-25	-24		
Initial Grou	ndwater Ele	•vation (NAVE	088):	*		Air Pressu	re in Well?	Y /(1))	
	FORMATIC									
Date:	9-25	5-24								
Name (Sar	nple Collect	or):								
Method of	Well Purge:	Low Flow	v Perstaltic	Pump	De	dicated Tub	oing?	Y) N		
Time Purgi	ng Initiated:	9	1:24		On	e (1) Well \	/olume (mL)		NA	
Beginning \	Water Leve	I (feet btoc):	20	.15	Tot	al Volume	Purged (mL)	:	3040	
		er Elevation (N			We	ell Purged T	o Dryness?		YN	
Well Total	Depth (feet	btoc):	7.35		Wa	ater Level a	fter Samplin	g (feet btoc)	20.1	5
Casing Dia	meter (feet)	: 2" Sch 40	0 PVC			(i.	e., pump is o	off)		
_	, ,				Tin	ne Samplin	g Completed	:	9:5	
PURGE ST	ABILIZATI	ON DATA					Ovidation			
Time	Purge Rate (mL/min)	Cumulative Volume (mL)	Temp (°C)	Specific Conductance (µS/cm)	Dissolved Oxygen (mg/L)	pH (S.U.)	Oxidation Reduction Potential	Turbidity (NTU)	Water Level (feet btoc)	Notes (e.g., opacity, color, odor)
9:26		560	21,47	801.78	1.63	7.08	(mV)	3.14	20.15	white tlake
9:28	270	1100	19.14	851.22	0.78	7.08	1120.8	1.87	20.15	Whiteflake
9:30	240	1580	18.62	833.90	0.64	7.07	1084.4	1.27	20.15	white flak
9:32	250	2080	18.49	835.73	0.59	7.07	1288.3	1.23	20.15	Clear
9:34	236	2540	18.44	841.87	0.57	7.06	1060.1	1.08	20.15	Clear
9:36	250	3040	18.46	832.16	0.54	7.06	1099,2	1.41	20,15	clear
			<u> </u>						ii ii	

Facility:	SBMU Sikeston	Power Station -	CCR Groundwa	ter Monitoring	Monitoring We	ell ID: MV	N-9
Sampling Informa	tion:						
Method of Samplin	g: Low Flow -	Perstaltic Pump	& Tubing			Dedicated:	(Y) / N
Water Level @ Sar	mpling (feet btoc)	20.15					
Monitoring Event:	Annual ()	Semi-Annua	Quarte	rly () Mo	onthly ()	Other ()	
Final Purge Stabliz	ation Sampling D	ata:					
Date Sample Time 9-25-24	Sample Rate (mL/min)	Temp (°C)	Specific Conductance (µS/cm)	Dissolved Oxygen (mg/L)	pH (S.U.)	Oxidation Reduction Potential (mV)	Turbidity (NTU)
9:34	250	18.46	832.16	0.54	7.06	1699.2	1.41
Instrument Calibr See instrument cal 1 - In-Situ SmarTr 2 - HF scientific, ir	ibration log of dai oll Multi-Probe Fi	eld Meter (Temp	erature, Specifi	ing instruments: c Conductance, Dissolv	ved Oxygen, pl	H, Oxidation Red	uction Potentia
General Informati	on:		0.00				
Weather Condition	s @ time of sam	oling: Pa	ertly cla	oudy			
Sample Characteri	stics: 10	odor / w	hite flak	ses / clear	, 61	17.	**
Sample Collection		Per SAP			Ä		<u> </u>
Comments and Ob	servations:)¥	**			
-						(8)	
=							
-							
:							
-							
				ole EPA and State proto			
Date: 9-25	2 By: A	tliciot	owell	Title:	Lab	Tech.	

Facility: SBMU SPS – CCR Groundwater Monitoring Monitoring Well ID: MW-LO Name (Field Staff): AD/JL/AP	
Date: <u>9-25-24</u>	
Access: Accessibility: Good Fair	Poor
Well clear of weeds and/or debris?: Yes No	
Well identification clearly visible?: Yes No	
Remarks:	
Concrete Pad: Condition of Concrete Pad: Good Inadeq	uate
Depressions or standing water around well?: Yes No	_
Remarks:	
Protective Outer Casing: Material = 4" x 4" Steel Hinged Casing with	Hasp
Condition of Protective Casing: Good Damaged	_
Condition of Locking Cap: Good Damaged	_
Condition of Lock: Good Damaged	_
Condition of Weep Hole: Good Damaged	_
Remarks:	
Well Riser: Material = 2" Diameter, Schedule 40 PVC, Flush Threaded	
Condition of Riser: Good Damaged	-
Condition of Riser Cap: Good Damaged	
Measurement Reference Point: Yes No	
Remarks:	
<u>Dedicated Purging/Sampling Device</u> : Type = ½ " ID Semi-Rigid Polyethyler Silicone Tubing	ne & 0.170" ID Flexible
Condition: Good Damaged Missing	
Remarks:	
Monitoring Well Locked/Secured Post Sampling? Yes	No
Remarks:	
Field Contification 1 Page 1 Pos all 1 of Tout	9 25 24

Prepared by: GREDELL Engineering Resources, Inc.

January 2017

Monitor	ing Well ID:	MW-	<i>ID</i> Fac	sility: SBMU	J Sikeston P	ower Statio	n - Groundw	ater Monitor	ing		
Initial Wate	r Level (fee	t btoc):	12.3	5		Date:	9-25	24			
		vation (NAVE		•	_	Air Pressur	re in Well?	Y /(1)		
	FORMATIO										
Date:	9-25	0.00	, ,								
Name (San	nple Collect	or): _ <i>AD</i> /	JL/A	ρ							
Method of	Well Purge:	Low Flov	v Perstaltic I	Pump	Dec	dicated Tub	oing?	Y) / N			
Time Purging Initiated: 12:31 One (1) Well Volume (mL): NA											
Beginning Water Level (feet btoc): 12.35 Total Volume Purged (mL): 4040											
Beginning	Groundwate	er Elevation (N	NAVD88):	=	We	ll Purged T	o Dryness?		YN		
Well Total	Depth (feet	btoc): 3	3.15		Wa		fter Sampling		12.3	35	
Casing Dia	meter (feet)	: 2" Sch 4	0 PVC			,	e., pump is c		1:00	,	
					Tin	ne Sampling	g Completed	:	1.00	0	
PURGE ST	TABILIZATION DI MANAGENE			0 15	Dissolved		Oxidation		Water	Notes	
Time	Purge Rate (mL/min)	Cumulative Volume (mL)	Temp (°C)	Specific Conductance (µS/cm)	Dissolved Oxygen (mg/L)	рН (S.U.)	Reduction Potential	Turbidity (NTU)	Level (feet btoc)	(e.g., opacity, color, odor)	
/2:53	(1110/11111)	520	29.37	571.98	3.10	7 18	(mV)	1.08	12.35	ckar	
12:35	260	10+0	23.00	531.99	0.47	7.17	360.2	1.47	12.35	clear	
12:37	260	1560	21,95	535.08	0.40	7.20	332.8	1.15	12.35	Ckar	
12:59	260	2080	21.65	530.21	0.33	7.21	302.3	1.16	12.35	Clear	
12:41	270	2620	2160	536.14	0.29	7.21	295.9	1.13	12.35	Clear	
12:43	240	3100	21.47	533.68	0.29	7.21	311.9	1.39	12.35		
12:45	250	3600	21.38	537.23	0.29	121	284.9	1.20	12.35	clear	
12:47	220	4040	21.16	540.74	0.29	1.21	270.7	0.99	12.35	Crear	
II.											

btoc - below top of casing

Facility:	SBMU Sikeston	Power Station -	CCR Groundwa	ter Monitoring	Monitoring We	ellid: MV	V-10
Sampling Informa	ation:	60					
Method of Samplin	g: Low Flow -	Perstaltic Pump	& Tubing			Dedicated:	(Y) / N
Water Level @ Sa	-	10 71					
Monitoring Event:	Annual ()	Semi-Annua	Quarte	rly () Mo	onthly ()	Other ()	
Final Purge Stabliz	ation Sampling D	ata:					
Date Sample Time 9-25-24	Sample Rate (mL/min)	Temp (°C)	Specific Conductance (µS/cm)	Dissolved Oxygen (mg/L)	pH (S.U.)	Oxidation Reduction Potential (mV)	Turbidity (NTU)
12:47	220	21.16	540.74	0.29	7.21	270.7	0.99
Instrument Calibr See instrument cal 1 - In-Situ SmarTr 2 - HF scientific, in	libration log of da oll Multi-Probe Fi	eld Meter (Temp	erature, Specifi	ng instruments: c Conductance, Dissolv	ed Oxygen, pH	I, Oxidation Red	uction Potentia
General Informati	on:	-	n t	,			
Weather Condition	s @ time of sam	pling: $ ho \omega$	Hy Clou	dy			
Sample Characteri	stics:	odor/c	lear			14	
Sample Collection	707	Per SAP					
a 1879			7	=%			
Comments and Ob	servations:	243 *2 ** *2**		a e			- Wi
, s		*			8	_ i - DE	2 == X
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		177 398	E7	1 10			
I certify that sample	ina procedures w	rere in accordant	ce with applicab	ole EPA and State proto	cols.		
·	-					Taal	
Date: <u>9-25-</u>	24 By: #	flicia T	owed	Title:	LAD	1ech.	

	on II I leneva KS						N C														rdei				
Springfield. (L Collinsville, IL	T	EKLAB,	INC.	5445	Hor	rsesł	10e	Lak	te R	oad	- Co	llins	svill	e, II	_ 62	2234	- P	ho	ne:	(618 ——	34	4-10 ——	04	
Client:	Sikeston Board of M	Aunicipal Utilitie	es					1	_		ո։ 🗆					N	O ICE		_3		°C	L7	TG#		
Address:	107 E Malone Ave							Pre	eser	ved i	n: 🗔	LAB	F	IELD				FOR	R LA	B U	SE O	NLY			
City / State	/ Zip Sikeston, MO 6380)1						Lat	b No	tes:															
Contact:	Luke St Mary		Phone:	(57	73) 475-	3119																		110	
E-Mail: stmary@sbmu net Fax:								Client Comments Report QC LVL 2																	
re these sample: re there any requ	s known to be involved in litigs known to be hazardous? If the area of the matter X Yes X	yes, include de et on the reque	etails of the ha	ızardı	Ye		No	Tota	- ra	ck	Ba Be	B Cd C	17	- 4	73	30.	27	7 (1	49 50	135 00	48	151		
Pr	oject Name/Number		Sample	Colle	ctor's	Nam	ne		MA	TRIX					IND	ICA	TE A	NAL	YSI	SRE	EQUE	ESTE	D		
	Fly Ash Pond (FAP) ested (call for PFAS TAT and 1-2 Day (100% Surcharge) 3 Day (50% Surcharge)	surcharges) Bi	TUSH Iing/PO#	# and HNO3		Conta		Aqueous	Groundwater			CI SO4 F-	Field pH	Ra226/228 (SUB)	TDS	Total Metals									
Lab Use Only	Sample Identification	Date/Time	Sampled																						
V	MW-1R	4/16/25	0846	1 3				·	X			X	Х	Х	X	Х		z.							
	MW-2	4/16/25	1244	1 3					X			X	Х	X	Х	X									
/	MW-3	4/16/25	11:42	1 3					X			Х	Х	Х	Х	Х									
/	MW-7	4/16/25	1054	1 3					X			Х	Х	Х	Х	Х									
/	MW-9	4/16/25	7	1 3					X			X	Х	Х	Χ	X									
V	MW-10	4/16/25		1 3					X			Х	Х	Х	Х	Х							8		
/	Duplicate	4/16/2		1 3					X			Х	X	Х	Х	X									
	Trip Blank	1 ./ / .	7000	1 3					X			X		X	X	X									
1	Field Blank	4/14/25		1 3				X				X		X	Χ	X									
4/110/2	Relinquished By			Date/	Time						R	leceiv	ed B	У							Da	ıte/Tin	ne		
Hiele						q						1												VCO04	

BottleOrder

96289

Field Instrumentation Calibration Log

Field Inst	ruments:	In-Situ SmarTROLL	MP or In-Situ	AquaTROLL 40	0	HF scientific, inc. Micro TPI Field Portable Turbidimeter						
	S/N #:	893508	-			2	0230206	83				
Date	Time	pH Standards (S.U.)	pH Measure- ments (S.U./mV)	Specific Conductance Standard (µS/cm)	Specific Conductance Measurement (µS/cm)	Oxidation Reduction Potential Standard (mV)	Oxidation Reduction Potential Measurement (mV)	RD Dissolved {%	Oxygen	Turbidity Standards (NTU)	Turb Measur (N	
		4.00 @ 25.00°C Standard is 4.00 @ 25°C	3.98 138.7	1413 @25.00°C		220 mV at 25 00°C	4	Temperature (°C)	= 20.36	0.02	= 0.0	
4/14/25	0730	7.00 @25.00°C Standard is =	7.01		= 431.5 H	=	214.6	Tap Water Source	= SBMU	10.0	= /0.	
		7.00 @ 25 · C	18.05	1413	14/1.8	Standard is 22 mV @	'@ 20.58	Barometric Pressure (mm/Hq)	= /009.1	1900	= /00	
		Standard is = 10.0 @ 25°C	-213.5	25	28.57 C		70,00	Measurement	= 100.04	1000	100	
		4,00 @ 25.00°C Standard is 7.0 @ 25°C	4.16	1413 @25.00°C		220 mV at		Temperature (°C)	= 20.84	0.02	= 0.0	
4/16/25	1450	7.00 @25.00°C	7.19		1412,4	25.00°C	228.2	Tap Water Source	= SBMU	10.0	= 9.	
		7.0 @ 25 °C	10.23	14/3	20.84	Standard is 229 mV @ 25°C	20.77	Barometric Pressure (mm/Hg)	154.8	1000	= 99	
		Standard is =	NA	20	,	€20		Measurement	= 100.11			
The HE so	ientific inc.	ELL MP Field Meter an Micro TPI Field Porta alibrated via % satura	ble Turbidimet	er measures Turt	pidity.		e, Dissolved Oxyge	n. pH, and Oxidat	ion Reduction F	Potential.		
I certify th	at the afore	mentioned meters we	re calibrated w	ithin the manufac	turers specifications.	11						

Facility: SBMU SPS - CCR Groundwater Monitoring Monitoring Well ID: MW IK Name (Field Staff): Justin Lowes Alicia Powell Date: 4/16/25
Access: Accessibility: Good Fair Poor Well clear of weeds and/or debris?: Yes No Well identification clearly visible?: Yes No
Remarks: Concrete Pad: Condition of Concrete Pad: Depressions or standing water around well?: Yes No Remarks:
Protective Outer Casing: Material = 4" x 4" Steel Hinged Casing with Hasp Condition of Protective Casing: Good Damaged Damaged Condition of Locking Cap: Good Damaged Condition of Lock: Good Damaged Condition of Weep Hole: Good Damaged Remarks:
Well Riser: Material = 2" Diameter, Schedule 40 PVC, Flush Threaded Condition of Riser: Good ✓ Damaged Condition of Riser Cap: Good ✓ Damaged Measurement Reference Point: Yes ✓ No Remarks:
Dedicated Purging/Sampling Device: Type = 1/4 " ID Semi-Rigid Polyethylene & 0.170" ID Flexible Silicone Tubing Condition: Good Damaged Missing Remarks: Monitoring Well Locked/Secured Post Sampling?: Yes No Remarks:

Field Certification	1 0 .1		
	Signed Hillian Will	Title Lab Tech	Date 4/14/25
Prepared by GREDELL E	naineering Resources, Inc.		January 2017

Monitor	ing Well ID:	MMI	Fac	ility: SBMU	J Sikeston P	ower Statio	n - Groundw	ater Monitor	ing	_	
Initial Wate	r Level (fee	t btoc):	5.77			Date: 4/16/25					
Initial Grou	Initial Groundwater Elevation (NAVD88):						e in Well?	Y / 🗇			
PURGE IN											
Date:	4/	16-25	1	1 2							
Name (San	nple Collect	or):	u5+1	nLow	es						
Method of \	Well Purge:	Low Flow	/ Perstaltic F	Pump	Dec	dicated Tub	ing?	Y) / N			
Time Purgi	ng Initiated:	08	724		One	e (1) Well V	olume (mL)		NA		
Beginning \	Water Level	(feet btoc):	15	5.77	Tot	al Volume l	ourged (mL)	:	452	0	
Beginning (Groundwate	er Elevation (N	NAVD88):		We	II Purged T	o Dryness?		Y /(N)		
 Well Total	Depth (feet	btoc):	38.3	3	Wa	iter Level at	fter Sampling	g (feet btoc):	15	.77_	
Casing Dia	meter (feet)	2" Sch 40	0 PVC			(i.e	e., pump is c	off)	000		
	,				Tim	ne Sampling	g Completed	:	933	Am	
PURGE ST	ABILIZATIO	ON DATA					Oxidation				
Time	Purge Rate	Cumulative Volume	Temp	Specific Conductance	Dissolved Oxygen	pH	Reduction Potential	Turbidity	Water Level	Notes (e.g., opacity,	
	(mL/min)	(mL)	(°C)	(µS/cm)	(mg/L)	(S.U.)	(mV)	(NTU)	(feet btoc)	color, odor)	
0824	200	400	20.34	527.21	3.48	4.45	436.	21.82	15.77	+lakes	
0826	200	800	16.84	983.70	1.30	6.28	592.0	6.48	15.77	flakes	
0828	200	1260	14.25	1021.0	1.06	6.26	842.9	5.54	15.77	flakes	
0830	200	1600	16.21	954.08	1.02	6.27	868.7	6.33	15.77	flakes	
0832	200	2000	16.18	850.2	0.96	6.29	883.4	4.48	15.77	flakes	
0834	210	2420	14.20	804.42	1.00	6.30	883.4	2.10	15.77	clear	
0836	200	2820	16.20	787.58	0.96	6.26	891.6	3.22	15.77	clear	
0838	210	3240	16.23		0.89	6.29	895.4	2.95	15.77	clear	
0840	210	3660	16.25	775.43	0.83	6.29	893.8	1.70	15.77	clear	
0841	210	4080	16.29	779.77	0.81	6.29	894.0	1.45	15.77	clear	
0844	220	4520	16.32	775.52	0.67	6.32	894.1	1.65	15.77	Clear	
									<u> </u>		

Facility:	SBMU Sikeston	Power Station - (CCR Groundwa	ter Monitoring	Monitoring We	II ID: MY	UIR
Sampling Informa	ition:	* *					
Method of Samplin	g: Low Flow -	Perstaltic Pump	& Tubing			Dedicated:	(Y) / N
Water Level @ Sa	mpling (feet btoc)	15.77	·				
Monitoring Event:	Annual()	Semi-Annua	Quarte	rly () Mo	onthly ()	Other ()	
Final Purge Stabliz	ation Sampling D	Data:					
<u>Date</u> Sample Time	Sample Rate (mL/min)	Temp (°C)	Specific Conductance (µS/cm)	Dissolved Oxygen (mg/L)	pH (S.U.)	Oxidation Reduction Potential (mV)	Turbidity (NTU)
4/14/25	226	16.32	775.52	0.67	6.32	894.2	1.65
2 - HF scientific, in	ibration log of da oll Multi-Probe Fi nc. Micro TPI Fiel	ield Meter (Temp	erature, Specifi	ng instruments: c Conductance, Dissolv	ved Oxygen, pH	, Oxidation Red	uction Potentia
General Informati							
Weather Condition	s @ time of sam	pling:S	unny				
Sample Characteri	stics:	lear, oa	lor less			36	
Sample Collection		Per SAP					
Comments and Ob	oservations:	Dup. +	aken			3)	
- S = -							
		₹4 #	*	/W	85		
		28 ¥	ě				
			11				
1==							
I certify that sample Date: 4/16/2	ing procedures w	ere in accordance	ce with applicab	le EPA and State proto	. /	Tech	

Page 2 of 2

Facility: SBMU SPS - CCR Groundwater Monitoring Monitoring Well ID: MW9 Name (Field Staff): Tustin Lowes/Alicia Powell Date: 4/10/25
Access: Accessibility: Good Fair Poor Poor Poor Poor Poor Poor Poor Po
Well clear of weeds and/or debris?: Yes No
Well identification clearly visible?: Yes No
Remarks:
Concrete Pad: Condition of Concrete Pad: Good Inadequate
Depressions or standing water around well?: Yes No
Remarks:
Protective Outer Casing: Material = 4" x 4" Steel Hinged Casing with Hasp
Condition of Protective Casing: Good Damaged
Condition of Locking Cap: Good Damaged
Condition of Lock: Good Damaged
Condition of Weep Hole: Good Damaged
Remarks:
Well Riser: Material = 2" Diameter, Schedule 40 PVC, Flush Threaded
Condition of Riser: Good Damaged
Condition of Riser Cap: Good Damaged
Measurement Reference Point: Yes No
Remarks:
Dedicated Purging/Sampling Device: Type = 1/4 " ID Semi-Rigid Polyethylene & 0.170" ID Flexible Silicone Tubing
Condition: Good Damaged Missing
Remarks:
Monitoring Well Locked/Secured Post Sampling?: Yes No
Remarks:

Signed Flies Fowell Title Lab Fech Date 4/14/25

Prepared by: GREDELL Engineering Resources, Inc.

January 2017

Monito	ring Well ID:	MW	7 Fac	ility: SBML	J Sikeston P	ower Statio	n - Groundy	ater Monitor	ing	
Initial Wate	er Level (fee	t btoc):	16.	28		Date: 4	1/16/2	25		
Initial Grou	ndwater Ele	vation (NAVD	088):		_	Air Pressur	re in Well?	Y (N)	
PURGE IN	FORMATIO	7								
Date:	4/14/	25		,						
Name (Sar	nple Collect	or):	ustil	Low	25					
Method of	Well Purge:	Low Flow	/ Perstaltic F	ump	Dec	dicated Tub	oing?	Y) N		
Time Purgi	ng Initiated:	0	950		One	e (1) Well \	/olume (mL)	:	NA	
Beginning	Water Level	(feet btoc):	14	1.28	Tot	al Volume l	Purged (mL)	:	408	0
Beginning	Groundwate	r Elevation (N	IAVD88):		We	II Purged T	o Dryness?		Y /(N)	
Well Total	Depth (feet	btoc):	37.3		Wa			g (feet btoc)	16.2	58
Casing Dia	ımeter (feet)	2" Sch 40) PVC				e., pump is o		10:2	3
					III	ne Sampiini	g Completed	l:	_10.2	
PURGE S	rabilization in the control of the c				D: 1 1		Oxidation	1	101-1	Notes
Time	Purge Rate (mL/min)	Cumulative Volume (mL)	Temp (°C)	Specific Conductance (µS/cm)	Dissolved Oxygen (mg/L)	pH (S.U.)	Reduction Potential (mV)	Turbidity (NTU)	Water Level (feet btoc)	Notes (e.g., opacity, color, odor)
0950	250	500	27.30	712.11	3.15	7.06	322.8	6.32	16.28	flakes
0951	250	1000	18.74	838.91	0.90	6.95	365.0	5.66	16.28	flakes
0954	250	1500	17.56	858.44	0.81	6.93	377.1	1.68	16.28	Clear
0956	250	2000	17.19	869.98	0.69	6.92	374.3	1,51	16.28	clear
0958	270	2540	11.10	868.63	0.66	6.87	373.0	1.53	16.28	clear
1000	250	3040	17.05	868.31	0.61	6.89	372.3	1.89	16.28	Clear
1002	250	4080	17.01	811.81	0.51	6.85	373.3 375.2	1.58	16.28	Clear
1004	250	4080	11100	867.46	0.52	4.01	2132	1.00	16.28	CIEA
				-						
O'	1		1							L

btoc - below top of casing

Facility:	SBMU Sikeston	Power Station -	CCR Groundwa	ter Monitoring	Monitoring We	IIID: MV	V9
Sampling Informa	ition:				36		
Method of Samplin	g: Low Flow -	Perstaltic Pump	& Tubing			Dedicated:	(Y) / N
Water Level @ Sa	mpling (feet btoc)	16.28					
Monitoring Event:	Ánnual ()	Semi-Annua	Quarte	rly () Mo	onthly ()	Other ()	
Final Purge Stabliz	ation Sampling D	oata:					
<u>Date</u> Sample Time	Sample Rate (mL/min)	Temp (°C)	Specific Conductance (µS/cm)	Dissolved Oxygen (mg/L)	pH (S.U.)	Oxidation Reduction Potential (mV)	Turbidity (NTU)
4/16/25	250	17.06	867.46	0.51	6.87	375.2	1.58
Instrument Calibr See instrument cal 1 - In-Situ SmarTr 2 - HF scientific, in	ibration log of da oll Multi-Probe Fi	eld Meter (Temp	erature, Specifi	ng instruments: c Conductance, Dissolv	ved Oxygen, pH	, Oxidation Redu	uction Potentia
General Informati	on:						
Weather Condition	s @ time of sam	pling: _ <i>SL</i>	inny				
Sample Characteri	stics:	lear odo	rless				
Sample Collection	Order:	Per SAP				* *	
Comments and Ob	servations:			~ · · ·	¥.		
K 1				E ***		¥.	
		VA.					
£0		0	0 _ (%)	et s		*	
			a_{h}	* =	ži.	je.	2
Loortify that same!	ing procedures ::	voro in goografica	na with annliach	le EDA and State prote	cole		
r certify that sampl	-	1.2		le EPA and State proto		T 1	
Date: 4//6/2	5 By: -	Alicia;	Yowell	Title:	Lab	rech.	

Page 2 of 2

Monitoring Well ID: Name (Field Staff): Date:	Facility: SBMU SPS – CCR Groundwater Monitoring
Access: Accessibility: Good Fair Poor Well clear of weeds and/or debris?: Yes No Well identification clearly visible?: Yes No Remarks: Concrete Pad: Condition of Concrete Pad: Depressions or standing water around well?: Yes No Remarks: Protective Outer Casing: Condition of Protective Casing: Good Damaged Condition of Locking Cap: Condition of Locking Cap: Condition of Weep Hole: Good Damaged Remarks: Well Riser: Material = 2" Diameter, Schedule 40 PVC, Flush Threaded Condition of Riser: Good Damaged Condition of Riser: Good Damaged Condition of Riser: Good Damaged Condition of Riser: Condition of Riser: Good Damaged Measurement Reference Point: Yes No Remarks: Dedicated Purging/Sampling Device: Type = ½ "ID Semi-Rigid Polyethylene & 0.170" ID Flexible Silicone Tubing Condition: Good Damaged Missing Missing	Monitoring Well ID: Name (Field Staff): Tustin Towes Alicia Powell
Accessibility: Good Fair Poor Well clear of weeds and/or debris?: Yes No Well identification clearly visible?: Yes No Remarks: Concrete Pad: Good Inadequate Depressions or standing water around well?: Yes No Remarks: Protective Outer Casing: Material = 4" x 4" Steel Hinged Casing with Hasp Condition of Protective Casing: Good Damaged Condition of Locking Cap: Good Damaged Condition of Locking Cap: Good Damaged Remarks: Well Riser: Material = 2" Diameter, Schedule 40 PVC, Flush Threaded Condition of Riser: Good Damaged Damaged Measurement Reference Point: Yes No Remarks: Dedicated Purging/Sampling Device: Type = ½ " ID Semi-Rigid Polyethylene & 0.170" ID Flexible Silicone Tubing Condition: Good Damaged Missing Missing Damaged Missing Mi	11 1 ~~
Accessibility: Good Fair Poor Well clear of weeds and/or debris?: Yes No Well identification clearly visible?: Yes No Remarks: Concrete Pad: Good Inadequate Depressions or standing water around well?: Yes No Remarks: Protective Outer Casing: Material = 4" x 4" Steel Hinged Casing with Hasp Condition of Protective Casing: Good Damaged Condition of Locking Cap: Good Damaged Damaged Condition of Lock: Good Damaged Remarks: Well Riser: Material = 2" Diameter, Schedule 40 PVC, Flush Threaded Condition of Riser Cap: Good Damaged Damaged Measurement Reference Point: Yes No Remarks: Dedicated Purging/Sampling Device: Type = ½ " ID Semi-Rigid Polyethylene & 0.170" ID Flexible Silicone Tubing Condition: Good Damaged Missing Missing Damaged Missing Missi	Access:
Well identification clearly visible?: Yes No	
Concrete Pad: Condition of Concrete Pad: Depressions or standing water around well?: Yes No Remarks: Protective Outer Casing: Material = 4" x 4" Steel Hinged Casing with Hasp Condition of Protective Casing: Good Damaged Condition of Locking Cap: Good Damaged Condition of Lock: Good Damaged Condition of Weep Hole: Good Damaged Remarks: Well Riser: Material = 2" Diameter, Schedule 40 PVC, Flush Threaded Condition of Riser: Good Damaged Condition of Riser Cap: Good Damaged Measurement Reference Point: Yes No Remarks: Dedicated Purging/Sampling Device: Type = ½ "ID Semi-Rigid Polyethylene & 0.170" ID Flexible Silicone Tubing Condition: Good Damaged Missing	Well clear of weeds and/or debris?: Yes No
Concrete Pad: Condition of Concrete Pad: Depressions or standing water around well?: Yes No Remarks: Protective Outer Casing: Material = 4" x 4" Steel Hinged Casing with Hasp Condition of Protective Casing: Good Damaged Condition of Locking Cap: Good Damaged Condition of Lock: Good Damaged Condition of Weep Hole: Good Damaged Remarks: Well Riser: Material = 2" Diameter, Schedule 40 PVC, Flush Threaded Condition of Riser: Good Damaged Condition of Riser Cap: Good Damaged Remarks: Dedicated Purging/Sampling Device: Type = ½ " ID Semi-Rigid Polyethylene & 0.170" ID Flexible Silicone Tubing Condition: Good Damaged Missing	Well identification clearly visible?: Yes No
Condition of Concrete Pad: Depressions or standing water around well?: Remarks: Protective Outer Casing: Material = 4" x 4" Steel Hinged Casing with Hasp Condition of Protective Casing: Good Damaged Condition of Locking Cap: Good Damaged Condition of Weep Hole: Good Damaged Condition of Weep Hole: Good Damaged Remarks: Well Riser: Material = 2" Diameter, Schedule 40 PVC, Flush Threaded Condition of Riser: Good Damaged Condition of Riser Cap: Good Damaged Measurement Reference Point: Yes No Remarks: Dedicated Purging/Sampling Device: Type = ½ " ID Semi-Rigid Polyethylene & 0.170" ID Flexible Silicone Tubing Condition: Good Damaged Missing	Remarks:
Protective Outer Casing: Material = 4" x 4" Steel Hinged Casing with Hasp Condition of Protective Casing: Good Damaged Condition of Locking Cap: Good Damaged Condition of Lock: Good Damaged Condition of Weep Hole: Good Damaged Remarks: Well Riser: Material = 2" Diameter, Schedule 40 PVC, Flush Threaded Condition of Riser: Good Damaged Condition of Riser Cap: Good Damaged Measurement Reference Point: Yes No Remarks: Dedicated Purging/Sampling Device: Type = ½ " ID Semi-Rigid Polyethylene & 0.170" ID Flexible Silicone Tubing Condition: Good Damaged Missing	Concrete Pad: Condition of Concrete Pad: Good Inadequate
Protective Outer Casing: Material = 4" x 4" Steel Hinged Casing with Hasp Condition of Protective Casing: Good Damaged Condition of Locking Cap: Good Damaged Condition of Lock: Good Damaged Condition of Weep Hole: Good Damaged Remarks: Well Riser: Material = 2" Diameter, Schedule 40 PVC, Flush Threaded Condition of Riser: Good Damaged Condition of Riser Cap: Good Damaged Measurement Reference Point: Yes No Remarks: Dedicated Purging/Sampling Device: Type = ½ " ID Semi-Rigid Polyethylene & 0.170" ID Flexible Silicone Tubing Condition: Good Damaged Missing	Depressions or standing water around well?: Yes No
Condition of Protective Casing: Good Damaged Condition of Locking Cap: Good Damaged Condition of Lock: Good Damaged Condition of Weep Hole: Good Damaged Remarks: Well Riser: Material = 2" Diameter, Schedule 40 PVC, Flush Threaded Condition of Riser: Good Damaged Condition of Riser Cap: Good Damaged Measurement Reference Point: Yes No Remarks: Dedicated Purging/Sampling Device: Type = ½4 " ID Semi-Rigid Polyethylene & 0.170" ID Flexible Silicone Tubing Condition: Good Damaged Missing	Remarks:
Condition of Locking Cap: Good Damaged Condition of Lock: Good Damaged Condition of Weep Hole: Good Damaged Remarks: Well Riser: Material = 2" Diameter, Schedule 40 PVC, Flush Threaded Condition of Riser: Good Damaged Condition of Riser Cap: Good Damaged Measurement Reference Point: Yes No Remarks: Dedicated Purging/Sampling Device: Type = ½ " ID Semi-Rigid Polyethylene & 0.170" ID Flexible Silicone Tubing Condition: Good Damaged Missing	Protective Outer Casing: Material = 4" x 4" Steel Hinged Casing with Hasp
Condition of Lock: Good Damaged Condition of Weep Hole: Good Damaged Remarks: Well Riser: Material = 2" Diameter, Schedule 40 PVC, Flush Threaded Condition of Riser: Good Damaged Condition of Riser Cap: Good Damaged Measurement Reference Point: Yes No Remarks: Dedicated Purging/Sampling Device: Type = ½4 " ID Semi-Rigid Polyethylene & 0.170" ID Flexible Silicone Tubing Condition: Good Damaged Missing	Condition of Protective Casing: Good Damaged
Condition of Weep Hole: Good Damaged Remarks: Well Riser: Material = 2" Diameter, Schedule 40 PVC, Flush Threaded Condition of Riser: Good Damaged Condition of Riser Cap: Good Damaged Measurement Reference Point: Yes No Remarks: Dedicated Purging/Sampling Device: Type = ½ " ID Semi-Rigid Polyethylene & 0.170" ID Flexible Silicone Tubing Condition: Good Damaged Missing	Condition of Locking Cap: Good Damaged
Remarks: Well Riser: Material = 2" Diameter, Schedule 40 PVC, Flush Threaded Condition of Riser: Good Damaged Damaged Damaged Damaged Damaged Damaged Damaged Damaged No Remarks: Dedicated Purging/Sampling Device: Type = 1/4 " ID Semi-Rigid Polyethylene & 0.170" ID Flexible Silicone Tubing Condition: Good Damaged Missing Missing Damaged Damaged Missing Damaged Damaged Missing Damaged Dam	Condition of Lock: Good Damaged
Well Riser: Material = 2" Diameter, Schedule 40 PVC, Flush Threaded Condition of Riser: Good Damaged Condition of Riser Cap: Good Damaged Measurement Reference Point: Yes No Remarks: Dedicated Purging/Sampling Device: Type = ½ "ID Semi-Rigid Polyethylene & 0.170" ID Flexible Silicone Tubing Condition: Good Damaged Missing	Condition of Weep Hole: Good Damaged
Condition of Riser: Good Damaged Condition of Riser Cap: Good Damaged Measurement Reference Point: Yes No Remarks: Dedicated Purging/Sampling Device: Type = ½ " ID Semi-Rigid Polyethylene & 0.170" ID Flexible Silicone Tubing Condition: Good Damaged Missing	Remarks:
Condition of Riser Cap: Measurement Reference Point: Yes No Remarks: Dedicated Purging/Sampling Device: Type = ½ " ID Semi-Rigid Polyethylene & 0.170" ID Flexible Silicone Tubing Condition: Good Damaged No No No No No Device: Type = ½ " ID Semi-Rigid Polyethylene & 0.170" ID Flexible Silicone Tubing	Well Riser: Material = 2" Diameter, Schedule 40 PVC, Flush Threaded
Measurement Reference Point: Yes No Remarks: Dedicated Purging/Sampling Device: Type = ½ " ID Semi-Rigid Polyethylene & 0.170" ID Flexible Silicone Tubing Condition: Good Damaged Missing	Condition of Riser: Good Damaged
Remarks: Dedicated Purging/Sampling Device: Type = ½ " ID Semi-Rigid Polyethylene & 0.170" ID Flexible Silicone Tubing Condition: Good Damaged Missing	Condition of Riser Cap: Good Damaged
Dedicated Purging/Sampling Device: Type = ½ " ID Semi-Rigid Polyethylene & 0.170" ID Flexible Silicone Tubing Condition: Good Damaged Missing	Measurement Reference Point: Yes No
Condition: Good Damaged Missing	Remarks:
Remarks:	Condition: Good Damaged Missing
nomano.	Remarks:
Monitoring Well Locked/Secured Post Sampling?: Yes No	Monitoring Well Locked/Secured Post Sampling?: Yes No
Remarks:	Remarks:

Signed Alicia Will Title Lab Tech Date **Field Certification**

Prepared by: GREDELL Engineering Resources, Inc.

January 2017

Monitor	ring Well ID:	MW	7 Faci	lity: SBMU	J Sikeston P	ower Statio	n - Groundw	ater Monitor	ing	_
Initial Wate	er Level (feet	btoc)	17.08		-	Date:	1/16/2	15		
Initial Grou	nitial Groundwater Elevation (NAVD88):						e in Well?	Y /(N)		
PURGE IN	FORMATIO	N I								
Date:	4//	6/25		1						
Name (Sar	mple Collecto	or):	Just	in Lo	twes					
Method of	Well Purge	Low Flow	Perstaltic F	ump	Dec	dicated Tub	ing?	Y) / N		
Time Purgi	ng Initiated:	/	0:34		One	e (1) Well V	/olume (mL):		NA	
Beginning '	Water Level	(feet btoc):	1	728	Tot	al Volume f	Purged (mL)	: ,	574	0
Beginning	Groundwate	r Elevation (N	IAVD88):		We	II Purged T	o Dryness?		Y / 🚺	
Well Total	Depth (feet l	btoc): 2	7.45		Wa			g (feet btoc):	17.	08
Casing Dia	meter (feet)	2" Sch 40) PVC			(i.e	e., pump is c	off)	11:	16
	, ,				Tim	ne Sampling	g Completed	i e	11.	15
PURGE ST	TABILIZATION	ON DATA					Ovidation			
Time	Purge Rate	Cumulative Volume	Temp	Specific Conductance	Dissolved Oxygen	рН	Oxidation Reduction	Turbidity	Water Level	Notes (e.g., opacity,
	(mL/min)	(mL)	(°C)	(μS/cm)	(mg/L)	(S.U.)	Potential (mV)	(NTU)	(feet btoc)	color, odor)
1034	280	560	23.31	815.50	4.15	7.42	583.0	8.63	17.08	flakes
1036	280	1120	17.97	1030.4	0.81	7.37	303.1	12.52	17.08	flakes
1038	270	1660	16.89	1062.3	0,53	7.35	286.1	7.58	17.08	flakes
1040	290	2240	16.74	1067.6	0.49	7.33	284.3	8.50	17.08	+lakes
1042	250	2740	1669	1068.2	0.44	7.29	283.5	7.68	17.08	flakes
1044	250	3240	16.74	1061.7	0.44	7.34	284.6	6.55	17.08	flakes
1046	240	3726	16.73	1017.4	0.44	7.28	291.4	7.58	17.08	flakes
1048	260	4240	16.70	1006.9	0.44	7.26	294.0	8.73	17.08	flakes
1050	250	4740	16.65	1001.0	0.42	7.25	296.7	7.48	17.08	flakes flakes flakes
1052	250	5240	16.69	1003.0	0.40	7.25	295.0	7.65	17.08	flakes
1054	250	5740	16.65	1008.3	0.39	7.25	294.5	7.38	17.08	flakes
1.										

Facility:	SBMU Sikeston	Power Station -	CCR Groundwa	ter Monitoring	Monitoring We	ell ID: M	W /
Sampling Informa	ition:						
Method of Samplin	g: Low Flow -	Perstaltic Pump	& Tubing			Dedicated:	(Y) / N
Water Level @ Sa	mpling (feet btoc)	17.08					
Monitoring Event:	Annual ()	Semi-Annua	Quarte	rly () M	onthly ()	Other ()	
Final Purge Stabliz	ation Sampling D)ata:			1		
<u>Date</u> . Sample Time	Sample Rate (mL/min)	Temp (°C)	Specific Conductance (µS/cm)	Dissolved Oxygen (mg/L)	pH (S.U.)	Oxidation Reduction Potential (mV)	Turbidity (NTU)
4/16/25	256	14.45	1008.3	0.39	7.25	294.5	7.38
Instrument Calibr See instrument cal 1 - In-Situ SmarTr 2 - HF scientific, in	ibration log of da oll Multi-Probe Fi	eld Meter (Temp	erature, Specifi	ing instruments: c Conductance, Dissol	ved Oxygen, ph	I, Oxidation Red	duction Potentia
General Informati	on:						
Weather Condition	s @ time of sam	pling: <u>Su</u>	nay				
Sample Character	istics:	clear w	ith Sor	ne flakes	odori	1655	
Sample Collection		Per SAP					
Comments and Ok	a a ruetional	*	#) #)	* = 6			
Comments and Or	oservations.	neo#. G	160				
	-	Tal I					
*		7 5					
	#		у В	(A)			
÷ 6	,	161		(s. 4)			
		191	ĸ	9	*		
1	!		as with applicat	No EDA and State prote	oola.		
r certify that sample		30.37	1	ole EPA and State proto	. /	- 1	
Date: 4/16/	25 By:	Elicia f	owell	Title	Lab	1-eoh.	

Page 2 of 2

Facility: SBMU SPS - CCR Groundwater Monitoring Monitoring Well ID: MW3
Name (Field, Staff): Justin Lowes / Alicia Powell
Date: 4//6/25
Access: Accessibility: Good Fair Poor Poor Poor Poor Poor Poor Poor Po
Well clear of weeds and/or debris?: Yes No
Well identification clearly visible?: Yes No
Remarks:
Concrete Pad: Condition of Concrete Pad: Good Inadequate
Depressions or standing water around well?: Yes No
Remarks:
Protective Outer Casing: Material = 4" x 4" Steel Hinged Casing with Hasp
Condition of Protective Casing: Good Damaged
Condition of Locking Cap: Good Damaged
Condition of Lock: Good Damaged
Condition of Weep Hole: Good Damaged
Remarks:
Well Riser: Material = 2" Diameter, Schedule 40 PVC, Flush Threaded
Condition of Riser: Good Damaged
Condition of Riser Cap: Good Damaged
Measurement Reference Point: Yes No
Remarks:
Dedicated Purging/Sampling Device: Type = ½ " ID Semi-Rigid Polyethylene & 0.170" ID Flexible Silicone Tubing
Condition: Good Damaged Missing
Remarks:
Monitoring Well Locked/Secured Post Sampling?: Yes No
Remarks:
Field Certification Alicia forvell Lab Tech. 4/14/25
Signed Title Date

Monitorin	g Well ID:	MW	3 Fac	ility: SBML	J Sikeston Po	ower Statio	n - Groundw	ater Monitor	ing	
Initial Water I	nitial Water Level (feet btoc): 9.33						1/14/2:	5		
Initial Ground	dwater Elev	vation (NAVD	88):			Air Pressur	e in Well?	Y / 🕅		
PURGE INFO		N 25								
Date:	1.1	-	risti	n Low	W S					
Name (Samp Method of W			Perstaltic F			dicated Tub	ing?	Ŷ)/ N		
Time Purging		11:	77	шпр	===		olume (mL):		NA	
		(fact block):	9	33			olume (mL).		4/20	5
Beginning W		r Elevation (N	-1				o Dryness?		Y 1(16)	
		otoc)				-	-		9.3	3
							e., pump is d			
Casing Diameter (feet): 2" Sch 40 PVC					Tim	ne Sampling	g Completed	l:	120	3
PURGE STA	ABILIZATIO Purge	ON DATA Cumulative		Specific	Dissolved		Oxidation		Water	Notes
Time	Rate (mL/min)	Volume (mL)	Temp (°C)	Conductance (µS/cm)	Oxygen (mg/L)	рН (S.U.)	Reduction Potential	Turbidity (NTU)	Level (feet btoc)	(e.g., opacity, color, odor)
	300	600	24.45	14855	4.55	6.90	(mV) 571.9	11.83	9.33	flakes
1129	270	1140	17.46	161.52	3.72	4.34	684.8	13.8	-	flakes
1131 6	250 260	1640	16.83	166 59	3.38	6.30	711.7	8.82	9.33	flakes
	240	2640	16.46	166.91	3.04	6.36	751.7	7.59	9.33	clear
		3140	16.42	166.63	2.99	6.28	740.0	5.26	9.33	clear
1140	240	3620	16.43	167.09	2.92	6.30	100.4		9.33	
0.7-				13712	~~		Nº 3			
					1					V

btoc - below top of casing

Facility:	SBMU Sikeston	Power Station -	CCR Groundwa	ter Monitoring	Monitoring We	IIID: M	W3
Sampling Informa	ition:						
Method of Samplin	g: Low Flow -	Perstaltic Pum	p & Tubing			Dedicated:	(Y) / N
Water Level @ Sa	mpling (feet btoc)	9.3	3				
Monitoring Event:	Annual()	Semi-Annua	al (I) Quarte	rly () Mo	onthly ()	Other ()	
Final Purge Stabliz	ation Sampling D	Data:				T = 27	1
<u>Date</u> Sample Time	Sample Rate (mL/min)	Temp (°C)	Specific Conductance (µS/cm)	Dissolved Oxygen (mg/L)	pH (S.U.)	Oxidation Reduction Potential (mV)	Turbidity (NTU)
4/14/25	250	16.42	165.52	2.81	4.33	652.2	4.82 AP
Instrument Calibr See instrument cal 1 - In-Situ SmarTr 2 - HF scientific, in	ibration log of da oll Multi-Probe Fi	ield Meter (Tem	perature, Specifi	ng instruments: c Conductance, Dissolv	red Oxygen, pH	, Oxidation Rec	luction Potentia
General Informati	on:						
Weather Condition	s @ time of sam	pling:S	sunny				
Sample Character	stics:	cleor	odorles	5	10.0		
Sample Collection	Order:	Per SAP			117	=	- 14
Comments and Ob	servations:	48			4	(4).	M 2 27
		*		is			\$ P.
		2	- 74		* 5		
_=		ř/		2)		Э.	i <u> </u>
·							
) 							
				15			
) 							
Y							
I certify that sample				ole EPA and State proto		,	

Page 2 of 2

* 2.0

Facility: SBMU SPS - CCR Groundwater Monitoring
Monitoring Well ID: MW2 Name (Field Staff): Tustin Lowes Alicia Powell
1 No. 1
Date: 4/16/25
Access: Accessibility: Good Fair Poor Poor
Well clear of weeds and/or debris?: Yes 🖊 No
Well clear of weeds and/or debris?: Yes No Well identification clearly visible?: Yes No
Remarks:
Concrete Pad: Condition of Concrete Pad: Good Inadequate
Depressions or standing water around well?; Yes No
Remarks:
Protective Outer Casing: Material = 4" x 4" Steel Hinged Casing with Hasp
Condition of Protective Casing: Good Damaged
Condition of Locking Cap: Good Damaged
Condition of Lock: Good Damaged
Condition of Weep Hole: Good Damaged
Remarks:
Well Riser: Material = 2" Diameter, Schedule 40 PVC, Flush Threaded
Condition of Riser: Good Damaged
Condition of Riser Cap: Good Damaged
Measurement Reference Point: Yes No
Remarks:
Dedicated Purging/Sampling Device: Type = 1/4 " ID Semi-Rigid Polyethylene & 0.170" ID Flexible Silicone Tubing
Condition: Good Damaged Missing
Remarks:
Monitoring Well Locked/Secured Post Sampling?: Yes V No
Remarks:
Field Certification Alicia Powell Lab Tech 4/14/25
Signed Title Date

Monitor	ring Well ID:	mw	2 Fac	ility: SBMU	J Sikeston P	ower Statio	n - Groundw	vater Monitor	ing	
Initial Wate	r Level (feet	t btoc):	8.4			Date: 4	1/16/	25		
Initial Grou	ndwater Ele	vation (NAVD	88):	140 - 5		Air Pressur	e in Well?	Y / 🕦		
	FORMATIO	N	et 12							
Date:	-7/7	4/25	- 11	1	rraw 🚗 '					
Name (Sar	nple Collect	or):	ustn	1 Low	25					
Method of	Well Purge:	Low Flow	Perstaltic F	Pump	Dec	dicated Tub	oing? (Ý/ N		
Time Purgi	ng Initiated:		2:28	?	On	e (1) Well V	olume (mL)	:	NA	
Beginning \	Water Level	(feet btoc):	8.4		Tot	al Volume f	Purged (mL)	:	4000	
Beginning :	Groundwate	r Elevation (N	IAVD88):		We	II Purged T	o Dryness?		Y / (N)	
Well Total	Depth (feet	btoc): <u>3</u>	7.36		Wa			g (feet btoc):	8.4	s
Casing Dia	meter (feet)	2" Sch 40) PVC			(i.€	e., pump is c	off)	1107	
M	, ,				Tim	ne Sampling	g Completed	d:	1:03	
PURGE ST	TABILIZATIO	ON DATA			,		Oxidation			
Time	Purge Rate (mL/min)	Cumulative Volume (mL)	Temp (°C)	Specific Conductance (µS/cm)	Dissolved Oxygen (mg/L)	pH (S.U.)	Reduction Potential	Turbidity (NTU)	Water Level (feet btoc)	Notes (e.g., opacity, color, odor)
1228	260	520	24.89	146.90	3.78	6.90	(mV) 800.9	5.67	8.4	Clear
1230	210	1060	18.98	121.22	1.21	4.43	758.5	5.06	8.4	Clear
1232	240	1540	17.37	124.80	1.08	439	650.9	4.45	8.4	Clear
1234	240	2020	17.01	125.89	1.04	6.36	598.0	4.57	8.4	Clear
1236	250	2520	16.88	126.58	0.99	6.38	559.9	4.68	8.4	clear
1258	250	3020	16.83	127.12	0.94	6.34	538.0		8.4	Clear
1240	240	3500	16.83	127.34		4.35	511.3	4.33	8.4	clear
1242	250	4000	16.85	127.96	0.87	6.36	492.1	4.24	8.4	clear
						*			2	

Facility:	SBMU Sikeston	Power Station -	CCR Groundwa	ter Monitoring	Monitoring W	'ell ID: M	V2
Sampling Informa	ation:			180			
Method of Samplin	g: Low Flow -	Perstaltic Pum	p & Tubing			Dedicated:	(Y) / N
Water Level @ Sa	mpling (feet btoc)	8.4					
Monitoring Event:	Annual ()	Semi-Annua	al (V Quarte	rly () M	onthly ()	Other ()	
Final Purge Stabliz	ation Sampling D	Data:	11				
<u>Date</u> Sample Time	Sample Rate (mL/min)	Temp (°C)	Specific Conductance (µS/cm)	Dissolved Oxygen (mg/L)	pH (S.U.)	Oxidation Reduction Potential (mV)	Turbidity (NTU)
4/16/25	256	14.85	127.96	0.87	6.36	492.1	4.24
Instrument Calibr See instrument cal 1 - In-Situ SmarTr 2 - HF scientific, in	libration log of da oll Multi-Probe Fi	eld Meter (Tem	perature, Specifi	ng instruments: c Conductance, Dissol [,]	ved Oxygen, p	H, Oxidation Red	luction Potentia
General Informati	ion:						
Weather Condition	is @ time of sam	pling: 5ι	inay				
Sample Character	istics:	clear	odor le	·55			
Sample Collection	Order:	Per SAP	0	*	-		
Comments and Ob	iservations:						
					V4		
М	lii.		[f.	0			
I certify that sampl	ing procedures w	vere in accordan	nce with applicab	le EPA and State proto	ocols		
Date: 4/16/2	25 By: 4	Alicia	Powell	/ Title:	Lat	Fech.	
-/ -/			Page	2 of 2			

Prepared by: GREDELL Engineering Resources, Inc.

Monitoring Well Field Inspection

	44.	Groundwater Monitoring	
	Monitoring Well ID: My Name (Field Staff): Tust	tin Lowes / Alicia Powell	
	Date: 4/16/25	17/200-2/1/1/2007/02-41	
	7/7		
	Access: Accessibility: Good	d Poor Poor	
	Well clear of weeds and/or deb	bris?: Yes No No	
	Well identification clearly visible	le?: Yes No	
	Remarks:		
18	Concrete Pad: Condition of Concrete Pad:	Good Inadequate	
	Depressions or standing water	r around well?: Yes No	
	Remarks:		
	Protective Outer Casing: Mater	erial = 4" x 4" Steel Hinged Casing with Hasp	
	Condition of Protective Casing:	g: Good	
	Condition of Locking Cap:	Good Damaged	
	Condition of Lock:	Good Damaged	
	Condition of Weep Hole:	Good Damaged	
	Remarks:		
	Well Riser: Material = 2" Diameter, S	Schedule 40 PVC, Flush Threaded	
	Condition of Riser:	Good Damaged	
	Condition of Riser Cap:	Good Damaged	
	Measurement Reference Points	nt: Yes No	
	Remarks:		
	Dedicated Purging/Sampling Device:	E: Type = 1/4 " ID Semi-Rigid Polyethylene & 0.170" ID Flexib Silicone Tubing	<u>le</u>
	Condition: Good	Damaged Missing	
	Remarks:		
	Monitoring Well Locked/Secure	red Post Sampling?: Yes No	
	Remarks:	2	
Field	Certification Aliana Po	Jul 1 ah Teah	
Tielu	Signed	well 1 ab 7ech Title Date	

Monito	ring Well ID	WM	6 Fac	sility: SBMU	J Sikeston P	ower Statio	n - Groundy	vater Monitor	ring	
Initial Wate	er Level (fee	t btoc)	9.1		- 1	Date	4/14/	25		
Initial Grou	ndwater Ele	evation (NAVE	088):			Air Pressu	re in Well?	Y / 🚺)	-
PURGE IN	FORMATIC	N								
Date:	4/16/	25		8						
Name (Sar	nple Collect	or):	Tust	in Los	wes					
Method of	Well Purge:		v Perstaltic I			dicated Tub	oina?	Ŷ/ N		7
	-	7.	315	ипр						
Time Purgi	ing Initiated:	:	213	_	On	e (1) Well \	/olume (mL)	: 4	NA	C.A.
Beginning	Water Leve	(feet btoc):	_ 9	.	Tot	tal Volume	Purged (mL)): =	109	80
Beginning	Groundwate	er Elevation (N	NAVD88):		We	ell Purged T	o Dryness?		Y	
Well Total	Depth (feet	btoc)	33.2		Wa	ater Level a	fter Samplin	g (feet btoc):	9.	1
	ımeter (feet)	-				(i.	e., pump is	off)		2
Jania Dic		. 2 001141			Tin	ne Samplin	g Completed	i:	_/4/8	<u> </u>
PURGE S	TABILIZATI	ON DATA								
Time	Purge	Cumulative	Temp	Specific	Dissolved	Hq	Oxidation Reduction	Turbidity	Water	Notes
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Rate (mL/min)	Volume (mL)	(°C)	Conductance (µS/cm)	Oxygen (mg/L)	(S.U.)	Potential	(NTU)	Level (feet btoc)	(e.g., opacity, color, odor)
1315	240	480	22.82	568.14	1.37	7.00	(mV) 241.0	59.1	9.1	cloudy
1317	130	940	19.50	626.37	0.73	7.05	252.5	45.09	9.1	flakes
1319	250	1440	18.10	648.85	0.52	7.06	197.4	56.4	9.1	flakes
1321	250	1940	17.90	651,41	0.43	7.06	178.5	94.19	9.1	flakes
1323	250	2440	17.84	650.22	0.37	7.05	162.2	107.4	9.1	flakes
1325	250	2940	17.81	648.97	0.34	7.06	149.0	123.9	9.1	doudy I flake
1327	240	3420	17.80	645,17	0.31	7.07	140,4	128.5	9.1	cloudy flake
1329		3920	17.77	643.06				86.56		Cloudy If late
1331	260	4440	17.75		0.29		130.6			flakes
1333	250	4940	17.77				121.3		9.1	flakes
1335	240	5420		631.85			118.4		9.1	clear
1337	260	5940	17.73	630.72		The state of the s	114.5		9.1	clear
1339	250	6440	17.73	629.04			110.4	11.85	9.1	Clear
1341	250	6990	17.73	627.75			102.1	13.27	9.1	Clear
1343	250	7440	17.72	625.93			96.4		9.1	clear
1345	260	7960	11.07	429.31	0.26	7.05	93.9		9.1	flakes
1347	250	8460	1773	626.32			95.6	1 1	9.1	flakes
1349		8940				7.09	89.2	10.11	9.1	flakes
1351	260	9460	17.73	626.94	0.25	1.08	85.7	1257	9.1	Clear

btoc - below top of casing

Facility:	SBMU	Sikeston	Power	Station -	- CCR	Groundwater	Monitorina

Monitoring Well ID:

MWID

4/16/25

PURGE S	TABILIZATIO	N DATA	CONTINUED
()			

PURGES	IABILIZATI	ON DATA CC	NIINUED							
Time	Purge Rate (mL/min)	Cumulative Volume (mL)	Temp (°C)	Specific Conductance (µS/cm)	Dissolved Oxygen (mg/L)	pH (S.U.)	Oxidation Reduction Potential (mV)	Turbidity (NTU)	Water Level (feet btoc)	Notes (e.g., opacity, color, odor)
1353	250	9960	17.73	622.06	0.25	7.09	80.9	7.54	9.1	clear
1355	240	9960 10486 10986	17.73	622.06 622.48 619.14	0.25	7.09	75.2 70.9	7.54 7.81 8.24	9.1	clear Clear
1357	250	10980	17.72	619.14	0.25	7.09	209	824	9.1	Clear
1121		130	1111-		0.25		M	0,701	***	
			-	*			1			
-	Jan.									
	×		*			4				
		2 .	xî i							
		£ ⊃3								
L		1		L.:	1		-			

btoc - below top of casing

Facility	SBMU Sikeston	Power Station -	CCR Groundwa	ter Monitoring	Monitoring W	ell ID: M	WID
Sampling Informa	ition:						
Method of Samplin	g: Low Flow -	Perstaltic Pump	o & Tubing			Dedicated	(¥) / N
Water Level @ Sa	mpling (feet btoc	9.1					
Monitoring Event:	Annual ()	Semi-Annua	Quarter	rly () Mo	onthly ()	Other ()	
Final Purge Stabliz	ation Sampling [)ata:					
<u>Date</u> Sample Time	Sample Rate (mL/min)	Temp (°C)	Specific Conductance (µS/cm)	Dissolved Oxygen (mg/L)	pH (S.U.)	Oxidation Reduction Potential (mV)	Turbidity (NTU)
4/16/25	250	17.72	619.14	0.25	7.09	68.9	8.24
Instrument Calibr See instrument cal 1 - In-Situ SmarTr 2 - HF scientific, in	ibration log of da oll Multi-Probe Fi	eld Meter (Temp	perature, Specifi	ng instruments: c Conductance, Dissolv	ed Oxygen, pł	H, Oxidation Red	luction Potentia
General Informati	on:						
Weather Condition	s @ time of sam	pling: 50	inny				
Sample Characteri	stics: Cl	ear od	orless				
Sample Collection	Order:	Per SAP			i 66		
Comments and Ob		ield b	lank	**	*	51	
		9					
		(8		1.8	ac .	t:	
	=						
				a			
		2 2					
·							
I certify that sampli	ing procedures w	ere in accordan	ce with applicabl	e EPA and State protoc	cols.		
Date: 4//6/3	25 By: 1	flicial	rwell	Title:	Lab	Tech	

Page 2 of 2

Client: Address: City / State / Contact:	Sikeston Power sta 1551 W. Wakefield Zip Sikeston, MO 6380 Ashish Patel		_ Phone	(5)	73) 475	5-315	5		Pre	eser		l in:		ICE LAB					NO ICI		R LA	AB U	°C SE OI		G#	
Are these samples Are these samples Are there any requi	known to be involved in litight known to be hazardous? If ired reporting limits to be ment section.	yes, include et on the requ	details of the l uested analysi	nazard. s?. If yes	Yes, pleas	se pro	∑ No vide	No No	Арре	endix	(IV m	netal:	s = E	3 Ca (nd As			e (ICF		veis	P. D.E.		ort QC L	-VL:	-
	oject Name/Number Fly Ash Pond (FAP) ested(call for PFAS TAT and	surcharges)	Jus	-	Lo	We	25	s	-	1	TRI		Gro	Append	Append	CI	INL	JICA	IEA	NAL	1 513	RE	ZOES	HED		
Standard Date	1-2 Day (100% Surcharge) 3 Day (50% Surcharge)			HNO3 UNPRES			TI	OTHER	Agueous	Soil	Sludge	Special Waste	Groundwater	Appendix III metals	Appendix IV metals	3 SO4	77	TDS								
Lab Use Only	Sample Identification	Date/Tim	ne Sampled	12	+	\vdash	+	+	+	+	+		X	X	X	X	Y	X	-	+	+	+	+		+	
	MW-1R MW-2	15/6/25	0111	13			+	+	+		H		X	X	X	^ _	V	X		_		+			+	
	MW-3	5/6/25	1201	13			+	\dagger	+	+			X	X	x	Y	1	X				1	\top			
	MW-7	11.12	0908	13	-	H	\pm	+	+	H	Ħ		X	X	Y	$\frac{\wedge}{\mathbf{x}}$	V	X								
	MW-9	20125	0822	13		H	Ħ	\top		1		П	X	X	X	X	X	X								
	MW-10	5/6/25		13		П	71	1		T	T	П	X	X	X	X	X	X								
	Duplicate	5/6/25		13				1		T			X	X	X	X	X	X								
	Field Blank	1 7 7 7	1201	13					X					X	X	X	X	X								
	Trip Blank	7,4,2	120.	13					X	1				×	X	X	X	X								
	Relinquished By		1,	Date	/Time	70		7			-		Re	ceiv	ed B	У				+			Date	e/Time		

5

99772

BottleOrder:

Field Instrumentation Calibration Log

uments:	In-Situ SmarTROLL	MP or In-Situ	AquaTROLL 400		-	HF scientific, in	c. Micro TPI Fie	ld Portable Tu	rbidimeter	_	
S/N #:	893508	<i>:</i> :		- X	21	02302068	3	=======================================			
Time	pH Standards (S.U.)	pH Measure- ments (S.U./mV)	Specific Conductance Standard (µS/cm)	Specific Conductance Measurement (µS/cm)	Oxidation Reduction Potential Standard (mV)	Oxidation Reduction Potential Measurement (mV)			Turbidity Standards (NTU)	М	Turbidity easuremen (NTU)
	4.00 @ 25.00°C Standard is = 4 @ 25°C	4.00	1413 @25.00°C		220 mV at 25.00°C		Temperature (°C)	= 19.78	0.02	=	0.03
0600	7,00 @25.00°C	7.04	1413	1412.5	=	228.99	Tap Water Source	SBMU	10.0	= 0	7.97
	10.00 @25.00°c	10.05	- (a)	20.32°C	Standard is 229 v @ 25 °C	20.39°C	Barometric Pressure (mm/Hg)	= 754.21	1000		1001
	4 00 @ 25 00°C					2012	Temperature				
	Standard is =	NA NA	1413 @25.00°C		220 mV at 25.00°C	228 6 AP			0.02	=	0.01
1245	7.00 @25.00°C	7.10 NA	1413		=	@	Source		10.0	н	9.99
	10.00 @25.00°C Standard is = 10 @ 25 C	10.06	25°C	20.71	Standard is 229mV @ 25°C	21.24	Barometric Pressure (mm/Hg) Measurement	= 754.40	1000	=	996.4
	S/N #: Time	S/N #: 893508 Time pH Standards (S.U.) 4.00 @ 25.00°C Standard is	S/N #: 893508 Time	Time PH Standards (S.U.) PH Measurements (S.U./mV) Standard (μS/cm) 4.00 @ 25.00°C Standard is 1.00 (μS/cm) 7.00 @ 25.00°C Standard is 1.00 (μS/cm) 10.00 @ 25.00°C (μS/cm) 10.00 @ 25.00°C (μS/cm) 1413 (μS/cm)	Time pH Standards (S.U.) pH Measure-ments (S.U./mV) (pS/cm) Specific Conductance Standard (pS/cm) (pS/cm) 4.00 @ 25.00°C	S/N #: 893508 PH Specific Conductance Measurements (S.U.) Measurements (yS/cm) Standard Standard (μS/cm) Standard (μS/cm) Standard (μS/cm) Standard (μS/cm) Standard (mV) Standard is 1.00 1.55.λ 2.20 mV at 2.5.00°C 2.5.00°C	S/N #: 893508 Time pH Standards (S.U.) pH Measurements (S.U.) ments (S.U.) ments (S.U.) ments (LyS/cm) potential Standard (LyS/cm) potential Standard (my) potential Standard	S/N #: 893508 2023020683 202302068 2023020683 2023020683 2023020683 2023020683 202302068 2023020683 2023020683 2023020683 2023020683 202302068 2023020683 2023020683 2023020683 2023020683 202302068 20	Sin #: 893508 2023020683 202302068 202302068 2023020683 2023020683 2023020683 202302068 202	SIN #: 893508 2023020683	SIN #: 893508 2023020683

Monitoring Well Field Inspection

Facility: SBMU SPS - CCR Groundwater Monitoring Monitoring Well ID: MW K Name (Field Staff): Tustin Lowes Alicia Powe //
Date: 5/4/25
Access: Accessibility: Good Fair Poor Poor
Well clear of weeds ánd/or debris?: Yes No Well identification clearly visible?: Yes No
Well identification clearly visible?: Yes No
Remarks:
Concrete Pad: Condition of Concrete Pad: Good Inadequate
Depressions or standing water around well?; Yes No 🔟
Remarks:
Protective Outer Casing: Material = 4" x 4" Steel Hinged Casing with Hasp
Condition of Protective Casing: Good Damaged
Condition of Locking Cap: Good Damaged
Condition of Lock: Good 🗹 Damaged
Condition of Weep Hole: Good Damaged
Remarks:
Well Riser: Material = 2" Diameter, Schedule 40 PVC, Flush Threaded
Condition of Riser: Good 🗹 Damaged
Condition of Riser Cap: Good Damaged
Measurement Reference Point: Yes No No
Remarks:
Dedicated Purging/Sampling Device: Type = 1/4 " ID Semi-Rigid Polyethylene & 0,170" ID Flexible Silicone Tubing
Condition: Good Damaged Missing
Remarks
Monitoring Well Locked/Secured Post Sampling?: Yes No
Remarks:
Field Certification Alicia Powell Lab Teach 5/6/25
Signed Title Date

				riei	u Sampii	ng Log				
Monito	ring Well ID:	MW	IR Fac	ility: SBMU	J Sikeston P	ower Statio	n - Groundw	vater Monitor	ing	
Initial Wate	er Level (fee	t btoc):	16.4			Date:	5/6/2	5		
Initial Grou	ndwater Ele	vation (NAVD	88):			Air Pressur	re in Well?	Y / (N)		
PURGE IN	FORMATIO	N								
Date:	5/6/	25		i						
Name (Sar	nple Collect	or) Ju	15+18	n Low	125					
Method of	Well Purge:	Low Flow	Perstaltic F	Pump	Dec	dicated Tub	oing?	Y) / N		
Time Purgi	ng Initiated:	0	655		One	e (1) Well \	/olume (mL)	;	NA	
Beginning	Water Level	(feet btoc):	_/(6.4	Tot	al Volume l	Purged (mL)	:	512	0
Beginning	Groundwate	er Elevation (N	IAVD88):		We	II Purged T	o Dryness?		Y /(N)	
Well Total	Depth (feet	btoc):	38.25	5	Wa	ter Level a	fter Samplin	g (feet btoc):	16.	4
Casing Dia	meter (feet)					(i.	e., pump is o	off)		
Odding Die	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	2 001140	31 0		Tim	ne Samplin	g Completed	I:	075	3
PURGE S	TABILIZATIO	ON DATA			l:					
Time	Purge	Cumulative	Temp	Specific	Dissolved	рН	Oxidation Reduction	Turbidity	Water Level	Notes (e.g., opacity,
	Rate (mL/min)	Volume (mL)	(°C)	Conductance (µS/cm)	Oxygen (mg/L)	(S.U.)	Potential (mV)	(NTU)	(feet btoc)	color, odor)
0655	180	360	18.08	739.03	226.19	5.88	304.0	89.03	16.4	flakes
0657	210	780	15.95	1124.3	224.3	6.16	400.3	65.61	16.4	white flake
0659	240	1260	15.53	1085.0	224.35	4.25	412.2	45,93	16.4	whate flakes
0701	230	1720	15.47	1000.6	223.90	6.29	418.2	74.28	16.4	Whate flake
0703	250	2220	15.48	1121.7	223.86	4.29	4/5.8	29.91	16.4	white flake
0705	230	2680	15.49	896.53	221.76	6.35	428.3	18.56	16.4	white flake
0707	250	3180	15.49	840.21	221.69	6.36	426.4	7.06	16.4	Small flakes
0709	240	3660	15.44	840.21	221.68	6.38	423.2	14.11	16.4	small flake
0711	250	4160	15.41	805.00	221.68	4.38	419.9	4.37	16.4	clear
0713		4640	15.41	798.75	221.68	4.38	421.4	4.48	16.4	clear
	240	5120		797.22					16.4	flakes

Facility:	SBMU Sikeston	Power Station -	CCR Groundwa	ter Monitoring	Monitoring W	ell ID: MV	VIR
Sampling Informa	ation:						
Method of Samplin	g: Low Flow -	Perstaltic Pump	& Tubing			Dedicated:	(Y) / N
Water Level @ Sa	mpling (feet btoc)	16.4)				
Monitoring Event:	Annual ()	Semi-Annua	Quarte	erly () M	onthly ()	Other ()	
Final Purge Stabliz	ation Sampling D)ata:	-		,		
<u>Date</u> Sample Time	Sample Rate (mL/min)	Temp (°C)	Specific Conductance (µS/cm)	Dissolved Oxygen (mg/L)	pH (S.U.)	Oxidation Reduction Potential (mV)	Turbidity (NTU)
5/6/25	240	15.42	197.22	221.66	4.38	421.5	4.65
Instrument Calibr See instrument cal 1 - In-Situ SmarTr 2 - HF scientific, in	libration log of da oll Multi-Probe Fi	ield Meter (Temp	erature, Specif	ing instruments: ic Conductance, Dissol [,]	ved Oxygen, pl	H, Oxidation Rec	luction Potentia
General Informati	ion:						
Weather Condition	ns @ time of sam _l	pling: Su	inny				
Sample Character	istics:	ting fla	kes, ou	dorless			
Sample Collection		Per SAP					
Comments and Ob		up. tak.	en				¥.
				**			
3				-			
		(4)					
-							

I certify that sampl				ole EPA and State proto		TI	
Date: 5/6/2	5 By: /	Alicia	Towell	Title	Lab	Hch	

Page 2 of 2

Monitoring Well Field Inspection

Facility: SBMU SPS - CCR Groundwater Monitoring
Monitoring Well ID: Name (Field Staff): Tustin Lowes Alicie Powell
Date: 5/6/25
Access: Accessibility: Good Fair Poor Poor
Well clear of weeds and/or debris?: Yes Vo
Well identification clearly visible?: Yes Vo No
Remarks:
Concrete Pad: Good Inadequate
Depressions or standing water around well?: Yes No
Remarks:
Protective Outer Casing: Material = 4" x 4" Steel Hinged Casing with Hasp
Condition of Protective Casing: Good Damaged
Condition of Locking Cap: Good Damaged
Condition of Lock: Good Damaged
Condition of Weep Hole: Good Damaged
Remarks:
Well Riser: Material = 2" Diameter, Schedule 40 PVC, Flush Threaded
Condition of Riser: Good Damaged
Condition of Riser Cap: Good Damaged
Measurement Reference Point: Yes No
Remarks:
Dedicated Purging/Sampling Device: Type = 1/4 " ID Semi-Rigid Polyethylene & 0.170" ID Flexible Silicone Tubing
Condition: Good Damaged Missing
Remarks:
Monitoring Well Locked/Secured Post Sampling?: Yes No
Remarks
ield Certification Alicia To well Lab Tech. 5/6/25 Signed Title Date

Monitor	ing Well ID:	MW	7 Fac	ility: SBML	J Sikeston Po	ower Statio	n - Groundw	ater Monitori	ng	_
Initial Wate	r Level (feet	t btoc);	16.9			Date: 5	16/25			
Initial Grou	ndwater Ele	vation (NAVD)88):			Air Pressur	e in Well?	Y /(N)		
PURGE IN	FORMATIO	N								
Date:	5/6/	25			11	niel in	0	. /		
Name (San	nple Collect	or):	UStil	1 Low	es/A	licia	fowe	//		
Method of	Well Purge:	Low Flow	/ Perstaltic F	Pump	/ Dec	dicated Tub	oing?	Y) / N		
Time Purgi	ng Initiated:	08	304		One	e (1) Well V	/olume (mL)		NA	
Beginning \	Water Level	(feet btoc):	10	6.9	Tot	al Volume l	Purged (mL)	:	4500)
		r Elevation (N			We	II Purged T	o Dryness?		Y /(N)	
	Depth (feet		37.35		— Wa	iter Level a	fter Samplin	g (feet btoc):	16.	7
	, ,	: 2" Sch 40			 -		e., pump is o			,
Casing Dia	illeter (leet)	. 2 001140	31 00		Tim	ne Sampling	g Completed	l:	084	
PURGE S	TABILIZATI(ON DATA					Oxidation		1	
Time	Purge Rate	Cumulative Volume	Temp	Specific Conductance	Dissolved Oxygen	рН	Reduction	Turbidity	Water Level	Notes (e.g., opacity
	(mL/min)	(mL)	(°C)	(µS/cm)	(mg/L)	(S.U.)	Potential (mV)	(NTU)	(feet btoc)	color, odor)
0804	260	520	11.50	00 110		6.84	390.4	12.56	16.9	whole lakes
0806	250	1020		850.84		6.95	307.5	5.71	16.9	White Have
0808	250	1520	16.68	847.32	222.07	6.97	300.8	3.72	16.9	white Hakes
0810	240	2000	16.65	850.11	221.79		297.3	3.96	16.9	whole flakes
0812	250	2500	16.70	839.23			294.9	4.34	16.9	clear
0814	260	3020	14.68	834.93	221.64	7.00	292,4	4.54	16.9	Ckar
0816	260	3540	16.67	840.80	221.68	7.01	291.2	3.75	16.9	clear
0818	260	4060	16.74	838.70	221.54	7.00	290.9	3.38	16.9	clear
0820	220	4500	16.74	838.70 847.95	221.63	7.00	290.7	3.70	16.9	Clear
									8	

Facility:	SBMU Sikeston	Power Station - (CCR Groundwa	ter Monitoring	Monitoring Wel	IID: M	V9
Sampling Informa	ition:						
Method of Samplin	g: Low Flow -	Perstaltic Pump	& Tubing			Dedicated:	(Y) / N
Water Level @ Sai	-	16.9					
Monitoring Event:	Annual ()	Semi-Annual	Quarte	rly () Mo	onthly ()	Other ()	
Final Purge Stabliz	ation Sampling D	oata:					1
<u>Date</u> Sample Time	Sample Rate (mL/min)	Temp (°C)	Specific Conductance (µS/cm)	Dissolved Oxygen (mg/L)	pH (S.U.)	Oxidation Reduction Potential (mV)	Turbidity (NTU)
5/6/25	226	16.74	847.95	221.63	7.00	290.7	3.70
Instrument Calibr See instrument cal 1 - In-Situ SmarTr 2 - HF scientific, in	libration log of da oll Multi-Probe Fi	ield Meter (Temp	erature, Specifi	ng instruments: c Conductance, Dissolv	red Oxygen, pH	, Oxidation Red	uction Potentia
General Informati	ion:						
Weather Condition	ns @ time of sam	pling: Su	nny				
Sample Character	istics:	clear	odork	255			
Sample Collection	Order:	Per SAP	- 1				
Comments and Ob	oservations:		9				
		<u> </u>			ь.		
	8	i p					
	*					36	
-							
Logitify that samp	ling procedures v	vere in accordan	ce with applicat	ole EPA and State proto	ocols.		
	By: #			Title:		Teah.	
1 -1	,		-	0 (0			

Monitoring Well Field Inspection

Facility: SBMU SPS - CCR Groundwater Monitoring
Monitoring Well ID: Name (Field Staff): Tustin Lowes Alicia Powell
Date: 5/6/25
Access: Accessibility: Good Fair Poor
Well clear of weeds and/or debris?: Yes No Well identification clearly visible?: Yes No
Well identification clearly visible?: Yes No
Remarks:
Concrete Pad: Good Inadequate
Depressions or standing water around well?: Yes No 🔟
Remarks:
Protective Outer Casing: Material = 4" x 4" Steel Hinged Casing with Hasp
Condition of Protective Casing: Good Damaged
Condition of Locking Cap: Good Damaged
Condition of Lock: Good Damaged
Condition of Weep Hole: Good Damaged
Remarks:
Well Riser: Material = 2" Diameter, Schedule 40 PVC, Flush Threaded
Condition of Riser: Good Damaged
Condition of Riser Cap: Good Damaged
Measurement Reference Point: Yes No
Remarks:
Dedicated Purging/Sampling Device: Type = 1/4 " ID Semi-Rigid Polyethylene & 0.170" ID Flexible Silicone Tubing
Condition: Good Damaged Missing
Remarks:
Monitoring Well Locked/Secured Post Sampling?; Yes No
Remarks:
Field Certification Alicia Powell Lab Tech 5/6/25
Signed Title Date

Monito	ring Well 1D:	MW	17 Fac	ility: SBMU	J Sikeston Po	ower Statio	n - Groundw	ater Monitor	ing	
Initial Wate	er Level (fee	t btoc):	7.7			Date: 5	16/25	5		
Initial Grou	ndwater Ele	vation (NAVD	988):			Air Pressur	e in Well?	Y /🕦		
PURGE IN	FORMATIO	N								
Date:	5/6/	25		,	111	t e	0	11		
Name (Sar	mple Collect	or):	stin	Lowes	1H1	Cia	rowe	(
Method of '	Well Purge:	Low Flow	/ Perstaltic I	oump	Dec	dicated Tub	ing?	Y) / N		
Time Purgi	ng Initiated:	08	52		One	e (1) Well V	olume (mL):		NA	
Beginning	Water Level	I (feet btoc)	17	.7	Tota	al Volume I	Purged (mL)		424	0
Beginnina	Groundwate	er Elevation (N	NAVD88):		We	II Purged T	o Dryness?		Y	
		btoc): 3			— Wa	ter Level at	fter Sampling	g (feet btoc);	17.	1
	meter (feet)		1170			(i.	e., pump is c	off)	i 0 -	
Dasing Die	(1001)	2 0011 10	01 0		Tim	ne Sampling	g Completed	:	092	5
PURGE S	TABILIZATI	ON DATA					Oxidation			
Time	Purge Rate	Cumulative Volume	Temp	Specific Conductance	Dissolved Oxygen	pН	Reduction	Turbidity	Water Level	Notes (e.g., opacity,
	(mL/min)	(mL)	(°C)	(µS/cm)	(mg/L)	(S,U,)	Potential	(NTU)	(feet btoc)	color, odor)
0852	260	520	22.24	728.53	222.08	7.24'	22237	8.77	17.7	Clear
0854	260	1040	18.41	825,93	221.60	7.25	404.6	9111	197	Clear black flakes
10856	210	1580	17.30	895.82	221,48	7,25	311.1	1.20	17.7	blatk flake
0900	260	3140	16.83	940.43	221.36	7.26	250.7	4.72	17.7	Clear
0902	260	3160	16.77	94590	251.33	7.27	246.1	5.30	17.7	clear
0904	270	3700	16.74	956.77	221.32	7.27	243.0	4.97	17.7	Clear
0906	270	4240	16.74	954.66	221.30	7.27	240.2	5.22	17.7	clear
									-	

Facility:	SBMU Sikeston	Power Station -	CCR Groundwa	ter Monitoring	Monitoring W	ell ID: M	v 7
Sampling Informa	ation:						
Method of Samplin	g: Low Flow -	Perstaltic Pump	& Tubing			Dedicated:	(Y) / N
Water Level @ Sa	mpling (feet btoc)	19TAP	17.7				
Monitoring Event:	Annual ()	Semi-Annua	Quarte	rly () M	onthly ()	Other ()	
Final Purge Stabliz	ation Sampling D)ata:			r	0.114	
<u>Date</u> Sample Time	Sample Rate (mL/min)	Temp (°C)	Specific Conductance (µS/cm)	Dissolved Oxygen (mg/L)	pH (S.U.)	Oxidation Reduction Potential (mV)	Turbidity (NTU)
5625	270	16.74	954.66	221.36	7.27	240.2	5.22
Instrument Calibr See instrument cal 1 - In-Situ SmarTr 2 - HF scientific, in	libration log of da oll Multi-Probe Fi	eld Meter (Temp	erature, Specifi	ng instruments: c Conductance, Dissol	ved Oxygen, pl	- H, Oxidation Red	luction Potentia
General Informat	ion:	-					
Weather Condition	ns @ time of sam	pling: <u>Su</u>	mny				
Sample Character	istics:	lear oc	torless	5	1		
Sample Collection		Per SAP			<u> </u>		
Comments and Ot	oservations:					x 8	20
				10241			
	1 5	V. 1	-			<u> </u>	
1		*			*		
.							
-							
1	Constant		an with a said a st	In EDA and Ctata wast	a colo		
certify that samp				le EPA and State proto /		17/	
Date: 5/6/2	5 By: #	flicia;	rowell	7 Title	Lat	rech.	

Page 2 of 2

Monitoring Well Field Inspection

Facility: SBMU SPS – CCR Groundwater Monitoring
Monitoring Well ID: Name (Field Staff): Tustin Lowes/Alica Powel/
Date: 5/6/25
Access:
Accessibility: Good V Fair Poor Poor
Well clear of weeds and/or debris?: Yes No
Well identification clearly visible?: Yes No
* Remarks:
Concrete Pad: Condition of Concrete Pad: Good Inadequate
Depressions or standing water around well?: Yes No
Remarks:
Protective Outer Casing: Material = 4" x 4" Steel Hinged Casing with Hasp
Condition of Protective Casing: Good Damaged
Condition of Locking Cap: Good Damaged
Condition of Lock: Good Damaged
Condition of Weep Hole: Good Damaged
Remarks:
Well Riser: Material = 2" Diameter, Schedule 40 PVC, Flush Threaded
Condition of Riser: Good Damaged
Condition of Riser Cap: Good Damaged
Measurement Reference Point: Yes No
Remarks:
<u>Dedicated Purging/Sampling Device</u> : Type = ½ " ID Semi-Rigid Polyethylene & 0.170" ID Flexible Silicone Tubing
Condition: Good Damaged Missing
Remarks:
Monitoring Well Locked/Secured Post Sampling? Yes No
Remarks:
Field Certification Alicinatorul 1 aptech. 5/4/25
Signed Title Date

Monitor	ing Well ID:	MW	3Fac	ility: SBML	J Sikeston Po	ower Station	n - Groundw	ater Monitori	ng	
Initial Wate	r Level (feet	btoc);	1.94	· · · ·		Date: 5	16/2	5		
Initial Grou	ndwater Ele	vation <u>(</u> NAVD)88):	2	<u></u>]g	Air Pressur	e in Well?	Y(N)		
PURGE IN	FORMATIO	N_								
Date:	5/6/	15			10		0	11		
Name (San	nple Collect	or):	usti	n Low	es/H	licia	fow	ell_		
Method of \	Method of Well Purge: Low Flow Perstaltic Pump Dedicated Tubing? Y / N									
Time Purgi	ng Initiated:		942		One	e (1) Well V	olume (mL)		NA	
Beginning \	Water Level	(feet btoc):	9.0	74	Tota	al Volume F	Purged (mL)	1	446	0
Beginning (Groundwate	r Elevation (N	NAVD88):	•	We	II Purged T	o Dryness?		Y O	
	Depth (feet		37.2		Wa			g (feet btoc):	9.94	<i>f</i>
	meter (feet)					(i.€	e., pump is c	off)	1010	
					Tim	ne Sampling	g Completed	()	1015	
PURGE ST	TABILIZATIO						Oxidation		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Notes
Time	Purge Rate	Cumulative Volume	Temp (°C)	Specific Conductance	Dissolved Oxygen	рН (S.U.)	Reduction Potential	Turbidity (NTU)	Water Level	Notes (e.g., opacity,
001/2	(mL/min)	(mL)	101	(µS/cm)	(mg/L)		(mV)	11-7-1	(feet btoc)	color, odor)
0942	310	620	21.94	15390	224.03	7.48	788.7	11.19	9.99	Clear
0944	280	1180	16.86	165.37	222.85	7.03 6.88	802.2	716	9.94	clear
2948	280	2300	11.57	165.31	222.83	6.72	798 /	6.36	994	clear
0950	260	2820	1455	164.35	200.74	6.67	7933	521	9.94	ckar
6952	280	3380	16.56	168.02	222.68	6.63	781.9	4.86	9.95	Clear
1954	260	3900	16.51	161.95	222.53	6.62	782.5	4.69	9.95	clear
0956	280	4460	16.52	162.13	233.44	6.61	781.2	4.34	9.95	clear
0.05										
							ec.			

Facility:	SBMU Sikeston	Power Station -	CCR Groundwa	ter Monitoring	Monitoring We	ell ID: <u>MW</u>	13
Sampling Informa	ntion:	#1					
Method of Samplin	g: Low Flow -	Perstaltic Pump	& Tubing			Dedicated:	(Y) / N
Water Level @ Sa	mpling (feet btoc)	9.94					
Monitoring Event:	Annual ()		l (Quarter	rly () Mo	onthly ()	Other ()	
Final Purge Stabliz	ation Sampling D	ata:					
<u>Date</u> Sample Time	Sample Rate (mL/min)	Temp (°C)	Specific Conductance (µS/cm)	Dissolved Oxygen (mg/L)	pH (S.U.)	Oxidation Reduction Potential (mV)	Turbidity (NTU)
5/6/25	286	16.52	162.13	222.44	6.61	781.2	4.34
2 - HF scientific, in	libration log of da roll Multi-Probe Fi nc. Micro TPI Fiel	eld Meter (Temp	erature, Specifi	ng instruments: c Conductance, Dissolv	ved Oxygen, pl	i, Oxidation Red	uction Potentia
General Informati		S.,	10 4 11				
Weather Condition	is @ time of sam	pling:	nry				
Sample Character	istics: C	lear o	dorks	S	31		
Sample Collection	Order:	,Per SAP		V			
Comments and Ok	oservations	. × * ·	2 € 2 2019 3019		8		
Ty.)± - 1/2	= -CK	~	(<u>)•</u> (;		
	* Y		3 8	. ,			
•			A) (#)	187		*	
¥							
Legrify that sample	ling procedures w	vere in accordan	ce with applicab	ole EPA and State proto	ocols.		
1.1		Mi:	Par. ni	11	, /	Toul	
Date: 5/6/25	By: #	TRICIA	10 wes	Title:	Lan	ich.	
W/I			Page	e 2 of 2			

Monitoring Well Field Inspection

Facility: SBMU SPS - CCR Groundwater Monitoring Monitoring Well ID: MWIO Name (Field Staff): Tustin Lowes Alicia Powell
Name (Field Staff): Justin Lowes / Hlicia fower
Access: Accessibility: Good Fair Poor Poor Poor Poor Poor Poor Poor Po
Well clear of weeds and/or debris?: Yes 🗹 No
Well identification clearly visible?: Yes No
Remarks:
Concrete Pad: Condition of Concrete Pad: Good Inadequate
Depressions or standing water around well?: Yes No
Remarks:
Protective Outer Casing: Material = 4" x 4" Steel Hinged Casing with Hasp
Condition of Protective Casing: Good Damaged
Condition of Locking Cap: Good Damaged
Condition of Lock: Good Damaged
Condition of Weep Hole: Good Damaged
Remarks:
Well Riser: Material = 2" Diameter, Schedule 40 PVC, Flush Threaded
Condition of Riser: Good Damaged
Condition of Riser Cap: Good Damaged
Measurement Reference Point: Yes No
Remarks:
Dedicated Purging/Sampling Device: Type = ½ "ID Semi-Rigid Polyethylene & 0.170" ID Flexible Silicone Tubing
Condition: Good Damaged Missing
Remarks:
Monitoring Well Locked/Secured Post Sampling?: Yes No
Remarks:
Field Certification Alicia well Lab Tech 5/4/25 Signed Title Date

Monito	ring Well ID:	MWI	6 Fac	sility: SBMU	J Sikeston P	ower Statio	n - Groundw	ater Monitor	ing	
Initial Wate	er Level (feet	t btoc):	9.99	5		Date:	5/6/2	5		
Initial Grou	ındwater Ele	vation (NAVD	88):			Air Pressu	re in Well?	Y / (N))	
	IFORMATIO									
Date:	3/6/2	5) ,			
Name (Sar	mple Collect	or):	ustin	Lowes	s/Alic	cia to	well			
Method of	Well Purge:		Perstaltic I			dicated Tub		Y) / N		
Time Purgi	ing Initiated		039		One	e (1) Well \	/olume (mL):		NA	
Beginning	Water Level	(feet btoc)	9.	95	Tot	al Volume	Purged (mL)		740	Ď
Beginning	Groundwate	er Elevation (N	IAVD88)		We	II Purged T	o Dryness?		Y / (1)	
Well Total	Depth (feet	btoc):	33.2		Wa		fter Sampling		9.9	<u> </u>
Casing Dia	ameter (feet)	2" Sch 40	PVC			,	e, pump is c	·	1130	,
					IIm	ne Samplin	g Completed		1100	
PURGE S	TABILIZATIO	ON DATA					Oxidation			
Time	Purge Rate	Cumulative Volume	Temp	Specific Conductance	Dissolved Oxygen	рН	Reduction	Turbidity	Water Level	Notes (e.g., opacity,
1	(mL/min)	(mL)	(°C)	(μS/cm)	(mg/L)	(S.U ₋)	Potential (mV)	(NTU)	(feet btoc)	color, odor)
1039	240	480	24.34	559.75	225.0	6.71	255.7	21.65	9.95	Small flakes
1041	250	980	19.54	651.24	224.13	6.92	151.0	22.0	9.95	Small flakes
1043	240	1460	18.37	670.54	223.79	7.00	122,5	18.2	9.95	clear
1045	250	1960	18.00	673.55	223.23	7.03	104.6	13.0	9.95	clear
1047	250	2460	17.90	671.53	221.56	7.04	95.9	11.06	9.95	clear
1049	240	2940	17.85	671.07	221.39	7.05	88.6	34.82	9.95	Aclear Flak
1051	260	3460	17.81	673.12	221.41	7.06	85.1	38.3	9.95	Flakes
1053	240	3940	17.85	668.71	221.38	7.06	81.7	12.57	9.95	clear
1055	27.0	4480	17.82	668.10	221.37	7.67	79.4	11.41	9.95	Clear
1057	240	4960	17.84	461.37	221.34	7.07	77.3	10.83	9.95	clear
1059	250	5460		660.87	221.33	7.07	15.8	8.53	9.95	cker
1101	250	5960			221.34		74.6	8.47	9.95	Clear
1103	230	6420			221.33		74.9	6.86	995	clear
1105	250	6920					74.1	7.37	9,95	alear
1107	240	7400	17.82	655.14			73.7	7.12	9.95	ckar
	20	1,00		500						
l										

btoc - below top of casing

Facility:	SBMU Sikeston	Power Station -	CCR Groundwa	iter Monitoring	Monitoring We	ell ID: MV	N/0
Sampling Informa	ation:						
Method of Samplin	ig: Low Flow -	Perstaltic Pump	& Tubing			Dedicated:	Y / N
Water Level @ Sa	mpling (feet btoc)	9.99	5				
Monitoring Event:	Annual ()	Semi-Annua	I (4 Quarte	erly () Mo	onthly ()	Other ()	
Final Purge Stabliz	zation Sampling D)ata:			T	Ouldation	1
<u>Date</u> Sample Time	Sample Rate (mL/min)	Temp (°C)	Specific Conductance (µS/cm)	Dissolved Oxygen (mg/L)	pH (S.U.)	Oxidation Reduction Potential (mV)	Turbidity (NTU)
5/6/25	240	17.82	665.14	221.32	7.08	73.7	7.12
Instrument Calibr See instrument cal 1 - In-Situ SmarTr 2 - HF scientific, in	libration log of da oll Multi-Probe Fi	eld Meter (Temp	perature, Specifi	ing instruments: ic Conductance, Dissolv	ved Oxygen, ph	H, Oxidation Red	uction Potentia
General Informati	ion:						
Weather Condition	ns @ time of sam	pling: Sl	unny				
\ :=======		1.	1. 1.				
Sample Character	istics:	lear c	odor les				
Sample Collection	Order:	Per SAP	11	•			
Comments and Ok	oservations:						
				. A			
			S	# F			
			*	š			
		ii	80	5. a(49)		8	×
14			- 11	- X			
		i e		¥ - 0			
-							
			æ ⁸				
Loortify that campl	ling procedures w	vere in accordan	ce with annlicat	ole EPA and State proto	acols		
- L			2		1 -1	T.1	
Date: 5/6/2	25 By: #	Alicia f.	owell	Title:	-La0	Tech.	

Page 2 of 2

Monitoring Well Field Inspection

Facility: SBMU SPS - CCR Groundwater Monitoring
Monitoring Well ID: Name (Field Staff): Justin Lowes Alicia Powell
-1.1
Date: 5/6/25
Accessibility: Good Fair Poor Poor
Well clear of weeds and/or debris?: Yes No
Well identification clearly visible?: Yes No
Remarks:
Concrete Pad: Condition of Concrete Pad: Good Inadequate
Depressions or standing water around well?; Yes No
Remarks:
Protective Outer Casing: Material = 4" x 4" Steel Hinged Casing with Hasp
Condition of Protective Casing: Good Damaged
Condition of Locking Cap: Good Damaged
Condition of Lock: Good Damaged
Condition of Weep Hole: Good Damaged
Remarks:
Well Riser: Material = 2" Diameter, Schedule 40 PVC, Flush Threaded
Condition of Riser: Good Damaged
Condition of Riser Cap: Good Damaged
Measurement Reference Point: Yes No
Remarks:
Dedicated Purging/Sampling Device: Type = ½ " ID Semi-Rigid Polyethylene & 0.170" ID Flexible Silicone Tubing
Condition: Good Damaged Missing
Remarks:
Monitoring Well Locked/Secured Post Sampling?: Yes No
Remarks:
Field Contification Alinia Porcell 1 at Tento 5/4/25
Field Certification Flica To Well Lab / Ech 5/6/23 Signed Title Date

Monito	ring Well ID:	MN	12 Fac	ility: SBML	J Sikeston P	ower Statio	n - Groundw	ater Monitor	ing	_
Initial Wate	er Level (fee	t btoc) {	3.92			Date:	5/6/2	5		
Initial Grou	ndwater Ele	vation (NAVD	088):			Air Pressur	e in Well?	Y /(N)		
	FORMATIO									
	5/6/2		4.							
Name (Sar	mple Collect	or): Ju	Stinl	owes						
Method of	Well Purge	Low Flow	/ Perstaltic F	Pump	Dec	dicated Tub	oing?	Y) / N		
Time Purgi	ng Initiated:	11	43		One	e (1) Well V	/olume (mL)		NA	
Beginning	Water Level	(feet btoc)	8.	92	Tot	al Volume l	Purged (mL)	: ,	4460	5
Beginning	Groundwate	er Elevation (N	NAVD88):		We	II Purged T	o Dryness?		Y	
Well Total	Depth (feet	btoc): _3°	7.4		Wa				8.9	7
Casing Dia	meter (feet)	2" Sch 40	PVC				e, pump is o		1220	,
	2020 W1	205			TIM	ie Samplin	g Completed	: =	1220	/
PURGE S	TABILIZATIO				Discolus		Oxidation		\\\/ -t==	Notes
Time	Purge Rate	Cumulative Volume	Temp (°C)	Specific Conductance	Dissolved Oxygen	рН (S.U.)	Reduction Potential	Turbidity (NTU)	Water Level	Notes (e.g., opacity,
1	(mL/min)	(mL)		(µS/cm)	(mg/L)		(mV)		(feet btoc)	color, odor)
11.43	280	560	23.15	156.52	225.05	1 - 0	282.4	13.14	8.92	small flakes
1145	240	1040	18.63	172.0	222,56		356.8	9.46	8.92	small flakes
1147	250	1540	17.11	174.61	555.86	6.61	383. 7	5.72	8.91	Clear
1149	240	2020	17.43	176.12	222.75	6.49	415.5	6.78	8.92	Clear
1151	240	2500	17.33	176.68	200.53		445.8		8.92	Clear
1153	-	2980	17.28	175.43	222.33		478.9	6.75	8.92	clear
1155	240	3460	17.23		222.24	1,33	524 9	5.43 r 24		
1169	250	1440	17.25	19690	222.11	1. 33	5449	549	89)	Clear
1151	200	7.400	11.25	113.10	222110	2.7.5	31111	3.17	0,112	-100
									15	
			ū							
11.										

Facility:	SBMU Sikeston	Power Station - (ter Monitoring	Monitoring W	ell ID: M	NZ		
Sampling Informa	ation:			ÿ				
Method of Samplin	g: Low Flow -	Perstaltic Pump	& Tubing			Dedicated	(Y) / N	
Water Level @ Sa	mpling (feet btoc)	8.92						
Monitoring Event:	Monitoring Event: Annual () Semi-Annual 🖊 Quarterly () Monthly ()							
Final Purge Stabliz	ation Sampling D	ata				1		
<u>Date</u> Sample Time	Sample Rate (mL/min)	Temp (°C)	Specific Conductance (µS/cm)	Dissolved Oxygen (mg/L)	pH (S.U.)	Oxidation Reduction Potential (mV)	Turbidity (NTU)	
5/4/25	256	17.25	175.90	222.16	6.33	544.9	5.49	
Instrument Calibu See instrument ca 1 - In-Situ SmarTr 2 - HF scientific, in	libration log of da oll Multi-Probe Fi	eld Meter (Temp	oerature, Specifi	ing instruments: ic Conductance, Disso	lved Oxygen, p	H, Oxidation Red	duction Potentia	
General Informat	ion:							
Weather Condition	ns @ time of sam	pling: Su	nng	•				
Sample Character	istics: _C	lear oc	for les	S				
Sample Collection	Order:	Per SAP	- 20		18.81			
Comments and Ol	a a rustion a		**		8			
Comments and Or	oservations.	field	blank	E		,	e ,.	
	10	1	70,00		J. V.		¥	
71. Q	8	100 E	: (U	n		ŝ	*	
393	* <u>G</u>	8 2	*	4	e .			
-								
T								
			7	ole EPA and State prof		241		
Date: 5/6/3	25 By: 4	Huaf	owell	Title	Lab	Tech		
, ,			Dag	2 of 2				

Page 2 of 2

Appendix 2

Laboratory Analytical Results

Appendix 2

Laboratory Analytical Results 12th CCR Compliance Sampling Event (2nd 2024 Semi-annual Detection Monitoring Event) (September 25, 2024)

October 21, 2024

Luke St. Mary Sikeston Board of Municipal Utilities 107 E Malone Ave PO Box 370 Sikeston, MO 63801

TEL: (573) 475-3119

FAX:

Illinois 100226 Illinois 1004652024-2 Kansas E-10374 Louisiana 05002

Louisiana 05003
Oklahoma 9978

RE: Fly Ash Pond (FAP) WorkOrder: 24092127

Dear Luke St. Mary:

TEKLAB, INC received 9 samples on 9/27/2024 10:11:00 AM for the analysis presented in the following report.

Samples are analyzed on an as received basis unless otherwise requested and documented. The sample results contained in this report relate only to the requested analytes of interest as directed on the chain of custody. NELAP accredited fields of testing are indicated by the letters NELAP under the Certification column. Unless otherwise documented within this report, Teklab Inc. analyzes samples utilizing the most current methods in compliance with 40CFR. All tests are performed in the Collinsville, IL laboratory unless otherwise noted in the Case Narrative.

All quality control criteria applicable to the test methods employed for this project have been satisfactorily met and are in accordance with NELAP except where noted. The following report shall not be reproduced, except in full, without the written approval of Teklab, Inc.

If you have any questions regarding these tests results, please feel free to call.

Sincerely,

Elizabeth A. Hurley

Director of Customer Service

(618)344-1004 ex 33

ehurley@teklabinc.com

Elizabeth a Hurley

Report Contents

http://www.teklabinc.com/

Client: Sikeston Board of Municipal Utilities Work Order: 24092127
Client Project: Fly Ash Pond (FAP) Report Date: 21-Oct-24

This reporting package includes the following:

Cover Letter	1
Report Contents	2
Definitions	3
Case Narrative	5
Accreditations	6
Laboratory Results	7
Quality Control Results	16
Receiving Check List	23
Chain of Custody	Appended

Definitions

http://www.teklabinc.com/

Client: Sikeston Board of Municipal Utilities Work Order: 24092127

Client Project: Fly Ash Pond (FAP)

Report Date: 21-Oct-24

Abbr Definition

- * Analytes on report marked with an asterisk are not NELAP accredited
- CCV Continuing calibration verification is a check of a standard to determine the state of calibration of an instrument between recalibration.
- CRQL A Client Requested Quantitation Limit is a reporting limit that varies according to customer request. The CRQL may not be less than the MDL.
 - DF Dilution factor is the dilution performed during analysis only and does not take into account any dilutions made during sample preparation. The reported result is final and includes all dilution factors.
 - DNI Did not ignite
- DUP Laboratory duplicate is a replicate aliquot prepared under the same laboratory conditions and independently analyzed to obtain a measure of precision.
- ICV Initial calibration verification is a check of a standard to determine the state of calibration of an instrument before sample analysis is initiated.
- IDPH IL Dept. of Public Health
- LCS Laboratory control sample is a sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes and analyzed exactly like a sample to establish intra-laboratory or analyst specific precision and bias or to assess the performance of all or a portion of the measurement system.
- LCSD Laboratory control sample duplicate is a replicate laboratory control sample that is prepared and analyzed in order to determine the precision of the approved test method. The acceptable recovery range is listed in the QC Package (provided upon request).
- MBLK Method blank is a sample of a matrix similar to the batch of associated sample (when available) that is free from the analytes of interest and is processed simultaneously with and under the same conditions as samples through all steps of the analytical procedures, and in which no target analytes or interferences should present at concentrations that impact the analytical results for sample analyses.
- MDL "The method detection limit is defined as the minimum measured concentration of a substance that can be reported with 99% confidence that the measured concentration is distinguishable from method blank results."
- MS Matrix spike is an aliquot of matrix fortified (spiked) with known quantities of specific analytes that is subjected to the entire analytical procedures in order to determine the effect of the matrix on an approved test method's recovery system. The acceptable recovery range is listed in the QC Package (provided upon request).
- MSD Matrix spike duplicate means a replicate matrix spike that is prepared and analyzed in order to determine the precision of the approved test method. The acceptable recovery range is listed in the QC Package (provided upon request).
- MW Molecular weight
- NC Data is not acceptable for compliance purposes
- ND Not Detected at the Reporting Limit
- NELAP NELAP Accredited
 - PQL Practical quantitation limit means the lowest level that can be reliably achieved within specified limits of precision and accuracy during routine laboratory operation conditions.
 - RL The reporting limit the lowest level that the data is displayed in the final report. The reporting limit may vary according to customer request or sample dilution. The reporting limit may not be less than the MDL.
 - RPD Relative percent difference is a calculated difference between two recoveries (ie. MS/MSD). The acceptable recovery limit is listed in the QC Package (provided upon request).
 - SPK The spike is a known mass of target analyte added to a blank sample or sub-sample; used to determine recovery deficiency or for other quality control purposes.
 - Surr Surrogates are compounds which are similar to the analytes of interest in chemical composition and behavior in the analytical process, but which are not normally found in environmental samples.
 - TIC Tentatively identified compound: Analytes tentatively identified in the sample by using a library search. Only results not in the calibration standard will be reported as tentatively identified compounds. Results for tentatively identified compounds that are not present in the calibration standard, but are assigned a specific chemical name based upon the library search, are calculated using total peak areas from reconstructed ion chromatograms and a response factor of one. The nearest Internal Standard is used for the calculation. The results of any TICs must be considered estimated, and are flagged with a "T". If the estimated result is above the calibration range it is flagged "ET"
- TNTC Too numerous to count (> 200 CFU)

Definitions

http://www.teklabinc.com/

Client: Sikeston Board of Municipal Utilities Work Order: 24092127

Client Project: Fly Ash Pond (FAP)

Report Date: 21-Oct-24

Qualifiers

- # Unknown hydrocarbonC RL shown is a Client Requested Quantitation Limit
- H Holding times exceeded
- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
- S Spike Recovery outside recovery limits
- X Value exceeds Maximum Contaminant Level

- B Analyte detected in associated Method Blank
- E Value above quantitation range
- I Associated internal standard was outside method criteria
- M Manual Integration used to determine area response
- R RPD outside accepted recovery limits
- T TIC(Tentatively identified compound)

Case Narrative

http://www.teklabinc.com/

Client: Sikeston Board of Municipal Utilities Work Order: 24092127

Client Project: Fly Ash Pond (FAP)

Report Date: 21-Oct-24

Cooler Receipt Temp: 14.3 °C

Field pH was omitted from Duplicate. EAH 9/27/24

Ra226/228 analyses were performed by Summit Environmental Technologies, Inc. See attached report for results and QC.

Locations

	Collinsville		Springfield		Kansas City
Address	5445 Horseshoe Lake Road	Address	3920 Pintail Dr	Address	8421 Nieman Road
	Collinsville, IL 62234-7425		Springfield, IL 62711-9415		Lenexa, KS 66214
Phone	(618) 344-1004	Phone	(217) 698-1004	Phone	(913) 541-1998
Fax	(618) 344-1005	Fax	(217) 698-1005	Fax	(913) 541-1998
Email	jhriley@teklabinc.com	Email	KKlostermann@teklabinc.com	Email	jhriley@teklabinc.com
	Collinsville Air		Chicago		
Address	5445 Horseshoe Lake Road	Address	1319 Butterfield Rd.		
	Collinsville, IL 62234-7425		Downers Grove, IL 60515		
Phone	(618) 344-1004	Phone	(630) 324-6855		
Fax	(618) 344-1005	Fax			
Email	EHurley@teklabinc.com	Email	arenner@teklabinc.com		

Accreditations

http://www.teklabinc.com/

Client: Sikeston Board of Municipal Utilities Work Order: 24092127

Client Project: Fly Ash Pond (FAP) Report Date: 21-Oct-24

State	Dept	Cert #	NELAP	Exp Date	Lab
Illinois	IEPA	100226	NELAP	1/31/2025	Collinsville
Illinois	IEPA	1004652024-2	NELAP	4/30/2025	Collinsville
Kansas	KDHE	E-10374	NELAP	4/30/2025	Collinsville
Louisiana	LDEQ	05002	NELAP	6/30/2025	Collinsville
Louisiana	LDEQ	05003	NELAP	6/30/2025	Collinsville
Oklahoma	ODEQ	9978	NELAP	12/31/2024	Collinsville
Arkansas	ADEQ	88-0966		3/14/2025	Collinsville
Illinois	IDPH	17584		5/31/2025	Collinsville
Iowa	IDNR	430		6/1/2026	Collinsville
Kentucky	UST	0073		1/31/2025	Collinsville
Mississippi	MSDH			4/30/2025	Collinsville
Missouri	MDNR	930		1/31/2025	Collinsville
Missouri	MDNR	00930		10/31/2026	Collinsville

Laboratory Results

http://www.teklabinc.com/

Client: Sikeston Board of Municipal Utilities Work Order: 24092127

Client Project: Fly Ash Pond (FAP)

Report Date: 21-Oct-24

Lab ID: 24092127-001 Client Sample ID: MW-1R

Matrix: GROUNDWATER Collection Date: 09/25/2024 8:40

Manix. GROUNDWATER				Conceilon Date: 03/23/2024 0.40					
Analyses	Certification	MDL	RL	Qual Result	Units	DF	Date Analyzed	Batch	
SW-846 9040B FIELD									
рН	*	0	1.00	6.46		1	09/25/2024 8:40	R354210	
STANDARD METHODS 25	40 C (TOTAL) 1997	, 2011							
Total Dissolved Solids	NELAP	20	20	520	mg/L	1	09/30/2024 14:25	R353970	
SW846 9056A TOTAL ANI	ONIC COMPOUNDS	BY ION	N CHRO	MATOGRAPHY					
Fluoride	*	0.25	0.25	ND	mg/L	1	09/27/2024 20:13	R353791	
Chloride	*	1.00	4.00	16.6	mg/L	1	09/27/2024 20:13	R353791	
Sulfate	*	10.0	10.0	242	mg/L	1	09/27/2024 20:13	R353791	
SW-846 3005A, 6010B, ME	TALS BY ICP (TOT	AL)	•						
Barium	NELAP	2.5	2.5	26.6	μg/L	1	09/30/2024 16:15	228988	
Beryllium	NELAP	1.0	1.0	< 1.0	μg/L	1	09/30/2024 16:15	228988	
Boron	NELAP	10.0	10.0	3700	μg/L	1	09/30/2024 16:15	228988	
Cadmium	NELAP	1.0	1.0	< 1.0	μg/L	1	09/30/2024 16:15	228988	
Calcium	NELAP	0.200	0.200	103	mg/L	1	09/30/2024 16:15	228988	
Chromium	NELAP	4.0	4.0	< 4.0	μg/L	1	09/30/2024 16:15	228988	
SW-846 3005A, 6020A, ME	TALS BY ICPMS (T	OTAL)							
Antimony	NELAP	3.0	3.0	< 3.0	μg/L	5	09/30/2024 18:30	228988	
Arsenic	NELAP	1.0	1.0	< 1.0	μg/L	5	09/30/2024 18:30	228988	
Cobalt	NELAP	2.0	2.0	13.6	μg/L	5	09/30/2024 18:30	228988	
Lead	NELAP	1.0	1.0	< 1.0	μg/L	5	09/30/2024 18:30	228988	
Lithium	*	10.0	10.0	10.2	μg/L	5	10/01/2024 15:05	228988	
Molybdenum	NELAP	1.0	1.0	166	μg/L	5	09/30/2024 18:30	228988	
Selenium	NELAP	1.0	1.0	< 1.0	μg/L	5	10/01/2024 15:05	228988	
Thallium	NELAP	1.0	1.0	< 1.0	μg/L	5	09/30/2024 18:30	228988	
Results have less certainty for	r TI - Client Requested	Quantita	tion Limit	is below the calibration ra	nge.				
SW-846 7470A (TOTAL)									
Mercury	NELAP	0.20	0.20	< 0.20	μg/L	1	10/01/2024 8:21	229020	
EPA 903.0/904.0, RADIUM	226/228								
Radium-226	*	0	0	See Attached	pci/L	1	10/17/2024 14:26	R354884	
Radium-228	*	0	0	See Attached	pci/L	1	10/17/2024 14:26	R354884	

Laboratory Results

http://www.teklabinc.com/

Client: Sikeston Board of Municipal Utilities Work Order: 24092127

Client Project: Fly Ash Pond (FAP)

Report Date: 21-Oct-24

Lab ID: 24092127-002 Client Sample ID: MW-2

Matrix: GROUNDWATER Collection Date: 09/25/2024 11:01

						., -, -		
Analyses	Certification	MDL	RL	Qual Result	Units	DF	Date Analyzed	Batch
SW-846 9040B FIELD								
рН	*	0	1.00	6.24		1	09/25/2024 11:01	R354210
STANDARD METHODS 254	0 C (TOTAL) 1997	, 2011						
Total Dissolved Solids	NELAP	20	20	108	mg/L	1	09/30/2024 14:25	R353970
SW846 9056A TOTAL ANIC	NIC COMPOUNDS	S BY IOI	N CHRO	MATOGRAPHY				
Fluoride	*	0.25	0.25	ND	mg/L	1	09/27/2024 20:24	R353791
Chloride	*	1.00	4.00	4.95	mg/L	1	09/27/2024 20:24	R353791
Sulfate	*	10.0	10.0	14.4	mg/L	1	09/27/2024 20:24	R353791
SW-846 3005A, 6010B, ME	TALS BY ICP (TOT	AL)						
Barium	NELAP	2.5	2.5	220	μg/L	1	09/30/2024 16:20	228988
Beryllium	NELAP	1.0	1.0	< 1.0	μg/L	1	09/30/2024 16:20	228988
Boron	NELAP	10.0	10.0	49.6	μg/L	1	09/30/2024 16:20	228988
Cadmium	NELAP	1.0	1.0	< 1.0	μg/L	1	09/30/2024 16:20	228988
Calcium	NELAP	0.200	0.200	21.0	mg/L	1	09/30/2024 16:20	228988
Chromium	NELAP	4.0	4.0	< 4.0	μg/L	1	09/30/2024 16:20	228988
SW-846 3005A, 6020A, ME	TALS BY ICPMS (1	OTAL)						
Antimony	NELAP	3.0	3.0	< 3.0	μg/L	5	09/30/2024 18:36	228988
Arsenic	NELAP	1.0	1.0	< 1.0	μg/L	5	09/30/2024 18:36	228988
Cobalt	NELAP	2.0	2.0	< 2.0	μg/L	5	09/30/2024 18:36	228988
Lead	NELAP	1.0	1.0	< 1.0	μg/L	5	09/30/2024 18:36	228988
Lithium	*	10.0	10.0	< 10.0	μg/L	5	10/01/2024 15:10	228988
Molybdenum	NELAP	1.0	1.0	< 1.0	μg/L	5	09/30/2024 18:36	228988
Selenium	NELAP	1.0	1.0	< 1.0	μg/L	5	10/01/2024 15:10	228988
Thallium	NELAP	1.0	1.0	< 1.0	μg/L	5	09/30/2024 18:36	228988
Results have less certainty for	Mo & TI - Client Requ	ested Qu	ıantitation	Limit is below the calib	ration range.			
SW-846 7470A (TOTAL)								
Mercury	NELAP	0.20	0.20	< 0.20	μg/L	1	10/01/2024 8:23	229020
EPA 903.0/904.0, RADIUM 2	226/228							
Radium-226	*	0	0	See Attached	pci/L	1	10/17/2024 14:26	R354884
Radium-228	*	0	0	See Attached	pci/L	1	10/17/2024 14:26	R354884

http://www.teklabinc.com/

Client: Sikeston Board of Municipal Utilities Work Order: 24092127

Client Project: Fly Ash Pond (FAP) Report Date: 21-Oct-24

Lab ID: 24092127-003 Client Sample ID: MW-3

Matrix: GROUNDWATER Collection Date: 09/25/2024 13:47

	., =						, ==, ===		
Analyses	Certification	MDL	RL	Qual	Result	Units	DF	Date Analyzed	Batch
SW-846 9040B FIELD									
pH	*	0	1.00		6.82		1	09/25/2024 13:47	R354210
STANDARD METHODS 254	40 C (TOTAL) 1997	, 2011							
Total Dissolved Solids	NELÁP	20	20		98	mg/L	1	09/30/2024 14:26	R353970
SW846 9056A TOTAL ANIO	ONIC COMPOUNDS	BY IO	N CHRO	MATOGRA	APHY				
Fluoride	*	0.25	0.25		ND	mg/L	1	09/27/2024 20:36	R353791
Chloride	*	1.0	4.0	J	2.3	mg/L	1	09/27/2024 20:36	R353791
Sulfate	*	10.0	10.0		ND	mg/L	1	09/27/2024 20:36	R353791
SW-846 3005A, 6010B, ME	TALS BY ICP (TOT	AL)							
Barium	NELAP	2.5	2.5		71.3	μg/L	1	09/30/2024 16:20	228988
Beryllium	NELAP	1.0	1.0		< 1.0	μg/L	1	09/30/2024 16:20	228988
Boron	NELAP	10.0	10.0		12.0	μg/L	1	09/30/2024 16:20	228988
Cadmium	NELAP	1.0	1.0		< 1.0	μg/L	1	09/30/2024 16:20	228988
Calcium	NELAP	0.200	0.200		15.2	mg/L	1	09/30/2024 16:20	228988
Chromium	NELAP	4.0	4.0		< 4.0	μg/L	1	09/30/2024 16:20	228988
SW-846 3005A, 6020A, ME	TALS BY ICPMS (1	OTAL)							
Antimony	NELAP	3.0	3.0		< 3.0	μg/L	5	09/30/2024 18:41	228988
Arsenic	NELAP	1.0	1.0		< 1.0	μg/L	5	09/30/2024 18:41	228988
Cobalt	NELAP	2.0	2.0		< 2.0	μg/L	5	09/30/2024 18:41	228988
Lead	NELAP	1.0	1.0		< 1.0	μg/L	5	09/30/2024 18:41	228988
Lithium	*	10.0	10.0		< 10.0	μg/L	5	10/01/2024 15:16	228988
Molybdenum	NELAP	1.0	1.0		< 1.0	μg/L	5	09/30/2024 18:41	228988
Selenium	NELAP	1.0	1.0		< 1.0	μg/L	5	10/01/2024 15:16	228988
Thallium	NELAP	1.0	1.0		< 1.0	μg/L	5	09/30/2024 18:41	228988
Results have less certainty for	Mo & TI - Client Requ	ested Qu	antitation	Limit is belo	ow the calibra	tion range.			
SW-846 7470A (TOTAL)									
Mercury	NELAP	0.20	0.20		< 0.20	μg/L	1	10/01/2024 8:25	229020
EPA 903.0/904.0, RADIUM	226/228								
Radium-226	*	0	0	Sec	e Attached	pci/L	1	10/17/2024 14:26	R354884
Radium-228	*	0	0	Sec	e Attached	pci/L	1	10/17/2024 14:26	R354884

http://www.teklabinc.com/

Client: Sikeston Board of Municipal Utilities Work Order: 24092127

Client Project: Fly Ash Pond (FAP)

Report Date: 21-Oct-24

Lab ID: 24092127-004 Client Sample ID: MW-7

Matrix: GROUNDWATER Collection Date: 09/25/2024 10:14

							, 20, 202	. 10111	
Analyses	Certification	MDL	RL	Qual Re	esult	Units	DF	Date Analyzed	Batch
SW-846 9040B FIELD									
pH	*	0	1.00		7.40		1	09/25/2024 10:14	R354210
STANDARD METHODS 254	10 C (TOTAL) 1997	, 2011							
Total Dissolved Solids	NELÁP	20	20		420	mg/L	1	09/30/2024 14:26	R353970
SW846 9056A TOTAL ANIO	NIC COMPOUNDS	BY IO	N CHRO	MATOGRAPHY	<u> </u>				
Fluoride	*	0.25	0.25		0.58	mg/L	1	09/27/2024 17:30	R353791
Chloride	*	1.00	4.00		4.11	mg/L	1	09/27/2024 17:30	R353791
Sulfate	*	10.0	10.0		84.3	mg/L	1	09/27/2024 17:30	R353791
SW-846 3005A, 6010B, ME	TALS BY ICP (TOT	AL)							
Barium	NELAP	2.5	2.5		64.4	μg/L	1	09/30/2024 16:21	228988
Beryllium	NELAP	1.0	1.0		< 1.0	μg/L	1	09/30/2024 16:21	228988
Boron	NELAP	10.0	10.0		1800	μg/L	1	09/30/2024 16:21	228988
Cadmium	NELAP	1.0	1.0		< 1.0	μg/L	1	09/30/2024 16:21	228988
Calcium	NELAP	0.200	0.200		98.0	mg/L	1	09/30/2024 16:21	228988
Chromium	NELAP	4.0	4.0		< 4.0	μg/L	1	09/30/2024 16:21	228988
SW-846 3005A, 6020A, ME	TALS BY ICPMS (1	OTAL)							
Antimony	NELAP	3.0	3.0		< 3.0	μg/L	5	09/30/2024 18:47	228988
Arsenic	NELAP	1.0	1.0		< 1.0	μg/L	5	09/30/2024 18:47	228988
Cobalt	NELAP	2.0	2.0		2.8	μg/L	5	10/01/2024 15:22	228988
Lead	NELAP	1.0	1.0		< 1.0	μg/L	5	09/30/2024 18:47	228988
Lithium	*	10.0	10.0		34.7	μg/L	5	10/01/2024 15:22	228988
Molybdenum	NELAP	1.0	1.0		119	μg/L	5	09/30/2024 18:47	228988
Selenium	NELAP	1.0	1.0		2.4	μg/L	5	10/01/2024 15:22	228988
Thallium	NELAP	1.0	1.0		< 1.0	μg/L	5	09/30/2024 18:47	228988
Results have less certainty for	TI - Client Requested	Quantita	tion Limit	is below the calib	ration ra	nge.			
SW-846 7470A (TOTAL)									
Mercury	NELAP	0.20	0.20	<	0.20	μg/L	1	10/01/2024 8:28	229020
EPA 903.0/904.0, RADIUM	226/228								
Radium-226	*	0	0	See Atta	ched	pci/L	1	10/17/2024 14:26	R354884
Radium-228	*	0	0	See Atta	ched	pci/L	1	10/17/2024 14:26	R354884

http://www.teklabinc.com/

Client: Sikeston Board of Municipal Utilities Work Order: 24092127

Client Project: Fly Ash Pond (FAP)

Report Date: 21-Oct-24

Lab ID: 24092127-005 Client Sample ID: MW-9

Matrix: GROUNDWATER Collection Date: 09/25/2024 9:36

Matrix: GROUNDWATER				Conccion Date: 03/23/2027 3.30						
Analyses	Certification	MDL	RL	Qual Result	Units	DF	Date Analyzed	Batch		
SW-846 9040B FIELD										
рН	*	0	1.00	7.06		1	09/25/2024 9:36	R354210		
STANDARD METHODS 25	40 C (TOTAL) 1997	, 2011								
Total Dissolved Solids	NELAP	20	20	508	mg/L	1	09/30/2024 14:26	R353970		
SW846 9056A TOTAL ANIO	ONIC COMPOUNDS	BY IO	N CHRO	MATOGRAPHY						
Fluoride	*	0.25	0.25	0.55	mg/L	1	09/27/2024 17:41	R353791		
Chloride	*	1.00	4.00	14.4	mg/L	1	09/27/2024 17:41	R353791		
Sulfate	*	10.0	10.0	216	mg/L	1	09/27/2024 17:41	R353791		
SW-846 3005A, 6010B, ME	TALS BY ICP (TOT	AL)								
Barium	NELAP	2.5	2.5	91.5	μg/L	1	09/30/2024 16:22	228988		
Beryllium	NELAP	1.0	1.0	< 1.0	μg/L	1	09/30/2024 16:22	228988		
Boron	NELAP	10.0	10.0	4140	μg/L	1	09/30/2024 16:22	228988		
Cadmium	NELAP	1.0	1.0	< 1.0	μg/L	1	09/30/2024 16:22	228988		
Calcium	NELAP	0.200	0.200	88.9	mg/L	1	09/30/2024 16:22	228988		
Chromium	NELAP	4.0	4.0	< 4.0	μg/L	1	09/30/2024 16:22	228988		
SW-846 3005A, 6020A, ME	TALS BY ICPMS (T	OTAL)								
Antimony	NELAP	3.0	3.0	< 3.0	μg/L	5	09/30/2024 18:53	228988		
Arsenic	NELAP	1.0	1.0	< 1.0	μg/L	5	09/30/2024 18:53	228988		
Cobalt	NELAP	2.0	2.0	< 2.0	μg/L	5	09/30/2024 18:53	228988		
Lead	NELAP	1.0	1.0	< 1.0	μg/L	5	09/30/2024 18:53	228988		
Lithium	*	10.0	10.0	26.4	μg/L	5	10/01/2024 15:27	228988		
Molybdenum	NELAP	1.0	1.0	109	μg/L	5	09/30/2024 18:53	228988		
Selenium	NELAP	1.0	1.0	< 1.0	μg/L	5	10/01/2024 15:27	228988		
Thallium	NELAP	1.0	1.0	< 1.0	μg/L	5	09/30/2024 18:53	228988		
Results have less certainty for	TI - Client Requested	Quantita	tion Limit	is below the calibration ra	nge.					
SW-846 7470A (TOTAL)										
Mercury	NELAP	0.20	0.20	< 0.20	μg/L	1	10/01/2024 8:37	229020		
EPA 903.0/904.0, RADIUM	226/228									
Radium-226	*	0	0	See Attached	pci/L	1	10/17/2024 14:26	R354884		
Radium-228	*	0	0	See Attached	pci/L	1	10/17/2024 14:26	R354884		

http://www.teklabinc.com/

Client: Sikeston Board of Municipal Utilities Work Order: 24092127

Client Project: Fly Ash Pond (FAP)

Report Date: 21-Oct-24

Lab ID: 24092127-006 Client Sample ID: MW-10

Matrix: GROUNDWATER Collection Date: 09/25/2024 12:47

Analyses	Certification	MDL	RL	Qual Result	Units	DF	Date Analyzed	Batch
SW-846 9040B FIELD								
pН	*	0	1.00	7.21		1	09/25/2024 12:47	R354210
STANDARD METHODS 254	40 C (TOTAL) 1997	. 2011						
Total Dissolved Solids	NELAP	20	20	338	mg/L	1	09/30/2024 14:43	R353970
SW846 9056A TOTAL ANIO	ONIC COMPOUNDS	S BY IO	N CHRO	MATOGRAPHY				
Fluoride	*	0.25	0.25	0.28	mg/L	1	09/27/2024 17:53	R353791
Chloride	*	1.00	4.00	13.7	mg/L	1	09/27/2024 17:53	R353791
Sulfate	*	10.0	10.0	106	mg/L	1	09/27/2024 17:53	R353791
SW-846 3005A, 6010B, ME	TALS BY ICP (TOT	AL)						
Barium	NELAP	2.5	2.5	108	μg/L	1	09/30/2024 16:22	228988
Beryllium	NELAP	1.0	1.0	< 1.0	μg/L	1	09/30/2024 16:22	228988
Boron	NELAP	10.0	10.0	397	μg/L	1	09/30/2024 16:22	228988
Cadmium	NELAP	1.0	1.0	< 1.0	μg/L	1	09/30/2024 16:22	228988
Calcium	NELAP	0.200	0.200	64.4	mg/L	1	09/30/2024 16:22	228988
Chromium	NELAP	4.0	4.0	< 4.0	μg/L	1	09/30/2024 16:22	228988
SW-846 3005A, 6020A, ME	TALS BY ICPMS (1	OTAL)						
Antimony	NELAP	3.0	3.0	< 3.0	μg/L	5	09/30/2024 18:58	228988
Arsenic	NELAP	1.0	1.0	4.9	μg/L	5	09/30/2024 18:58	228988
Cobalt	NELAP	2.0	2.0	< 2.0	μg/L	5	09/30/2024 18:58	228988
Lead	NELAP	1.0	1.0	< 1.0	μg/L	5	09/30/2024 18:58	228988
Lithium	*	10.0	10.0	< 10.0	μg/L	5	10/01/2024 15:33	228988
Molybdenum	NELAP	1.0	1.0	25.3	μg/L	5	09/30/2024 18:58	228988
Selenium	NELAP	1.0	1.0	< 1.0	μg/L	5	10/01/2024 15:33	228988
Thallium	NELAP	1.0	1.0	< 1.0	μg/L	5	09/30/2024 18:58	228988
Results have less certainty for	TI - Client Requested	Quantita	tion Limit	is below the calibration	range.			
SW-846 7470A (TOTAL)								
Mercury	NELAP	0.20	0.20	< 0.20	μg/L	1	10/01/2024 8:30	229020
EPA 903.0/904.0, RADIUM	226/228							
Radium-226	*	0	0	See Attached	pci/L	1	10/17/2024 14:26	R354884
Radium-228	*	0	0	See Attached	pci/L	1	10/17/2024 14:26	R354884

http://www.teklabinc.com/

Client: Sikeston Board of Municipal Utilities Work Order: 24092127

Client Project: Fly Ash Pond (FAP)

Report Date: 21-Oct-24

Lab ID: 24092127-007 Client Sample ID: Duplicate

Matrix: GROUNDWATER Collection Date: 09/25/2024 0:00

Matrix: GROUNDWA	(121)		Concetion Date: 03/23/2024 0.00							
Analyses	Certification	MDL	RL	Qual Resul	t Units	DF	Date Analyzed	Batch		
STANDARD METHODS 2540	C (TOTAL) 1997	, 2011								
Total Dissolved Solids	NELAP	20	20	50	2 mg/L	1	09/30/2024 14:43	R353970		
SW846 9056A TOTAL ANION	IIC COMPOUNDS	BY IO	N CHRO	MATOGRAPHY						
Fluoride	*	0.25	0.25	NI	mg/L	1	09/27/2024 18:28	R353791		
Chloride	*	1.00	4.00	17.	3 mg/L	1	09/27/2024 18:28	R353791		
Sulfate	*	10.0	10.0	24	9 mg/L	1	09/27/2024 18:28	R353791		
SW-846 3005A, 6010B, META	ALS BY ICP (TOT	AL)								
Barium	NELAP	2.5	2.5	29.	3 μg/L	1	10/02/2024 16:07	228995		
Beryllium	NELAP	1.0	1.0	< 1.	0 μg/L	1	10/01/2024 15:50	228995		
Boron	NELAP	10.0	10.0	377	0 μg/L	1	10/01/2024 15:50	228995		
Cadmium	NELAP	1.0	1.0	< 1.	0 μg/L	1	10/01/2024 15:50	228995		
Calcium	NELAP	0.200	0.200	10	6 mg/L	1	10/01/2024 15:50	228995		
Chromium	NELAP	4.0	4.0	< 4.	0 μg/L	1	10/01/2024 15:50	228995		
Sample result(s) for Ca exceed	10 times the CCB. D	ata is rep	ortable pe	er the TNI Standard.						
SW-846 3005A, 6020A, META	ALS BY ICPMS (1	OTAL)								
Antimony	NELAP	3.0	3.0	< 3.	0 μg/L	5	10/01/2024 16:53	228995		
Arsenic	NELAP	1.0	1.0	< 1.	0 μg/L	5	10/01/2024 16:53	228995		
Cobalt	NELAP	2.0	2.0	14.	4 μg/L	5	10/01/2024 16:53	228995		
Lead	NELAP	1.0	1.0	< 1.	0 μg/L	5	10/01/2024 16:53	228995		
Lithium	*	10.0	10.0	10.	9 μg/L	5	10/01/2024 16:53	228995		
Molybdenum	NELAP	1.0	1.0	16	5 μg/L	5	10/01/2024 16:53	228995		
Selenium	NELAP	1.0	1.0	< 1.	0 μg/L	5	10/01/2024 16:53	228995		
Thallium	NELAP	1.0	1.0	< 1.	0 μg/L	5	10/01/2024 16:53	228995		
Results have less certainty for T	l - Client Requested	Quantita	tion Limit	is below the calibratio	n range.					
SW-846 7470A (TOTAL)										
Mercury	NELAP	0.20	0.20	< 0.2	0 μg/L	1	10/01/2024 8:44	229020		
EPA 903.0/904.0, RADIUM 22	26/228									
Radium-226	*	0	0	See Attache	d pci/L	1	10/17/2024 14:26	R354884		
Radium-228	*	0	0	See Attache	d pci/L	1	10/17/2024 14:26	R354884		

http://www.teklabinc.com/

Client: Sikeston Board of Municipal Utilities Work Order: 24092127

Client Project: Fly Ash Pond (FAP)

Report Date: 21-Oct-24

Lab ID: 24092127-008 Client Sample ID: Trip Blank

Matrix: TRIP BLANK Collection Date: 09/27/2024 10:11

							/ = · / = · = ·		
Analyses	Certification	MDL	RL	Qual Res	ılt	Units	DF	Date Analyzed	Batch
STANDARD METHODS 254	40 C (TOTAL) 1997	, 2011							
Total Dissolved Solids	NELAP	20	20	<	20	mg/L	1	09/30/2024 14:44	R353970
SW846 9056A TOTAL ANIC	ONIC COMPOUNDS	BY IO	N CHRO	MATOGRAPHY					
Fluoride	*	0.25	0.25		ND	mg/L	1	09/27/2024 18:39	R353791
Chloride	*	1.00	4.00		ND	mg/L	1	09/27/2024 18:39	R353791
Sulfate	*	10.0	10.0		ND	mg/L	1	09/27/2024 18:39	R353791
SW-846 3005A, 6010B, ME	TALS BY ICP (TOT	AL)							
Barium	NELAP	2.5	2.5	<	2.5	μg/L	1	10/01/2024 15:50	228995
Beryllium	NELAP	1.0	1.0	<	1.0	μg/L	1	10/01/2024 15:50	228995
Boron	NELAP	10.0	10.0	< 1	0.0	μg/L	1	10/01/2024 15:50	228995
Cadmium	NELAP	1.0	1.0	<	1.0	μg/L	1	10/01/2024 15:50	228995
Calcium	NELAP	0.200	0.200	< 0.2	200	mg/L	1	10/01/2024 15:50	228995
Chromium	NELAP	4.0	4.0	<	4.0	μg/L	1	10/01/2024 15:50	228995
Contamination present in the C	CCB for Ca. Sample re	sults bel	ow the rep	porting limit are repo	rtable p	per the TNI	Standard.		
Contamination present in the C	CCB for Ba. Sample re	sults bel	ow the rep	oorting limit are repo	rtable p	per the TNI	Standard.		
SW-846 3005A, 6020A, ME	TALS BY ICPMS (1	OTAL)							
Antimony	NELAP	3.0	3.0	<	3.0	μg/L	5	10/01/2024 16:59	228995
Arsenic	NELAP	1.0	1.0	<	1.0	μg/L	5	10/01/2024 16:59	228995
Cobalt	NELAP	2.0	2.0	<	2.0	μg/L	5	10/01/2024 16:59	228995
Lead	NELAP	1.0	1.0	<	1.0	μg/L	5	10/01/2024 16:59	228995
Lithium	*	10.0	10.0	< 1	0.0	μg/L	5	10/01/2024 16:59	228995
Molybdenum	NELAP	1.0	1.0	<	1.0	μg/L	5	10/01/2024 16:59	228995
Selenium	NELAP	1.0	1.0	<	1.0	μg/L	5	10/01/2024 16:59	228995
Thallium	NELAP	1.0	1.0	<	1.0	μg/L	5	10/01/2024 16:59	228995
Results have less certainty for	Mo & TI - Client Requ	ested Qu	ıantitation	Limit is below the o	alibrati	on range.			
SW-846 7470A (TOTAL)									
Mercury	NELAP	0.20	0.20	< 0	.20	μg/L	1	10/01/2024 8:47	229020
EPA 903.0/904.0, RADIUM	226/228								
Radium-226	*	0	0	See Attach	ed	pci/L	1	10/17/2024 14:26	R354884
Radium-228	*	0	0	See Attach	ed	pci/L	1	10/17/2024 14:26	R354884

Radium-228

Laboratory Results

http://www.teklabinc.com/

Client: Sikeston Board of Municipal Utilities Work Order: 24092127

Client Project: Fly Ash Pond (FAP) Report Date: 21-Oct-24

Lab ID: 24092127-009 Client Sample ID: Field Blank

Matrix: GROUNDWATER Collection Date: 09/25/2024 10:14

Analyses	Certification	MDL	RL	Qual Result	Units	DF	Date Analyzed	Batch			
STANDARD METHODS 25	40 C (TOTAL) 1997	, 2011									
Total Dissolved Solids	NELAP	20	20	< 20	mg/L	1	09/30/2024 14:44	R353970			
SW846 9056A TOTAL ANIONIC COMPOUNDS BY ION CHROMATOGRAPHY											
Fluoride	*	0.25	0.25	ND	mg/L	1	09/27/2024 18:51	R353791			
Chloride	*	1.00	4.00	ND	mg/L	1	09/27/2024 18:51	R353791			
Sulfate	*	10.0	10.0	ND	mg/L	1	09/27/2024 18:51	R353791			
SW-846 3005A, 6010B, ME	TALS BY ICP (TOT	AL)									
Barium	NELAP	2.5	2.5	< 2.5	μg/L	1	10/01/2024 15:51	228995			
Beryllium	NELAP	1.0	1.0	< 1.0	μg/L	1	10/01/2024 15:51	228995			
Boron	NELAP	10.0	10.0	< 10.0	μg/L	1	10/01/2024 15:51	228995			
Cadmium	NELAP	1.0	1.0	< 1.0	μg/L	1	10/01/2024 15:51	228995			
Calcium	NELAP	0.200	0.200	< 0.200	mg/L	1	10/01/2024 15:51	228995			
Chromium	NELAP	4.0	4.0	< 4.0	μg/L	1	10/01/2024 15:51	228995			
Contamination present in the CCB for Ca. Sample results below the reporting limit are reportable per the TNI Standard.											
Contamination present in the	CCB for Ba. Sample re	sults bel	ow the rep	orting limit are reportable	per the TNI	Standard.					
SW-846 3005A, 6020A, ME	TALS BY ICPMS (T	OTAL)									
Antimony	NELAP	3.0	3.0	< 3.0	μg/L	5	10/01/2024 17:28	228995			
Arsenic	NELAP	1.0	1.0	< 1.0	μg/L	5	10/01/2024 17:28	228995			
Cobalt	NELAP	2.0	2.0	< 2.0	μg/L	5	10/01/2024 17:28	228995			
Lead	NELAP	1.0	1.0	< 1.0	μg/L	5	10/01/2024 17:28	228995			
Lithium	*	10.0	10.0	< 10.0	μg/L	5	10/01/2024 17:28	228995			
Molybdenum	NELAP	1.0	1.0	< 1.0	μg/L	5	10/01/2024 17:28	228995			
Selenium	NELAP	1.0	1.0	< 1.0	μg/L	5	10/01/2024 17:28	228995			
Thallium	NELAP	1.0	1.0	< 1.0	μg/L	5	10/01/2024 17:28	228995			
Results have less certainty for	r Mo & TI - Client Requ	ested Qu	ıantitation	Limit is below the calibra	tion range.						
Contamination present in the	CCB for Sb. Sample re	sults bel	ow the rep	orting limit are reportable	per the TNI	Standard.					
SW-846 7470A (TOTAL)											
Mercury	NELAP	0.20	0.20	< 0.20	μg/L	1	10/01/2024 8:49	229020			
EPA 903.0/904.0, RADIUM	226/228										
Radium-226	*	0	0	See Attached	pci/L	1	10/17/2024 14:26	R354884			

0

See Attached

pci/L

1

10/17/2024 14:26 R354884

Summit Environmental Technologies, Inc. 3310 Win St. Cuyahoga Falls, Ohio 44223 TEL: (330) 253-8211 FAX: (330) 253-4489 Website: http://www.settek.com

Order No.: 24100195

October 18, 2024

Elizabeth Hurley TEKLAB Inc, 5445 Horseshoe lake Road Collinsville, IL 62234

TEL: FAX:

RE: 24092127

Dear Elizabeth Hurley:

Summit Environmental Technologies, Inc. received 9 sample(s) on 10/2/2024 for the analyses presented in the following report.

There were no problems with the analytical events associated with this report unless noted in the Case Narrative.

Quality control data is within laboratory defined or method specified acceptance limits except where noted.

If you have any questions regarding these tests results, please feel free to call the laboratory.

mites melical

Sincerely,

Jennifer Woolf

Project Manager

3310 Win St.

Cuyahoga Falls, Ohio 44223

Arkansas 88-0735, California 2943, Colorado, Connecticut PH-0108, Florida NELAC E87688, Idaho OH00923, Illinois 200061, Indiana C-OH-13, ISO/IEC 17025:2017 119125 L22-544, Kansas E-10347, Kentucky (Underground Storage Tank) 3, Kentucky 90146, Maryland 339, Michigan 9988, Minnesota 1780279, Nevada OH009232020-1, New Hampshire 2996, New Jersey OH006, New York 11777, North Carolina 39705 and 631, North Dakota R-201, Ohio DW, Ohio VAP CL0052, Oklahoma 2019-155, Oregon OH200001, Pennsylvania 68-01335, Rhode Island LA000317, South Carolina 92016001, Texas T104704466-19-16, Utah OH009232020-12, Virginia VELAP 10381, West Virginia 9957C

Summit Environmental Technologies, Inc. 3310 Win St. Cuyahoga Falls, Ohio 44223 TEL: (330) 253-8211 FAX: (330) 253-4485

Website: http://www.settek.com

Case Narrative

WO#: **24100195**Date: **10/18/2024**

CLIENT: TEKLAB Inc, **Project:** 24092127

WorkOrder Narrative:

24100195: This report in its entirety consists of the following documents: Cover Letter, Case Narrative, Analytical Results, QC Summary Report, Applicable Accreditation Information, Chain-of-Custody, Cooler Receipt Form, and other applicable forms as necessary. All documents contain the Summit Environmental Technologies, Inc., Work Order Number assigned to this report.

Summit Environmental Technologies, Inc., holds the accreditations/certifications listed at the bottom of the cover letter that may or may not pertain to this report. Please refer to the "Accreditation Program Analytes Report" for accredited analytes list.

The information contained in this analytical report is the sole property of Summit Environmental Technologies, Inc. and that of the customer. It cannot be reproduced in any form without the consent of Summit Environmental Technologies, Inc. or the customer for which this report was issued. The results contained in this report are only representative of the samples received. Conditions can vary at different times and at different sampling conditions. Summit Environmental Technologies, Inc. is not responsible for use or interpretation of the data included herein.

All results for Solid Samples are reported on an "as received" or "wet weight" basis unless indicated as "dry weight" using the "-dry" designation on the reporting units.

This report is believed to meet all of the requirements of the accrediting agency, where applicable. Any comments or problems with the analytical events associated with this report are noted below.

Summit Environmental Technologies, In

3310 Win S Cuyahoga Falls, Ohio 4422

TEL: (330) 253-8211 FAX: (330) 253-44\{\text{Website: http://www.settek.co}}

Qualifiers and Acronyms

WO#: **24100195**Date: **10/18/2024**

These commonly used Qualifiers and Acronyms may or may not be present in this report.

Qualifiers

TI	The compound was anal	vzed for but was not	detected above the MDL.
U	The compound was and	iyzeu ioi but was iioi	detected above the MDL.

- J The reported value is greater than the Method Detection Limit but less than the Reporting Limit.
- H The hold time for sample preparation and/or analysis was exceeded. Not Clean Water Act compliant.
- **D** The result is reported from a dilution.
- E The result exceeded the linear range of the calibration or is estimated due to interference.
- MC The result is below the Minimum Compound Limit.
- * The result exceeds the Regulatory Limit or Maximum Contamination Limit.
- m Manual integration was used to determine the area response.
- **d** Manual integration in which peak was deleted
- N The result is presumptive based on a Mass Spectral library search assuming a 1:1 response.
- **P** The second column confirmation exceeded 25% difference.
- C The result has been confirmed by GC/MS.
- X The result was not confirmed when GC/MS Analysis was performed.
- B The analyte was detected in the Method Blank at a concentration greater than the RL.

 MB+ The analyte was detected in the Method Blank at a concentration greater than the MDL.
- **G** The ICB or CCB contained reportable amounts of analyte.
- **QC-/+** The CCV recovery failed low (-) or high (+).
- **R/QDR** The RPD was outside of accepted recovery limits.
- QL-/+ The LCS or LCSD recovery failed low (-) or high (+).
- QLR The LCS/LCSD RPD was outside of accepted recovery limits.
- **QM-/+** The MS or MSD recovery failed low (-) or high (+).
- **QMR** The MS/MSD RPD was outside of accepted recovery limits.
- **QV-/+** The ICV recovery failed low (-) or high (+).
- **S** The spike result was outside of accepted recovery limits.
- **W** Samples were received outside temperature limits $(0^{\circ} 6^{\circ} \text{ C})$. Not Clean Water Act compliant.
- **Z** Deviation; A deviation from the method was performed; Please refer to the Case Narrative for
 - additional information

Acronyms

ND	Not Detected	RL	Reporting Limit
QC	Quality Control	MDL	Method Detection Limit
MB	Method Blank	LOD	Level of Detection
LCS	Laboratory Control Sample	LOQ	Level of Quantitation
LCSD	Laboratory Control Sample Duplicate	PQL	Practical Quantitation Limit
QCS	Quality Control Sample	CRQL	Contract Required Quantitation Limit
DUP	Duplicate	PL	Permit Limit
MS	Matrix Spike	RegLvl	Regulatory Limit
MSD	Matrix Spike Duplicate	MCL	Maximum Contamination Limit
RPD	Relative Percent Different	MinCL	Minimum Compound Limit
ICV	Initial Calibration Verification	RA	Reanalysis
ICB	Initial Calibration Blank	RE	Reextraction
CCV	Continuing Calibration Verification	TIC	Tentatively Identified Compound
CCB	Continuing Calibration Blank	RT	Retention Time
RLC	Reporting Limit Check	CF	Calibration Factor

This list of Qualifiers and Acronyms reflects the most commonly utilized Qualifiers and Acronyms for reporting. Please refer to the Analytical Notes in the Case Narrative for any Qualifiers or Acronyms that do not appear in this list or for additional information regarding the use of these Qualifiers on reported data.

Summit Environmental Technologies, Inc. 3310 Win St. Cuyahoga Falls, Ohio 44223 TEL: (330) 253-8211 FAX: (330) 253-4489 Website: http://www.settek.com

Workorder Sample Summary

WO#: **24100195**

18-Oct-24

CLIENT: TEKLAB Inc, Project: 24092127

Lab SampleID	Client Sample ID	Tag No	Date Collected	Date Received	Matrix
24100195-001	24092127-001B		9/25/2024 8:40:00 AM	10/2/2024 1:35:00 PM	Non-Potable Water
24100195-002	24092127-002B		9/25/2024 11:01:00 AM	10/2/2024 1:35:00 PM	Non-Potable Water
24100195-003	24092127-003B		9/25/2024 1:47:00 PM	10/2/2024 1:35:00 PM	Non-Potable Water
24100195-004	24092127-004B		9/25/2024 10:14:00 AM	10/2/2024 1:35:00 PM	Non-Potable Water
24100195-005	24092127-005B		9/25/2024 9:36:00 AM	10/2/2024 1:35:00 PM	Non-Potable Water
24100195-006	24092127-006B		9/25/2024 12:47:00 PM	10/2/2024 1:35:00 PM	Non-Potable Water
24100195-007	24092127-007B		9/25/2024	10/2/2024 1:35:00 PM	Non-Potable Water
24100195-008	24092127-008B		9/27/2024 10:11:00 AM	10/2/2024 1:35:00 PM	Non-Potable Water
24100195-009	24092127-009B		9/25/2024 10:14:00 AM	10/2/2024 1:35:00 PM	Non-Potable Water

Summit Environmental Technologies, Inc. 3310 Win St. Cuyahoga Falls, Ohio 44223 TEL: (330) 253-8211 FAX: (330) 253-4489 Website: http://www.settek.com

DATES REPORT

WO#: **24100195**

18-Oct-24

Client: TEKLAB Inc,

Project: 24092127

Sample ID	Client Sample ID	Collection Date	Matrix	Test Name	Leachate Date	Prep Date	Analysis Date
24100195-001A	24092127-001B	9/25/2024 8:40:00 AM	Non-Potable Water	er Combined Radium (EPA903+904)		10/14/2024 12:41:00 P	10/18/2024 9:30:25 AM
				Radium-226 (EPA 903.0)		10/14/2024 12:41:00 P	10/18/2024 9:30:25 AM
				Radium-228 (EPA 904.0)		10/14/2024 12:41:00 P	10/17/2024 2:26:46 PM
24100195-002A	24092127-002B	9/25/2024 11:01:00 AM		Combined Radium (EPA903+904)			10/18/2024 9:30:25 AM
				Radium-226 (EPA 903.0)		10/14/2024 12:41:00 P	10/18/2024 9:30:25 AM
				Radium-228 (EPA 904.0)		10/14/2024 12:41:00 P	10/17/2024 2:26:46 PM
24100195-003A	24092127-003B	9/25/2024 1:47:00 PM		Combined Radium (EPA903+904)		10/14/2024 12:41:00 P	10/18/2024 9:30:25 AM
				Radium-226 (EPA 903.0)			10/18/2024 9:30:25 AM
				Radium-228 (EPA 904.0)		10/14/2024 12:41:00 P	10/17/2024 2:26:46 PM
24100195-004A	24092127-004B	9/25/2024 10:14:00 AM		Combined Radium (EPA903+904)		10/14/2024 12:41:00 P	10/18/2024 9:30:25 AM
				Radium-226 (EPA 903.0)		10/14/2024 12:41:00 P	10/18/2024 9:30:25 AM
				Radium-228 (EPA 904.0)		10/14/2024 12:41:00 P	10/17/2024 2:26:46 PM
24100195-005A	24092127-005B	9/25/2024 9:36:00 AM		Combined Radium (EPA903+904)		10/14/2024 12:41:00 P	10/18/2024 9:30:25 AM
				Radium-226 (EPA 903.0)		10/14/2024 12:41:00 P	10/18/2024 9:30:25 AM
				Radium-228 (EPA 904.0)		10/14/2024 12:41:00 P	10/17/2024 2:26:46 PM
24100195-006A	24092127-006B	9/25/2024 12:47:00 PM		Combined Radium (EPA903+904)		10/14/2024 12:41:00 P	10/18/2024 9:30:25 AM
				Radium-226 (EPA 903.0)		10/14/2024 12:41:00 P	10/18/2024 9:30:25 AM
				Radium-228 (EPA 904.0)		10/14/2024 12:41:00 P	10/17/2024 2:26:46 PM
24100195-007A	24092127-007B	9/25/2024		Combined Radium (EPA903+904)		10/14/2024 12:41:00 P	10/18/2024 9:30:25 AM
				Radium-226 (EPA 903.0)		10/14/2024 12:41:00 P	10/18/2024 9:30:25 AM
				Radium-228 (EPA 904.0)		10/14/2024 12:41:00 P	10/17/2024 2:26:46 PM
24100195-008A	24092127-008B	9/27/2024 10:11:00 AM		Combined Radium (EPA903+904)		10/14/2024 12:41:00 P	10/18/2024 9:30:25 AM
				Radium-226 (EPA 903.0)		10/14/2024 12:41:00 P	10/18/2024 9:30:25 AM

Original

Summit Environmental Technologies, Inc. 3310 Win St. Cuyahoga Falls, Ohio 44223 TEL: (330) 253-8211 FAX: (330) 253-4489

Website: http://www.settek.com

DATES REPORT

WO#: **24100195**

18-Oct-24

Client: TEKLAB Inc,

Project: 24092127

Sample ID	Client Sample ID	Collection Date	Matrix	Test Name	Leachate Date	Prep Date	Analysis Date
24100195-008A	24092127-008B	9/27/2024 10:11:00 AM	Non-Potable Water	er Radium-228 (EPA 904.0)		10/14/2024 12:41:00 P	10/17/2024 2:26:46 PM
24100195-009A	24092127-009B	9/25/2024 10:14:00 AM		Combined Radium (EPA903+904)		10/14/2024 12:41:00 P	10/18/2024 9:30:25 AM
				Radium-226 (EPA 903.0)		10/14/2024 12:41:00 P	10/18/2024 9:30:25 AM
				Radium-228 (EPA 904.0)		10/14/2024 12:41:00 P	10/17/2024 2:26:46 PM

Cuyahoga Falls, Ohio 44223 TEL: (330) 253-8211 FAX: (330) 253-4485 Website: http://www.settek.com **Analytical Report**

(consolidated)

WO#: **24100195**Date Reported: **10/18/2024**

CLIENT: TEKLAB Inc, Collection Date: 9/25/2024 8:40:00 AM

Project: 24092127

Lab ID: 24100195-001 Matrix: NON-POTABLE WATER

Client Sample ID: 24092127-001B

Analyses	Result	RL	Qual	Units	Uncertainty	DF	Date Analyzed
RAD226/228 COMBINED RADIUM (EPA903+904)				CA	LCULATION	E903-90	4 Analyst: SMZ
Radium-226/Radium-228	0.46	2.00	U	pCi/L	± 0.370	1	10/18/2024 9:30:25 AM
RAD226/228 RADIUM-226 (EPA 903.0)					E903.0	E903-904	4 Analyst: SMZ
Radium-226	0.06	1.00	U	pCi/L	± 0.0400	1	10/18/2024 9:30:25 AM
Yield	1.00					1	10/18/2024 9:30:25 AM
RAD226/228 RADIUM-228 (EPA 904.0)					E904.0	E903-904	4 Analyst: SMZ
Radium-228	0.4	1.00	U	pCi/L	± 0.330	1	10/17/2024 2:26:46 PM
Yield	0.990					1	10/17/2024 2:26:46 PN

Qualifiers: H Holding times for preparation or analysis exceeded

ND Not Detected

RL Reporting Detection Limit

W Sample container temperature is out of limit as specified at testcode

M Manual Integration used to determine area response

PL Permit Limit

Cuyanoga Faus, Onio 44225 TEL: (330) 253-8211 FAX: (330) 253-4489 Website: http://www.settek.com **Analytical Report**

(consolidated)

WO#: **24100195**Date Reported: **10/18/2024**

CLIENT: TEKLAB Inc, Collection Date: 9/25/2024 11:01:00 AM

Project: 24092127

Lab ID: 24100195-002 Matrix: NON-POTABLE WATER

Client Sample ID: 24092127-002B

Analyses	Result	RL (Qual	Units	Uncertainty	DF	Date Analyzed
RAD226/228 COMBINED RADIUM (EPA903+904)				CA	LCULATION	E903-904	4 Analyst: SMZ
Radium-226/Radium-228	0.6	2.00	U	pCi/L	± 0.380	1	10/18/2024 9:30:25 AN
RAD226/228 RADIUM-226 (EPA 903.0)					E903.0	E903-904	4 Analyst: SMZ
Radium-226	0.18	1.00	U	pCi/L	± 0.0700	1	10/18/2024 9:30:25 AM
Yield	1.00					1	10/18/2024 9:30:25 AM
RAD226/228 RADIUM-228 (EPA 904.0)					E904.0	E903-904	4 Analyst: SMZ
Radium-228	0.42	1.00	U	pCi/L	± 0.310	1	10/17/2024 2:26:46 PM
Yield	1.00					1	10/17/2024 2:26:46 PN

Qualifiers: H Holding times for preparation or analysis exceeded

ND Not Detected

RL Reporting Detection Limit

W Sample container temperature is out of limit as specified at testcode

M Manual Integration used to determine area response

PL Permit Limit

TEL: (330) 253-8211 FAX: (330) 253-4485 Website: http://www.settek.com **Analytical Report**

(consolidated)

WO#: **24100195**Date Reported: **10/18/2024**

CLIENT: TEKLAB Inc, Collection Date: 9/25/2024 1:47:00 PM

Project: 24092127

Lab ID: 24100195-003 Matrix: NON-POTABLE WATER

Client Sample ID: 24092127-003B

Analyses	Result	RL	Qual	Units	Uncertainty	DF 1	Date Analyzed
RAD226/228 COMBINED RADIUM (EPA903+904)				CA	LCULATION	E903-904	Analyst: SMZ
Radium-226/Radium-228	0.37	2.00	U	pCi/L	± 0.360	1	10/18/2024 9:30:25 AN
RAD226/228 RADIUM-226 (EPA 903.0)					E903.0	E903-904	Analyst: SMZ
Radium-226	0.04	1.00	U	pCi/L	± 0.0400	1	10/18/2024 9:30:25 AM
Yield	1.00					1	10/18/2024 9:30:25 AN
RAD226/228 RADIUM-228 (EPA 904.0)					E904.0	E903-904	Analyst: SMZ
Radium-228	0.33	1.00	U	pCi/L	± 0.320	1	10/17/2024 2:26:46 PM
Yield	1.00					1	10/17/2024 2:26:46 PN

Qualifiers: H Holding times for preparation or analysis exceeded

ND Not Detected

RL Reporting Detection Limit

W Sample container temperature is out of limit as specified at testcode

M Manual Integration used to determine area response

PL Permit Limit

Cuyahoga Falls, Ohio 44223 TEL: (330) 253-8211 FAX: (330) 253-4485 Website: http://www.settek.com **Analytical Report**

(consolidated)

WO#: **24100195**Date Reported: **10/18/2024**

CLIENT: TEKLAB Inc, Collection Date: 9/25/2024 10:14:00 AM

Project: 24092127

Lab ID: 24100195-004 Matrix: NON-POTABLE WATER

Client Sample ID: 24092127-004B

Analyses	Result	RL	Qual	Units	Uncertainty	DF	Date Analyzed
RAD226/228 COMBINED RADIUM (EPA903+904)				CA	LCULATION	E903-904	4 Analyst: SMZ
Radium-226/Radium-228	0.83	2.00	U	pCi/L	± 0.460	1	10/18/2024 9:30:25 AN
RAD226/228 RADIUM-226 (EPA 903.0)					E903.0	E903-904	4 Analyst: SMZ
Radium-226	0.02	1.00	U	pCi/L	± 0.0400	1	10/18/2024 9:30:25 AM
Yield	1.00					1	10/18/2024 9:30:25 AN
RAD226/228 RADIUM-228 (EPA 904.0)					E904.0	E903-904	4 Analyst: SMZ
Radium-228	0.81	1.00	J	pCi/L	± 0.420	1	10/17/2024 2:26:46 PN
Yield	0.900					1	10/17/2024 2:26:46 PN

Qualifiers: H Holding times for preparation or analysis exceeded

ND Not Detected

RL Reporting Detection Limit

W Sample container temperature is out of limit as specified at testcode

M Manual Integration used to determine area response

PL Permit Limit

Cuyanoga Faus, Onio 44225 TEL: (330) 253-8211 FAX: (330) 253-4489 Website: http://www.settek.com **Analytical Report**

(consolidated)

WO#: **24100195**Date Reported: **10/18/2024**

CLIENT: TEKLAB Inc, Collection Date: 9/25/2024 9:36:00 AM

Project: 24092127

Lab ID: 24100195-005 Matrix: NON-POTABLE WATER

Client Sample ID: 24092127-005B

Analyses	Result	RL	Qual	Units	Uncertainty	DF	Date Analyzed
RAD226/228 COMBINED RADIUM (EPA903+904)				CA	LCULATION	E903-904	4 Analyst: SMZ
Radium-226/Radium-228	0.55	2.00	U	pCi/L	± 0.420	1	10/18/2024 9:30:25 AN
RAD226/228 RADIUM-226 (EPA 903.0)					E903.0	E903-904	Analyst: SMZ
Radium-226	0.16	1.00	U	pCi/L	± 0.0600	1	10/18/2024 9:30:25 AM
Yield	0.920					1	10/18/2024 9:30:25 AN
RAD226/228 RADIUM-228 (EPA 904.0)					E904.0	E903-904	4 Analyst: SMZ
Radium-228	0.39	1.00	U	pCi/L	± 0.360	1	10/17/2024 2:26:46 PM
Yield	0.870					1	10/17/2024 2:26:46 PN

Qualifiers: H Holding times for preparation or analysis exceeded

ND Not Detected

RL Reporting Detection Limit

W Sample container temperature is out of limit as specified at testcode

M Manual Integration used to determine area response

PL Permit Limit

TEL: (330) 253-8211 FAX: (330) 253-4485 Website: http://www.settek.com **Analytical Report**

(consolidated)

WO#: **24100195**Date Reported: **10/18/2024**

CLIENT: TEKLAB Inc, Collection Date: 9/25/2024 12:47:00 PM

Project: 24092127

Lab ID: 24100195-006 Matrix: NON-POTABLE WATER

Client Sample ID: 24092127-006B

Analyses	Result	RL	Qual	Units	Uncertainty	DF	Date Analyzed
RAD226/228 COMBINED RADIUM (EPA903+904)				CA	LCULATION	E903-904	4 Analyst: SMZ
Radium-226/Radium-228	0.69	2.00	U	pCi/L	± 0.430	1	10/18/2024 9:30:25 AN
RAD226/228 RADIUM-226 (EPA 903.0)					E903.0	E903-904	4 Analyst: SMZ
Radium-226	0.03	1.00	U	pCi/L	± 0.0400	1	10/18/2024 9:30:25 AM
Yield	0.980					1	10/18/2024 9:30:25 AM
RAD226/228 RADIUM-228 (EPA 904.0)					E904.0	E903-904	4 Analyst: SMZ
Radium-228	0.66	1.00	J	pCi/L	± 0.390	1	10/17/2024 2:26:46 PM
Yield	0.890					1	10/17/2024 2:26:46 PN

Qualifiers: H Holding times for preparation or analysis exceeded

ND Not Detected

RL Reporting Detection Limit

W Sample container temperature is out of limit as specified at testcode

M Manual Integration used to determine area response

PL Permit Limit

TEL: (330) 253-8211 FAX: (330) 253-4485 Website: http://www.settek.com **Analytical Report**

(consolidated)

WO#: **24100195**Date Reported: **10/18/2024**

CLIENT: TEKLAB Inc, Collection Date: 9/25/2024

Project: 24092127

Lab ID: 24100195-007 Matrix: NON-POTABLE WATER

Client Sample ID: 24092127-007B

Analyses	Result	RL	Qual	Units	Uncertainty	DF	Date Analyzed
RAD226/228 COMBINED RADIUM (EPA903+904)				CA	LCULATION	E903-90	4 Analyst: SMZ
Radium-226/Radium-228	0.19	2.00	U	pCi/L	± 0.330	1	10/18/2024 9:30:25 AN
RAD226/228 RADIUM-226 (EPA 903.0)					E903.0	E903-904	4 Analyst: SMZ
Radium-226	0.06	1.00	U	pCi/L	± 0.0400	1	10/18/2024 9:30:25 AN
Yield	0.960					1	10/18/2024 9:30:25 AN
RAD226/228 RADIUM-228 (EPA 904.0)					E904.0	E903-904	4 Analyst: SMZ
Radium-228	0.13	1.00	U	pCi/L	± 0.290	1	10/17/2024 2:26:46 PN
Yield	0.940					1	10/17/2024 2:26:46 PN

Qualifiers: H Holding times for preparation or analysis exceeded

ND Not Detected

RL Reporting Detection Limit

W Sample container temperature is out of limit as specified at testcode

M Manual Integration used to determine area response

PL Permit Limit

TEL: (330) 253-8211 FAX: (330) 253-4485 Website: http://www.settek.com **Analytical Report**

(consolidated)

WO#: **24100195**Date Reported: **10/18/2024**

CLIENT: TEKLAB Inc, Collection Date: 9/27/2024 10:11:00 AM

Project: 24092127

Lab ID: 24100195-008 Matrix: NON-POTABLE WATER

Client Sample ID: 24092127-008B

Analyses	Result	RL	Qual	Units	Uncertainty	DF	Date Analyzed
RAD226/228 COMBINED RADIUM (EPA903+904)				CA	LCULATION	E903-904	4 Analyst: SMZ
Radium-226/Radium-228	0.64	2.00	U	pCi/L	± 0.430	1	10/18/2024 9:30:25 AN
RAD226/228 RADIUM-226 (EPA 903.0)					E903.0	E903-904	4 Analyst: SMZ
Radium-226	0.05	1.00	U	pCi/L	± 0.0400	1	10/18/2024 9:30:25 AM
Yield	0.950					1	10/18/2024 9:30:25 AN
RAD226/228 RADIUM-228 (EPA 904.0)					E904.0	E903-904	4 Analyst: SMZ
Radium-228	0.59	1.00	U	pCi/L	± 0.390	1	10/17/2024 2:26:46 PN
Yield	1.00					1	10/17/2024 2:26:46 PN

Qualifiers: H Holding times for preparation or analysis exceeded

ND Not Detected

RL Reporting Detection Limit

W Sample container temperature is out of limit as specified at testcode

M Manual Integration used to determine area response

PL Permit Limit

Cuyahoga Falls, Ohio 44223 TEL: (330) 253-8211 FAX: (330) 253-4485 Website: http://www.settek.com **Analytical Report**

(consolidated)

WO#: **24100195**Date Reported: **10/18/2024**

CLIENT: TEKLAB Inc, Collection Date: 9/25/2024 10:14:00 AM

Project: 24092127

Lab ID: 24100195-009 Matrix: NON-POTABLE WATER

Client Sample ID: 24092127-009B

Analyses	Result	RL	Qual	Units	Uncertainty	DF	Date Analyzed
RAD226/228 COMBINED RADIUM (EPA903+904)				CA	LCULATION	E903-904	4 Analyst: SMZ
Radium-226/Radium-228	0.36	2.00	U	pCi/L	± 0.370	1	10/18/2024 9:30:25 AN
RAD226/228 RADIUM-226 (EPA 903.0)					E903.0	E903-904	4 Analyst: SMZ
Radium-226	0	1.00	U	pCi/L	± 0.0200	1	10/18/2024 9:30:25 AN
Yield	0.990					1	10/18/2024 9:30:25 AN
RAD226/228 RADIUM-228 (EPA 904.0)					E904.0	E903-904	4 Analyst: SMZ
Radium-228	0.36	1.00	U	pCi/L	± 0.350	1	10/17/2024 2:26:46 PN
Yield	1.00					1	10/17/2024 2:26:46 PN

Qualifiers: H Holding times for preparation or analysis exceeded

ND Not Detected

RL Reporting Detection Limit

W Sample container temperature is out of limit as specified at testcode

M Manual Integration used to determine area response

PL Permit Limit

Appendix 2

Laboratory Analytical Results
13th CCR Compliance Sampling Event
(1st 2025 Semi-annual Detection
and Assessment Monitoring Event)
May 6, 2025

May 20, 2025

Ashish Patel Sikeston Board of Municipal Utilities 107 E Malone Ave PO Box 370 Sikeston, MO 63801 TEL: (573) 380-7160

FAX:

TNI TNI PBORATORY

Illinois 100226
Illinois 1004652024-2
Kansas E-10374
Louisiana 05002
Louisiana 05003
Oklahoma 9978

WorkOrder: 25050733

Dear Ashish Patel:

RE: Fly Ash Pond (FAP)

TEKLAB, INC received 9 samples on 5/8/2025 10:00:00 AM for the analysis presented in the following report.

Samples are analyzed on an as received basis unless otherwise requested and documented. The sample results contained in this report relate only to the requested analytes of interest as directed on the chain of custody. NELAP accredited fields of testing are indicated by the letters NELAP under the Certification column. Unless otherwise documented within this report, Teklab Inc. analyzes samples utilizing the most current methods in compliance with 40CFR. All tests are performed in the Collinsville, IL laboratory unless otherwise noted in the Case Narrative.

All quality control criteria applicable to the test methods employed for this project have been satisfactorily met and are in accordance with NELAP except where noted. The following report shall not be reproduced, except in full, without the written approval of Teklab, Inc.

If you have any questions regarding these tests results, please feel free to call.

Sincerely,

Elizabeth A. Hurley

Elizabeth a Hurley

Director of Customer Service

(618)344-1004 ex 33

ehurley@teklabinc.com

Report Contents

http://www.teklabinc.com/

Client: Sikeston Board of Municipal Utilities Work Order: 25050733

Client Project: Fly Ash Pond (FAP) Report Date: 20-May-25

This reporting package includes the following:

Cover Letter	1
Report Contents	2
Definitions	3
Case Narrative	5
Accreditations	6
Laboratory Results	7
Quality Control Results	16
Receiving Check List	26
Chain of Custody	Appended

Definitions

http://www.teklabinc.com/

Client: Sikeston Board of Municipal Utilities Work Order: 25050733

Client Project: Fly Ash Pond (FAP)

Report Date: 20-May-25

Abbr Definition

- * Analytes on report marked with an asterisk are not NELAP accredited
- CCV Continuing calibration verification is a check of a standard to determine the state of calibration of an instrument between recalibration.
- CRQL A Client Requested Quantitation Limit is a reporting limit that varies according to customer request. The CRQL may not be less than the MDL.
 - DF Dilution factor is the dilution performed during analysis only and does not take into account any dilutions made during sample preparation. The reported result is final and includes all dilution factors.
 - DNI Did not ignite
- DUP Laboratory duplicate is a replicate aliquot prepared under the same laboratory conditions and independently analyzed to obtain a measure of precision.
- ICV Initial calibration verification is a check of a standard to determine the state of calibration of an instrument before sample analysis is initiated.
- IDPH IL Dept. of Public Health
- LCS Laboratory control sample is a sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes and analyzed exactly like a sample to establish intra-laboratory or analyst specific precision and bias or to assess the performance of all or a portion of the measurement system.
- LCSD Laboratory control sample duplicate is a replicate laboratory control sample that is prepared and analyzed in order to determine the precision of the approved test method. The acceptable recovery range is listed in the QC Package (provided upon request).
- MBLK Method blank is a sample of a matrix similar to the batch of associated sample (when available) that is free from the analytes of interest and is processed simultaneously with and under the same conditions as samples through all steps of the analytical procedures, and in which no target analytes or interferences should present at concentrations that impact the analytical results for sample analyses.
- MDL "The method detection limit is defined as the minimum measured concentration of a substance that can be reported with 99% confidence that the measured concentration is distinguishable from method blank results."
- MS Matrix spike is an aliquot of matrix fortified (spiked) with known quantities of specific analytes that is subjected to the entire analytical procedures in order to determine the effect of the matrix on an approved test method's recovery system. The acceptable recovery range is listed in the QC Package (provided upon request).
- MSD Matrix spike duplicate means a replicate matrix spike that is prepared and analyzed in order to determine the precision of the approved test method. The acceptable recovery range is listed in the QC Package (provided upon request).
- MW Molecular weight
- NC Data is not acceptable for compliance purposes
- ND Not Detected at the Reporting Limit
- NELAP NELAP Accredited
 - PQL Practical quantitation limit means the lowest level that can be reliably achieved within specified limits of precision and accuracy during routine laboratory operation conditions.
 - RL The reporting limit the lowest level that the data is displayed in the final report. The reporting limit may vary according to customer request or sample dilution. The reporting limit may not be less than the MDL.
 - RPD Relative percent difference is a calculated difference between two recoveries (ie. MS/MSD). The acceptable recovery limit is listed in the QC Package (provided upon request).
 - SPK The spike is a known mass of target analyte added to a blank sample or sub-sample; used to determine recovery deficiency or for other quality control purposes.
 - Surr Surrogates are compounds which are similar to the analytes of interest in chemical composition and behavior in the analytical process, but which are not normally found in environmental samples.
 - TIC Tentatively identified compound: Analytes tentatively identified in the sample by using a library search. Only results not in the calibration standard will be reported as tentatively identified compounds. Results for tentatively identified compounds that are not present in the calibration standard, but are assigned a specific chemical name based upon the library search, are calculated using total peak areas from reconstructed ion chromatograms and a response factor of one. The nearest Internal Standard is used for the calculation. The results of any TICs must be considered estimated, and are flagged with a "T". If the estimated result is above the calibration range it is flagged "ET"
- TNTC Too numerous to count (> 200 CFU)

Definitions

http://www.teklabinc.com/

Client: Sikeston Board of Municipal Utilities Work Order: 25050733

Client Project: Fly Ash Pond (FAP) Report Date: 20-May-25

Qualifiers

- B Analyte detected in associated Method Blank
- E Value above quantitation range
- I Associated internal standard was outside method criteria
- Manual Integration used to determine area response
- R RPD outside accepted recovery limits
- T TIC(Tentatively identified compound)

- # Unknown hydrocarbon
- RL shown is a Client Requested Quantitation Limit
- Holding times exceeded H -
- Analyte detected below quantitation limits
- Not Detected at the Reporting Limit
- Spike Recovery outside recovery limits
- X Value exceeds Maximum Contaminant Level

Case Narrative

http://www.teklabinc.com/

Client: Sikeston Board of Municipal Utilities Work Order: 25050733

Client Project: Fly Ash Pond (FAP) Report Date: 20-May-25

Cooler Receipt Temp: 2.5 °C

Field pH was omitted from the COC in error and will be included in final reporting (less duplicate and blanks). (ehurley - 5/8/2025 3:01:16 PM)

Locations

Collinsville			Springfield	Kansas City			
Address	5445 Horseshoe Lake Road	Address	3920 Pintail Dr	Address	8421 Nieman Road		
	Collinsville, IL 62234-7425		Springfield, IL 62711-9415		Lenexa, KS 66214		
Phone	(618) 344-1004	Phone	(217) 698-1004	Phone	(913) 541-1998		
Fax	(618) 344-1005	Fax	(217) 698-1005	Fax	(913) 541-1998		
Email	jhriley@teklabinc.com	Email	KKlostermann@teklabinc.com	Email	jhriley@teklabinc.com		
	Collinsville Air		Chicago				
Address	5445 Horseshoe Lake Road	Address	1319 Butterfield Rd.				
	Collinsville, IL 62234-7425		Downers Grove, IL 60515				
Phone	(618) 344-1004	Phone	(630) 324-6855				
Fax	(618) 344-1005	Fax					
Email	EHurley@teklabinc.com	Email	arenner@teklabinc.com				

Accreditations

http://www.teklabinc.com/

Client: Sikeston Board of Municipal Utilities Work Order: 25050733

Client Project: Fly Ash Pond (FAP) Report Date: 20-May-25

State	Dept	Cert #	NELAP	Exp Date	Lab
Illinois	IEPA	100226	NELAP	1/31/2026	Collinsville
Illinois	IEPA	1004652024-2	NELAP	4/30/2026	Collinsville
Kansas	KDHE	E-10374	NELAP	4/30/2026	Collinsville
Louisiana	LDEQ	05002	NELAP	6/30/2025	Collinsville
Louisiana	LDEQ	05003	NELAP	6/30/2025	Collinsville
Oklahoma	ODEQ	9978	NELAP	8/31/2025	Collinsville
Arkansas	ADEQ	88-0966		3/14/2026	Collinsville
Illinois	IDPH	17584		5/31/2025	Collinsville
Iowa	IDNR	430		6/1/2026	Collinsville
Kentucky	KWLCP	KY98050		12/31/2025	Collinsville
Kentucky	KWLCP	KY98006		12/31/2025	Collinsville
Kentucky	UST	0073		1/31/2026	Collinsville
Mississippi	MSDH			4/30/2026	Collinsville
Missouri	MDNR	930		1/31/2028	Collinsville
Missouri	MDNR	00930		10/31/2026	Collinsville

http://www.teklabinc.com/

Client: Sikeston Board of Municipal Utilities Work Order: 25050733

Client Project: Fly Ash Pond (FAP)

Report Date: 20-May-25

Lab ID: 25050733-001 Client Sample ID: MW-1R

Matrix: GROUNDWATER Collection Date: 05/06/2025 7:17

	2-1 2-1 2 20 2 2-1								
Analyses	Certification	MDL	RL	Qual	Result	Units	DF	Date Analyzed	Batch
SW-846 9040B FIELD									
рН	*	0	1.00		6.38		1	05/06/2025 7:17	R365003
STANDARD METHODS 254	40 C (TOTAL) 2015								
Total Dissolved Solids	NELAP	20	20		576	mg/L	1	05/10/2025 16:28	R365217
SW846 9056A TOTAL ANIO	ONIC COMPOUNDS	BY ION	N CHRO	MATOGR	APHY				
Fluoride	NELAP	0.02	0.25	J	0.10	mg/L	5	05/09/2025 14:41	R364707
Chloride	NELAP	0.50	4.00		18.3	mg/L	5	05/09/2025 14:41	R364707
Sulfate	NELAP	0.50	10.0		289	mg/L	5	05/09/2025 14:41	R364707
SW-846 3005A, 6010B, ME	TALS BY ICP (TOT	AL)							
Barium	NELAP	2.5	2.5		48.4	μg/L	1	05/12/2025 16:50	238859
Boron	NELAP	10.0	10.0		4690	μg/L	1	05/12/2025 16:50	238859
Calcium	NELAP	0.200	0.200	S	116	mg/L	1	05/12/2025 16:50	238859
Matrix spike control limits are i	not applicable due to h	igh samp	le/spike r	atio.					
SW-846 3005A, 6020A, ME	TALS BY ICPMS (T	OTAL)							
Arsenic	NELAP	1.0	1.0		< 1.0	μg/L	5	05/12/2025 16:49	238859
Cobalt	NELAP	2.0	2.0		15.0	μg/L	5	05/12/2025 16:49	238859
Lithium	*	10.0	10.0		11.2	μg/L	5	05/12/2025 16:49	238859
Molybdenum	NELAP	1.0	1.0		208	μg/L	5	05/12/2025 16:49	238859
Selenium	NELAP	1.0	1.0		< 1.0	μg/L	5	05/12/2025 16:49	238859
Results have less certainty for	Mo - Client Requested	d Quantita	ation Limi	t is below	the calibration r	ange.			

http://www.teklabinc.com/

Client: Sikeston Board of Municipal Utilities Work Order: 25050733

Client Project: Fly Ash Pond (FAP)

Report Date: 20-May-25

Matrix: GROUNDWATER Collection Date: 05/06/2025 12:01

Analyses	Certification	MDL	RL	Qual	Result	Units	DF	Date Analyzed	Batch	
SW-846 9040B FIELD										
рН	*	0	1.00		6.33		1	05/06/2025 12:01	R365003	
STANDARD METHODS 2540	0 C (TOTAL) 2015									
Total Dissolved Solids	NELAP	20	20		100	mg/L	1	05/10/2025 16:26	R365217	
SW846 9056A TOTAL ANIONIC COMPOUNDS BY ION CHROMATOGRAPHY										
Fluoride	NELAP	0.02	0.25	J	0.06	mg/L	5	05/09/2025 14:53	R364707	
Chloride	NELAP	0.50	4.00		4.68	mg/L	5	05/09/2025 14:53	R364707	
Sulfate	NELAP	0.50	10.0		14.5	mg/L	5	05/09/2025 14:53	R364707	
SW-846 3005A, 6010B, MET	ALS BY ICP (TOT	AL)								
Barium	NELAP	2.5	2.5		188	μg/L	1	05/12/2025 16:58	238860	
Boron	NELAP	10.0	10.0		28.6	μg/L	1	05/12/2025 16:58	238860	
Calcium	NELAP	0.200	0.200		19.1	mg/L	1	05/12/2025 16:58	238860	
SW-846 3005A, 6020A, MET	ALS BY ICPMS (T	OTAL)								
Arsenic	NELAP	1.0	1.0		< 1.0	μg/L	5	05/12/2025 15:03	238860	
Cobalt	NELAP	2.0	2.0		< 2.0	μg/L	5	05/12/2025 15:03	238860	
Lithium	*	10.0	10.0		< 10.0	μg/L	5	05/12/2025 15:03	238860	
Molybdenum	NELAP	1.0	1.0		< 1.0	μg/L	5	05/12/2025 15:03	238860	
Selenium	NELAP	1.0	1.0		< 1.0	μg/L	5	05/12/2025 15:03	238860	
Results have less certainty for N	Mo - Client Requested	d Quantit	ation Limi	t is below t	he calibration r	ange.				

http://www.teklabinc.com/

Client: Sikeston Board of Municipal Utilities Work Order: 25050733

Client Project: Fly Ash Pond (FAP)

Report Date: 20-May-25

Lab ID: 25050733-003 Client Sample ID: MW-3

Matrix: GROUNDWATER Collection Date: 05/06/2025 9:58

Analyses	Certification	MDL	RL	Qual	Result	Units	DF	Date Analyzed	Batch		
SW-846 9040B FIELD											
рН	*	0	1.00		6.61		1	05/06/2025 9:58	R365003		
STANDARD METHODS 2540	0 C (TOTAL) 2015										
Total Dissolved Solids	NELAP	20	20		90	mg/L	1	05/10/2025 16:36	R365217		
SW846 9056A TOTAL ANIONIC COMPOUNDS BY ION CHROMATOGRAPHY											
Fluoride	NELAP	0.02	0.25	J	0.14	mg/L	5	05/09/2025 15:44	R364707		
Chloride	NELAP	0.50	4.0	J	1.7	mg/L	5	05/09/2025 15:44	R364707		
Sulfate	NELAP	0.50	10.0		10.1	mg/L	5	05/09/2025 15:44	R364707		
SW-846 3005A, 6010B, MET	ALS BY ICP (TOT	AL)									
Barium	NELAP	2.5	2.5		82.3	μg/L	1	05/12/2025 16:59	238860		
Boron	NELAP	10.0	10.0		< 10.0	μg/L	1	05/12/2025 16:59	238860		
Calcium	NELAP	0.200	0.200		14.8	mg/L	1	05/12/2025 16:59	238860		
SW-846 3005A, 6020A, MET	ALS BY ICPMS (T	OTAL)									
Arsenic	NELAP	1.0	1.0		< 1.0	μg/L	5	05/12/2025 15:09	238860		
Cobalt	NELAP	2.0	2.0		< 2.0	μg/L	5	05/12/2025 15:09	238860		
Lithium	*	10.0	10.0		< 10.0	μg/L	5	05/12/2025 15:09	238860		
Molybdenum	NELAP	1.0	1.0		< 1.0	μg/L	5	05/12/2025 15:09	238860		
Selenium	NELAP	1.0	1.0		< 1.0	μg/L	5	05/12/2025 15:09	238860		
Results have less certainty for N	Mo - Client Requested	d Quantit	ation Limi	t is below i	the calibration r	ange.					

http://www.teklabinc.com/

Client: Sikeston Board of Municipal Utilities Work Order: 25050733

Client Project: Fly Ash Pond (FAP)

Report Date: 20-May-25

Lab ID: 25050733-004 Client Sample ID: MW-7

Matrix: GROUNDWATER Collection Date: 05/06/2025 9:08

Analyses	Certification	MDL	RL	Qual	Result	Units	DF	Date Analyzed	Batch
SW-846 9040B FIELD									
рН	*	0	1.00		7.27		1	05/06/2025 9:08	R365003
STANDARD METHODS 2540 C	(TOTAL) 2015								
Total Dissolved Solids	NELAP	20	20		638	mg/L	1	05/10/2025 16:35	R365217
SW846 9056A TOTAL ANIONIC	COMPOUNDS	BY ION	CHRO	MATOGRAF	ΉY				
Fluoride	NELAP	0.02	0.25		0.63	mg/L	5	05/09/2025 15:57	R364707
Chloride	NELAP	0.50	4.00		10.9	mg/L	5	05/09/2025 15:57	R364707
Sulfate	NELAP	0.50	10.0		321	mg/L	5	05/09/2025 15:57	R364707
SW-846 3005A, 6010B, METAL	S BY ICP (TOT	AL)							
Barium	NELAP	2.5	2.5		95.2	μg/L	1	05/12/2025 17:00	238860
Boron	NELAP	10.0	10.0		3730	μg/L	1	05/12/2025 17:00	238860
Calcium	NELAP	0.200	0.200		139	mg/L	1	05/12/2025 17:00	238860
SW-846 3005A, 6020A, METAL	S BY ICPMS (T	OTAL)							
Arsenic	NELAP	1.0	1.0		< 1.0	μg/L	5	05/12/2025 15:16	238860
Cobalt	NELAP	2.0	2.0		2.3	μg/L	5	05/12/2025 15:16	238860
Lithium	*	10.0	10.0		41.3	μg/L	5	05/12/2025 15:16	238860
Molybdenum	NELAP	1.0	1.0		108	μg/L	5	05/12/2025 15:16	238860
Selenium	NELAP	1.0	1.0		2.1	μg/L	5	05/12/2025 15:16	238860
Results have less certainty for Mo	- Client Requested	d Quantita	ation Limi	t is below the	calibration r	ange.			

http://www.teklabinc.com/

Client: Sikeston Board of Municipal Utilities Work Order: 25050733

Client Project: Fly Ash Pond (FAP) Report Date: 20-May-25

Lab ID: 25050733-005 Client Sample ID: MW-9

Matrix: GROUNDWATER Collection Date: 05/06/2025 8:22

Analyses	Certification	MDL	RL	Qual	Result	Units	DF	Date Analyzed	Batch		
SW-846 9040B FIELD											
рН	*	0	1.00		7.00		1	05/06/2025 8:22	R365003		
STANDARD METHODS 254	10 C (TOTAL) 2015										
Total Dissolved Solids	NELAP	20	20		510	mg/L	1	05/10/2025 16:26	R365217		
SW846 9056A TOTAL ANIONIC COMPOUNDS BY ION CHROMATOGRAPHY											
Fluoride	NELAP	0.02	0.25		0.71	mg/L	5	05/09/2025 16:09	R364707		
Chloride	NELAP	0.50	4.00		13.1	mg/L	5	05/09/2025 16:09	R364707		
Sulfate	NELAP	0.50	10.0		213	mg/L	5	05/09/2025 16:09	R364707		
SW-846 3005A, 6010B, ME	TALS BY ICP (TOT	AL)									
Barium	NELAP	2.5	2.5		90.9	μg/L	1	05/12/2025 17:01	238860		
Boron	NELAP	10.0	10.0		4060	μg/L	1	05/12/2025 17:01	238860		
Calcium	NELAP	0.200	0.200		87.5	mg/L	1	05/12/2025 17:01	238860		
SW-846 3005A, 6020A, ME	TALS BY ICPMS (T	OTAL)									
Arsenic	NELAP	1.0	1.0		< 1.0	μg/L	5	05/12/2025 16:06	238860		
Cobalt	NELAP	2.0	2.0		2.2	μg/L	5	05/12/2025 16:06	238860		
Lithium	*	10.0	10.0		24.4	μg/L	5	05/12/2025 16:06	238860		
Molybdenum	NELAP	1.0	1.0		184	μg/L	5	05/12/2025 16:06	238860		
Selenium	NELAP	1.0	1.0		< 1.0	μg/L	5	05/12/2025 16:06	238860		
Results have less certainty for Mo - Client Requested Quantitation Limit is below the calibration range.											

http://www.teklabinc.com/

Client: Sikeston Board of Municipal Utilities Work Order: 25050733

Client Project: Fly Ash Pond (FAP)

Report Date: 20-May-25

Lab ID: 25050733-006 Client Sample ID: MW-10

Matrix: GROUNDWATER Collection Date: 05/06/2025 11:09

Analyses	Certification	MDL	RL	Qual	Result	Units	DF	Date Analyzed	Batch		
SW-846 9040B FIELD											
рН	*	0	1.00		7.08		1	05/06/2025 11:09	R365003		
STANDARD METHODS 2540	C (TOTAL) 2015										
Total Dissolved Solids	NELAP	20	20		396	mg/L	1	05/10/2025 16:28	R365217		
SW846 9056A TOTAL ANIONIC COMPOUNDS BY ION CHROMATOGRAPHY											
Fluoride	NELAP	0.02	0.25	J	0.24	mg/L	5	05/09/2025 16:22	R364707		
Chloride	NELAP	0.50	4.00		8.41	mg/L	5	05/09/2025 16:22	R364707		
Sulfate	NELAP	0.50	10.0		86.3	mg/L	5	05/09/2025 16:22	R364707		
SW-846 3005A, 6010B, MET	ALS BY ICP (TOT	AL)									
Barium	NELAP	2.5	2.5		130	μg/L	1	05/12/2025 17:01	238860		
Boron	NELAP	10.0	10.0		210	μg/L	1	05/12/2025 17:01	238860		
Calcium	NELAP	0.200	0.200		88.9	mg/L	1	05/12/2025 17:01	238860		
SW-846 3005A, 6020A, MET	ALS BY ICPMS (T	OTAL)									
Arsenic	NELAP	1.0	1.0		6.8	μg/L	5	05/12/2025 16:12	238860		
Cobalt	NELAP	2.0	2.0		< 2.0	μg/L	5	05/12/2025 16:12	238860		
Lithium	*	10.0	10.0		< 10.0	μg/L	5	05/12/2025 16:12	238860		
Molybdenum	NELAP	1.0	1.0		14.1	μg/L	5	05/12/2025 16:12	238860		
Selenium	NELAP	1.0	1.0		< 1.0	μg/L	5	05/12/2025 16:12	238860		
Results have less certainty for N	no - Client Requeste	d Quantit	ation Limi	t is below t	the calibration r	ange.					

http://www.teklabinc.com/

Client: Sikeston Board of Municipal Utilities Work Order: 25050733

Client Project: Fly Ash Pond (FAP)

Report Date: 20-May-25

Lab ID: 25050733-007 Client Sample ID: Duplicate

Matrix: GROUNDWATER Collection Date: 05/06/2025 0:00

Analyses	Certification	MDL	RL	Qual	Result	Units	DF	Date Analyzed	Batch		
STANDARD METHODS 2540 C (TOTAL) 2015											
Total Dissolved Solids	NELAP	20	20		596	mg/L	1	05/10/2025 14:08	R365004		
QC recovered outside the accep	otance criteria. Run is	validate	d by pass	ing LCS.							
SW846 9056A TOTAL ANIONIC COMPOUNDS BY ION CHROMATOGRAPHY											
Fluoride	NELAP	0.02	0.25	J	0.11	mg/L	5	05/09/2025 16:35	R364707		
Chloride	NELAP	0.50	4.00		19.0	mg/L	5	05/09/2025 16:35	R364707		
Sulfate	NELAP	0.50	10.0		302	mg/L	5	05/09/2025 16:35	R364707		
SW-846 3005A, 6010B, MET	ALS BY ICP (TOT	AL)									
Barium	NELAP	2.5	2.5		49.4	μg/L	1	05/12/2025 17:02	238860		
Boron	NELAP	10.0	10.0		4850	μg/L	1	05/12/2025 17:02	238860		
Calcium	NELAP	0.200	0.200		121	mg/L	1	05/12/2025 17:02	238860		
SW-846 3005A, 6020A, MET	ALS BY ICPMS (T	OTAL)									
Arsenic	NELAP	1.0	1.0		< 1.0	μg/L	5	05/12/2025 16:18	238860		
Cobalt	NELAP	2.0	2.0		16.8	μg/L	5	05/12/2025 16:18	238860		
Lithium	*	10.0	10.0		12.4	μg/L	5	05/12/2025 16:18	238860		
Molybdenum	NELAP	1.0	1.0		233	μg/L	5	05/12/2025 16:18	238860		
Selenium	NELAP	1.0	1.0		< 1.0	μg/L	5	05/12/2025 16:18	238860		
Results have less certainty for N	Mo - Client Requested	d Quantit	ation Limi	t is below t	he calibration r	ange.					

Laboratory Results

http://www.teklabinc.com/

Client: Sikeston Board of Municipal Utilities Work Order: 25050733

Client Project: Fly Ash Pond (FAP)

Report Date: 20-May-25

Lab ID: 25050733-008 Client Sample ID: Field Blank

Matrix: AQUEOUS Collection Date: 05/06/2025 12:01

Analyses	Certification	MDL	RL	Qual	Result	Units	DF	Date Analyzed	Batch
STANDARD METHODS 254	10 C (TOTAL) 2015								
Total Dissolved Solids	NELAP	20	20		< 20	mg/L	1	05/10/2025 16:28	R365217
SW846 9056A TOTAL ANIC	NIC COMPOUNDS	BY ION	N CHRO	MATOGR <i>A</i>	\PHY				
Fluoride	NELAP	0.02	0.25		ND	mg/L	5	05/09/2025 17:13	R364707
Chloride	NELAP	0.50	4.00		ND	mg/L	5	05/09/2025 17:13	R364707
Sulfate	NELAP	0.50	10.0		ND	mg/L	5	05/09/2025 17:13	R364707
SW-846 3005A, 6010B, ME	TALS BY ICP (TOT	AL)							
Barium	NELAP	2.5	2.5		< 2.5	μg/L	1	05/12/2025 17:07	238860
Boron	NELAP	10.0	10.0		< 10.0	μg/L	1	05/12/2025 17:07	238860
Calcium	NELAP	0.200	0.200		< 0.200	mg/L	1	05/12/2025 17:07	238860
SW-846 3005A, 6020A, ME	TALS BY ICPMS (T	OTAL)							
Arsenic	NELAP	1.0	1.0		< 1.0	μg/L	5	05/12/2025 16:24	238860
Cobalt	NELAP	2.0	2.0		< 2.0	μg/L	5	05/12/2025 16:24	238860
Lithium	*	10.0	10.0		< 10.0	μg/L	5	05/12/2025 16:24	238860
Molybdenum	NELAP	1.0	1.0		< 1.0	μg/L	5	05/12/2025 16:24	238860
Selenium	NELAP	1.0	1.0		< 1.0	μg/L	5	05/12/2025 16:24	238860
Results have less certainty for	Mo - Client Requested	d Quantita	ation Limi	t is below th	e calibration r	range.			

Laboratory Results

http://www.teklabinc.com/

Client: Sikeston Board of Municipal Utilities Work Order: 25050733

Client Project: Fly Ash Pond (FAP)

Report Date: 20-May-25

Lab ID: 25050733-009 Client Sample ID: Trip Blank

Matrix: TRIP BLANK Collection Date: 05/08/2025 10:00

Analyses	Certification	MDL	RL	Qual	Result	Units	DF	Date Analyzed	Batch
STANDARD METHODS 254	40 C (TOTAL) 2015								
Total Dissolved Solids	NELAP	20	20		< 20	mg/L	1	05/10/2025 16:28	R365217
SW846 9056A TOTAL ANIO	ONIC COMPOUNDS	BY ION	N CHRO	MATOGRAF	PHY				
Fluoride	NELAP	0.02	0.25		ND	mg/L	5	05/09/2025 17:25	R364707
Chloride	NELAP	0.50	4.00		ND	mg/L	5	05/09/2025 17:25	R364707
Sulfate	NELAP	0.50	10.0		ND	mg/L	5	05/09/2025 17:25	R364707
SW-846 3005A, 6010B, ME	TALS BY ICP (TOT	AL)							
Barium	NELAP	2.5	2.5		< 2.5	μg/L	1	05/12/2025 17:07	238860
Boron	NELAP	10.0	10.0		< 10.0	μg/L	1	05/12/2025 17:07	238860
Calcium	NELAP	0.200	0.200		< 0.200	mg/L	1	05/12/2025 17:07	238860
SW-846 3005A, 6020A, ME	TALS BY ICPMS (T	OTAL)							
Arsenic	NELAP	1.0	1.0		< 1.0	μg/L	5	05/12/2025 16:30	238860
Cobalt	NELAP	2.0	2.0		< 2.0	μg/L	5	05/12/2025 16:30	238860
Lithium	*	10.0	10.0		< 10.0	μg/L	5	05/12/2025 16:30	238860
Molybdenum	NELAP	1.0	1.0		< 1.0	μg/L	5	05/12/2025 16:30	238860
Selenium	NELAP	1.0	1.0		< 1.0	μg/L	5	05/12/2025 16:30	238860
Results have less certainty for	Mo - Client Requeste	d Quantita	ation Limi	t is below the	calibration i	range.			

Appendix 3

Laboratory Quality Assurance/Quality Control Data

Appendix 3

Laboratory Quality Assurance/Quality Control Data 12th CCR Compliance Sampling Event (2nd 2024 Semi-annual Detection Monitoring Event) (September 25, 2024)

http://www.teklabinc.com/

Client: Sikeston Board of Municipal Utilities Work Order: 24092127

SampID: MBLK Cert RL Qual Result Spike SPK Ref Val VREC Low Limit High Limit Analyzed Color Dissolved Solids 20 < 20 16.00 0 0 0 -1.00 100 09/30/20	Batch R353970	SampType:	MBLK		Units mg/L							
Analyses												Date
Total Dissolved Solids	Analyses		Cert	RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Total Dissolved Solids 20 420 16.00 0 0 0 100 0 0 0 0 0	Total Dissolved Solid	ds		20		< 20	16.00	0	0	-100	100	09/30/202
Batch R353970 SampType: LCS	Total Dissolved Solid	ds		20		< 20	16.00	0	0	-100	100	09/30/202
SampID: LCS	Total Dissolved Solid	ds		20		< 20	16.00	0	0	-100	100	09/30/202
Native Cert No Native Spike Spike		SampType:	LCS		Units mg/L							Date
Total Dissolved Solids	Analyses		Cert	RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Total Dissolved Solids 20 978 1000 0 97.8 90 110 09/30/20	Total Dissolved Solid	ds		20		988	1000	0	98.8	90	110	09/30/2024
Batch R353970 SampType: DUP Units mg/L SPK Ref Val RPD Limit 10 Date Analyzed Analyses Cert RL Qual Result Spike SPK Ref Val %REC RPD Ref Val %RPD Limit 10 Batch R353970 SampType: DUP Units mg/L RPD Limit 10 Date Analyzed SampID: 24091849-001ADUP Analyses Cert RL Qual Result Spike SPK Ref Val %REC RPD Ref Val %RPD Limit 10 Analyses Cert RL Qual Result Spike SPK Ref Val %REC RPD Ref Val %RPD Limit 10 Batch R353970 SampType: DUP Units mg/L SampID: 24092102-008BDUP Analysed Units mg/L RPD Limit 10 Analyses Cert RL Qual Result Spike SPK Ref Val %REC RPD Ref Val %RPD Analyzed Analyzed Golids 20 584 SPK Ref Val %REC RPD Ref Val %RPD Analyzed Analyzed Golids 20 584 Date Analyzed Golids Date Analyzed Golids 20 09/30/20 Date Analyzed Golids Date Analyzed Analyzed Golids SPK Ref Val %REC RPD Ref Val %RPD Analyzed Golids Date Analyzed Analyzed Golids Date Analyzed Golids	Total Dissolved Solid	ds		20		968	1000	0	96.8	90	110	09/30/2024
Samp D: 24092127-009ADUP	Total Dissolved Solid	ds		20		978	1000	0	97.8	90	110	09/30/2024
Analyses			DUP		Units mg/L					RPD Lir	nit 10	Date
SampType: DUP	Analyses		Cert	RL	Oual	Result	Spike	SPK Ref Val	%REC	RPD Ref Va	al %RPD	Analyzed
SampID: 24091849-001ADUP Analyses Cert RL Qual Result Spike SPK Ref Val %REC RPD Ref Val %RPD Analyzed Ana	Total Dissolved Solid	ds				< 20	·			0	0.00	09/30/2024
Analyses			DUP		Units mg/L					RPD Lir	nit 10	
Total Dissolved Solids 20	·	9-001ADUP	Cert	RL	Qual	Result	Spike	SPK Ref Val	%REC	RPD Ref Va	al %RPD	Date Analyzed
Date Analyses Cert RL Qual Result Spike SPK Ref Val %REC RPD Ref Val %RPD Analyzed Analyzed Analyzed Analyzed Sw846 9056A TOTAL ANIONIC COMPOUNDS BY ION CHROMATOGRAPHY	Total Dissolved Solid	ds								1784	0.89	09/30/202
Analyses Cert RL Qual Result Spike SPK Ref Val %REC RPD Ref Val %RPD Analyzed Total Dissolved Solids 20 584 600.0 2.70 09/30/20 SW846 9056A TOTAL ANIONIC COMPOUNDS BY ION CHROMATOGRAPHY Batch R353791 SampType: MBLK Units mg/L SampID: MBLK/ICB Date Analyses Cert RL Qual Result Spike SPK Ref Val %REC Low Limit High Limit Fluoride 0.05 ND 09/27/20 Chloride 0.50 ND 09/27/20			DUP		Units mg/L					RPD Lir	nit 10	
Total Dissolved Solids 20 584 600.0 2.70 09/30/20 SW846 9056A TOTAL ANIONIC COMPOUNDS BY ION CHROMATOGRAPHY Batch R353791 SampType: MBLK Units mg/L SampID: MBLK/ICB Analyses Cert RL Qual Result Spike SPK Ref Val %REC Low Limit High Limit Analyzed Analyzed Chloride 0.05 ND 09/27/20 Chloride 0.50 ND 09/27/20	·	0000001	Cert	DΙ	Oual	Pacult	Snika	SPK Ref Val	%REC	RPD Ref Va	al %RPD	Date Analyzed
Batch R353791 SampType: MBLK Units mg/L SampID: MBLK/ICB Analyses Cert RL Qual Result Spike SPK Ref Val %REC Low Limit High Limit Analyzed Fluoride 0.05 ND Chloride 0.50 ND O9/27/20		ds	Cert		Quai		Spike	0	70.120			09/30/202
Batch R353791 SampType: MBLK Units mg/L SampID: MBLK/ICB Analyses Cert RL Qual Result Spike SPK Ref Val %REC Low Limit High Limit Pluoride Fluoride 0.05 ND Chloride 0.50 ND O9/27/20	SW846 9056A TO	TAL ANIONI	C COMPO	פחמווכ	S BY ION C	HROMATOG	RAPHY					
Analyses Cert RL Qual Result Spike SPK Ref Val %REC Low Limit High Limit Analyzed Analyzed Chloride 0.05 ND 09/27/20 Chloride 0.50 ND 09/27/20				CHD								
Fluoride 0.05 ND 09/27/20 Chloride 0.50 ND 09/27/20		3	Q .	DI	0 1	D. I.	0.1	CDV Det Vel	0/ DEC	Low Liesis	High Line!	
Chloride 0.50 ND 09/27/20			Cert		Qual		Spike	SPK Ket Val	%KEU	LOW LIMIT	rign Limit	

http://www.teklabinc.com/

Client: Sikeston Board of Municipal Utilities Work Order: 24092127

SW846 9056A TOTAL ANION		JUND		INCIVIATOR	JRAPHI					
Batch R353791 SampType SampID: LCS/ICV/QCS	: LCS		Units mg/L							
Analyses	Cert	RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Date Analyzed
Fluoride		0.05		1.02	1.000	0	102.4	90	110	09/27/2024
Chloride		0.50		20.1	20.00	0	100.5	90	110	09/27/2024
Sulfate		1.00		18.5	20.00	0	92.6	90	110	09/27/2024
Batch R353791 SampType SampID: 24092062-001BMS	: MS		Units mg/L							Date
Analyses	Cert	RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Fluoride		0.50		50.6	10.00	40.94	96.2	80	120	09/27/2024
Batch R353791 SampType SampID: 24092062-001BMSD	: MSD		Units mg/L					RPD Lir	nit 15	Date
Analyses	Cert	RL	Oual	Result	Spike	SPK Ref Val	%REC	RPD Ref Va	al %RPD	Analyzed
Fluoride		0.50	Q out	50.2	10.00	40.94	92.3	50.57	0.78	09/27/2024
Batch R353791 SampType SampID: 24092088-001AMS		D.Y.	Units mg/L	5	a ::	CDK D-f V-l	0/050	l avvil imit	I Dale I Seese	Date Analyzed
Analyses	Cert	RL	Qual	Result	Spike	SPK Ref Val		Low Limit	High Limit	
Fluoride		0.50		10.4	10.00	0.2720	101.7	80	120	09/27/2024
Chloride		5.00		211	200.0	9.752	100.8	80	120	09/27/2024
Sulfate		10.0		252	200.0	65.61	93.3	80	120	09/27/2024
Batch R353791 SampType	: MSD		Units mg/L					RPD Lir	nit 15	
SampID: 24092088-001AMSD Analyses	Cert	RL	Qual	Result	Spike	SPK Ref Val	%REC	RPD Ref Va	al %RPD	Date Analyzed
Fluoride	Cort	0.50	Quai	10.5	10.00	0.2720	101.9	10.44	0.21	09/27/2024
Chloride		5.00		211	200.0	9.752	100.8	211.4	0.03	09/27/2024
Sulfate		10.0		252	200.0	65.61	93.4	252.3	0.05	09/27/2024
	: MS		Units mg/L							Date
Batch R353791 SampType SampID: 24092102-001CMS										
SampID: 24092102-001CMS Analyses	Cert	RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
SampID: 24092102-001CMS		0.50	Qual	Result	Spike 10.00	SPK Ref Val	%REC 103.2	Low Limit 80	High Limit	
SampID: 24092102-001CMS Analyses	Cert		Qual							Analyzed

http://www.teklabinc.com/

Client: Sikeston Board of Municipal Utilities Work Order: 24092127

SW846 9056A TOTAL ANION	IC COMPO	OUNDS	S BY ION C	HROMATOGR	APHY					
Batch R353791 SampType: SampID: 24092102-001CMSD	MSD		Units mg/L					RPD Lin	nit 15	
	Cert	RL	Ouel	Result	Spike	SPK Ref Val	%REC	RPD Ref Va	al %RPD	Date Analyzed
Analyses Fluoride	*	0.50	Qual	10.3	10.00	0	103.1	10.32	0.14	09/27/2024
Chloride	*	5.00		205	200.0	4.922	100.2	205.6	0.14	09/27/2024
	*									
Sulfate		10.0		231	200.0	44.83	92.9	231.6	0.39	09/27/2024
Batch R353791 SampType: SampID: 24092127-006AMS	MS		Units mg/L							Date
Analyses	Cert	RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Fluoride	*	0.06		1.32	1.000	0.2797	104.3	80	120	09/27/2024
Chloride	*	0.55		35.8	20.00	13.68	110.6	80	120	09/27/2024
Sulfate	*	1.10		127	20.00	106.1	105.4	80	120	09/27/2024
Batch R353791 SampType: SampID: 24092127-006AMSD	MSD		Units mg/L					RPD Lir	nit 15	5.
Analyses	Cert	RL	Qual	Result	Spike	SPK Ref Val	%RFC	RPD Ref Va	al %RPD	Date Analyzed
Fluoride	*	0.06	Quai	1.33	1.000	0.2797	105.5	1.323	0.89	09/27/2024
Chloride	*	0.55		35.9	20.00	13.68	111.0	35.80	0.25	09/27/2024
Sulfate	*	1.10		127	20.00	106.1	105.5	127.1	0.01	09/27/2024
Batch R353791 SampType: SampID: 24092166-001CMS	MS		Units mg/L							Date
Analyses	Cert	RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Fluoride	*	0.50		10.5	10.00	0.2330	102.5	80	120	09/27/2024
Chloride	*	5.00		209	200.0	6.312	101.5	80	120	09/27/2024
Sulfate	*	10.0		222	200.0	34.11	93.9	80	120	09/27/2024
Batch R353791 SampType:	MSD		Units mg/L					RPD Lir	nit 15	
SampID: 24092166-001CMSD Analyses	Cert	RL	Qual	Result	Spike	SPK Ref Val	%REC	RPD Ref Va	al %RPD	Date Analyzed
Fluoride	*	0.50	Quai	10.5	10.00	0.2330	102.7	10.48	0.18	09/27/2024
Chloride	*	5.00		210	200.0	6.312	101.6	209.3	0.12	09/27/2024
Sulfate	*	10.0		222	200.0	34.11	93.8	221.8	0.01	09/27/2024
Canato		10.0			200.0	J 1 1	30.0	221.0	5.01	30,21,2024

http://www.teklabinc.com/

Client: Sikeston Board of Municipal Utilities Work Order: 24092127

SW-846 3005A, 6010B, ME	TALS BY ICP	(TOTA	L)							
	pe: MBLK	•	Jnits mg/L							
SampID: MBLK-228988										Date
Analyses	Cert	RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Calcium		0.100		< 0.100	0.0350	0	0	-100	100	10/01/2024
Calcium		0.100		< 0.100	0.0350	0	0	-100	100	09/30/2024
Dutti	pe: LCS	l	Jnits mg/L							
SampID: LCS-228988										Date
Analyses	Cert	RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Calcium		0.100		2.49	2.500	0	99.6	85	115	09/30/2024
Calcium		0.100		2.52	2.500	0	100.7	85	115	10/01/2024
Batch 228995 SampTy	pe: MBLK	l	Jnits µg/L							_
Analyses	Cert	RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Date Analyzed
Barium		2.5		< 2.5	0.7000	0	0	-100	100	10/02/2024
Beryllium		0.5		< 0.5	0.2000	0	0	-100	100	10/02/2024
Boron		20.0		< 20.0	9.000	0	0	-100	100	10/02/2024
Cadmium		2.0		< 2.0	0.5000	0	0	-100	100	10/02/2024
Calcium		0.100		< 0.100	0.0350	0	0	-100	100	10/01/2024
Chromium		5.0		< 5.0	2.800	0	0	-100	100	10/02/2024
Batch 228995 SampTyl SampID: LCS-228995	pe: LCS	l	Jnits μg/L							Date
Analyses	Cert	RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Barium		2.5		2100	2000	0	105.0	85	115	10/02/2024
Beryllium		0.5		55.0	50.00	0	110.0	85	115	10/02/2024
Boron		20.0		509	500.0	0	101.7	85	115	10/02/2024
Cadmium		2.0		50.7	50.00	0	101.4	85	115	10/02/2024
Calcium		0.100		2.50	2.500	0	100.1	85	115	10/01/2024
Chromium		5.0		213	200.0	0	106.4	85	115	10/02/2024

Thallium

Quality Control Results

http://www.teklabinc.com/

Client: Sikeston Board of Municipal Utilities Work Order: 24092127

Client Project: Fly Ash Pond (FAP) Report Date: 21-Oct-24

Batch 228988 SampType SampID: MBLK-228988	e: MBLK		Units µg/L							D .
Analyses	Cert	RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Date Analyzed
Antimony		1.0	4	< 1.0	0.4500	0	0	-100	100	09/30/2024
Arsenic		1.0		< 1.0	0.3750	0	0	-100	100	09/30/2024
Barium		1.0		< 1.0	0.7000	0	0	-100	100	09/30/2024
Cadmium		1.0		< 1.0	0.1340	0	0	-100	100	09/30/2024
Calcium		125		< 125	70.00	0	0	-100	100	10/01/2024
Chromium		1.5		< 1.5	0.7000	0	0	-100	100	09/30/2024
Cobalt		1.0		< 1.0	0.1150	0	0	-100	100	09/30/2024
Lead		1.0		< 1.0	0.6000	0	0	-100	100	09/30/2024
Lithium	*	3.0		< 3.0	1.450	0	0	-100	100	09/30/2024
Molybdenum		1.5		< 1.5	0.6000	0	0	-100	100	09/30/2024
Selenium		1.0		< 1.0	0.6000	0	0	-100	100	09/30/2024
Thallium		2.0		< 2.0	0.9500	0	0	-100	100	09/30/2024
Batch 228988 SampType SampID: LCS-228988	e: LCS		Units µg/L							Date
Analyses	Cert	RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Antimony		1.0		502	500.0	0	100.3	80	120	09/30/2024
Arsenic		1.0		516	500.0	0	103.3	80	120	09/30/2024
Barium		1.0		2110	2000	0	105.5	80	120	10/01/2024
Cadmium		1.0		47.4	50.00	0	94.9	80	120	09/30/2024
Calcium		125		2900	2500	0	116.0	80	120	10/01/2024
		1.5		194	200.0	0	97.0	80	120	09/30/2024
Chromium		1.5								
Chromium Cobalt		1.0		466	500.0	0	93.2	80	120	09/30/2024
				466 475	500.0 500.0	0	93.2 95.0	80 80	120 120	09/30/2024 09/30/2024
Cobalt	*	1.0								
Cobalt Lead	*	1.0 1.0		475	500.0	0	95.0	80	120	09/30/2024

250.0

201

0

2.0

120

09/30/2024

80

80.4

http://www.teklabinc.com/

Client: Sikeston Board of Municipal Utilities Work Order: 24092127

Batch 228995 S	ampType:	MBLK		Units µg/L							
SampID: MBLK-228999	5										Date
Analyses		Cert	RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Antimony			1.0		< 1.0	0.4500	0	0	-100	100	10/01/2024
Arsenic			1.0		< 1.0	0.3750	0	0	-100	100	10/01/2024
Barium			1.0		< 1.0	0.7000	0	0	-100	100	10/01/2024
Cadmium			1.0		< 1.0	0.1340	0	0	-100	100	10/01/2024
Calcium			125		< 125	70.00	0	0	-100	100	10/01/2024
Chromium			1.5		< 1.5	0.7000	0	0	-100	100	10/01/2024
Cobalt			1.0		< 1.0	0.1150	0	0	-100	100	10/01/2024
Lead			1.0		< 1.0	0.6000	0	0	-100	100	10/01/2024
Lithium		*	3.0		< 3.0	1.450	0	0	-100	100	10/01/2024
Molybdenum			1.5		< 1.5	0.6000	0	0	-100	100	10/01/2024
Selenium			1.0		< 1.0	0.6000	0	0	-100	100	10/01/2024
Thallium			2.0		< 2.0	0.9500	0	0	-100	100	10/01/2024
Batch 228995 S SampID: LCS-228995	ampType:	LCS		Units µg/L							Date
Analyses		Cert	RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Date Analyzed
Antimony			1.0		574	500.0	0	114.8	80	120	10/01/202
Arsenic			1.0		514	500.0	0	102.8	80	120	10/01/202
Barium			1.0		2110	2000	0	105.6	80	120	10/01/202
Cadmium			1.0		50.6	50.00	0	101.1	80	120	10/01/202
Calcium			125		2350	2500	0	93.9	80	120	10/01/202
Chromium			1.5		206	200.0	0	103.1	80	120	10/01/202
							•	100.6	00	120	10/01/2024
Cobalt			1.0		503	500.0	0	100.0	80	120	10/01/202
Cobalt Lead			1.0 1.0		503 532	500.0 500.0	0	106.4	80	120	
		*									10/01/202
Lead		*	1.0		532	500.0	0	106.4	80	120	10/01/2024 10/01/2024 10/01/2024
Lead Lithium Molybdenum		*	1.0 3.0		532 533	500.0 500.0	0	106.4 106.6	80 80	120 120	10/01/202
Lead Lithium Molybdenum Selenium		*	1.0 3.0 1.5		532 533 484	500.0 500.0 500.0	0 0 0	106.4 106.6 96.7	80 80 80	120 120 120	10/01/202 10/01/202 10/01/202 10/01/202
Lead Lithium Molybdenum Selenium Thallium	AL)	·	1.0 3.0 1.5 1.0		532 533 484 511	500.0 500.0 500.0 500.0	0 0 0	106.4 106.6 96.7 102.3	80 80 80 80	120 120 120 120	10/01/202 10/01/202 10/01/202 10/01/202
Lead Lithium Molybdenum Selenium Thallium SW-846 7470A (TOTE Batch 229020 S	ampType:	* MBLK	1.0 3.0 1.5 1.0	Units µg/L	532 533 484 511	500.0 500.0 500.0 500.0	0 0 0	106.4 106.6 96.7 102.3	80 80 80 80	120 120 120 120	10/01/202- 10/01/202- 10/01/202- 10/01/202- 10/01/202-
Lead Lithium Molybdenum Selenium Thallium	ampType:	* MBLK Cert	1.0 3.0 1.5 1.0	Units µg/L Qual	532 533 484 511	500.0 500.0 500.0 500.0	0 0 0	106.4 106.6 96.7 102.3 90.6	80 80 80 80	120 120 120 120	10/01/202 10/01/202 10/01/202 10/01/202

http://www.teklabinc.com/

Client: Sikeston Board of Municipal Utilities Work Order: 24092127

SW-846 7470A (TOTA	AL)										
Batch 229020 Sa	ampType:	LCS		Units µg/L							
SampID: LCS-229020											Date
Analyses		Cert	RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Mercury			0.20		4.30	5.000	0	86.0	85	115	10/01/2024
Batch 229020 Sa	ampType:	MS		Units µg/L							
SampID: 24092127-005	5CMS										Date
Analyses		Cert	RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Mercury			0.20		4.82	5.000	0	96.3	75	125	10/01/2024
Batch 229020 Sa	ampType:	MSD		Units µg/L					RPD Lir	nit 15	
SampID: 24092127-005	5CMSD										Date
Analyses		Cert	RL	Qual	Result	Spike	SPK Ref Val	%REC	RPD Ref V	al %RPD	Analyzed
Mercury	•	•	0.20	•	4.79	5.000	0	95.8	4.817	0.57	10/01/2024

Receiving Check List

http://www.teklabinc.com/

Client: Sikeston Board of Municipal Utilities			Work Or	der: 24092127
Client Project: Fly Ash Pond (FAP)			Report I	Date: 21-Oct-24
Carrier: UPS Completed by: On: 27-Sep-24 Laura E Henson	Rev C	ved By: JMD iewed by: on: ep-24	Ellee Hopkins	ns
Pages to follow: Chain of custody 1	Extra pages included	21		
Shipping container/cooler in good condition?	Yes 🗸	No 🗌	Not Present	Temp °C 14.3
Type of thermal preservation?	None	Ice 🗸	Blue Ice	Dry Ice
Chain of custody present?	Yes 🔽	No 🗌		
Chain of custody signed when relinquished and received?	Yes 🗹	No 📙		
Chain of custody agrees with sample labels?	Yes 🗹	No 🗌		
Samples in proper container/bottle?	Yes 🗹	No 🗀		
Sample containers intact?	Yes ⊻	No 🗔		
Sufficient sample volume for indicated test?	Yes ✔ Yes ✔	No 🗔		
All samples received within holding time?	Yes ⊻ Field ⊻	No └┘ Lab ̄	NA 🗆	
Reported field parameters measured: Container/Temp Blank temperature in compliance?	Yes □	No ✓	INA L	
When thermal preservation is required, samples are complia 0.1°C - 6.0°C, or when samples are received on ice the sam	nt with a temperature			
Water – at least one vial per sample has zero headspace?	Yes 🗌	No	No VOA vials 🗸	
Water - TOX containers have zero headspace?	Yes	No 🗌	No TOX containers	
Water - pH acceptable upon receipt?	Yes 🗹	No 🗌	NA 🗌	
NPDES/CWA TCN interferences checked/treated in the field?	Yes	No 🗌	NA 🗹	
Any No responses i	nust be detailed bel	ow or on the	COC.	

pH strip #96651. - NR/lhenson - 9/27/2024 10:44:52 AM

The samples were out of temperature compliance upon receipt. Ice was melted upon arrival. Client was notified via work order summary. - $\frac{1}{2}$ lhenson/EAH - $\frac{9}{27}$ /2024 10:45:01 AM

Trip Blank collection date and time will be reported as the received date and time (end of trip). - ehurley - 9/27/2024 4:50:56 PM

CHAIN OF CUSTODY pg. 1 of 1 Work order # 2469212

TEKLAB, INC. 5445 Horseshoe Lake Road - Collinsville, IL 62234 - Phone: (618) 344-1004 - Fax: (618) 344-1005

Client:	Sikeston Board o	f Municipal Util	lities						Sa	ımı	ples	on:	X I	CE	E	LUE	ICE	∭ N	O ICE	=	[4	1.3	°c	***************************************	LTG#		0
Address:	107 E Malone Av	=							Pr	es	erve	d in	E L	.AB	⊠ F	IELD				<u>FOI</u>	<u> </u>	B U	<u>SE C</u>	<u>)NL</u>	Y		
City / State	/ Zip Sikeston, MO 63	801							La	b l	Note	es:	n. /		nd	,			-	10	m	114	48			_/	1
Contact:	Luke St. Mary		_ Phone	: ,	(573)	475-3	3119		L			9	66	<u>57</u>	9	/2-	7		٠.٠٠	<u>u</u>	101	2	4,	16	10	1	4/27
E-Mail:	Istmary@sbmu.net		Fax:									omm	ents														
•	s known to be involved in I						es 2		To	tal N	Aetal	s = Ba	Be E	Cd C	a Cr	(ICP),	, Sb A	s Co	Pb Li	Mo S	e TI (ICP/N	/IS) ar	nd Hg			
Are there any requ	s known to be hazardous? uired reporting limits to be nent section. 🏽 Yes [met on the req				Yes elease		No e																			
Proj	ject Name/Number	1	Sample	Colle	ecto	r's N	ame			N	ΛAΤ	RIX	******				INE	DICA	TEA	NAI	-YSI	S RI	EQU	EST	ED		
Fly Ash Pond (FA	P)									റ							₽,										
	s Requested	Billing Ins	structions	# aı	ıd Ty	pe of	Conta	iners	₫	Groundwater	Тър			오	픐	골	Ra226/228 (SUB)	ည		Total Meta						***************************************	*****
	1-2 Day (100% Surcharge)			اے	<u>.</u>				Aqueous	₹ E	Blank			Chloride	Field pH	Fluoride	228 (Sulfate	TDS	Met							And Andrewson
Other	3 Day (50% Surcharge)	T		S S S	HNO3				S	ater	킂			Ü	-	ű	SUB)			als							anne de la company de la compa
Lab Use Only	Sample Identification		ne Sampled	1	1		+	_						×	X	X	X	X		X							
24072127001		9/25/2		ш				4		X									X	X							
007	MW-2	9/25/2	4 1/0/	1				<u></u>	************	X	e remayers	CONTRACTOR		×	denimination and the	X	X	X			personal sections	CTROMINENSE	C-expension on the		ales, con accord	continuos comp	ganganona maganesesantin
903	MW-3	9/25/2	4 1347	1						X	o Consideration		777	X		Х	X	X	X	Χ		397/11/11/11	¢erronorou.co				
604	MW-7	9/25/29	4 1014	1	3			L		X			-	X	Х	X	X	X	X	X	genise ense e sort	Stiffe community	derroscorr	per control	Carrieron ma	20,000000000000000000000000000000000000	
005	MW-9	9/25/24	1 0936	1	3					X				Х	X	Х	X	Х	X	Х			(hoxx00000000				harman daram.
006	MVV-10	9/25/24	1 1247	1	3				1	X				Х	Х	X	Х	Х	Х	Х							
007	Duplicate	9/25/2	24 🕮	1	3					Х				×	Х	Х	X	X	Х	Х							
008	Trip Blank		-	1	3	\sqcap			27,074,722,	diame.	X	annound desire	ioning overvior	Х	octores record	X	X	Х	Х	Х	bezazere sonor	J	\$eravarrantes*		Southernord		100000000000000000000000000000000000000
000	Field Blank	9/25/2	4 1014	1	3			1	X	dirawa.	na praessa nace			×		X	X	X	Х	Χ		Taylor and the same					
	-			П	Ť				1	denom.	- I I I I I I I I I I I I I I I I I I I	N.W. William	T	Î	deserve	*	-	-cheardenness	doutrazonos	\$2000000	Secretaria (* 1990)	200000000000000000000000000000000000000			R-stein-branes.	novano, irano	
	Relinquisfied By			Da	te/T	ime			Ĺ		<u> </u>			eceiv									D	ate/	Time		
Hill	1/ 1/200		9/26/2	4	C	715	$f_{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline$				Sect	<u> </u>)a.	7_		DC.	êle.				9/-	27	<u> 12 y</u>	;	10!	//	
1/0									6							. •	-	FF2()	·		·····						
																A-127-11-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-											

The individual signing this agreement on behalf of the client, acknowledges that he/she has read and understands the terms and conditions of this agreement, and that he/she has the authority to sign on behalf of the client. See www.teklabinc.com for terms and conditions.

BottleOrder:

Summit Environmental Technologies, Inc. 3310 Win St. Cuyahoga Falls, Ohio 44223 TEL: (330) 253-8211 FAX: (330) 253-4489 Website: http://www.settek.com

QC SUMMARY REPORT

WO#:

24100195

18-Oct-24

Client: TEKLAB Inc,

Project: 24092127 **BatchID: 79400**

Sample ID: MB-79400 Client ID: PBW	SampType: MBLK Batch ID: 79400	TestCode: Radium-228_ TestNo: E904.0	Units: pCi/L E903-904		Prep Da Analysis Da	te: 10/14/2 te: 10/17/2		RunNo: 195 SeqNo: 528		
Analyte	Result	PQL SPK value S	PK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Radium-228	ND	1.00	0	0						U
Yield	0.910		0	0						
Sample ID: I CS-79400	SampType: LCS	TestCode: Radium-228	Units: nCi/I		Pren Da	te: 10/14/ 2	2024	RunNo: 19	352	

Sample ID: LCS-79400 Client ID: LCSW	SampType: LCS Batch ID: 79400		de: Radium-2 do: E904.0	28_ Units: pCi/L E903-904		Prep Da	te: 10/14/2 te: 10/17/2		RunNo: 198 SeqNo: 528		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Radium-228 Yield	3.48 0.980	1.00	5.000	0	69.6 0	50	130				

Sample ID: LCSD-79400	SampType: LCSD	TestCod	de: Radium-2	28_ Units: pCi/L		Prep Da	te: 10/14/2	024	RunNo: 19	5352	
Client ID: LCSS02	Batch ID: 79400	TestN	No: E904.0	E903-904		Analysis Da	te: 10/17/2	024	SeqNo: 528	36501	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Radium-228 Yield	3.04 1.00	1.00	5.000	0	60.8 0	50	130	3.480 0.9800	13.5 2.02	20	

Qualifiers: H Holding times for preparation or analysis exceeded

ND Not Detected

 $U \qquad \text{Samples with CalcVal} < \text{MDL}$

J Analyte detected below quantitation limits

PL Permit Limit

W Sample container temperature is out of limit as specified at testcode

M Manual Integration used to determine area response

RL Reporting Detection Limit

Summit Environmental Technologies, Inc. 3310 Win St. Cuyahoga Falls, Ohio 44223 TEL: (330) 253-8211 FAX: (330) 253-4489

QC SUMMARY REPORT

WO#:

24100195

18-Oct-24

Client: TEKLAB Inc,

Project: 24092127 **BatchID: 79400**

Website: http://www.settek.com

Sample ID: 24100425-001ADUP	SampType: DUP	TestCod	e: Radium-2	28_ Units: pCi/L		Prep Da	te: 10/14/2	024	RunNo: 19	5352	
Client ID: BatchQC	Batch ID: 79400	TestN	o: E904.0	E903-904		Analysis Da	te: 10/17/2	024	SeqNo: 528	36521	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Radium-228	ND	1.00		0	0			0	0	20	U
Yield	0.950			0	0			1.000	5.13		

Sample ID: 24100427-001ADUP	SampType: DUP	TestCode	e: Radium-2	28_ Units: pCi/L		Prep Date: 10/14/2024	RunNo: 19	5352	
Client ID: BatchQC	Batch ID: 79400	TestNo	D: E904.0	E903-904		Analysis Date: 10/17/2024	SeqNo: 52	86523	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit HighLimit RPD Ref Val	%RPD	RPDLimit	Qual
Radium-228	ND	1.00		0	0	0	0	20	U
Yield	1.00			0	0	1.000	0		

Qualifiers:

Holding times for preparation or analysis exceeded

ND Not Detected

 $U \qquad Samples \ with \ CalcVal < MDL$

J Analyte detected below quantitation limits

L Permit Limit

W Sample container temperature is out of limit as specified at testcode

M Manual Integration used to determine area response

RL Reporting Detection Limit

Summit Environmental Technologies, Inc. 3310 Win St. Cuyahoga Falls, Ohio 44223 TEL: (330) 253-8211 FAX: (330) 253-4489 **QC SUMMARY REPORT**

WO#:

24100195

18-Oct-24

Client: TEKLAB Inc,

Project: 24092127 **BatchID: 79400**

Website: http://www.settek.com

Sample ID: MB-79400	SampType: MBLK	TestCode: Radium-226_ Units: pCi/L	Prep Date: 10/14/2024	RunNo: 195354
Client ID: PBW	Batch ID: 79400	TestNo: E903.0 E903-904	Analysis Date: 10/18/2024	SeqNo: 5286560
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Radium-226	ND	1.00		U
Yield	1.00			
Sample ID: LCS-79400	SampType: LCS	TestCode: Radium-226_ Units: pCi/L	Prep Date: 10/14/2024	RunNo: 195354
Client ID: LCSW	Batch ID: 79400	TestNo: E903.0 E903-904	Analysis Date: 10/18/2024	SeqNo: 5286561
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Radium-226	4.92	1.00 5.000 0	98.4 70 130	
Sample ID: LCSD-79400	SampType: LCSD	TestCode: Radium-226_ Units: pCi/L	Prep Date: 10/14/2024	RunNo: 195354
Client ID: LCSS02	Batch ID: 79400	TestNo: E903.0 E903-904	Analysis Date: 10/18/2024	SeqNo: 5286562
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Radium-226	4.30	1.00 5.000 0	86.0 70 130 4.920	13.4 20
Sample ID: 24100425-001ADUF	SampType: DUP	TestCode: Radium-226_ Units: pCi/L	Prep Date: 10/14/2024	RunNo: 195354
Client ID: BatchQC	Batch ID: 79400	TestNo: E903.0 E903-904	Analysis Date: 10/18/2024	SeqNo: 5286582
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual

Qualifiers: H Holding times for preparation or analysis exceeded

ND Not Detected

 $U \qquad Samples \ with \ CalcVal < MDL$

J Analyte detected below quantitation limits

PL Permit Limit

W Sample container temperature is out of limit as specified at testcode

M Manual Integration used to determine area response

RL Reporting Detection Limit

Summit Environmental Technologies, Inc. 3310 Win St. Cuyahoga Falls, Ohio 44223 TEL: (330) 253-8211 FAX: (330) 253-4489

QC SUMMARY REPORT

WO#:

24100195

18-Oct-24

Client: TEKLAB Inc,

Project: 24092127 **BatchID:** 79400

Website: http://www.settek.com

Sample ID: 24100425-001ADUP	SampType: DUP	TestCode: Radium-2	226_ Units: pCi/L		Prep Da	te: 10/14/2	2024	RunNo: 19	5354	
Client ID: BatchQC	Batch ID: 79400	TestNo: E903.0	E903-904		Analysis Da	te: 10/18/2	2024	SeqNo: 528	86582	
Analyte	Result	PQL SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Radium-226 Yield	ND 0.990	1.00					0 1.000	0 1.01	20 0	U

Sample ID: 24100427-001ADUP	SampType: DUP	TestCode: Radium-22	6_ Units: pCi/L	Prep Date: 10/14/2024 RunNo: 195354	
Client ID: BatchQC	Batch ID: 79400	TestNo: E903.0	E903-904	Analysis Date: 10/18/2024 SeqNo: 5286584	
Analyte	Result	PQL SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qu	ual
Radium-226	ND	1.00		0 0 20 L	U
Yield	1.00			1.000 0 0	

Qualifiers:

Holding times for preparation or analysis exceeded

Not Detected

Samples with CalcVal < MDL

J Analyte detected below quantitation limits

Sample container temperature is out of limit as specified at testcode

Manual Integration used to determine area response

Reporting Detection Limit

TEKLAB, INC. Chain of Custody

	5445 Horses	shoe Lake Road, Co	ollinsville,	, IL 6	2234 Phone	618) 344-1004 Fax	(618) 344	1-10 <u>05</u>			7_	
Are the samples chi	lled? YES NO	With:		ce [Blue Ice		Pres	erved in:	Lab	Field			
Teklab Inc 5445 Horseshoe La Collinsville, IL 6223		Cooler Temp:		2			e Issue reports ar m 226/228 per your u		s via emai	lonly			DW-12
Project#	24092127		1	-			methods must be app			atch QC is red	auired.		pm:30
1 Tojectiii	24002121		l,		Samples collected								
Contact: Requested Due Date:	Elizabeth Hurley Standard TAT	Email: ehurley@To 37096	ekLabInc.cor				518) 344-1004 ext.33						CPM:15
PLEASE NOTE:											7		TOWN 1
If your laboratory does please contact Teklab	s required on the requested not currently hold a NELAP immediately. If your laborate the life of the contract, you	accreditation for the requ ory loses accreditation or i	ested metho s suspended	od and/o	or analytes.	Radium 226/228							CPM 15 CPM 15 CPM 11/1
Lab Use	Sample ID	Sample Date/Time	Preserva		Matrix	<u> </u>							cpm: L
	24092127-001B	09/25/24 8:40am	HNO3		Groundwater 🔻	~							CPM-1
	24092127-002B	09/25/24 11:01am	HNO3	T	Groundwater 🔻	~							
	24092127-003B	09/25/24 1:47pm	HNO3		Groundwater 🔽	~							Cbw: S
	24092127-004B	09/25/24 10:14am	HNO3		Groundwater 🔽	~					granden ing		CPM:
	24092127-005B	09/25/24 9:36am	HNO3		Groundwater 🔻	~					***************************************		CbW:
	24092127-006B	09/25/24 12:47pm	HNO3		Groundwater 🔽	~							.cpm:
	24092127-007B	09/25/24	HNO3	T	Groundwater 🔻	~							CPM:H
	24092127-008B	09/27/24 10:11am	HNO3	-		~							
,	24092127-009B	09/25/24 10:14am	HNO3	T	Cloundwater	~							0H=
			Other	T	Aqueous 🔽								pH: 6
			Other		Aqueous 🔻								: F
*Relinquished By	le	Date/Time	R	Receive	ed By	Fi		D	ate/Time	12/24		PN:2	ph:
				13	:35	1.8	5-0-1-27	1.1				S:NG	DIA.
				7								DN:2	DH.
				DA	ga 20 of 21	-(.11.	7	DN: 7	PH:
Te	eklab maintains a strict policy of Teklab, Inc. protects clients	f client confidentiality and as a confidential information as	such does not directed by lo	ot provide ocal. stat	e client/sampler info te or federal laws. (*)	mation Teklah	without proper authori	zation, and pr	oprietary righ	its, PH		PN: Z PN: Z PN: Z PN: Z PN: Z	tevAp W
	cot	rle	,	,				00011		bh: C	^	11:7	DN: 7

Summit Environmental Technologies, Inc. 3310 Win St. Cuyahoga Falls, Ohio 44223

TEL: (330) 253-8211 FAX: (330) 253-4485 Website: http://www.settek.com

Sample Log-In Check List

Clier	nt Name:	TEK-IL-62234-A		Work Order N	umber: 2	4100195				RcptN	
Logg	ged by:	Anthony W. Brit	ton	10/2/2024 1:35:	:00 PM		0	ntho	y 13	utter	
Com	pleted By:	Anthony W. Brit	ton	10/2/2024 6:07:	:02 PM		0	ntho	4/3	utter	
Revi	ewed By:	Jennifer Woolf		10/2/2024 6:33:	:17 PM			J	mis	1 mw	aces.
<u>Cha</u>	in of Cus	<u>stody</u>									
1.	Is Chain of	Custody complete	∋?			Yes 🗸	•]	No [Not Present [
2.	How was th	ne sample delivere	ed?			<u>FedEx</u>					
1 00	In										
Log 3.	<u>III</u> Coolers are	e present?				Yes 🗹	•]	No [NA [
4.	Shipping co	ontainer/cooler in g	good condition?	•		Yes 🗹		No [
	Custody se	als intact on shipp	oing container/o	ooler?		Yes 🗹]	No [Not Present [
	No.		Seal Date:		;	Signed	By:	[1	
5.	Was an att	empt made to coo	of the samples?			Yes L	_	No	~	NA	
6.	Were all sa	amples received at	t a temperature	of >0° C to 6.0°	°C	Yes 🗆		No [✓	NA	
7	Sampla(a)	in proper contains	r(a)2			Not req Yes ✓		No [
	,	in proper containe	, ,	.12		Yes 🛂	_	No [
_		ample volume for es (except VOA an				Yes 🛂	_	No [
-		rvative added to b		ly proserveu:		Yes [_	No [NA	
10.	vvao preser	ivative added to b	ottico:			100 _	_	140		100	
11.	Is the head	space in the VOA	vials less than	1/4 inch or 6 mr	m?	Yes		No		No VOA Vials	✓
12.	Were any s	sample containers	received broke	n?		Yes]	No	✓		
		rwork match bottle epancies on chain				Yes 🗸		No [
14.	Are matrice	es correctly identifi	ied on Chain of	Custody?		Yes 🗸		No			
15.	Is it clear w	hat analyses were	e requested?			Yes 🗸	•]	No			
		olding times able to				Yes 🗸]	No			
	` '	y customer for aut	,								
_		dling (if applic				,	7	[. 1	
17.	was client	notified of all disci	repancies with	inis order?		Yes		No		NA	
	Perso	n Notified:			Date:						
	By Wi	hom:			Via:	eMail	Phor	ne 🗌 I	Fax _	In Person	_
	Regar	rding:									
	Client	Instructions:									
18.	Additional r	emarks:									
<u>Coole</u>	<u>er Informati</u>	<u>on</u>									
	Cooler No		ondition Sea	I Intact Seal N	No Sea	al Date	Sigr	ned By			
	1	21.7 God	od Not F	resent	Page 21	l of 21					

Appendix 3

Laboratory Quality Assurance/Quality Control Data 13th CCR Compliance Sampling Event (1st 2025 Semi-annual Detection and Assessment Monitoring Event) May 6, 2025

http://www.teklabinc.com/

Client: Sikeston Board of Municipal Utilities Work Order: 25050733

STANDARD METHODS 25	40 C (TOTAL	.) 2015								
Batch R365004 SampTy SampID: MBLK	pe: MBLK		Units mg/L							Date
Analyses	Cert	RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Total Dissolved Solids		20		< 20	16.00	0	0	-100	100	05/10/202
Total Dissolved Solids		20		< 20	16.00	0	0	-100	100	05/09/202
Total Dissolved Solids		20		< 20	16.00	0	0	-100	100	05/09/202
Total Dissolved Solids		20		< 20	16.00	0	0	-100	100	05/10/202
Total Dissolved Solids		20		< 20	16.00	0	0	-100	100	05/10/202
Batch R365004 SampTy	pe: LCS		Units mg/L							Date
Analyses	Cert	RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Total Dissolved Solids		20		914	1000	0	91.4	90	110	05/09/202
Total Dissolved Solids		20		916	1000	0	91.6	90	110	05/10/202
Total Dissolved Solids		20		910	1000	0	91.0	90	110	05/10/202
Total Dissolved Solids		20		918	1000	0	91.8	90	110	05/10/202
Total Dissolved Solids		20		930	1000	0	93.0	90	110	05/09/202
Batch R365004 SampTy	pe: DUP		Units mg/L					RPD Lir	nit 10	
SampID: 25040374-002EDUP	_					00140 4341	0/050	DDD D ()/		Date Analyzed
Analyses	Cert	RL	Qual	Result	Spike	SPK Ref Val	%REC	RPD Ref Va		•
Total Dissolved Solids		20		1360				1344	1.04	05/09/202
Batch R365004 SampTy SampID: 25050826-025ADUP	pe: DUP		Units mg/L					RPD Lir	nit 10	Date
Analyses	Cert	RL	Qual	Result	Spike	SPK Ref Val	%REC	RPD Ref Va	al %RPD	Analyzed
Total Dissolved Solids		20		560				558.0	0.36	05/09/202
Batch R365004 SampTy	pe: DUP		Units mg/L					RPD Lir	nit 10	
SampID: 25050900-004ADUP										Date
Analyses	Cert		Qual	Result	Spike	SPK Ref Val	%REC	RPD Ref Va		Analyzed
Total Dissolved Solids		20		92				92.00	0.00	05/10/202
Batch R365004 SampTy SampID: 25050966-002ADUP	pe: DUP		Units mg/L					RPD Lir	nit 10	Date
Analyses	Cert	RL	Qual	Result	Spike	SPK Ref Val	%REC	RPD Ref Va	al %RPD	Analyzed
1 11101 y 505	CCIT	20	Quai	482	Spire			470.0	2.52	05/10/202

SampID: MBLK/ICB

Cert

RL

0.05

0.50

1.00

Qual

Result

ND

ND

ND

Analyses

Fluoride

Chloride

Sulfate

Quality Control Results

http://www.teklabinc.com/

Client: Sikeston Board of Municipal Utilities Work Order: 25050733

Client Project: Fly Ash Pond (FAP) Report Date: 20-May-25

	e: MBLK		Units mg/L							
SampID: MBLK Analyses	Cert	RL	Oual	Result	Spike	SPK Ref Val	%RFC	Low Limit	High Limit	Date Analyzed
Total Dissolved Solids	CCIT	20	Quai	< 20	16.00	0	0	-100	100	05/10/202
Total Dissolved Solids		20		< 20	16.00	0	0	-100	100	05/10/202
Total Dissolved Solids		20	J	16	16.00	0	100.0	-100	100	05/10/202
Total Dissolved Solids		20	J	< 20	16.00	0	0	-100	100	05/10/202
Batch R365217 SampTyp	e: LCS		Units mg/L							
SampID: LCS	a	D.1	0 1	5 1	a	CDK D-f \/-l	0/ DEC	Laur Lineit	I II ala I issit	Date Analyzed
Analyses	Cert	RL	Qual	Result	Spike	SPK Ref Val		Low Limit		,
Total Dissolved Solids		20		910	1000	0	91.0	90	110	05/10/202
Total Dissolved Solids		20		934	1000	0	93.4	90	110	05/10/202
Total Dissolved Solids		20		916	1000	0	91.6	90	110	05/10/202
Total Dissolved Solids		20		916	1000	0	91.6	90	110	05/10/202
Batch R365217 SampTyp SampID: 25042658-004ADUP	e: DUP		Units mg/L					RPD Lir	nit 10	
•	Cont	DI	Oval	Dogult	Cmileo	SPK Ref Val	%REC	RPD Ref V	al %RPD	Date Analyzed
Analyses Total Dissalved Solids	Cert	RL 50	Qual H	Result 5210	Spike	OI ICICEI VAI	/orce			05/10/202
Total Dissolved Solids		50	П	5210				5535	6.05	05/10/202
Batch R365217 SampTyr SampID: 25050389-001ADUP	e: DUP		Units mg/L					RPD Lir	nit 10	
Analyses	Cert	RL	Qual	Result	Spike	SPK Ref Val	%REC	RPD Ref V	al %RPD	Date Analyzed
Total Dissolved Solids		20	,	462				456.0	1.31	05/10/202
Batch R365217 SampTyp SampID: 25050905-008ADUP	e: DUP		Units mg/L					RPD Lir	nit 10	Date
Analyses	Cert	RL	Oual	Result	Spike	SPK Ref Val	%REC	RPD Ref V	al %RPD	Date Analyzed
Total Dissolved Solids	Cort	50	V uu1	880	Брікс			890.0	1.13	05/10/202

Spike SPK Ref Val %REC

0

0

0

0.0040 0

0.1000 0

0.0990 0

Page 17 of 26	Pa	ae	17	of	26
---------------	----	----	----	----	----

Low Limit High Limit

100

100

100

0

0

0

Date

Analyzed

05/09/2025

05/09/2025

05/09/2025

http://www.teklabinc.com/

Client: Sikeston Board of Municipal Utilities Work Order: 25050733

	IC COMPO	JONE			JIXAL III					
Batch R364707 SampType:	LCS		Units mg/L							
SampID: LCS/ICV/QCS						00110 1111				Date Analyzed
Analyses	Cert	RL	Qual	Result	Spike	SPK Ref Val		Low Limit	High Limit	
Fluoride		0.05		1.04	1.000	0	104.0	90	110	05/09/202
Chloride		0.50		20.7	20.00	0	103.7	90	110	05/09/202
Sulfate		1.00		19.4	20.00	0	97.2	90	110	05/09/202
Batch R364707 SampType: SampID: 25040375-008CMS	MS		Units mg/L							Date
Analyses	Cert	RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Chloride		5.00		1320	200.0	1120	100.4	80	120	05/10/202
Batch R364707 SampType:	MSD		Units mg/L					RPD Lir	nit 15	
SampID: 25040375-008CMSD										Date
Analyses	Cert	RL	Qual	Result	Spike	SPK Ref Val	%REC	RPD Ref Va	al %RPD	Analyzed
Chloride		5.00		1330	200.0	1120	106.0	1320	0.85	05/10/202
Batch R364707 SampType: SampID: 25050733-007AMS	MS		Units mg/L							Date
Analyses	Cert	RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Fluoride		0.25		5.16	5.000	0.1065	101.2	80	120	05/09/202
Chloride		2.50		124	100.0	18.98	105.0	80	120	05/09/202
Sulfate		5.00		403	100.0	302.0	100.9	80	120	05/09/202
Batch R364707 SampType:	MSD		Units mg/L					RPD Lir	nit 15	
SampID: 25050733-007AMSD										Date
Analyses	Cert	RL	Qual	Result	Spike	SPK Ref Val	%REC	RPD Ref Va	al %RPD	Analyzed
Fluoride		0.25		5.13	5.000	0.1065	100.5	5.164	0.62	05/09/202
Chloride		2.50		124	100.0	18.98	104.9	124.0	0.06	05/09/202
Sulfate		5.00		405	100.0	302.0	103.0	402.9	0.54	05/09/202
	MS		Units mg/L							Date
Batch R364707 SampType: SampID: 25050780-002AMS										
SampID: 25050780-002AMS	Cert	RI.	Qual	Result	Snike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
SampID: 25050780-002AMS Analyses	Cert	RL 0.50	Qual	Result	Spike					Analyzed
SampID: 25050780-002AMS	Cert	RL 0.50 5.00	Qual	Result 10.3 207	Spike 10.00 200.0	SPK Ref Val 0.1700 5.190	%REC 100.9 101.1	Low Limit 80 80	High Limit 120 120	

http://www.teklabinc.com/

Client: Sikeston Board of Municipal Utilities Work Order: 25050733

Batch R364707	SampType:	MSD		Units mg/L					RPD Lim	it 15	
SampID: 25050780-	002AMSD										Date
Analyses		Cert	RL	Qual	Result	Spike	SPK Ref Val		RPD Ref Va		Analyzed
Fluoride			0.50		10.4	10.00	0.1700	102.1	10.26	1.19	05/09/202
Chloride			5.00		210	200.0	5.190	102.6	207.4	1.37	05/09/202
Sulfate			10.0		217	200.0	25.60	95.5	214.6	0.93	05/09/202
Batch R364707 SampID: 25050784-	SampType: 002GMS	MS		Units mg/L							Date
Analyses		Cert	RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Fluoride			0.50	S	6.12	10.00	0.2770	58.4	80	120	05/09/202
Sulfate			10.0		1420	200.0	1224	96.6	80	120	05/09/202
Batch R364707 SampID: 25050784-	SampType: 002GMSD	MSD		Units mg/L					RPD Lim	it 15	Date
Analyses		Cert	RL	Qual	Result	Spike	SPK Ref Val	%REC	RPD Ref Va	l %RPD	Analyzed
Fluoride			0.50	S	6.07	10.00	0.2770	58.0	6.118	0.75	05/09/202
Sulfate			10.0		1400	200.0	1224	90.5	1417	0.86	05/09/202
Batch R364707 SampID: 25050800-	SampType: 001FMS	MS		Units mg/L							Date
Analyses		Cert	RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Fluoride			0.50		10.7	10.00	0.1220	105.3	80	120	05/09/202
Chloride			5.00		895	200.0	671.6	111.5	80	120	05/09/202
Sulfate			10.0		504	200.0	287.9	107.9	80	120	05/09/202
Batch R364707	SampType:	MSD		Units mg/L					RPD Lim	it 15	
SampID: 25050800- Analyses	00 ILM2D	Cert	RL	Qual	Result	Spike	SPK Ref Val	%REC	RPD Ref Va	I %RPD	Date Analyzed
Fluoride		CCIT	0.50	Quai	10.2	10.00	0.1220	101.0	10.66	4.19	05/09/202
Chloride			5.00		886	200.0	671.6	107.3	894.6	0.94	05/09/202
Sulfate			10.0		494	200.0	287.9	103.0	503.7	1.99	05/09/202
Batch R364707 SampID: 25050826-	SampType: 001AMS		D.	Units mg/L	D	G ::	CDV Dat Val	%REC	Lour Limit	Lligh Limit	Date Analyzed
Analyses		Cert	RL	Qual	Result	Spike	SPK Ref Val		Low Limit	High Limit	•
Fluoride			0.10		2.03	2.000	0.1050	96.0	80	120	05/09/202
Chloride			1.00		43.8	40.00	0.8414	107.4	80	120	05/09/202
Sulfate			2.00		67.5	40.00	25.38	105.4	80	120	05/09/202

http://www.teklabinc.com/

Client: Sikeston Board of Municipal Utilities Work Order: 25050733

Batch R364707 SampT	Гуре: MSD		Units mg/L					RPD Lir	nit 15	
SampID: 25050826-001AMS	SD									Date
Analyses	Cert	RL	Qual	Result	Spike	SPK Ref Val	%REC	RPD Ref Va	al %RPD	Analyzed
Fluoride		0.10		2.03	2.000	0.1050	96.3	2.026	0.27	05/09/202
Chloride		1.00		44.0	40.00	0.8414	108.0	43.79	0.58	05/09/202
Sulfate		2.00		67.7	40.00	25.38	105.9	67.55	0.30	05/09/202
Batch R364707 SampT SampID: 25050826-012AMS			Units mg/L							Date
Analyses	Cert	RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Fluoride		0.10		2.11	2.000	0.09560	100.9	80	120	05/10/202
Chloride		1.00		44.3	40.00	0.7244	109.0	80	120	05/10/202
Sulfate		2.00		73.1	40.00	30.43	106.6	80	120	05/10/202
Batch R364707 SampT SampID: 25050826-012AMS	Гуре: MSD SD		Units mg/L					RPD Lir	nit 15	Date
Analyses	Cert	RL	Qual	Result	Spike	SPK Ref Val	%REC	RPD Ref Va	al %RPD	Analyzed
Fluoride		0.10		2.11	2.000	0.09560	100.7	2.113	0.20	05/10/202
Chloride		1.00		44.3	40.00	0.7244	108.8	44.33	0.17	05/10/202
Sulfate		2.00		72.9	40.00	30.43	106.2	73.08	0.26	05/10/202
Batch R364707 Samp1 SampID: 25050826-021AMS	Type: MS		Units mg/L							Date
Analyses	Cert	RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Fluoride		0.10		2.31	2.000	0.1818	106.4	80	120	05/10/202
Chloride		1.00		45.6	40.00	1.791	109.5	80	120	05/10/202
Sulfate		2.00		50.3	40.00	9.233	102.6	80	120	05/10/202
Batch R364707 SampT SampT SampID: 25050826-021AMS	Type: MSD		Units mg/L					RPD Lir	nit 15	Date
Analyses	Cert	RL	Qual	Result	Spike	SPK Ref Val	%REC	RPD Ref Va	al %RPD	Analyzed
Fluoride		0.10		2.32	2.000	0.1818	107.0	2.309	0.54	05/10/202
Oblactic		1.00		45.8	40.00	1.791	109.9	45.57	0.40	05/10/202
Chloride		1.00			.0.00					

http://www.teklabinc.com/

Client: Sikeston Board of Municipal Utilities Work Order: 25050733

Batch R364707 San	npType:	MS		Units mg/L							
SampID: 25050826-034A	MS	Cont	DI	Oval	Dogult	Cmileo	SPK Ref Val	%REC	Low Limit	High Limit	Date Analyzed
Analyses Fluoride		Cert	RL 0.10	Qual	Result	Spike 2.000	0	109.3	80	120	05/10/202
Chloride					43.8		0				05/10/202
Sulfate			1.00 2.00		40.3	40.00 40.00	0	109.5 100.7	80 80	120 120	05/10/202
Juliate			2.00		40.5	40.00	O	100.7	00	120	03/10/202
Batch R364707 San SampID: 25050826-034A	npType:	MSD		Units mg/L					RPD Lir	nit 15	Data
Analyses		Cert	RL	Qual	Result	Spike	SPK Ref Val	%REC	RPD Ref V	al %RPD	Date Analyzed
Fluoride			0.10		2.19	2.000	0	109.7	2.187	0.33	05/10/202
Chloride			1.00		44.0	40.00	0	109.9	43.82	0.34	05/10/202
Sulfate			2.00		40.4	40.00	0	101.1	40.29	0.33	05/10/202
SampID: 25050826-041A	npType: MS		DI	Units mg/L	D 1:	G '1	SPK Ref Val	0/ DEC	Low Limit	Lligh Limit	Date Analyzed
Analyses		Cert	RL	Qual	Result	Spike				High Limit	
Fluoride			0.10		2.27	2.000	0.2142	102.9	80	120	05/10/202
Chloride			1.00		57.5	40.00	10.77	116.9	80	120	05/10/202
Sulfate			2.00		164	40.00	118.5	113.5	80	120	05/10/202
Batch R364707 San SampID: 25050826-041A	npType: MSD	MSD		Units mg/L					RPD Lir	mit 15	Date
Analyses		Cert	RL	Qual	Result	Spike	SPK Ref Val	%REC	RPD Ref V	al %RPD	Analyzed
Fluoride			0.10		2.27	2.000	0.2142	102.8	2.273	0.12	05/10/202
Chloride			1.00		57.3	40.00	10.77	116.3	57.52	0.38	05/10/202
Sulfate			2.00		164	40.00	118.5	112.9	163.9	0.16	05/10/202
Batch R364707 San SampID: 25050831-001A	npType: MS	MS		Units mg/L							Date
Analyses		Cert	RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Fluoride			0.50		10.2	10.00	0.1150	101.1	80	120	05/09/202
6 11 11			5.00		205	200.0	2.417	101.1	80	120	05/09/202
Chloride			5.00			200.0					

http://www.teklabinc.com/

Client: Sikeston Board of Municipal Utilities Work Order: 25050733

Batch R364707 Sar	npType:	MSD	ı	Jnits mg/L					RPD Lin	nit 15	
SampID: 25050831-001A	MSD	G .	DY	0.1	D 1.	G '1	CDK Dof Vol	0/ DEC		N 0/ DDD	Date Analyzed
Analyses		Cert	RL	Qual	Result	Spike	SPK Ref Val		RPD Ref Va		•
Fluoride			0.50		10.2	10.00	0.1150	100.7	10.22	0.37	05/09/202
Chloride			5.00		204	200.0	2.417	100.6	204.6	0.52	05/09/202
Sulfate			10.0		204	200.0	15.51	94.2	205.3	0.68	05/09/202
SW-846 3005A, 6010B	, METAL	S BY ICF	(TOTA	L)							
Batch 238859 Sar	npType:	MBLK	ı	Jnits µg/L							
SampID: MBLK-238859											Date
Analyses		Cert	RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Barium			2.5		< 2.5	0.7000	0	0	-100	100	05/12/202
Calcium			0.100		< 0.100	0.0350	0	0	-100	100	05/12/202
Batch 238859 Sar SampID: LCS-238859	прТуре:	LCS	l	Jnits μg/L							Date
Analyses		Cert	RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Barium			2.5		4170	4000	0	104.2	85	115	05/12/202
Calcium			0.100		5.02	5.000	0	100.4	85	115	05/12/202
Dutti	прТуре:	MS	l	Jnits μg/L							
SampID: 25050733-0010 Analyses	MS	Cert	RL	Oual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Date Analyzed
Barium			2.5		4130	4000	48.40	102.0	75	125	05/12/202
Boron			20.0		5880	1000	4690	119.0	75	125	05/12/202
Calcium			0.100	S	126	5.000	116.3	196.4	75	125	05/12/202
Batch 238859 Sar	npType:	MSD	l	Jnits μg/L					RPD Lin	nit 20	
o in anamana	MSD						001/5				Date Analyzed
'						0 '1	SPK Ref Val	%REC	RPD Ref Va	0/ DDD	Analyzea
Analyses		Cert	RL	Qual	Result	Spike					,
SampID: 25050733-0010 Analyses Barium		Cert	RL 2.5	Qual	Kesult 4140	4000	48.40	102.3	4130	0.24	05/12/202
		Cert		Qual							05/12/202

http://www.teklabinc.com/

Client: Sikeston Board of Municipal Utilities Work Order: 25050733

Batch 238860	SampType:	MBLK	ι	Jnits µg/L							
SampID: MBLK-23	8860										Date
Analyses		Cert	RL	Oual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Barium			2.5	•	< 2.5	0.7000	0	0	-100	100	05/12/202
Boron			20.0		< 20.0	9.000	0	0	-100	100	05/12/202
Calcium			0.100		< 0.100	0.0350	0	0	-100	100	05/12/20
Calcium			0.100		< 0.100	0.0350	0	0	-100	100	05/12/20
Batch 238860	SampType:	LCS	ι	Jnits μg/L							
SampID: LCS-2388	360										Date
Analyses		Cert	RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Barium			2.5		4120	4000	0	103.0	85	115	05/12/20
Boron			20.0		1020	1000	0	102.1	85	115	05/12/20
Calcium			0.100		5.01	5.000	0	100.2	85	115	05/12/20
Calcium			0.100		5.01	5.000	0	100.2	85	115	05/12/20
Batch 238860 SampID: 25050779	SampType:	MS	ι	Jnits mg/L							
Campib: 20000776	9-001BMS										Date
	9-001BMS	Cert	RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	
	9-001BMS	Cert	RL 0.100	Qual S	Result 213	Spike 5.000	SPK Ref Val	%REC 179.6	Low Limit 75	High Limit	Analyzed
Analyses Calcium	SampType:	Cert	0.100	-		•				125	Analyzed
Analyses Calcium Batch 238860	SampType:		0.100	S		•			75	125	Analyzed 05/12/20 Date
Analyses Calcium Batch 238860 SampID: 25050779	SampType:		0.100	S		•		179.6	75	125 nit 20	Analyzed 05/12/20
Analyses Calcium Batch 238860	SampType:	MSD	0.100 L	S Jnits mg/L	213	5.000	204.0	179.6	75 RPD Lin	125 nit 20	Analyzed 05/12/20
Analyses Calcium Batch 238860 SamplD: 25050779 Analyses Calcium	SampType: 9-001BMSD	MSD Cert	0.100 RL 0.100	S Jnits mg/L Qual S	213 Result	5.000 Spike	204.0 SPK Ref Val	179.6 %REC	75 RPD Lin RPD Ref Va	125 nit 20	O5/12/20 Date Analyzed
Analyses Calcium Batch 238860 SampID: 25050779 Analyses Calcium SW-846 3005A, 6 Batch 238859	SampType: 9-001BMSD 020A, METAL SampType:	MSD Cert LS BY ICF	0.100 RL 0.100	S Jnits mg/L Qual S	213 Result	5.000 Spike	204.0 SPK Ref Val	179.6 %REC	75 RPD Lin RPD Ref Va	125 nit 20	Date Analyzed 05/12/20
Analyses Calcium Batch 238860 SampID: 25050779 Analyses Calcium SW-846 3005A, 6 Batch 238859 SampID: MBLK-23	SampType: 9-001BMSD 020A, METAL SampType:	MSD Cert LS BY ICF MBLK	0.100 RL 0.100 PMS (TO	S Jnits mg/L Qual S TAL) Jnits µg/L	Result 210	5.000 Spike 5.000	204.0 SPK Ref Val	179.6 %REC 130.8	75 RPD Lin RPD Ref Va	125 nit 20	O5/12/20 Date Analyzed
Analyses Calcium Batch 238860 SampID: 25050778 Analyses Calcium SW-846 3005A, 6 Batch 238859 SampID: MBLK-23 Analyses	SampType: 9-001BMSD 020A, METAL SampType:	MSD Cert LS BY ICF	0.100 RL 0.100	S Units mg/L Qual S UTAL)	213 Result	5.000 Spike	204.0 SPK Ref Val 204.0	179.6 %REC 130.8	75 RPD Lin RPD Ref Va 212.9	125 nit 20 al %RPD 1.15	Date Analyzed 05/12/20
Analyses Calcium Batch 238860 SamplD: 25050778 Analyses Calcium SW-846 3005A, 6 Batch 238859 SamplD: MBLK-23 Analyses Arsenic	SampType: 9-001BMSD 020A, METAL SampType:	MSD Cert LS BY ICF MBLK	0.100 RL 0.100 PMS (TO	S Jnits mg/L Qual S TAL) Jnits µg/L	Result 210 Result < 1.0	5.000 Spike 5.000 Spike 0.3750	SPK Ref Val 204.0 SPK Ref Val 0	%REC 130.8 %REC	75 RPD Lin RPD Ref Va 212.9 Low Limit -100	125 nit 20 al %RPD 1.15	Date Analyzed 05/12/20 Date Analyzed 05/12/20 Date Analyzed 05/12/20
Analyses Calcium Batch 238860 SampID: 25050779 Analyses Calcium SW-846 3005A, 6 Batch 238859 SampID: MBLK-23 Analyses Arsenic Cobalt	SampType: 9-001BMSD 020A, METAL SampType:	MSD Cert LS BY ICF MBLK	0.100 RL 0.100 PMS (TO	S Jnits mg/L Qual S TAL) Jnits µg/L	Result 210 Result < 1.0 < 1.0	5.000 Spike 5.000 Spike 0.3750 0.1150	SPK Ref Val 204.0 SPK Ref Val 0	%REC 130.8 %REC 0	75 RPD Lin RPD Ref Va 212.9 Low Limit -100 -100	125 nit 20 al %RPD 1.15 High Limit 100 100	Date Analyzed Date Analyzed 05/12/20 Date Analyzed 05/12/20 05/12/20
Analyses Calcium Batch 238860 SampID: 25050778 Analyses Calcium SW-846 3005A, 6 Batch 238859 SampID: MBLK-23 Analyses Arsenic	SampType: 9-001BMSD 020A, METAL SampType:	MSD Cert LS BY ICF MBLK	0.100 RL 0.100 PMS (TO	S Jnits mg/L Qual S TAL) Jnits µg/L	Result 210 Result < 1.0	5.000 Spike 5.000 Spike 0.3750	SPK Ref Val 204.0 SPK Ref Val 0 0	%REC 130.8 %REC	75 RPD Lin RPD Ref Va 212.9 Low Limit -100	125 nit 20 al %RPD 1.15 High Limit 100	Date Analyzed 05/12/20 Date Analyzed 05/12/20 Date Analyzed 05/12/20

http://www.teklabinc.com/

Client: Sikeston Board of Municipal Utilities Work Order: 25050733

SW-846 3005A, 6020A, ME	ETALS BY ICE	MS (TOTAL)							
	ype: LCS		Units µg/L							
SampID: LCS-238859										Date
Analyses	Cert	RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Arsenic		1.0		1060	1000	0	105.8	80	120	05/12/20
Cobalt		1.0		974	1000	0	97.4	80	120	05/12/20
Lithium	*	3.0		1010	1000	0	101.1	80	120	05/12/20
Molybdenum		1.5		982	1000	0	98.2	80	120	05/12/20
Selenium		1.0		1100	1000	0	110.2	80	120	05/12/20
Batch 238859 SampTy SampID: 25050733-001CMS	/pe: MS		Units µg/L							Date
Analyses	Cert	RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Arsenic	Cort	1.0	Zum	1050	1000	0	104.7	75	125	05/12/20
Cobalt		1.0		963	1000	15.02	94.8	75	125	05/12/20
Lithium	*	3.0		1050	1000	11.21	104.1	75	125	05/12/20
Molybdenum		1.5		1190	1000	207.7	98.1	75	125	05/12/20
Selenium		1.0		1090	1000	0	108.9	75	125	05/12/20
Batch 238859 SampTy	/pe: MSD		Units µg/L					RPD Lir	nit 20	
SampID: 25050733-001CMSE)									Date
Analyses	Cert	RL	Qual	Result	Spike	SPK Ref Val	%REC	RPD Ref V	al %RPD	Analyzed
Arsenic		1.0		1040	1000	0	103.7	1047	0.94	05/12/20
Cobalt		1.0		954	1000	15.02	93.9	962.7	0.90	05/12/20
Lithium	*	3.0		1000	1000	11.21	99.3	1052	4.67	05/12/20
Molybdenum		1.5		1170	1000	207.7	96.4	1188	1.46	05/12/20
Selenium		1.0		1080	1000	0	108.5	1089	0.37	05/12/20
Batch 238860 SampTy SampID: MBLK-238860	ype: MBLK		Units µg/L							Date
	Cert	RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Analyses		1.0		< 1.0	0.3750	0	0	-100	100	05/12/20
				< 1.0	0.1150	0	0	-100	100	05/12/20
Arsenic		1.0		~ 1.0	0.1100					
Analyses Arsenic Cobalt Lithium	*			< 3.0	1.450	0	0	-100	100	05/12/20
Arsenic Cobalt	*	1.0 3.0 1.5				0	0	-100 -100		05/12/20 05/12/20

http://www.teklabinc.com/

Client: Sikeston Board of Municipal Utilities Work Order: 25050733

SW-846 3005A, 6020A, META	LS BY ICF	PMS (1	ΓΟΤΑL)								
Batch 238860 SampType: SampID: LCS-238860	LCS		Units µg/L								Date
Analyses	Cert	RL	Qual	Result	Spil	ce S	PK Ref Val	%REC	Low Limit	High Limit	Analyzed
Arsenic		1.0		1040	1000	0		103.8	80	120	05/12/2025
Cobalt		1.0		973	1000	0		97.3	80	120	05/12/2025
Lithium	*	3.0		1020	1000	0		101.6	80	120	05/12/2025
Molybdenum		1.5		965	1000	0		96.5	80	120	05/12/2025
Selenium		1.0		1080	1000	0		108.2	80	120	05/12/2025

Receiving Check List

http://www.teklabinc.com/

Work Order: 25050733 Client: Sikeston Board of Municipal Utilities Client Project: Fly Ash Pond (FAP) Report Date: 20-May-25 Carrier: FedEx Received By: NR Moor Dilacco Completed by: Reviewed by: On: On: 08-May-25 08-May-25 Amber Dilallo Ellie Hopkins Extra pages included 0 Pages to follow: Chain of custody Shipping container/cooler in good condition? Yes 🗸 No 🗔 Not Present Temp °C 2.5 Type of thermal preservation? Ice 🗹 Blue Ice None Dry Ice Chain of custody present? **~** No 🗌 Yes Chain of custody signed when relinquished and received? **~** Yes No L **~** Chain of custody agrees with sample labels? No 🗀 Yes **~** Samples in proper container/bottle? Yes No 🗀 **V** Sample containers intact? Yes No Sufficient sample volume for indicated test? Yes **V** No **~** No \square All samples received within holding time? Yes NA 🗸 Field Lab 🗌 Reported field parameters measured: Yes 🗸 No \square Container/Temp Blank temperature in compliance? When thermal preservation is required, samples are compliant with a temperature between 0.1°C - 6.0°C, or when samples are received on ice the same day as collected. Water - at least one vial per sample has zero headspace? Yes 🗌 No 🗀 No VOA vials 🗸 No TOX containers Water - TOX containers have zero headspace? Yes No 🗌 Yes 🗹 No 🗌 Water - pH acceptable upon receipt? NA 🗸 NPDES/CWA TCN interferences checked/treated in the field? Yes No 🗀 Any No responses must be detailed below or on the COC.

Per Elizabeth Hurley, Radium analysis is not required. Sample containers were disposed. AMD 5/8/25

pH strip #101358. - JD/amberdilallo - 5/8/2025 3:14:30 PM

One MW-10 2L containr was empty with lid off upon receipt but was not required for analysis. - AMD/JD/EAH 5/8/25

	ve, II. 🔲 Leneval KS	751/1 4	B, INC. S	-		IAIN (507	33
Are these samples //re these samples Are there any requ	Sikeston Power sta	tion O1 gation? If yes, include does on the reque	Phone Fax: a surcharge vetails of the h	. (573) will apply lazard.	475-3: Yes	155 s <u>X</u> No <u>X</u> No	S P. L C A	resolab lient	oles ervec Note: Cor	on: d in: FC nme	/2 /a ents s = 8	ICE LAB 2 	Lit Coo	BLUE FIELI	EICE D Pt	-i	NO ICE 01354	2.5 FOR W	LAE	1.7° 3 USE Σm	°C E ONL Pty D	LTG# LY	hec 125	l
Pr	oject Name/Number	The second secon		le Collec			<u> </u>	M.	ATR	Χ			*****	Color of Passes	INE	ICA	TE A	NALY	SIS	REQ	UEST	ED		
\$ 3000 0		surcharges) Bi 'Date/Time 5 6 25 5 6 25 5 6 25 5 6 25 5 6 25 5 6 25	Sampled 0717 1201 0958 0908 0822	# and Tys NaOH # UNPRES	-	Containers	Aqueous	Drinking Water	Soil	Special Waste	Groundwater X X X X X X X	Appendix III metals X X X X X X X X X X X X X X X X X X X	Appendix IV metals X X X X X X X X X X X X X X X X X X X	CI SO4	X X X X X X X X X X X X X X X X X X X	X X X X X X X X X X X X X X X X X X X								
D9	Trip Blank			13			X					X	X	X	X	Х								
X	Relinguished By		5/7/	Date/Ti	ne o7	00							ed B		R	20	l		___________________	181-	Date/T		80	0

Appendix 4

Fly Ash Pond Groundwater Quality Summary

Sikeston Board of Municipal Utilities - Sikeston Power Station Fly Ash Pond Baseline Groundwater Statistical Evaluation Scott County, Missouri

Appendix 4 - Groundwater Quality Summary

				Field Pa	rameters	i		A	pendix III	Monitoring	Constitue	nts (Detect	tion)							Apper	ndix IV Mon	itoring C	onstituents	(Assessmen	t)					
Well	Date	Monitoring Purpose	Spec. Cond.	Temp. ORP	D.O.	Turbidity	pН	Chloride			TDS	Boron	Calcium	Antimony	Arsenic	Barium	Beryllium	n Cadmium	Chromium	Cobalt	Fluoride	Lead	Lithium	Mercury	Molybdenum	Selenium	Thallium	Radium 226	Radium 228	Radium 226/228 (Combined)
ID			µmhos/cm	°C mV	mg/L	NTU	S.U.	mg/L	mg/L	mg/L	mg/L	ug/L	mg/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	mg/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	pCi/L	pCi/L	pCi/L
Federal MCL								None	4.0	None	None	None	None	6	10	2000	4	5	100	6	4	15	40	2	100	50	2			5
	10/20/2021	Background	511.3	15.25 32.2	6.41	4.62	6.55	11	<0.250	130	330	2200	64	<3.0	1.3	40	<1.0	<1.0	<4.0	6.3	<0.250	<1.0	10	<0.20	160	<1.0	<1.0	0.184	(0.0411)	0.184 (ND)
	11/1/2021	Background	532.4	12.98 16.9	0.60	5.38	6.55	12	0.286	110	330	2100	58	<3.0	1.5	38	<1.0	<1.0	<4.0	5.4	0.286	<1.0	<10	<0.20	160	<1.0	<1.0	0.0676	0.516	0.600(ND)
(DG)	11/16/2021	Background	540.4	11.47 41.9	0.94	1.27	6.54	15	0.366	150	360	2800	73	<3.0	<1.0	49	<1.0	<1.0	<4.0	8.5	0.366	<1.0	10	<0.20	170	<1.0	<1.0	0.513	0.552	1.065(ND)
R (D	12/7/2021	Background	576.3	9.14 11.2	0.98	0.91	6.58	13	<0.250	140	400	2300	61	<3.0	<1.0	37	<1.0	<1.0	<4.0	7.1	<0.250	<1.0	11	<0.20	190	<1.0	<1.0	(0.298)	0.530	0.53(ND)
W-1R Baseli	12/27/2021	Background	757.3	8.40 21.7	1.28	1.32	6.48	17	<0.250	210	390	3100	97	<3.0	<1.0	52	<1.0	<1.0	<4.0	9.6	<0.250	<1.0	19	<0.20	200	<1.0	<1.0	(0.286)	0.430	0.430(ND)
≥ _	1/17/2022	Background	707.3	4.56 -0.3	1.02	1.46	6.56	17	<0.250	190	440	2800	89	<3.0	<1.0	44	<1.0	<1.0	<4.0	7.9	<0.250	<1.0	17	<0.20	200	<1.0	<1.0	(0.406)	0.556	0.556(ND)
	2/7/2022	Background	794.4	3.14 21.9	0.84	1.04	6.55	19	<0.250	200	450	3500	90	<3.0	<1.0	51	<1.0	<1.0	<4.0	13.0	<0.250	<1.0	11	<0.20	210	<1.0	<1.0	0.364	(0.007)	0.364(ND)
	3/2/2022	Background	515.0	2.07 36.1	0.91	4.31	6.57	12	<0.250	130	290	2800	78	<3.0	<1.0	41	<1.0	<1.0	<4.0	8.6	<0.250	<1.0	<10	<0.20	190	<1.0	<1.0	0.393	0.907	1.300
	4/9/2022	Detection 7	671.2	-1.69 52.4	1.04	1.59	6.66	12	<0.250	150	300	3,100	73	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	<0.250	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)
	8/2/2022	Detection 7	687.8	18.18 60.3	0.56	4.87	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)
<u> </u>	11/2/2022	Det 8/ Ass 1	609.3	17.48 7.6	0.51	2.79	6.55	14	<0.250	170	440	2,400	72	<3.0	<1.0	30	<1.0	<1.0	<4.0	8.5	<0.250	<1.0	<10	<0.20	150	<1.0	<1.0	0.0595	0.775	0.853
(DG)	3/12/2023	Det 9/ Ass 2	577.8	14.68 31.0	0.38	1.06	6.60	10	<0.250	140	300	3,000	70	(NA)	(NA)	52	(NA)	(NA)	(NA)	7.9	<0.250	(NA)	<20	<0.20	180	<1.0	(NA)	(0.0842)	1.030	1.03(ND)
朱흟	12/11/2023	Det 10/ Ass 3	489.0	16.07 791.4	0.54	1.35	6.55	9	<0.25	118	310	1,980	58.6	<3.0	2.2	45.5	<1.0	<1.0	<4.0	5.8	<0.25	<1.0	16.1	<0.20	204	<1.0	<1.0	0.17	0.38	<2.0
MW.	4/23/2024	Det 11/ Ass 4	584.0	16.74 1161.3	0.61	1.56	6.47	14	<0.25	188	424	3,770	95.9	(NA)	<1.0	55.5	(NA)	(NA)	(NA)	10.4	<0.25	(NA)	10.2	(NA)	199	<1.0	(NA)	(NA)	(NA)	(NA)
	9/25/2024	Det 12/ Ass 5	736.6	17.56 1122.2	0.67	1.55	6.46	16.6	<0.25	242	520	3,700	103.0	<3.0	<1.0	26.6	<1.0	<1.0	<4.0	13.6	<0.25	<1.0	10.2	<0.20	166	<1.0	<1.0	0.06	0.40	0.46 (ND)
	4/16/2025	Damaged	775.5	16.32 894.2	0.67	1.65	6.32	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)
	5/6/2025	Det 13 / Ass 6	797.2	15.42 421.5	221.66	4.65	6.38	18.3	0.10"J"	289	576	4,690	116"S"	(NA)	<1.0	48.4	(NA)	(NA)	(NA)	15.0	0.10"J"	(NA)	11.2	(NA)	208	<1.0	(NA)	(NA)	(NA)	(NA)

Notes:

- 1. All data and Qualifiers transcribed from analytical lab data sheets or field notes.
- 2. Less than (<) symbol denotes concentration not detected at or above reporting limits. Bold values indicate analyte detected above reporting limit.
- 3. (ND) denotes Radium 226 and 228 (combined) concentration not detected above minimum detectable activity.
- 4. (NA) denotes analysis not conducted, not available at time of report, or not confirmed/replaced by resampling.
- 5. Baseline monitoring per USEPA 40 CFR 257.93.
- 6. Detection monitoring per USEPA 40 CFR 257.94. Detection Monitoring database comprised of analytical results for pH, Chloride, Fluoride, Sulfate, TDS, Boron, and Calcium.
- 7. Assessment monitoring per USEPA 40 CFR 257.95. Note Fluoride included in both Assessment and Detecion Monitoring Constituents, but data screening may be conducted over a different range.
- 8. Shaded cells indicate resampling occurred. Data that were not confirmed or were replaced by resample data is indicated with (NA) in shaded cell.
- 9. Red text with black border represent outlier values identified by Sanitas.

10. Blue shaded cells with black border indicate data removed for correction of a trend identified by Sanitas (Sen's Slope / Mann-Kendall).

- 11. Analytical Data Qualifiers provided by Laboratory:
- a. "J" Analyte detected below quantitation limits
- b. "S" Spike Recovery outside recovery limits

Sikeston Board of Municipal Utilities - Sikeston Power Station Fly Ash Pond Baseline Groundwater Statistical Evaluation Scott County, Missouri

Appendix 4 - Groundwater Quality Summary

Well	Date	Monitoring Purpose	Spec. Cond.	Temp.	ORP	D.O.	Turbidity	рН	Chloride	Fluoride	Sulfate	TDS	Boron	Calcium	Antimony	Arsenic	Barium	Beryllium		Chromium	Cobalt	Fluoride	Lead	Lithium	Mercury	Molybdenum	Selenium	Thallium	Radium 226	Radium 228	Radium 226/228 (Combined)
ID			µmhos/cm	°C	mV	mg/L	NTU	S.U.	mg/L	mg/L	mg/L	mg/L	ug/L	mg/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	mg/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	pCi/L	pCi/L	pCi/L
Federal MCL	2/2//22/2								None	4.0	None	None	None	None	6	10	2000	4	5	100	6	4	15	40	2	100	50	2			5
	3/21/2018	Background	157.8	15.86	65.3	2.72	3.41	6.35	3.4	<0.250	16	110	28	16	<3.0	<1.0	130	<1.0	<1.0	<4.0	<2.0	<0.250	<1.0	<10	<0.20	<1.0	<1.0	<1.0	0.514	0.382	0.896 (ND)
	4/15/2018	Background	159.8	14.04	64.7	0.87	4.05	6.36	2.3	0.335	18	63	23	14	<3.0	<1.0	120	<1.0	<1.0	<4.0	<2.0	0.335	<1.0	<10	<0.20	<1.0	<1.0	<1.0	0.381	0.102	0.483 (ND)
	5/23/2018	Background	175.3	17.40	121.7	0.58	1.72	6.18	4.2	<0.250	20	100	36	18	<3.0	<1.0	170	<1.0	<1.0	<4.0	<2.0	<0.250	<1.0	<10	<0.20	<1.0	<1.0	<1.0	0.119	1.080	1.199 (ND)
	6/27/2018	Background	172.1	18.38	243.8	0.27	5.30	6.16	4.7	<0.250	18	87	42	19	<3.0	<1.0	180	<1.0	<1.0	<4.0	<2.0	<0.250	<1.0	<10	<0.20	<1.0	1.4	<1.0	0.488	0.518	1.006 (ND)
	8/1/2018 9/5/2018	Background	184.2 187.9	18.48 19.26	80.7 83.8	0.75 0.68	2.61 2.58	6.11	5.9 6.8	<0.250 <0.250	19 18	140 110	43 46	20	<3.0 <3.0	<1.0 <1.0	200 220	<1.0 <1.0	<1.0 <1.0	<4.0 <4.0	<2.0 <2.0	<0.250 <0.250	<1.0 <1.0	<10 <10	<0.20	<1.0 <1.0	2.0	<1.0 <1.0	0.308 0.801	0.443	0.751(ND) 1.734
	11/6/2018	Background Background	174.3	17.77	79.7	0.60	1.19	6.09	4.2	0.272	19	100	43	20	<3.0	<1.0	170	<1.0	<1.0	<4.0	<2.0	0.272	<1.0	<10	<0.20	<1.0	<1.0	<1.0	0.353	1.230	1.734
MW-2 (UG) Baseline	12/12/2018		186.3	16.78	82.3	0.67	5.78	6.13	5.5	0.272	21	140	48	21	<3.0	<1.0	210	<1.0		<4.0	2.0	0.272	<1.0	<10	<0.20	<1.0	<1.0	<1.0	0.624	0.556	1.180 (ND)
7-2 (asel	3/27/2019	Background Detection 1	165.9	15.87	70.4	0.07	2.60	6.25	3.3	<0.250	20	130	31	17	NA	NA	NA	NA	<1.0 NA	NA	NA	<0.250	NA	NA	NA	NA	NA	NA	0.024 NA	NA	1.180 (ND) NA
§ã	9/24/2019	Detection 2	189.4	18.75	71.3	0.61	1.16	6.1	6.6	<0.250	17	130	58	22	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	<0.250	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
	4/6/2020	Botootion 2	148.7	16.04	58.2	1.36	4.70	6.3	2.1	0.336	16	140	NA	15	NA NA	NA NA	NA	NA NA	NA	NA NA	NA	0.336	NA	NA	NA	NA NA	NA NA	NA NA	NA.	NA NA	NA NA
	5/21/2020	Detection 3	168.1	16.47	-0.8	6.90	2.76	NA	NA	NA	NA	NA	36	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	9/22/2020		189.8	18.34	-9.6	6.52	0.62	6.2	4.8	<0.250	17	150	NA	21	NA	NA	NA	NA	NA	NA	NA	<0.250	NA	NA	NA	NA	NA	NA	NA	NA	NA
	12/8/2020	Detection 4	186.5	16.90	223.4	5.56	0.79	NA	NA	NA	NA	NA	49	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	4/17/2021	D	178.9	14.70	21.7	12.02	1.68	6.3	3.8	<0.250	17	NA	41	19	NA	NA	NA	NA	NA	NA	NA	<0.250	NA	NA	NA	NA	NA	NA	NA	NA	NA
	6/15/2021	Detection 5	165.4	17.03	55.1	18.10	1.55	NA	NA	NA	NA	350	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	10/20/2021	Datastian C	188.0	14.85	19.6	5.97	1.36	6.25	4.2	<0.250	15	140	(NA)	19	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	<0.250	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)
	12/27/2021	Detection 6	161.0	8.90	17.7	0.88	1.53	6.31	(NA)	(NA)	(NA)	(NA)	43	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)
	4/9/2022	Detection 7	156.4	-1.47	71.9	1.20	3.31	(NA)	2.9	<0.250	15	150	(NA)	16	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	<0.250	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)
	8/2/2022	Detection 7	185.6	18.26	83.4	0.28	2.95	6.21	(NA)	(NA)	(NA)	(NA)	53	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)
(UG) liance	11/2/2022	Det 8/ Ass 1	218.4	17.64	101.7	0.74	6.51	6.23	7.4	<0.250	15	180	81	24	<3.0	<1.0	220	<1.0	<1.0	<4.0	2.4	<0.250	<1.0	<10	<0.20	<1.0	<1.0	<1.0	0.403	1.51	1.913
7-2 (poliz	3/12/2023	Det 9/ Ass 2	120.5	15.40	54.5	0.61	3.33	6.51	1.3	<0.250	8.7	700 H	29	12	(NA)	(NA)	100	(NA)	(NA)	(NA)	<2.0	<0.250	(NA)	<20	(NA)	<1.0	<1.0	(NA)	(0.150)	0.630	0.630(ND)
MW-2 Compli	12/11/2023	Det 10/ Ass 3	197.2	17.35	733.0	0.59	0.79	6.21	4	<0.25	15	108	47.8	18.6	<3.0	<1.0	193	<1.0	<1.0	<4.0	<2.0	<0.25	<1.0	<10.0	<0.20	1.4	<1.0	<1.0	0.19	1.2	<2.0
	4/23/2024	Det 11/ Ass 4	176.8	17.55	518.1	0.67	1.02	6.23	4	<0.25	15	104	42.9	20.4	(NA)	<1.0	192	(NA)	(NA)	(NA)	<2.0	<0.25	(NA)	<10.0	(NA)	<1.0	<1.0	(NA)	(NA)	(NA)	(NA)
	9/25/2024	Det 12/ Ass 5	193.9	19.99	693.4	0.75	1.73	6.24	4.95	<0.25	14.4	108	49.6	21.0	<3.0	<1.0	220	<1.0	<1.0	<4.0	<2.0	<0.25	<1.0	<10.0	<0.20	<1.0	<1.0	<1.0	0.18	0.42	0.6 (ND)
	4/16/2025	Damaged	128.0	16.85	492.1	0.87	4.24	6.36	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)
	5/6/2025	Det 13 / Ass 6	175.9	17.25	544.9	222.16	5.49	6.33	4.68	0.06"J"	14.5	100	28.6	19.1	(NA)	<1.0	188.0	(NA)	(NA)	(NA)	<2.0	0.06"J"	(NA)	<10.0	(NA)	<1.0	<1.0	(NA)	(NA)	(NA)	(NA)

Notes:

- 1. All data and Qualifiers transcribed from analytical lab data sheets or field notes.
- 2. Less than (<) symbol denotes concentration not detected at or above reporting limits. Bold values indicate analyte detected above reporting limit.
- 3. (ND) denotes Radium 226 and 228 (combined) concentration not detected above minimum detectable activity.
- 4. (NA) denotes analysis not conducted, not available at time of report, or not confirmed/replaced by resampling.
- 5. Baseline monitoring per USEPA 40 CFR 257.93.
- 6. Detection monitoring per USEPA 40 CFR 257.94. Detection Monitoring database comprised of analytical results for pH, Chloride, Fluoride, Sulfate, TDS, Boron, and Calcium.
- 7. Assessment monitoring per USEPA 40 CFR 257.95. Note Fluoride included in both Assessment and Detecion Monitoring Constituents, but data screening may be conducted over a different range.
- 8. Shaded cells indicate resampling occurred. Data that were not confirmed or were replaced by resample data is indicated with (NA) in shaded cell.
- 9. Red text with black border represent outlier values identified by Sanitas.

10. Blue shaded cells with black border indicate data removed for correction of a trend identified by Sanitas (Sen's Slope / Mann-Kendall).

- 11. Analytical Data Qualifiers provided by Laboratory:
- a. "J" Analyte detected below quantitation limits
- b. "S" Spike Recovery outside recovery limits

Sikeston Board of Municipal Utilities - Sikeston Power Station Fly Ash Pond Baseline Groundwater Statistical Evaluation Scott County, Missouri

Appendix 4 - Groundwater Quality Summary

Well	Date	Monitoring Purpose	Spec. Cond.	Temp.	ORP mV	D.O. mg/L	Turbidity NTU	pH S.U.	Chloride mg/L	Fluoride mg/L	Sulfate mg/L	TDS mg/L	Boron ug/L	Calcium mg/L	Antimony ug/L	Arsenic ug/L	Barium ug/L	Beryllium ug/L	Cadmium ug/L	Chromium ug/L	Cobalt ug/L	Fluoride mg/L	Lead ug/L	Lithium ug/L	Mercury ug/L	Molybdenum ug/L	Selenium ug/L	Thallium ug/L	Radium 226 pCi/L	Radium 228 pCi/L	Radium 226/228 (Combined) pCi/L
Federal MCL			μου, σ			9, =		0.0.	None	4.0	None	None	None	None	6	10	2000	4	5	100	6	4	15	40	2	100	50	2	P 0.72	ρο::2	5
	3/21/2018	Background	220.7	15.22	40.7	0.38	14.88	6.57	1.4	0.274	18	120	17	19	<3.0	<1.0	96	<1.0	<1.0	<4.0	<2.0	0.274	<1.0	<10	<0.20	<1.0	<1.0	<1.0	0.836	0.404	1.240 (ND)
	4/15/2018	Background	224.7	14.05	39.2	0.45	10.81	6.48	1.5	0.386	20	120	25	18	<3.0	<1.0	100	<1.0	<1.0	<4.0	<2.0	0.386	<1.0	<10	<0.20	<1.0	<1.0	<1.0	0.556	0.919	1.475 (ND)
	5/23/2018	Background	221.3	17.77	43.2	0.39	13.39	6.49	1.4	<0.250	20	100	20	18	<3.0	<1.0	100	<1.0	<1.0	<4.0	<2.0	<0.250	<1.0	<10	<0.20	<1.0	<1.0	<1.0	0.526	0.468	0.994 (ND)
	6/27/2018	Background	198.7	17.81	123.8	0.45	17.03	6.45	1.2	<0.250	17	110	27	18	<3.0	<1.0	100	<1.0	<1.0	<4.0	<2.0	<0.250	<1.0	<10	<0.20	<1.0	<1.0	<1.0	0.214	(0.187)	0.214 (ND)
	8/1/2018	Background	209.2	16.74	41.4	0.43	10.96	6.55	1.3	<0.250	17	150	21	18	<3.0	<1.0	91	<1.0	<1.0	<4.0	<2.0	<0.250	<1.0	<10	<0.20	<1.0	<1.0	<1.0	0.315	(0.0763)	0.315(ND)
(C) (a)	9/5/2018	Background	196.8	17.62	56.8	0.46	6.21	6.51	1.2	0.308	15	100	22	17	<3.0	<1.0	98	<1.0	<1.0	<4.0	<2.0	0.308	<1.0	<10	<0.20	<1.0	<1.0	<1.0	0.344	0.516	0.860(ND)
(UG)	11/6/2018	Background	206.7	16.84	63.3	0.49	2.37	6.49	1.3	0.313	16	130	26	17	<3.0	<1.0	100	<1.0	<1.0	<4.0	<2.0	0.313	<1.0	<10	<0.20	<1.0	<1.0	<1.0	0.547	0.792	1.339
IW-3 Base	12/12/2018	Background	195.6	15.39	48.7	0.40	3.10	6.50	1.4	0.334	18	160	28	17	<3.0	<1.0	99	<1.0	<1.0	<4.0	<2.0	0.334	<1.0	<10	<0.20	<1.0	<1.0	<1.0	0.414	0.386	0.800 (ND)
≦ ®	3/27/2019	Detection 1	196.0	15.07	52.2	0.84	12.50	6.36	1.5	<0.250	19	140	22	16	NA	NA	NA	NA	NA	NA	NA	<0.250	NA	NA	NA	NA	NA	NA	NA	NA	NA
	9/24/2019	Detection 2	191.4	17.07	58.1	0.53	2.28	6.5	1.2	0.332	16	130	26	17	NA	NA	NA	NA	NA	NA	NA	0.332	NA	NA	NA	NA	NA	NA	NA	NA	NA
	4/6/2020	Detection 2	198.4	14.94	61.3	1.17	7.37	6.4	NA	0.371	20	NA	29	16	NA	NA	NA	NA	NA	NA	NA	0.371	NA	NA	NA	NA	NA	NA	NA	NA	NA
	5/21/2020	Detection 3	205.5	15.25	14.9	13.48	7.29	NA	1.5	NA	NA	130	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	9/22/2020	Detection 4	194.1	16.65	36.7	8.29	2.13	6.5	1.1	<0.250	17	120	31	17	NA	NA	NA	NA	NA	NA	NA	<0.250	NA	NA	NA	NA	NA	NA	NA	NA	NA
	4/17/2021	Detection 5	196.8	14.04	34.3	12.04	3.47	6.6	<1.0	<0.250	15	150	16	17	NA	NA	NA	NA	NA	NA	NA	<0.250	NA	NA	NA	NA	NA	NA	NA	NA	NA
	10/20/2021	Detection 6	189.0	12.85	33.6	10.32	1.35	6.52	<1.0	<0.250	13	130	30	14	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	<0.250	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)
	4/9/2022	Detection 7	197.6	-2.74	66.7	2.86	2.58	6.67	<1.0	<0.250	13	130	(NA)	15	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	<0.250	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)
	8/2/2022	Detection 7	163.7	16.97	52.6	0.47	4.88	(NA)	(NA)	(NA)	(NA)	(NA)	21	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)
တ် ဦ	11/2/2022	Det 8/ Ass 1	161.8	16.28	9.1	0.36	9.56	6.93	<1.0	<0.250	10	160	29	17	<3.0	<1.0	73	<1.0	<1.0	<4.0	<2.0	<0.250	<1.0	<10	<0.20	<1.0	<1.0	<1.0	0.0589	1.16	1.16
3 (UG)	3/12/2023	Det 9/ Ass 2	177.2	14.09	73.2	1.35	3.90	6.51	<1.0	<0.250	13	93 H	31	14	(NA)	(NA)	110	(NA)	(NA)	(NA)	<2.0	<0.250	(NA)	<20	(NA)	<1.0	<1.0	(NA)	0.221	0.558	0.779(ND)
MW-3 Compl	12/11/2023	Det 10/ Ass 3	178.5	16.25	720.9	0.90	1.11	6.62	<4	<0.25	10	102	17.4	13.7	<3.0	<1.0	71.0	<1.0	<1.0	<4.0	<2.0	<0.25	<1.0	<10.0	<0.20	<1.0	<1.0	<1.0	(0.03)	0.72	<2.0
∥ ≊ ပိ	4/23/2024	Det 11/ Ass 4	178.6	15.40	495.9	1.45	1.06	6.65	1 "J"	<0.25	10	94	13.0	15.0	(NA)	<1.0	85.1	(NA)	(NA)	(NA)	<2.0	<0.25	(NA)	<10.0	(NA)	<1.0	<1.0	(NA)	(NA)	(NA)	(NA)
	9/25/2024	Det 12/ Ass 5	170.2	19.06	1006.8	0.50	2.61	6.82	2.3 "J"	<0.25	<10.0	98	12.0	15.2	<3.0	<1.0	71.3	<1.0	<1.0	<4.0	<2.0	<0.25	<1.0	<10.0	<0.20	<1.0	<1.0	<1.0	0.04	0.33	0.37 (ND)
	4/16/2025	Damaged	165.5	16.42	652.2	2.81	4.82	6.33	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)
	5/6/2025	Det 13 / Ass 6	162.1	16.52	781.2	222.44	4.34	6.61	1.7"J"	0.14"J"	10.1	90	<10.0	14.8	(NA)	<1.0	82.3	(NA)	(NA)	(NA)	<2.0	0.14"J"	(NA)	<10.0	(NA)	<1.0	<1.0	(NA)	(NA)	(NA)	(NA)

Notes:

- 1. All data and Qualifiers transcribed from analytical lab data sheets or field notes.
- 2. Less than (<) symbol denotes concentration not detected at or above reporting limits. Bold values indicate analyte detected above reporting limit.
- 3. (ND) denotes Radium 226 and 228 (combined) concentration not detected above minimum detectable activity.
- $4. \ (NA) \ denotes \ analysis \ not \ conducted, \ not \ available \ at \ time \ of \ report, \ or \ not \ confirmed/replaced \ by \ resampling.$
- 5. Baseline monitoring per USEPA 40 CFR 257.93.
- 6. Detection monitoring per USEPA 40 CFR 257.94. Detection Monitoring database comprised of analytical results for pH, Chloride, Fluoride, Sulfate, TDS, Boron, and Calcium.
- 7. Assessment monitoring per USEPA 40 CFR 257.95. Note Fluoride included in both Assessment and Detecion Monitoring Constituents, but data screening may be conducted over a different range.
- 8. Shaded cells indicate resampling occurred. Data that were not confirmed or were replaced by resample data is indicated with (NA) in shaded cell.
- 9. Red text with black border represent outlier values identified by Sanitas.

10. Blue shaded cells with black border indicate data removed for correction of a trend identified by Sanitas (Sen's Slope / Mann-Kendall).

- 11. Analytical Data Qualifiers provided by Laboratory:
- a. "J" Analyte detected below quantitation limits
- b. "S" Spike Recovery outside recovery limits

Sikeston Board of Municipal Utilities - Sikeston Power Station Fly Ash Pond Baseline Groundwater Statistical Evaluation Scott County, Missouri

Appendix 4 - Groundwater Quality Summary

Well	Date	Monitoring Purpose	Spec. Cond.	Temp.	ORP mV	D.O. mg/L	Turbidity NTU	pH S.U.	Chloride mg/L	Fluoride mg/L	Sulfate mg/L	TDS mg/L	Boron ug/L	Calcium mg/L	Antimony ug/L	Arsenic ug/L	Barium ug/L	Beryllium ug/L	Cadmium ug/L	Chromium ug/L	Cobalt ug/L	Fluoride mg/L	Lead ug/L	Lithium ug/L	Mercury ug/L	Molybdenum ug/L	Selenium ug/L	Thallium ug/L	Radium 226 pCi/L	Radium 228 pCi/L	Radium 226/228 (Combined) pCi/L
Federal MCL			p			9/ =		0.0.	None	4.0	None	None	None	None	6	10	2000	4	5	100	6	4	15	40	2	100	50	2	P 0.72	P 0.1/2	5
I <u>I</u>	3/21/2018	Background	901.8	14.85	41.8	0.58	1.61	7.30	12	0.752	190	440	1900	110	<3.0	<1.0	41	<1.0	<1.0	<4.0	<2.0	0.752	<1.0	25	<0.20	160	5.4	<1.0	0.457	0.426	0.883 (ND)
	4/15/2018	Background	936.4	14.04	40.0	0.51	0.96	7.24	12	0.794	210	420	1900	110	<3.0	<1.0	43	<1.0	<1.0	<4.0	2.0	0.794	<1.0	19	<0.20	170	2.3	<1.0	0.062	(0.036)	0.062 (ND)
	5/23/2018	Background	899.1	18.05	46.5	0.38	0.25	7.25	11	0.650	220	480	1800	120	<3.0	<1.0	44	<1.0	<1.0	<4.0	<2.0	0.650	<1.0	22	<0.20	170	28	<1.0	0.517	0.379	0.896 (ND)
	6/27/2018	Background	891.4	17.91	66.4	0.22	5.84	7.22	11	0.592	220	500	2000	140	<3.0	<1.0	48	<1.0	<1.0	<4.0	2.1	0.592	<1.0	26	<0.20	160	53	<1.0	0.335	0.818	1.153 (ND)
	8/1/2018	Background	958.3	18.03	53.0	0.28	1.77	7.22	9.1	0.608	230	590	2300	140	<3.0	<1.0	47	<1.0	<1.0	<4.0	2.2	0.608	<1.0	30	<0.20	160	54	<1.0	0.473	0.411	0.884(ND)
(C) a	9/5/2018	Background	873.3	19.46	69.3	0.28	2.29	7.29	10	0.700	220	520	2100	130	<3.0	<1.0	47	<1.0	<1.0	<4.0	2.0	0.700	<1.0	27	<0.20	150	42	<1.0	0.474	0.178	0.652(ND)
(DG) eline	11/6/2018	Background	787.9	18.12	344.4	0.44	0.44	7.35	6.3	0.693	170	450	2000	120	<3.0	<1.0	43	<1.0	<1.0	<4.0	2.0	0.693	<1.0	26	<0.20	150	15	<1.0	1.090	0.388	1.487(ND)
W-7	12/12/2018	Background	784.8	17.26	51.6	1.05	0.41	7.27	6.8	0.746	180	440	1800	120	<3.0	<1.0	44	<1.0	<1.0	<4.0	2.1	0.746	<1.0	26	<0.20	150	11	<1.0	0.355	0.620	0.975 (ND)
≦ "	3/27/2019	Detection 1	797.4	16.39	52.6	0.32	2.37	7.25	6.6	0.670	170	480	1800	110	NA	NA	NA	NA	NA	NA	NA	0.670	NA	NA	NA	NA	NA	NA	NA	NA	NA
	9/24/2019	Detection 2	751.7	18.88	119.0	0.31	0.59	7.3	3.9	0.684	150	470	1900	120	NA	NA	NA	NA	NA	NA	NA	0.684	NA	NA	NA	NA	NA	NA	NA	NA	NA
	4/6/2020	Detection 3	865.6	16.34	68.3	0.24	1.62	7.2	4.0	0.737	200	540	2200	120	NA	NA	NA	NA	NA	NA	NA	0.737	NA	NA	NA	NA	NA	NA	NA	NA	NA
	9/22/2020	Detection 4	720.5	17.40	-80.8	3.63	0.50	NA	3.1	0.628	110	460	1700	100	NA	NA	NA	NA	NA	NA	NA	0.628	NA	NA	NA	NA	NA	NA	NA	NA	NA
	1/26/2021	Detection 4	823.6	16.40	-49.2	0.27	0.41	7.4	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	4/17/2021	Detection 5	870.0	15.17	-19.6	3.40	0.85	7.4	1.8	0.522	160	520	2200	120	NA	NA	NA	NA	NA	NA	NA	0.522	NA	NA	NA	NA	NA	NA	NA	NA	NA
																	, 1														
	10/20/2021	Detection 6	855.3	14.58	-44.0	3.75	0.75	7.35	3.7	0.375	160	520	1,900	120	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	0.375	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)
	4/9/2022		958.3	-1.31	17.1	0.67	0.60	(NA)	4.1	0.488	240	510	3,200	130	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	0.488	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)
. 0	8/2/2022	Detection 7	835.0	17.59	64.1	0.23	1.77	7.31	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)
DG	11/2/2022	Det 8/ Ass 1	874.2	18.26	56.8	0.44	2.60	7.36	3.1	0.476	130	500	2,300	120	<3.0	<1.0	62	<1.0	<1.0	<4.0	3.5	0.476	<1.0	33	<0.20	100	4.7	<1.0	-0.0488	2.31	2.310
MW-7 (DG) Compliance	3/12/2023	Det 9/ Ass 2	880.0	15.09	35.7	0.49	0.54	7.40	3.7	0.635	190	520	2,600	140	(NA)	(NA)	77	(NA)	(NA)	(NA)	4.1	0.635	(NA)	27	(NA)	120	4.1	(NA)	0.0773	0.899	0.976(ND)
MW ro	12/11/2023	Det 10/ Ass 3	840.1	16.69	172.5	0.48	0.91	7.28	3 "J"	0.57	141	460	2,270	105	<3.0	<1.0	66.7	<1.0	<1.0	<4.0	2.7	0.57	<1.0	49.2	<0.20	127	3.0	<1.0	0.16	1.29	<2.0
- 5	4/23/2024	Det 11/ Ass 4	723.4	16.59	761.7	0.38	0.93	7.29	3 "J"	0.53	93	390	2,260	111 "S"	(NA)	<1.0	65.2	(NA)	(NA)	(NA)	<2.0	0.53	(NA)	30.6	(NA)	122	2.8	(NA)	(NA)	(NA)	(NA)
	9/25/2024	Det 12/ Ass 5	742.4	18.20	494.5	0.40	0.96	7.40	4.11	0.58	84.3	420	1,800	98.0	<3.0	<1.0	64.4	<1.0	<1.0	<4.0	2.8	0.58	<1.0	34.7	<0.20	119	2.4	<1.0	0.02	0.81	0.83 (ND)
	4/16/2025	Damaged	1008.3	16.65	294.5	0.39	7.38	7.25	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)
	5/6/2025	Det 13 / Ass 6	954.7	16.74	240.2	221.30	5.22	7.27	10.9	0.63	321	638	3,730	139	(NA)	<1.0	95.2	(NA)	(NA)	(NA)	2.3	0.63	(NA)	41.3	(NA)	108	2.1	(NA)	(NA)	(NA)	(NA)

Notes:

- 1. All data and Qualifiers transcribed from analytical lab data sheets or field notes.
- 2. Less than (<) symbol denotes concentration not detected at or above reporting limits. Bold values indicate analyte detected above reporting limit.
- 3. (ND) denotes Radium 226 and 228 (combined) concentration not detected above minimum detectable activity.
- 4. (NA) denotes analysis not conducted, not available at time of report, or not confirmed/replaced by resampling.
- 5. Baseline monitoring per USEPA 40 CFR 257.93.
- 6. Detection monitoring per USEPA 40 CFR 257.94. Detection Monitoring database comprised of analytical results for pH, Chloride, Fluoride, Sulfate, TDS, Boron, and Calcium.
- 7. Assessment monitoring per USEPA 40 CFR 257.95. Note Fluoride included in both Assessment and Detecion Monitoring Constituents, but data screening may be conducted over a different range.
- 8. Shaded cells indicate resampling occurred. Data that were not confirmed or were replaced by resample data is indicated with (NA) in shaded cell.
- 9. Red text with black border represent outlier values identified by Sanitas.

10. Blue shaded cells with black border indicate data removed for correction of a trend identified by Sanitas (Sen's Slope / Mann-Kendall).

- 11. Analytical Data Qualifiers provided by Laboratory:
- a. "J" Analyte detected below quantitation limits
- b. "S" Spike Recovery outside recovery limits

Sikeston Board of Municipal Utilities - Sikeston Power Station Fly Ash Pond Baseline Groundwater Statistical Evaluation Scott County, Missouri

Appendix 4 - Groundwater Quality Summary

Well	Date	Monitoring Purpose	Spec. Cond.	Temp.	ORP	D.O.	Turbidity	рН	Chloride	Fluoride	Sulfate	TDS	Boron	Calcium	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Fluoride	Lead	Lithium	Mercury	Molybdenum	Selenium	Thallium	Radium 226	Radium 228	Radium 226/228 (Combined)
ID			µmhos/cm	°C	mV	mg/L	NTU	S.U.	mg/L	mg/L	mg/L	mg/L	ug/L	mg/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	mg/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	pCi/L	pCi/L	pCi/L
Federal MCL									None	4.0	None	None	None	None	6	10	2000	4	5	100	6	4	15	40	2	100	50	2			5
	3/21/2018	Background	979.8	14.98	25.1	0.52	1.60	7.35	17	0.929	230	480	4700	65	<3.0	<1.0	49	<1.0	<1.0	<4.0	<2.0	0.929	<1.0	19	<0.20	630	<1.0	<1.0	0.0898	0.401	0.491 (ND)
	4/15/2018	Background	972.7	14.63	24.9	1.73	2.32	7.37	21	1.09	240	460	5100	57	<3.0	1.2	49	<1.0	<1.0	<4.0	<2.0	1.09	<1.0	11	<0.20	680	<1.0	<1.0	(0.132)	0.982	0.982 (ND)
	5/23/2018	Background	1020.5	18.70	25.9	0.48	0.64	7.34	17	1.05	240	520	5800	55	<3.0	<1.0	45	<1.0	<1.0	8.1	<2.0	1.05	<1.0	15	<0.20	840	<1.0	<1.0	0.260	0.0989	0.359 (ND)
	6/27/2018	Background	902.9	19.33	25.2	0.42	4.97	7.32	15	0.910	220	520	4600	73	<3.0	<1.0	47	<1.0	<1.0	<4.0	<2.0	0.910	<1.0	15	<0.20	560	<1.0	<1.0	0.000	0.327	0.327 (ND)
	8/1/2018	Background	942.6	19.10	20.7	0.47	2.03	7.28	16	0.916	220	560	4500	76	<3.0	<1.0	47	<1.0	<1.0	<4.0	<2.0	0.916	<1.0	18	<0.20	500	<1.0	<1.0	0.248	0.1700	0.418(ND)
<u></u>	9/5/2018	Background	829.2	19.85	20.9	0.45	2.68	7.31	16	0.957	180	420	4400	80	<3.0	<1.0	48	<1.0	<1.0	<4.0	<2.0	0.957	<1.0	17	<0.20	460	<1.0	<1.0	(0.076)	0.707	0.707(ND)
(DG)	11/6/2018	Background	732.8	18.19	428.8	0.60	0.45	7.34	11	0.885	130	410	3800	79	<3.0	<1.0	47	<1.0	<1.0	<4.0	<2.0	0.885	<1.0	13	<0.20	420	<1.0	<1.0	0.570	0.903	1.473(ND)
6 9	12/12/2018	Background	742.9	16.95	36.5	0.48	0.63	7.33	12	0.972	170	360	3700	78	<3.0	<1.0	53	<1.0	<1.0	<4.0	<2.0	0.972	<1.0	17	<0.20	420	<1.0	<1.0	0.452	0.780	1.232 (ND)
MW- Bas	3/27/2019	Detection 1	673.2	16.74	22.1	0.51	0.96	7.40	11	0.827	120	440	3100	70	NA	NA	NA	NA	NA	NA	NA	0.827	NA	NA	NA	NA	NA	NA	NA	NA	NA
	9/24/2019	Detection 2	891.5	19.25	38.3	0.41	0.62	7.4	16	0.847	220	540	5000	87	NA	NA	NA	NA	NA	NA	NA	0.847	NA	NA	NA	NA	NA	NA	NA	NA	NA
	4/6/2020	Detection 3	967.5	17.60	61.6	0.34	0.92	7.3	18	0.816	250	NA	4900	92	NA	NA	NA	NA	NA	NA	NA	0.816	NA	NA	NA	NA	NA	NA	NA	NA	NA
	5/21/2020		1024.4	17.09	-51.1	4.95	0.59	NA 	NA	NA	NA	560	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	9/22/2020	Detection 4	891.9	17.59	-70.4	4.18	0.64	7.5	15	0.832	210	550	5000	80	NA	NA	NA	NA	NA	NA	NA	0.832	NA	NA	NA	NA	NA	NA	NA	NA	NA
	1/26/2021		971.7	16.07	-69.1	0.34	0.47	NA 	NA	NA 	NA	NA	NA	NA 	NA	NA	NA	NA	NA	NA	NA	NA 	NA	NA	NA	NA	NA	NA	NA	NA	NA
	4/17/2021	Detection 5	1098.1	15.16	-19.7	7.52	0.91	7.4	21	0.775	250	630	6200	57	NA	NA	NA	NA	NA	NA	NA	0.775	NA	NA	NA	NA	NA	NA	NA	NA	NA
	10/20/2021	Detection 6	1020.5	15.70	13.1	6.16	0.87	7.52	18	1.33	240	(NA)	5,500	5	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	1.330	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)
	12/27/2021		886.0	8.57	-21.5	0.70	0.87	(NA)	(NA)	(NA)	(NA)	520	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)
	4/9/2022	Detection 7	894.7	-0.98	1.9	0.86	0.70	(NA)	11	(NA)	160	330	3,800	64	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)
€ 8	8/2/2022		681.8	18.12	27.6	0.30	2.29	7.39	(NA)	0.860	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	0.860	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)
-9 (DG) pliance	11/2/2022	Det 8/ Ass 1	785.3	19.11	6.4	0.44	2.67	7.39	12	1.03	160	540	3,000	97	<3.0	<1.0	78	<1.0	<1.0	<4.0	<2.0	1.03	<1.0	21	<0.20	210	<1.0	<1.0	0.164	0.648	0.812 (ND)
6- \ du	3/12/2023	Det 9/ Ass 2	764.4	16.07	26.7	0.42	0.34	7.43	11	1.02	160	480	3,600	95	(NA)	(NA)	85	(NA)	(NA)	(NA)	<2.0	1.02	(NA)	<20	(NA)	160	<1.0	(NA)	0.451	1.05	1.50(ND)
Com	12/11/2023	Det 10/ Ass 3	804.1	16.27	782.2	0.52	1.13	7.15	13	0.70	171	466	2,750	101	<3.0	<1.0	84.1	<1.0	<1.0	<4.0	<2.0	0.70	<1.0	34.9	<0.20	102	<1.0	<1.0	0.16	1.14	<2.0
	4/23/2024	Det 11/ Ass 4	801.5	17.45	1035.7	0.44	1.06	7.05	14	0.58	203	512	3,700	103	(NA)	<1.0	102	(NA)	(NA)	(NA)	<2.0	0.58	(NA)	23.0	(NA)	89.8	<1.0	(NA)	(NA)	(NA)	(NA)
	9/25/2024	Det 12/ Ass 5	832.2	18.46	1099.2	0.54	1.41	7.06	14.4	0.55	216	508	4,140	88.9	<3.0	<1.0	91.5	<1.0	<1.0	<4.0	<2.0	0.55	<1.0	26.4	<0.20	109	<1.0	<1.0	0.16	0.39	0.55 (ND)
	4/16/2025	Damaged	867.5	17.06	375.2	0.52	1.58	6.87	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)
	5/6/2025	Det 13 / Ass 6	848.0	16.74	290.7	221.63	3.70	7.00	13.1	0.71	213	510	4,060	87.5	(NA)	<1.0	90.9	(NA)	(NA)	(NA)	2.2	0.71	(NA)	24.4	(NA)	184	<1.0	(NA)	(NA)	(NA)	(NA)

Notes:

- 1. All data and Qualifiers transcribed from analytical lab data sheets or field notes.
- 2. Less than (<) symbol denotes concentration not detected at or above reporting limits. Bold values indicate analyte detected above reporting limit.
- 3. (ND) denotes Radium 226 and 228 (combined) concentration not detected above minimum detectable activity.
- 4. (NA) denotes analysis not conducted, not available at time of report, or not confirmed/replaced by resampling.
- 5. Baseline monitoring per USEPA 40 CFR 257.93.
- 6. Detection monitoring per USEPA 40 CFR 257.94. Detection Monitoring database comprised of analytical results for pH, Chloride, Fluoride, Sulfate, TDS, Boron, and Calcium.
- 7. Assessment monitoring per USEPA 40 CFR 257.95. Note Fluoride included in both Assessment and Detecion Monitoring Constituents, but data screening may be conducted over a different range.
- 8. Shaded cells indicate resampling occurred. Data that were not confirmed or were replaced by resample data is indicated with (NA) in shaded cell.
- 9. Red text with black border represent outlier values identified by Sanitas.

10. Blue shaded cells with black border indicate data removed for correction of a trend identified by Sanitas (Sen's Slope / Mann-Kendall).

- 11. Analytical Data Qualifiers provided by Laboratory:
- a. "J" Analyte detected below quantitation limits
- b. "S" Spike Recovery outside recovery limits

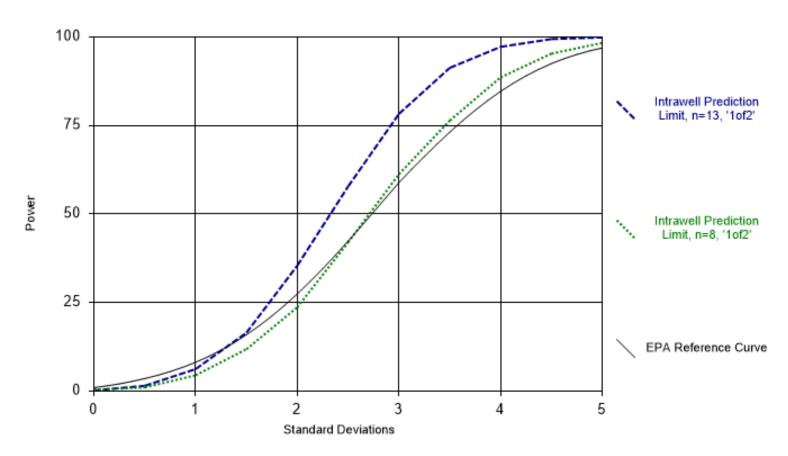
Sikeston Board of Municipal Utilities - Sikeston Power Station Fly Ash Pond Baseline Groundwater Statistical Evaluation Scott County, Missouri

Appendix 4 - Groundwater Quality Summary

Well	Date	Monitoring Purpose	Spec. Cond.	Temp.	ORP	D.O.	Turbidity	рН	Chloride	Fluoride	Sulfate	TDS	Boron	Calcium	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Fluoride	Lead	Lithium	Mercury	Molybdenum	Selenium	Thallium	Radium 226	Radium 228	Radium 226/228 (Combined)
ID			µmhos/cm	°C	mV	mg/L	NTU	S.U.	mg/L	mg/L	mg/L	mg/L	ug/L	mg/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	mg/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	pCi/L	pCi/L	pCi/L
Federal MCL									None	4.0	None	None	None	None	6	10	2000	4	5	100	6	4	15	40	2	100	50	2			5
	2/15/2023	Background	599.92	18.30	-64.8	0.14	8.51	7.02	14	<0.250	120	360	340	81	<3.0	6.9	150	<1.0	<1.0	<4.0	<2.0	<0.250	<1.0	<20	<0.20	25	<1.0	<1.0			<0.773
	8/21/2023	Background	677.61	20.31	-29.0	0.34	5.79	6.91	17	0.31	141	465	233	90.1	<3.0	5.7	139	<1.0	<1.0	<4.0	<2.0	0.31	<1.0	31.0	<0.20	15.4	<1.0	<1.0	0.19	0.86	<2.00
© ₀	9/5/2023	Background	695.13	20.58	-36.5	0.28	1.86	6.85	18	0.30	168	490	240	83.5	<3.0	7.4	134	<1.0	<1.0	<4.0	<2.0	0.30	<1.0	34.7	<0.20	24.8	<1.0	<1.0	0.18	0.85	<2.00
0 (DG eline	9/20/2023	Background	693.51	19.95	-82.5	0.33	0.40	6.79	21	0.28	182	450	249	86.4	<3.0	5.6	141	<1.0	<1.0	<4.0	<2.0	0.28	<1.0	32.2	<0.20	21.7	<1.0	<1.0	-0.02	0.05	<2.00
V-1(10/2/2023	Background	720.70	20.81	-44.2	0.26	2.62	6.98	19	0.29	171	440	265	87.6	<3.0	5.5	157	<1.0	<1.0	<4.0	<2.0	0.29	<1.0	36.2	<0.20	20.7	<1.0	<1.0	0.17	0.59	<2.00
≥ □	10/17/2023	Background	726.4	19.44	-101.1	0.33	0.72	7.05	20	0.42	164	412	284	86.5	<3.0	6.1	146	<1.0	<1.0	<4.0	<2.0	0.42	<1.0	40	<0.20	24.2	<1.0	<1.0	0.19	0.58	<2.00
	11/2/2023	Background	722.98	19.46	198.7	0.42	0.53	6.84	20	0.30	161	394	282	86.3	<3.0	8.7	141	<1.0	<1.0	<4.0	<2.0	0.30	<1.0	40.6	<0.20	18.0	<1.0	<1.0	0.35	1.29	<2.0
	11/15/2023	Background	181.18	19.51	383.6	0.30	0.74	6.87	21	0.30	187	400	342	91.7	<3.0	6.3	151	<1.0	<1.0	<4.0	<1.0	0.30	<1.0	13.4	<0.20	24.0	<1.0	<1.0	0.24	1.11	<2.0
	12/11/2023	Det 10/ Ass 3	720.43	18.48	98.6	0.35	0.60	7.06	19	0.29	166	455	378	88.8	<3.0	5.9	142	<1.0	<1.0	<4.0	<2.0	0.29	<1.0	11.4	<0.20	25.2	<1.0	<1.0	0.12	1.38	<2.0
100 (DO)	4/23/2024	Det 11/ Ass 4	680.1	18.28	432.0	0.31	9.96	6.93	8	<0.25	140	420	241	90.4	(NA)	6.6	138	(NA)	(NA)	(NA)	<2.0	<0.25	(NA)	<10.0	(NA)	19.3	<1.0	(NA)	(NA)	(NA)	(NA)
MW-10 (DG) Compliance	ロバンちバンハンム	Det 12/ Ass 5	540.7	21.16	270.7	0.29	0.99	7.21	13.7	0.28	106	338	397	64.4	<3.0	4.9	108	<1.0	<1.0	<4.0	<2.0	0.28	<1.0	<10.0	<0.20	25.3	<1.0	<1.0	0.03	0.66	0.69 (ND)
Compliance	4/16/2025	Damaged	619.1	17.72	68.9	0.25	8.24	7.09	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)
	5/6/2025	Det 13 / Ass 6	665.1	17.82	73.7	221.32	7.12	7.08	8.41	0.24"J"	86.3	396	210	88.9	(NA)	6.8	130	(NA)	(NA)	(NA)	<2.0	0.24"J"	(NA)	<10.0	(NA)	14.1	<1.0	(NA)	(NA)	(NA)	(NA)

Notes:

- 1. All data and Qualifiers transcribed from analytical lab data sheets or field notes.
- 2. Less than (<) symbol denotes concentration not detected at or above reporting limits. Bold values indicate analyte detected above reporting limit.
- 3. (ND) denotes Radium 226 and 228 (combined) concentration not detected above minimum detectable activity.
- 4. (NA) denotes analysis not conducted, not available at time of report, or not confirmed/replaced by resampling.
- 5. Baseline monitoring per USEPA 40 CFR 257.93.
- 6. Detection monitoring per USEPA 40 CFR 257.94. Detection Monitoring database comprised of analytical results for pH, Chloride, Fluoride, Sulfate, TDS, Boron, and Calcium.
- 7. Assessment monitoring per USEPA 40 CFR 257.95. Note Fluoride included in both Assessment and Detecion Monitoring Constituents, but data screening may be conducted over a different range.
- 8. Shaded cells indicate resampling occurred. Data that were not confirmed or were replaced by resample data is indicated with (NA) in shaded cell.
- 9. Red text with black border represent outlier values identified by Sanitas.

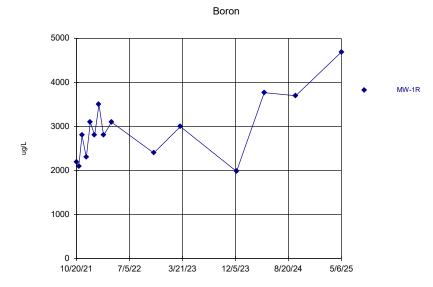

10. Blue shaded cells with black border indicate data removed for correction of a trend identified by Sanitas (Sen's Slope / Mann-Kendall).

- 11. Analytical Data Qualifiers provided by Laboratory:
- a. "J" Analyte detected below quantitation limits
- b. "S" Spike Recovery outside recovery limits

Appendix 5

Statistical Power Curves

Power Curve


Analysis Run 7/24/2023 2:53 PM View: ApplII&IV
SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

Appendix 6

Time Series Plots

10/20/21

7/5/22

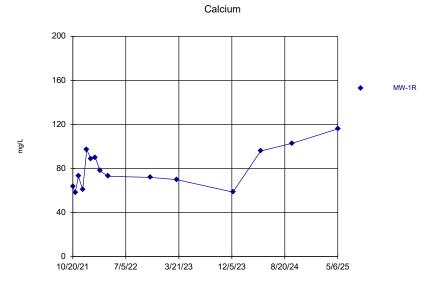
Time Series Analysis Run 5/21/2025 10:43 AM View: Detection 1R 5.1.2025

SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

Chloride

20 16 12 8

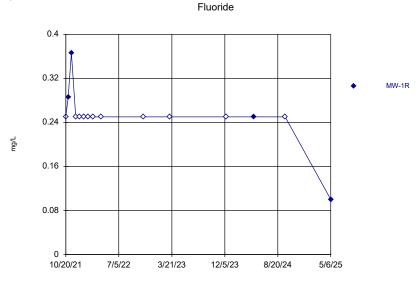
Time Series Analysis Run 5/21/2025 10:43 AM View: Detection 1R 5.1.2025


SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

12/5/23

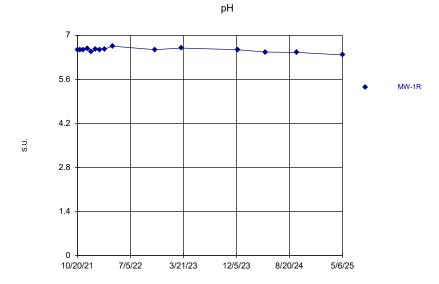
8/20/24

5/6/25


3/21/23

Time Series Analysis Run 5/21/2025 10:43 AM View: Detection 1R 5.1.2025

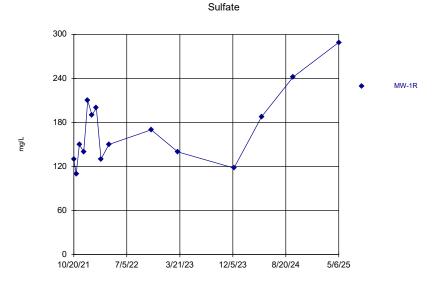
SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background



Time Series Analysis Run 5/21/2025 10:43 AM View: Detection 1R 5.1.2025

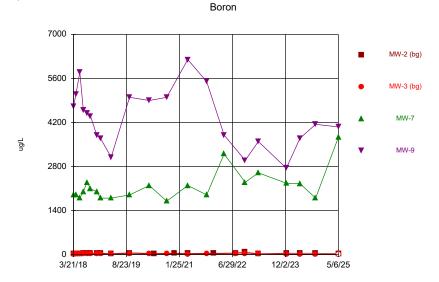
SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

Time Series Analysis Run 5/21/2025 10:43 AM View: Detection 1R 5.1.2025

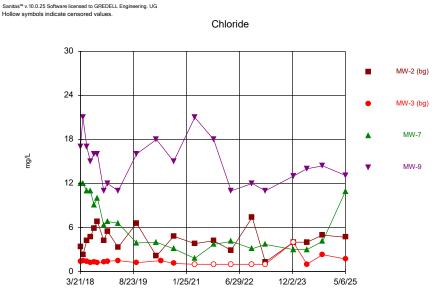

SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

Sanitas™ v.10.0.25 Software licensed to GREDELL Engineering. UG

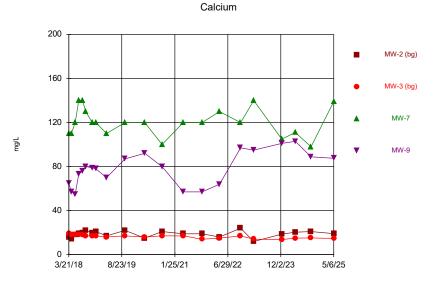
Total Dissolved Solids 600 480 240 120 10/20/21 7/5/22 3/21/23 12/5/23 8/20/24 5/6/25


Time Series Analysis Run 5/21/2025 10:43 AM View: Detection 1R 5.1.2025

SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

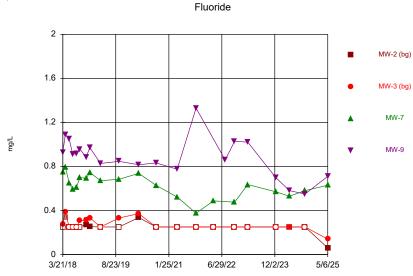

Time Series Analysis Run 5/21/2025 10:43 AM View: Detection 1R 5.1.2025

SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background


Time Series Analysis Run 5/21/2025 10:37 AM View: Detection 237&9 n=13 5.1.2025

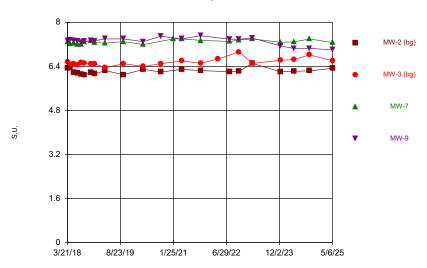
SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

Time Series Analysis Run 5/21/2025 10:37 AM View: Detection 237&9 n=13 5.1.2025


SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

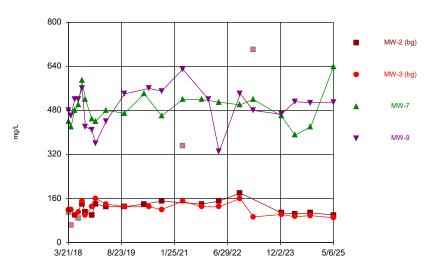
Time Series Analysis Run 5/21/2025 10:37 AM View: Detection 237&9 n=13 5.1.2025

SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background



Time Series Analysis Run 5/21/2025 10:37 AM View: Detection 237&9 n=13 5.1.2025

SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

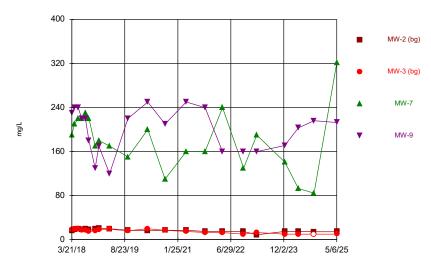


Time Series Analysis Run 5/21/2025 10:37 AM View: Detection 237&9 n=13 5.1.2025

SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

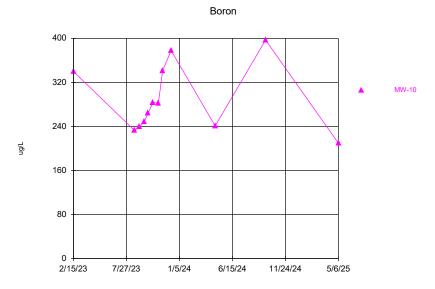
Sanitas™ v.10.0.25 Software licensed to GREDELL Engineering. UG

Total Dissolved Solids



Time Series Analysis Run 5/21/2025 10:37 AM View: Detection 237&9 n=13 5.1.2025

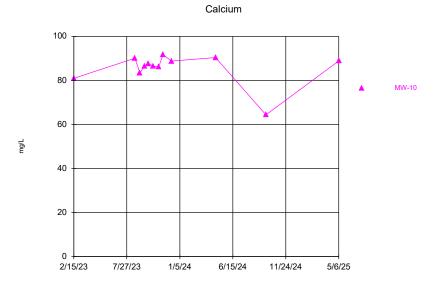
SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background


Sanitas™ v.10.0.25 Software licensed to GREDELL Engineering. UG Hollow symbols indicate censored values.

Sulfate

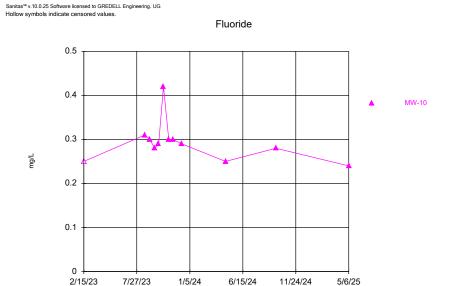
Time Series Analysis Run 5/21/2025 10:37 AM View: Detection 237&9 n=13 5.1.2025

SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background


Time Series Analysis Run 5/21/2025 10:46 AM View: Detection 10 5.1.2025

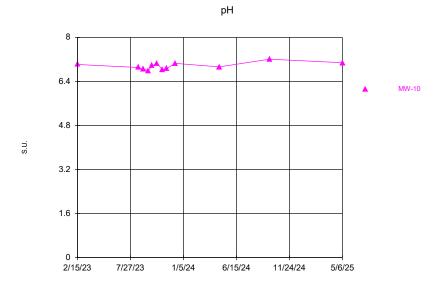
SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

Chloride 30 24 18 12 6 2/15/23 7/27/23 1/5/24 6/15/24 11/24/24 5/6/25


Time Series Analysis Run 5/21/2025 10:46 AM View: Detection 10 5.1.2025

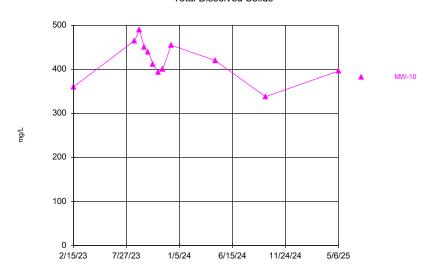
SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

Time Series Analysis Run 5/21/2025 10:46 AM View: Detection 10 5.1.2025


SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

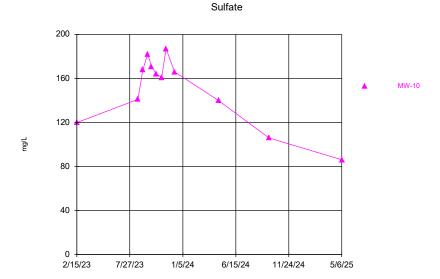
Time Series Analysis Run 5/21/2025 10:46 AM View: Detection 10 5.1.2025

SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background



Time Series Analysis Run 5/21/2025 10:46 AM View: Detection 10 5.1.2025

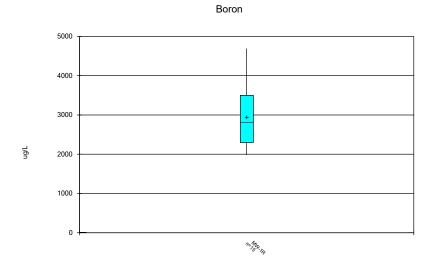
SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background


Sanitas™ v.10.0.25 Software licensed to GREDELL Engineering. UG

Time Series Analysis Run 5/21/2025 10:46 AM View: Detection 10 5.1.2025

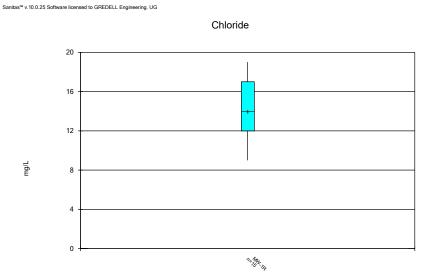
SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

Time Series Analysis Run 5/21/2025 10:46 AM View: Detection 10 5.1.2025

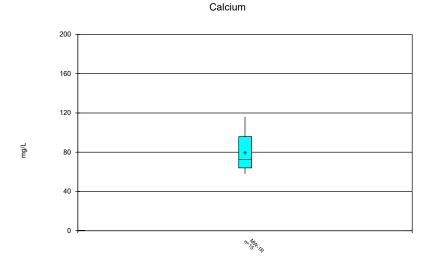

SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

Appendix 7

Box and Whiskers Plots

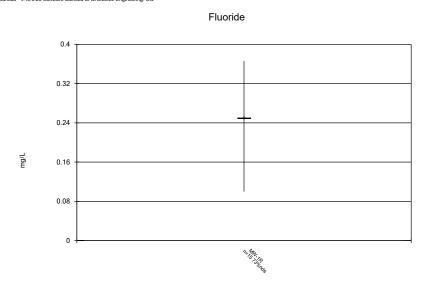

Box & Whiskers Plot

	SBMU-Sikeston Power Station	Client: GRED	DELL Engineering	Data: Sikestor	FAP Background	Printed 5/21/20	025, 10:45 AM		
Constituent	Well	<u>N</u>	<u>Mean</u>	Std. Dev.	Std. Err.	<u>Median</u>	Min.	Max.	%NDs
Boron (ug/L)	MW-1R	15	2949	738.3	190.6	2800	1980	4690	0
Calcium (mg/L)	MW-1R	15	79.9	17.67	4.563	73	58	116	0
Chloride (mg/L)	MW-1R	15	13.99	3.073	0.7936	14	9	19	0
Fluoride (mg/L)	MW-1R	15	0.2501	0.05158	0.01332	0.25	0.1	0.366	73.33
pH (S.U.)	MW-1R	15	6.537	0.0664	0.01715	6.55	6.38	6.66	0
Sulfate (mg/L)	MW-1R	15	170.5	49.76	12.85	150	110	289	0
Total Dissolved Solids (mg/L)	MW-1R	15	390.7	85.38	22.04	390	290	576	0

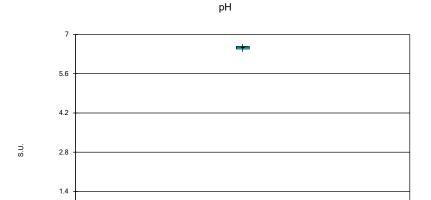

Box & Whiskers Plot Analysis Run 5/21/2025 10:44 AM View: Detection 1R 5.1.2025

SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

Box & Whiskers Plot Analysis Run 5/21/2025 10:44 AM View: Detection 1R 5.1.2025


SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

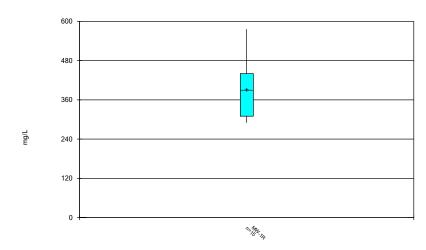
Box & Whiskers Plot Analysis Run 5/21/2025 10:44 AM View: Detection 1R 5.1.2025


SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

Box & Whiskers Plot Analysis Run 5/21/2025 10:44 AM View: Detection 1R 5.1.2025

SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background




Box & Whiskers Plot Analysis Run 5/21/2025 10:44 AM View: Detection 1R 5.1.2025

SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

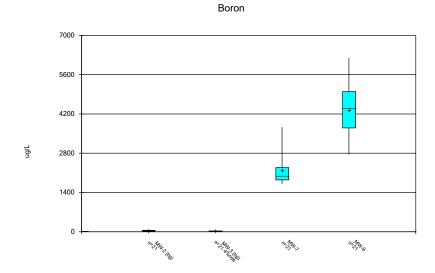
2/3/2

Sanitas™ v.10.0.25 Software licensed to GREDELL Engineering. UG

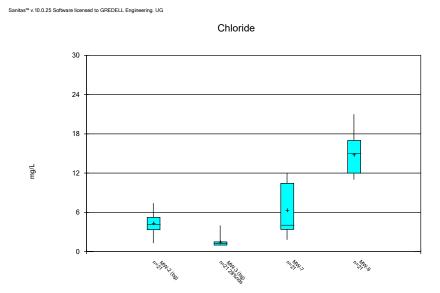
Box & Whiskers Plot Analysis Run 5/21/2025 10:44 AM View: Detection 1R 5.1.2025

SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

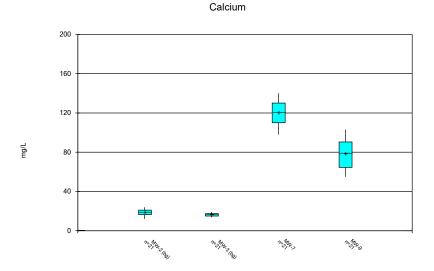
Sanitas™ v.10.0.25 Software licensed to GREDELL Engineering. UG



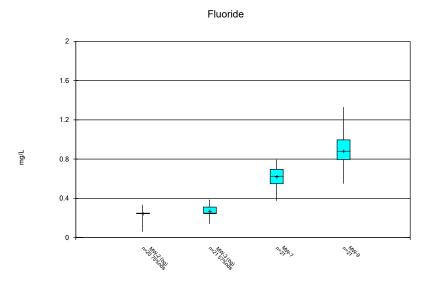
Box & Whiskers Plot Analysis Run 5/21/2025 10:44 AM View: Detection 1R 5.1.2025


SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

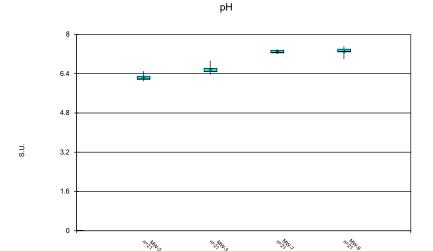
Box & Whiskers Plot


	SBMU-Sikeston Power Station	Client: GRED	ELL Engineering	Data: SikestonF	AP Background	Printed 5/21/20	25, 10:42 AM		
Constituent	<u>Well</u>	<u>N</u>	<u>Mean</u>	Std. Dev.	Std. Err.	<u>Median</u>	Min.	Max.	%NDs
Boron (ug/L)	MW-2 (bg)	21	42.8	12.61	2.752	43	23	81	0
Boron (ug/L)	MW-3 (bg)	21	22.54	6.454	1.408	22	10	31	4.762
Boron (ug/L)	MW-7	21	2174	492.7	107.5	2000	1700	3730	0
Boron (ug/L)	MW-9	21	4350	918	200.3	4400	2750	6200	0
Calcium (mg/L)	MW-2 (bg)	21	18.77	2.924	0.6381	19	12	24	0
Calcium (mg/L)	MW-3 (bg)	21	16.37	1.526	0.3329	17	13.7	19	0
Calcium (mg/L)	MW-7	21	120.1	12.75	2.782	120	98	140	0
Calcium (mg/L)	MW-9	21	78.21	15.18	3.312	79	55	103	0
Chloride (mg/L)	MW-2 (bg)	21	4.335	1.552	0.3387	4.2	1.3	7.4	0
Chloride (mg/L)	MW-3 (bg)	21	1.429	0.6657	0.1453	1.3	1	4	28.57
Chloride (mg/L)	MW-7	21	6.343	3.528	0.7698	4.11	1.8	12	0
Chloride (mg/L)	MW-9	21	14.88	3.096	0.6755	15	11	21	0
Fluoride (mg/L)	MW-2 (bg)	20	0.2461	0.04795	0.01072	0.25	0.06	0.336	75
Fluoride (mg/L)	MW-3 (bg)	21	0.2718	0.05336	0.01164	0.25	0.14	0.386	57.14
Fluoride (mg/L)	MW-7	21	0.6219	0.1043	0.02277	0.63	0.375	0.794	0
Fluoride (mg/L)	MW-9	21	0.885	0.1758	0.03836	0.885	0.55	1.33	0
pH (S.U.)	MW-2 (bg)	21	6.235	0.1004	0.0219	6.23	6.09	6.51	0
pH (S.U.)	MW-3 (bg)	21	6.559	0.1311	0.02861	6.51	6.36	6.93	0
pH (S.U.)	MW-7	21	7.302	0.06418	0.01401	7.29	7.2	7.4	0
pH (S.U.)	MW-9	21	7.316	0.1399	0.03052	7.34	7	7.52	0
Sulfate (mg/L)	MW-2 (bg)	21	16.6	2.698	0.5887	17	8.7	21	0
Sulfate (mg/L)	MW-3 (bg)	21	15.1	3.597	0.785	16	10	20	4.762
Sulfate (mg/L)	MW-7	21	180.4	54.69	11.93	180	84.3	321	0
Sulfate (mg/L)	MW-9	21	200.1	39.16	8.546	213	120	250	0
Total Dissolved Solids (mg/L)	MW-2 (bg)	15	128.7	23.17	5.983	130	100	180	0
Total Dissolved Solids (mg/L)	MW-3 (bg)	21	121.8	22.19	4.842	120	90	160	0
Total Dissolved Solids (mg/L)	MW-7	21	489	58.04	12.67	480	390	638	0
Total Dissolved Solids (mg/L)	MW-9	21	491.2	70.66	15.42	510	330	630	0

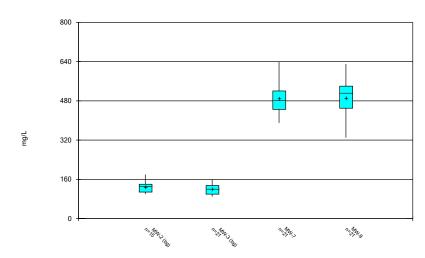
Box & Whiskers Plot Analysis Run 5/21/2025 10:40 AM View: Detection 237&9 n=13 5.1.2025 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background



Box & Whiskers Plot Analysis Run 5/21/2025 10:40 AM View: Detection 237&9 n=13 5.1.2025 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

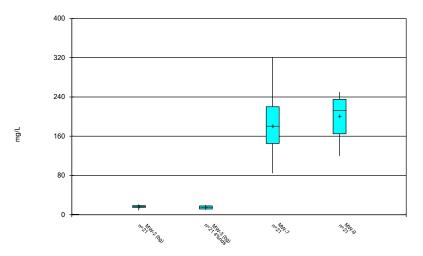


Box & Whiskers Plot Analysis Run 5/21/2025 10:40 AM View: Detection 237&9 n=13 5.1.2025 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background


Box & Whiskers Plot Analysis Run 5/21/2025 10:40 AM View: Detection 237&9 n=13 5.1.2025 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

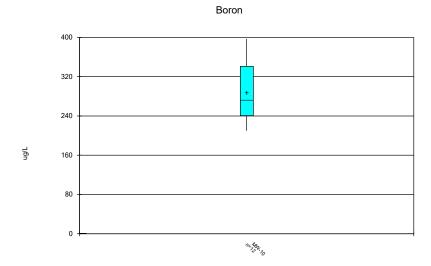
Box & Whiskers Plot Analysis Run 5/21/2025 10:40 AM View: Detection 237&9 n=13 5.1.2025 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

Sanitas™ v.10.0.25 Software licensed to GREDELL Engineering. UG

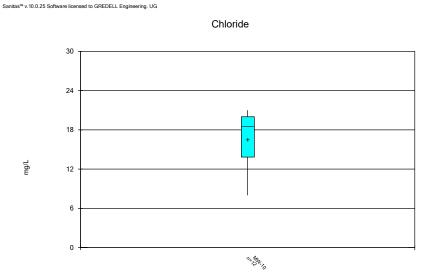

Total Dissolved Solids

Box & Whiskers Plot Analysis Run 5/21/2025 10:40 AM View: Detection 237&9 n=13 5.1.2025 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

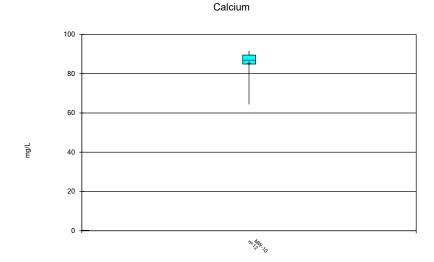
Sanitas™ v.10.0.25 Software licensed to GREDELL Engineering. UG


Sulfate

Box & Whiskers Plot Analysis Run 5/21/2025 10:40 AM View: Detection 237&9 n=13 5.1.2025 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

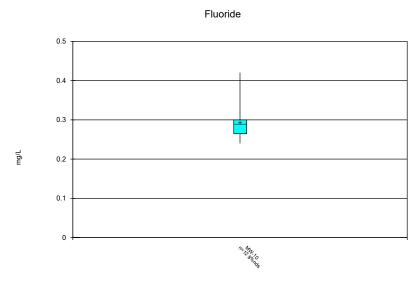

Box & Whiskers Plot

	SBMU-Sikeston Power Station	Client: GRED	ELL Engineering	Data: Sikestonf	FAP Background	Printed 5/21/20	25, 10:48 AM		
Constituent	<u>Well</u>	<u>N</u>	<u>Mean</u>	Std. Dev.	Std. Err.	<u>Median</u>	Min.	Max.	%NDs
Boron (ug/L)	MW-10	12	288.4	61.29	17.69	273.5	210	397	0
Calcium (mg/L)	MW-10	12	85.47	7.276	2.1	87.05	64.4	91.7	0
Chloride (mg/L)	MW-10	12	16.59	4.589	1.325	18.5	8	21	0
Fluoride (mg/L)	MW-10	12	0.2925	0.04615	0.01332	0.29	0.24	0.42	8.333
pH (S.U.)	MW-10	12	6.966	0.1227	0.03541	6.955	6.79	7.21	0
Sulfate (mg/L)	MW-10	12	149.4	31.34	9.046	162.5	86.3	187	0
Total Dissolved Solids (mg/L)	MW-10	12	418.3	44.17	12.75	416	338	490	0


Box & Whiskers Plot Analysis Run 5/21/2025 10:47 AM View: Detection 10 5.1.2025

SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

Box & Whiskers Plot Analysis Run 5/21/2025 10:47 AM View: Detection 10 5.1.2025

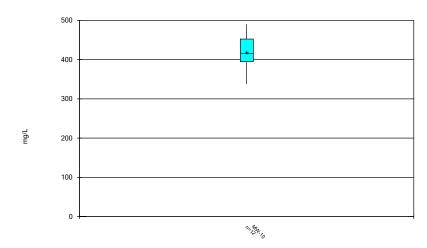

SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

Box & Whiskers Plot Analysis Run 5/21/2025 10:47 AM View: Detection 10 5.1.2025

SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

Box & Whiskers Plot Analysis Run 5/21/2025 10:47 AM View: Detection 10 5.1.2025

SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

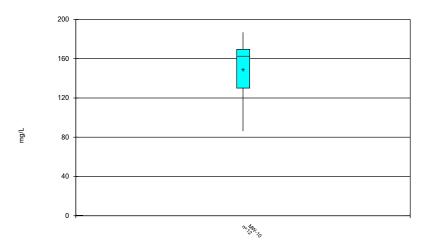


Box & Whiskers Plot Analysis Run 5/21/2025 10:47 AM View: Detection 10 5.1.2025

SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

Sanitas™ v.10.0.25 Software licensed to GREDELL Engineering. UG

Total Dissolved Solids



Box & Whiskers Plot Analysis Run 5/21/2025 10:47 AM View: Detection 10 5.1.2025

SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

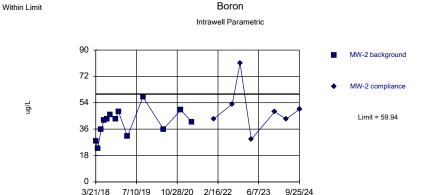
Sanitas™ v.10.0.25 Software licensed to GREDELL Engineering. UG

Sulfate

Box & Whiskers Plot Analysis Run 5/21/2025 10:47 AM View: Detection 10 5.1.2025

SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

Appendix 8

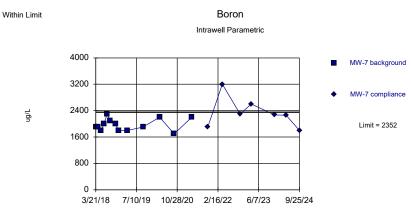

Prediction Limit Charts – Detection Constituents

Appendix 8

Prediction Limit Charts – Detection Constituents 12th CCR Compliance Sampling Event (2nd 2024 Semi-annual Detection Monitoring Event) (September 25, 2024)

Prediction Limit

	SBMU-S	ikeston Power Sta	tion Client: GRI	EDELL Enginee	ering Data: S	Sikestonf	AP Bad	ckground	Printed 5/21/2025, 1	0:58 AM	
Constituent	Well	Upper Lim.	Lower Lim.	<u>Date</u>	Observ.	Sig.	Bg N	%NDs	<u>Transform</u>	<u>Alpha</u>	Method
Boron (ug/L)	MW-2	59.94	n/a	9/25/2024	49.6	No	13	0	No	0.002505	Param Intra 1 of 2
Boron (ug/L)	MW-3	33.39	n/a	9/25/2024	12	No	13	0	No	0.002505	Param Intra 1 of 2
Boron (ug/L)	MW-7	2352	n/a	9/25/2024	1800	No	13	0	No	0.002505	Param Intra 1 of 2
Boron (ug/L)	MW-9	6408	n/a	9/25/2024	4140	No	13	0	No	0.002505	Param Intra 1 of 2
Calcium (mg/L)	MW-2	24.21	n/a	9/25/2024	21	No	13	0	No	0.002505	Param Intra 1 of 2
Calcium (mg/L)	MW-3	19.08	n/a	9/25/2024	15.2	No	13	0	No	0.002505	Param Intra 1 of 2
Calcium (mg/L)	MW-7	144	n/a	9/25/2024	98	No	13	0	No	0.002505	Param Intra 1 of 2
Calcium (mg/L)	MW-9	97.23	n/a	9/25/2024	88.9	No	13	0	No	0.002505	Param Intra 1 of 2
Chloride (mg/L)	MW-2	7.525	n/a	9/25/2024	4.95	No	13	0	No	0.002505	Param Intra 1 of 2
Chloride (mg/L)	MW-3	1.641	n/a	9/25/2024	2.3J	No	13	7.692	No	0.002505	Param Intra 1 of 2
Chloride (mg/L)	MW-7	14.94	n/a	9/25/2024	4.11	No	13	0	No	0.002505	Param Intra 1 of 2
Chloride (mg/L)	MW-9	22.51	n/a	9/25/2024	14.4	No	13	0	No	0.002505	Param Intra 1 of 2
Fluoride (mg/L)	MW-2	0.272	n/a	9/25/2024	0.25ND	No	11	81.82	n/a	0.01276	NP Intra (NDs) 1 of 2
Fluoride (mg/L)	MW-3	0.386	n/a	9/25/2024	0.25ND	No	13	46.15	n/a	0.009692	NP Intra (normality)
Fluoride (mg/L)	MW-7	0.831	n/a	9/25/2024	0.58	No	13	0	No	0.002505	Param Intra 1 of 2
Fluoride (mg/L)	MW-9	1.101	n/a	9/25/2024	0.55	No	13	0	No	0.002505	Param Intra 1 of 2
pH (S.U.)	MW-2	6.405	6.013	9/25/2024	6.24	No	13	0	No	0.001253	Param Intra 1 of 2
pH (S.U.)	MW-3	6.626	6.359	9/25/2024	6.82	Yes	13	0	No	0.001253	Param Intra 1 of 2
pH (S.U.)	MW-7	7.42	7.148	9/25/2024	7.4	No	13	0	No	0.001253	Param Intra 1 of 2
pH (S.U.)	MW-9	7.477	7.237	9/25/2024	7.06	Yes	13	0	No	0.001253	Param Intra 1 of 2
Sulfate (mg/L)	MW-2	21.42	n/a	9/25/2024	14.4	No	13	0	No	0.002505	Param Intra 1 of 2
Sulfate (mg/L)	MW-3	21.29	n/a	9/25/2024	10ND	No	13	0	No	0.002505	Param Intra 1 of 2
Sulfate (mg/L)	MW-7	259	n/a	9/25/2024	84.3	No	13	0	No	0.002505	Param Intra 1 of 2
Sulfate (mg/L)	MW-9	279.2	n/a	9/25/2024	216	No	13	0	x^2	0.002505	Param Intra 1 of 2
Total Dissolved Solids (mg/L)	MW-2	171.5	n/a	9/25/2024	108	No	8	0	No	0.002505	Param Intra 1 of 2
Total Dissolved Solids (mg/L)	MW-3	166.7	n/a	9/25/2024	98	No	13	0	No	0.002505	Param Intra 1 of 2
Total Dissolved Solids (mg/L)	MW-7	584.1	n/a	9/25/2024	420	No	13	0	No	0.002505	Param Intra 1 of 2
Total Dissolved Solids (mg/L)	MW-9	653	n/a	9/25/2024	508	No	13	0	No	0.002505	Param Intra 1 of 2



Background Data Summary: Mean=40.31, Std. Dev.=9.455, n=13. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.98, critical = 0.866. Kappa = 2.077 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.05132

Prediction Limit Analysis Run 5/21/2025 10:57 AM View: Detection 237&9 n=13 5.1.2025

SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

Sanitas™ v.10.0.25 Software licensed to GREDELL Engineering. UG

Background Data Summary: Mean=1969, Std. Dev.=184.3, n=13. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.9386, critical = 0.866. Kappa = 2.077 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505.

Within Limit

Boron
Intrawell Parametric

MW-3 background

MW-3 compliance

Limit = 33.39

Background Data Summary: Mean=23.85, Std. Dev.=4.598, n=13. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.9639, critical = 0.866. Kappa = 2.077 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505.

3/21/18 7/10/19 10/28/20 2/16/22

Prediction Limit Analysis Run 5/21/2025 10:57 AM View: Detection 237&9 n=13 5.1.2025

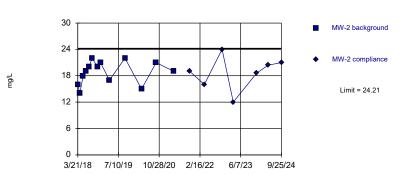
SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

6/7/23

9/25/24

Sanitas™ v.10.0.25 Software licensed to GREDELL Engineering. UG

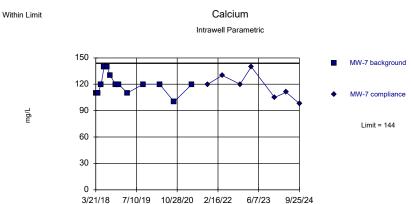
Within Limit Boron
Intrawell Parametric


MW-9 background

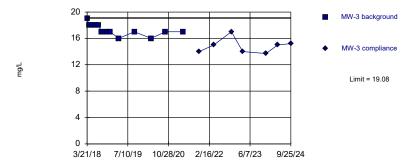
MW-9 compliance

Limit = 6408

Background Data Summary: Mean=4677, Std. Dev.=833.8, n=13. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.9713, critical = 0.866. Kappa = 2.077 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505.

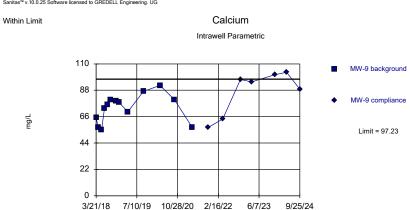

Calcium Within Limit Intrawell Parametric

Background Data Summary: Mean=18.77, Std. Dev.=2.619, n=13. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.936, critical = 0.866. Kappa = 2.077 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha =

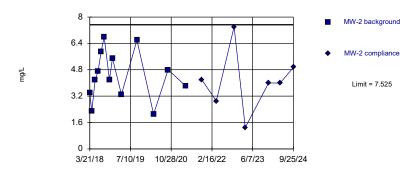

Prediction Limit Analysis Run 5/21/2025 10:57 AM View: Detection 237&9 n=13 5.1.2025

Sanitas™ v.10.0.25 Software licensed to GREDELL Engineering. UG

Background Data Summary: Mean=120, Std. Dev.=11.55, n=13. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.8997, critical = 0.866. Kappa = 2.077 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha =

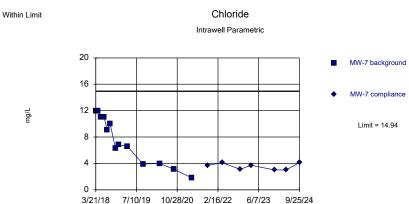

Calcium Within Limit Intrawell Parametric

Background Data Summary: Mean=17.31, Std. Dev.=0.8549, n=13. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.8905, critical = 0.866. Kappa = 2.077 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505.


Prediction Limit Analysis Run 5/21/2025 10:57 AM View: Detection 237&9 n=13 5.1.2025

Sanitas™ v.10.0.25 Software licensed to GREDELL Engineering. UG

Background Data Summary: Mean=73, Std. Dev.=11.67, n=13. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.939, critical = 0.866. Kappa = 2.077 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505.



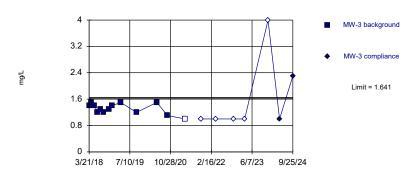
Background Data Summary: Mean=4.431, Std. Dev.=1.49, n=13. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.965, critical = 0.866. Kappa = 2.077 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.07506

Prediction Limit Analysis Run 5/21/2025 10:57 AM View: Detection 237&9 n=13 5.1.2025

SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

Sanitas™ v.10.0.25 Software licensed to GREDELL Engineering. UG

Background Data Summary: Mean=7.508, Std. Dev.=3.578, n=13. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.9179, critical = 0.866. Kappa = 2.077 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505.

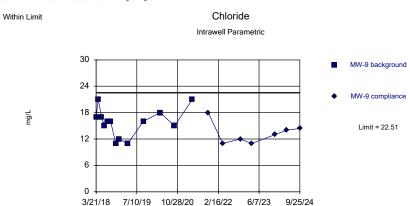

Prediction Limit Analysis Run 5/21/2025 10:57 AM View: Detection 237&9 n=13 5.1.2025

SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

Sanitas™ v.10.0.25 Software licensed to GREDELL Engineering. UG Hollow symbols indicate censored values.

Within Limit

Chloride
Intrawell Parametric

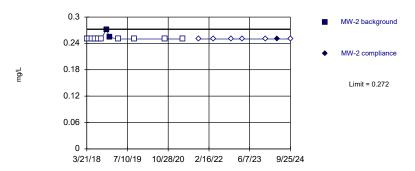


Background Data Summary: Mean=1.308, Std. Dev.=0.1605, n=13, 7.692% NDs. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.925, critical = 0.866. Kappa = 2.077 (c=7, w=3, 1 of 2, event alpha = 0.005132). Report alpha = 0.002505.

Prediction Limit Analysis Run 5/21/2025 10:57 AM View: Detection 237&9 n=13 5.1.2025

SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

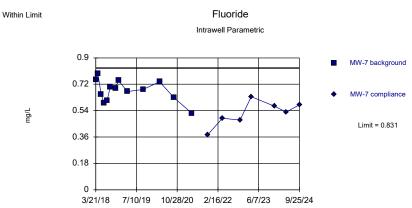
Sanitas™ v.10.0.25 Software licensed to GREDELL Engineering. UG



Background Data Summary: Mean=15.85, Std. Dev.=3.211, n=13. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.9243, critical = 0.866. Kappa = 2.077 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505.

Sanitas™ v.10.0.25 Software licensed to GREDELL Engineering. UG Hollow symbols indicate censored values.

Within Limit

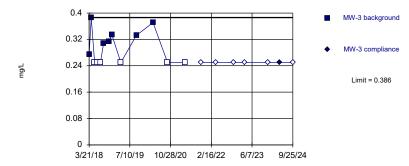


Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 11 background values. 81.82% NDs. Well-constituent pair annual alpha = 0.02537. Individual comparison alpha = 0.01276 (1 of 2).

Prediction Limit Analysis Run 5/21/2025 10:57 AM View: Detection 237&9 n=13 5.1.2025

SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

Sanitas™ v.10.0.25 Software licensed to GREDELL Engineering. UG

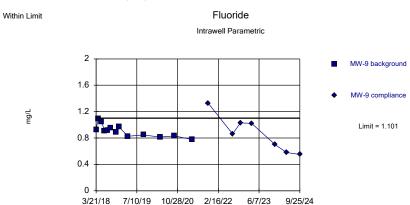

Background Data Summary: Mean=0.6751, Std. Dev.=0.07508, n=13. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.9808, critical = 0.866. Kappa = 2.077 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505.

Prediction Limit Analysis Run 5/21/2025 10:57 AM View: Detection 237&9 n=13 5.1.2025

SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

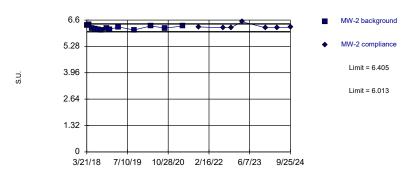
Sanitas™ v.10.0.25 Software licensed to GREDELL Engineering. UG Hollow symbols indicate censored values.

Within Limit Fluoride
Intrawell Non-parametric



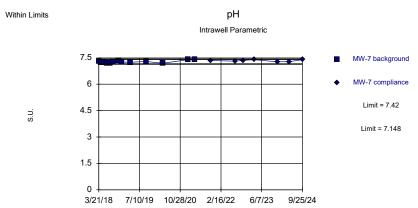
Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.05 alpha level. Limit is highest of 13 background values. 46.15% NDs. Well-constituent pair annual alpha = 0.01929. Individual comparison alpha = 0.009692 (1 of 2).

Prediction Limit Analysis Run 5/21/2025 10:57 AM View: Detection 237&9 n=13 5.1.2025

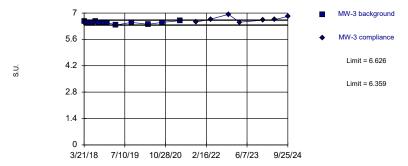

SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

Sanitas™ v.10.0.25 Software licensed to GREDELL Engineering. UG

Background Data Summary: Mean=0.9082, Std. Dev.=0.09266, n=13. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.9545, critical = 0.866. Kappa = 2.077 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505.

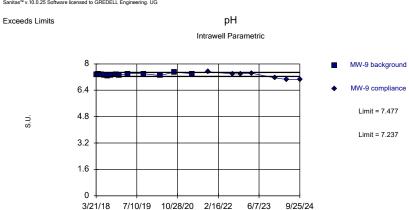

pН Within Limits Intrawell Parametric

Background Data Summary: Mean=6.209, Std. Dev.=0.09429, n=13. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.922, critical = 0.866. Kappa = 2.077 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha =


Prediction Limit Analysis Run 5/21/2025 10:57 AM View: Detection 237&9 n=13 5.1.2025

Sanitas™ v.10.0.25 Software licensed to GREDELL Engineering. UG

Background Data Summary: Mean=7.284, Std. Dev.=0.06552, n=13. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.9081, critical = 0.866. Kappa = 2.077 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha =


pН Exceeds Limits Intrawell Parametric

Background Data Summary: Mean=6.492, Std. Dev.=0.06418, n=13. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.944, critical = 0.866. Kappa = 2.077 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505.

Prediction Limit Analysis Run 5/21/2025 10:57 AM View: Detection 237&9 n=13 5.1.2025

Sanitas™ v.10.0.25 Software licensed to GREDELL Engineering. UG

Background Data Summary: Mean=7.357, Std. Dev.=0.05793, n=13. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.91, critical = 0.866. Kappa = 2.077 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505.

Within Limit Sulfate
Intrawell Parametric

Background Data Summary: Mean=18.15, Std. Dev.=1.573, n=13. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.944, critical = 0.866. Kappa = 2.077 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.005132).

Prediction Limit Analysis Run 5/21/2025 10:57 AM View: Detection 237&9 n=13 5.1.2025

SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

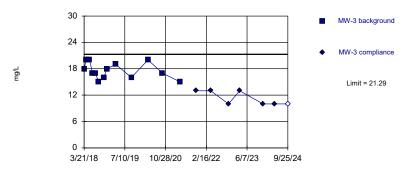
Sanitas™ v.10.0.25 Software licensed to GREDELL Engineering. UG

Within Limit Sulfate
Intrawell Parametric

300
240
4 MW-7 background

MW-7 compliance

Limit = 259

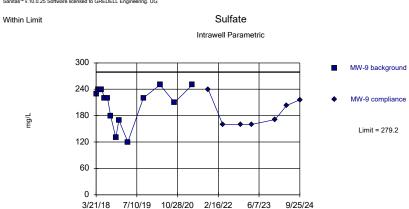

3/21/18 7/10/19 10/28/20 2/16/22 6/7/23 9/25/24

Background Data Summary: Mean=186.9, Std. Dev.=34.73, n=13. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.9305, critical = 0.866. Kappa = 2.077 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505.

Prediction Limit Analysis Run 5/21/2025 10:57 AM View: Detection 237&9 n=13 5.1.2025 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

Sanitas™ v.10.0.25 Software licensed to GREDELL Engineering. UG Hollow symbols indicate censored values.

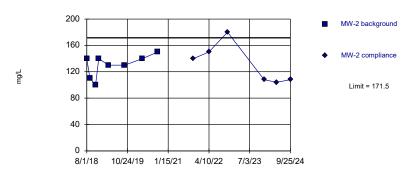
Within Limit Sulfate
Intrawell Parametric



Background Data Summary: Mean=17.54, Std. Dev.=1.808, n=13. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.9124, critical = 0.866. Kappa = 2.077 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505.

Prediction Limit Analysis Run 5/21/2025 10:57 AM View: Detection 23789 n=13 5.1.2025

SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background


Sanitas™ v.10.0.25 Software licensed to GREDELL Engineering. UG

Background Data Summary (based on square transformation): Mean=44231, Std. Dev.=16238, n=13. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.8921, critical = 0.866. Kappa = 2.077 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505.

Within Limit Total Dissolved Solids

Intrawell Parametric

Background Data Summary: Mean=130, Std. Dev.=16.9, n=8. Normality test: Shapiro Wilk @alpha = 0.1, calculated = 0.8844, critical = 0.851. Kappa = 2.458 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505.

Prediction Limit Analysis Run 5/21/2025 10:57 AM View: Detection 237&9 n=13 5.1.2025

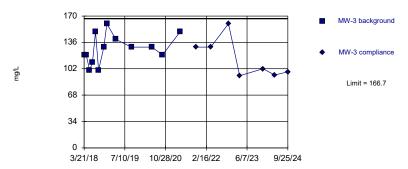
SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

Sanitas™ v.10.0.25 Software licensed to GREDELL Engineering. UG

Within Limit Total Dissolved Solids
Intrawell Parametric

MW-7 background

MW-7 compliance


Limit = 584.1

Background Data Summary: Mean=485.4, Std. Dev.=47.54, n=13. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.9501, critical = 0.866. Kappa = 2.077 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505.

Sanitas™ v.10.0.25 Software licensed to GREDELL Engineering. UG

Within Limit Total Dissolved Solids

Intrawell Parametric

Background Data Summary: Mean=127.7, Std. Dev.=18.78, n=13. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.9524, critical = 0.866. Kappa = 2.077 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505.

Prediction Limit Analysis Run 5/21/2025 10:57 AM View: Detection 237&9 n=13 5.1.2025

SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

Sanitas™ v.10.0.25 Software licensed to GREDELL Engineering. UG

Within Limit

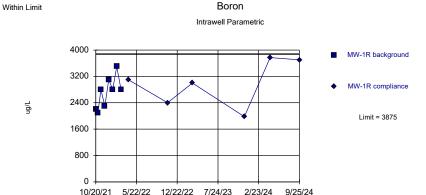
Total Dissolved Solids
Intrawell Parametric

MW-9 background

August 140

Limit = 653

Background Data Summary: Mean=496.2, Std. Dev.=75.56, n=13. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.9721, critical = 0.866. Kappa = 2.077 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505.

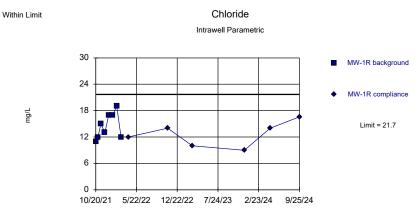

3/21/18 7/10/19 10/28/20 2/16/22

6/7/23

9/25/24

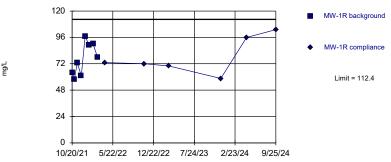
Prediction Limit

	SBMU-	Sikeston Power Sta	ation Client: GR	EDELL Enginee	ering Data: S	ikestonl	FAP Ba	ckground	Printed 5/1/2025, 12	:40 PM	
Constituent	<u>Well</u>	Upper Lim.	Lower Lim.	<u>Date</u>	Observ.	Sig.	Bg N	%NDs	<u>Transform</u>	<u>Alpha</u>	Method
Boron (ug/L)	MW-1R	3875	n/a	9/25/2024	3700	No	8	0	No	0.002505	Param Intra 1 of 2
Calcium (mg/L)	MW-1R	112.4	n/a	9/25/2024	103	No	8	0	No	0.002505	Param Intra 1 of 2
Chloride (mg/L)	MW-1R	21.7	n/a	9/25/2024	16.6	No	8	0	No	0.002505	Param Intra 1 of 2
Fluoride (mg/L)	MW-1R	0.366	n/a	9/25/2024	0.25ND	No	8	75	n/a	0.02144	NP Intra (NDs) 1 of 2
pH (S.U.)	MW-1R	6.58	6.48	9/25/2024	6.46	Yes	8	0	n/a	0.04288	NP Intra (normality)
Sulfate (mg/L)	MW-1R	249.2	n/a	9/25/2024	242	No	8	0	No	0.002505	Param Intra 1 of 2
Total Dissolved Solids (mg/L)	MW-1R	512.1	n/a	9/25/2024	520	Yes	8	0	No	0.002505	Param Intra 1 of 2



Background Data Summary: Mean=2700, Std. Dev.=478.1, n=8. Normality test: Shapiro Wilk @alpha = 0.1, calculated = 0.929, critical = 0.851. Kappa = 2.458 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.005132).

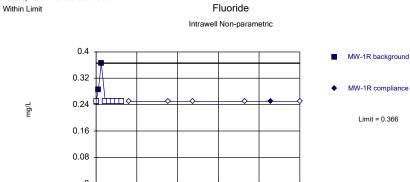
Prediction Limit Analysis Run 5/1/2025 12:39 PM View: Detection 1R 5.1.2025


SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

Sanitas™ v.10.0.24 Software licensed to GREDELL Engineering. UG

Background Data Summary: Mean=14.5, Std. Dev.=2.928, n=8. Normality test: Shapiro Wilk @alpha = 0.1, calculated = 0.9145, critical = 0.851. Kappa = 2.458 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505.

Within Limit Calcium
Intrawell Parametric

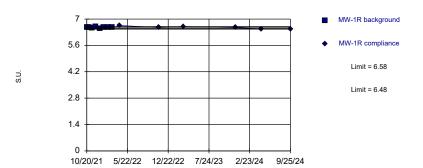


Background Data Summary: Mean=76.25, Std. Dev.=14.69, n=8. Normality test: Shapiro Wilk @alpha = 0.1, calculated = 0.9262, critical = 0.851. Kappa = 2.458 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505.

Prediction Limit Analysis Run 5/1/2025 12:39 PM View: Detection 1R 5.1.2025

SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

Sanitas™ v.10.0.24 Software licensed to GREDELL Engineering. UG Hollow symbols indicate censored values.

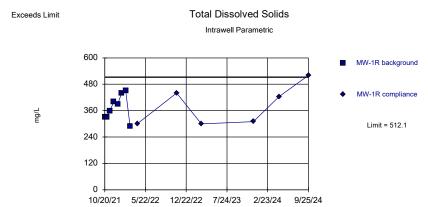


Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 8 background values. 75% NDs. Well-constituent pair annual alpha = 0.04242. Individual comparison alpha = 0.02144 (1 of 2).

9/25/24

10/20/21 5/22/22 12/22/22 7/24/23 2/23/24

Exceeds Limits pH
Intrawell Non-parametric

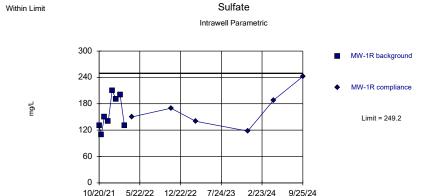


Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.1 alpha level. Limits are highest and lowest of 8 background values. Well-constituent pair annual alpha = 0.08484. Individual comparison alpha = 0.04288 (1 of 2).

Prediction Limit Analysis Run 5/1/2025 12:39 PM View: Detection 1R 5.1.2025

SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

Sanitas™ v.10.0.24 Software licensed to GREDELL Engineering. UG

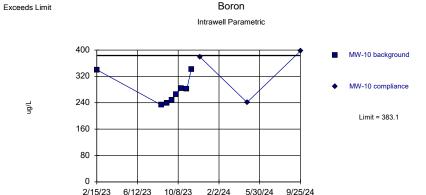


Background Data Summary: Mean=373.8, Std. Dev.=56.3, n=8. Normality test: Shapiro Wilk @alpha = 0.1, calculated = 0.9544, critical = 0.851. Kappa = 2.458 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505.

Prediction Limit Analysis Run 5/1/2025 12:39 PM View: Detection 1R 5.1.2025

SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

Sanitas™ v.10.0.24 Software licensed to GREDELL Engineering. UG

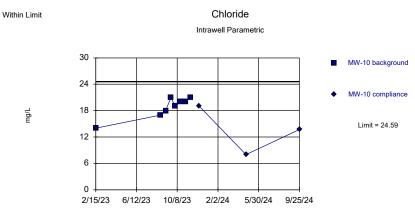

Background Data Summary: Mean=157.5, Std. Dev.=37.32, n=8. Normality test: Shapiro Wilk @alpha = 0.1, calculated = 0.9002, critical = 0.851. Kappa = 2.458 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505.

Prediction Limit Analysis Run 5/1/2025 12:39 PM View: Detection 1R 5.1.2025

SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

Prediction Limit

	SBMU-Sil	eston Power Stati	on Client: GRE	DELL Engineer	ing Data: Sil	kestonF	AP Bac	kground	Printed 5/21/2025, 10):26 AM	
Constituent	<u>Well</u>	Upper Lim.	Lower Lim.	<u>Date</u>	Observ.	Sig.	Bg N	%NDs	<u>Transform</u>	<u>Alpha</u>	Method
Boron (ug/L)	MW-10	383.1	n/a	9/25/2024	397	Yes	8	0	No	0.002505	Param Intra 1 of 2
Calcium (mg/L)	MW-10	94.97	n/a	9/25/2024	64.4	No	8	0	No	0.002505	Param Intra 1 of 2
Chloride (mg/L)	MW-10	24.59	n/a	9/25/2024	13.7	No	8	0	No	0.002505	Param Intra 1 of 2
Fluoride (mg/L)	MW-10	0.42	n/a	9/25/2024	0.28	No	8	12.5	n/a	0.02144	NP Intra (normality)
pH (S.U.)	MW-10	7.143	6.684	9/25/2024	7.21	Yes	8	0	No	0.001253	Param Intra 1 of 2
Sulfate (mg/L)	MW-10	215.5	n/a	9/25/2024	106	No	8	0	No	0.002505	Param Intra 1 of 2
Total Dissolved Solids (mg/L)	MW-10	530.8	n/a	9/25/2024	338	No	8	0	No	0.002505	Param Intra 1 of 2



Background Data Summary: Mean=279.4, Std. Dev.=42.18, n=8. Normality test: Shapiro Wilk @alpha = 0.1, calculated = 0.8794, critical = 0.851. Kappa = 2.458 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505

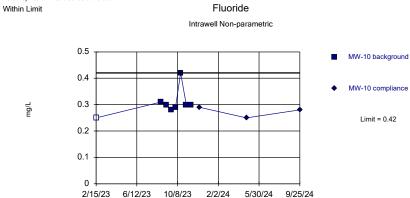
Prediction Limit Analysis Run 5/21/2025 10:23 AM View: Detection 10 5.1.2025

SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

Sanitas™ v.10.0.25 Software licensed to GREDELL Engineering. UG

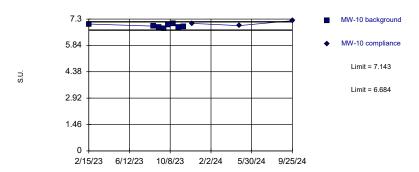
Background Data Summary: Mean=18.75, Std. Dev.=2.375, n=8. Normality test: Shapiro Wilk @alpha = 0.1, calculated = 0.8833, critical = 0.851. Kappa = 2.458 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505.

Within Limit Calcium
Intrawell Parametric



Background Data Summary: Mean=86.64, Std. Dev.=3.388, n=8. Normality test: Shapiro Wilk @alpha = 0.1, calculated = 0.9628, critical = 0.851. Kappa = 2.458 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505.

Prediction Limit Analysis Run 5/21/2025 10:23 AM View: Detection 10 5.1.2025


SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

 $\label{eq:section} Sanitas^{\text{\tiny{IM}}} v.10.0.25 \ Software \ licensed \ to \ GREDELL \ Engineering. \ UG \\ Hollow \ symbols \ indicate \ censored \ values.$

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.1 alpha level. Limit is highest of 8 background values. 12.5% NDs. Well-constituent pair annual alpha = 0.04242. Individual comparison alpha = 0.02144 (1 of 2).

Background Data Summary: Mean=6.914, Std. Dev.=0.09334, n=8. Normality test: Shapiro Wilk @alpha = 0.1, calculated = 0.9382, critical = 0.851. Kappa = 2.458 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.02505

Prediction Limit Analysis Run 5/21/2025 10:24 AM View: Detection 10 5.1.2025

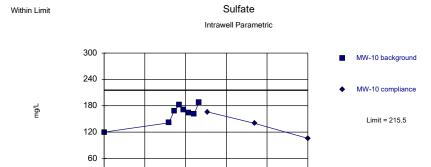
SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

Sanitas™ v.10.0.25 Software licensed to GREDELL Engineering. UG

Within Limit Total Dissolved Solids
Intrawell Parametric

MW-10 background

MW-10 compliance


Limit = 530.8

Background Data Summary: Mean=426.4, Std. Dev.=42.49, n=8. Normality test: Shapiro Wilk @alpha = 0.1, calculated = 0.9823, critical = 0.851. Kappa = 2.458 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505.

Prediction Limit Analysis Run 5/21/2025 10:24 AM View: Detection 10 5.1.2025

SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

Sanitas™ v.10.0.25 Software licensed to GREDELL Engineering. UG

Background Data Summary: Mean=161.8, Std. Dev.=21.88, n=8. Normality test: Shapiro Wilk @alpha = 0.1, calculated = 0.9187, critical = 0.851. Kappa = 2.458 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505.

2/2/24

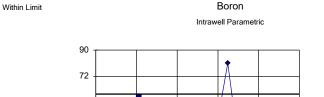
5/30/24

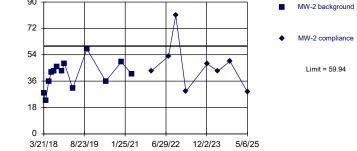
9/25/24

2/15/23 6/12/23 10/8/23

Prediction Limit Analysis Run 5/21/2025 10:24 AM View: Detection 10 5.1.2025

SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

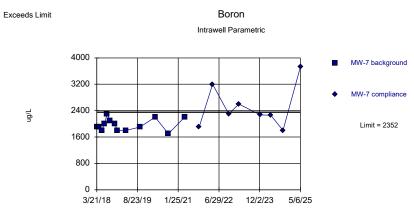

Appendix 8


Prediction Limit Charts – Detection Constituents 13th CCR Compliance Sampling Event (1st 2025 Semi-annual Detection and Assessment Monitoring Event) May 6, 2025

Prediction Limit

	SBMU-	Sikeston Power Sta	ation Client: GF	Client: GREDELL Engineering			FAP Ba	ckground	Printed 5/21/2025,		
Constituent	Well	Upper Lim.	Lower Lim.	<u>Date</u>	Observ.	Sig.	Bg N	%NDs	<u>Transform</u>	<u>Alpha</u>	Method
Boron (ug/L)	MW-2	59.94	n/a	5/6/2025	28.6	No	13	0	No	0.002505	Param Intra 1 of 2
Boron (ug/L)	MW-3	33.39	n/a	5/6/2025	10ND	No	13	0	No	0.002505	Param Intra 1 of 2
Boron (ug/L)	MW-7	2352	n/a	5/6/2025	3730	Yes	13	0	No	0.002505	Param Intra 1 of 2
Boron (ug/L)	MW-9	6408	n/a	5/6/2025	4060	No	13	0	No	0.002505	Param Intra 1 of 2
Calcium (mg/L)	MW-2	24.21	n/a	5/6/2025	19.1	No	13	0	No	0.002505	Param Intra 1 of 2
Calcium (mg/L)	MW-3	19.08	n/a	5/6/2025	14.8	No	13	0	No	0.002505	Param Intra 1 of 2
Calcium (mg/L)	MW-7	144	n/a	5/6/2025	139	No	13	0	No	0.002505	Param Intra 1 of 2
Calcium (mg/L)	MW-9	97.23	n/a	5/6/2025	87.5	No	13	0	No	0.002505	Param Intra 1 of 2
Chloride (mg/L)	MW-2	7.525	n/a	5/6/2025	4.68	No	13	0	No	0.002505	Param Intra 1 of 2
Chloride (mg/L)	MW-3	1.641	n/a	5/6/2025	1.7J	No	13	7.692	No	0.002505	Param Intra 1 of 2
Chloride (mg/L)	MW-7	14.94	n/a	5/6/2025	10.9	No	13	0	No	0.002505	Param Intra 1 of 2
Chloride (mg/L)	MW-9	22.51	n/a	5/6/2025	13.1	No	13	0	No	0.002505	Param Intra 1 of 2
Fluoride (mg/L)	MW-2	0.272	n/a	5/6/2025	0.06J	No	11	81.82	n/a	0.01276	NP Intra (NDs) 1 of 2
Fluoride (mg/L)	MW-3	0.386	n/a	5/6/2025	0.14J	No	13	46.15	n/a	0.009692	NP Intra (normality)
Fluoride (mg/L)	MW-7	0.831	n/a	5/6/2025	0.63	No	13	0	No	0.002505	Param Intra 1 of 2
Fluoride (mg/L)	MW-9	1.101	n/a	5/6/2025	0.71	No	13	0	No	0.002505	Param Intra 1 of 2
pH (S.U.)	MW-2	6.405	6.013	5/6/2025	6.33	No	13	0	No	0.001253	Param Intra 1 of 2
pH (S.U.)	MW-3	6.626	6.359	5/6/2025	6.61	No	13	0	No	0.001253	Param Intra 1 of 2
pH (S.U.)	MW-7	7.42	7.148	5/6/2025	7.27	No	13	0	No	0.001253	Param Intra 1 of 2
pH (S.U.)	MW-9	7.477	7.237	5/6/2025	7	Yes	13	0	No	0.001253	Param Intra 1 of 2
Sulfate (mg/L)	MW-2	21.42	n/a	5/6/2025	14.5	No	13	0	No	0.002505	Param Intra 1 of 2
Sulfate (mg/L)	MW-3	21.29	n/a	5/6/2025	10.1	No	13	0	No	0.002505	Param Intra 1 of 2
Sulfate (mg/L)	MW-7	259	n/a	5/6/2025	321	Yes	13	0	No	0.002505	Param Intra 1 of 2
Sulfate (mg/L)	MW-9	279.2	n/a	5/6/2025	213	No	13	0	x^2	0.002505	Param Intra 1 of 2
Total Dissolved Solids (mg/L)	MW-2	171.5	n/a	5/6/2025	100	No	8	0	No	0.002505	Param Intra 1 of 2
Total Dissolved Solids (mg/L)	MW-3	166.7	n/a	5/6/2025	90	No	13	0	No	0.002505	Param Intra 1 of 2
Total Dissolved Solids (mg/L)	MW-7	584.1	n/a	5/6/2025	638	Yes	13	0	No	0.002505	Param Intra 1 of 2
Total Dissolved Solids (mg/L)	MW-9	653	n/a	5/6/2025	510	No	13	0	No	0.002505	Param Intra 1 of 2

ng/L

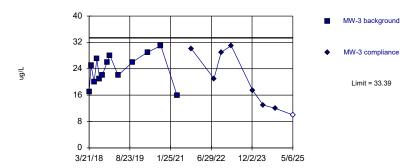


Background Data Summary: Mean=40.31, Std. Dev.=9.455, n=13. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.98, critical = 0.866. Kappa = 2.077 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.05132)

Prediction Limit Analysis Run 5/21/2025 10:59 AM View: Detection 237&9 n=13 5.1.2025

SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

Sanitas™ v.10.0.25 Software licensed to GREDELL Engineering. UG

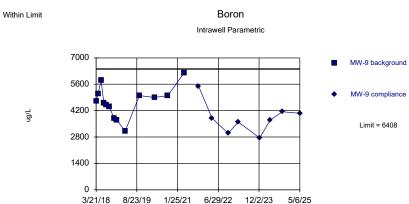

Background Data Summary: Mean=1969, Std. Dev.=184.3, n=13. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.9386, critical = 0.866. Kappa = 2.077 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505.

Prediction Limit Analysis Run 5/21/2025 10:59 AM View: Detection 237&9 n=13 5.1.2025

SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

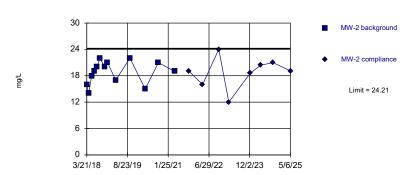
Sanitas™ v.10.0.25 Software licensed to GREDELL Engineering. UG Hollow symbols indicate censored values.

Within Limit Boron
Intrawell Parametric



Background Data Summary: Mean=23.85, Std. Dev.=4.598, n=13. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.9639, critical = 0.866. Kappa = 2.077 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505.

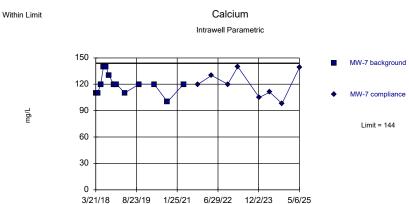
Prediction Limit Analysis Run 5/21/2025 10:59 AM View: Detection 237&9 n=13 5.1.2025


SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

Sanitas™ v.10.0.25 Software licensed to GREDELL Engineering. UG

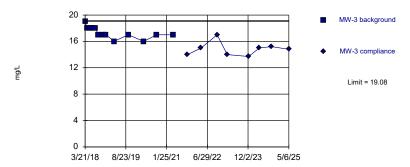
Background Data Summary: Mean=4677, Std. Dev.=833.8, n=13. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.9713, critical = 0.866. Kappa = 2.077 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505.

Within Limit Calcium Intrawell Parametric



Background Data Summary: Mean=18.77, Std. Dev.=2.619, n=13. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.936, critical = 0.866. Kappa = 2.077 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.005132).

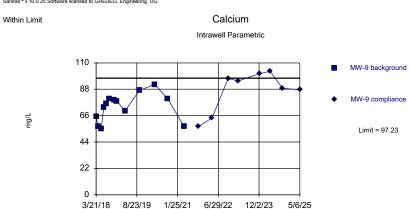
Prediction Limit Analysis Run 5/21/2025 10:59 AM View: Detection 237&9 n=13 5.1.2025


SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

Sanitas™ v.10.0.25 Software licensed to GREDELL Engineering. UG

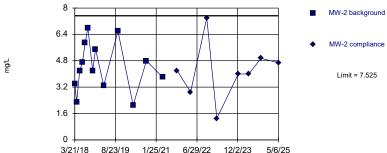
Background Data Summary: Mean=120, Std. Dev.=11.55, n=13. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.8997, critical = 0.866. Kappa = 2.077 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505.

Within Limit Calcium
Intrawell Parametric



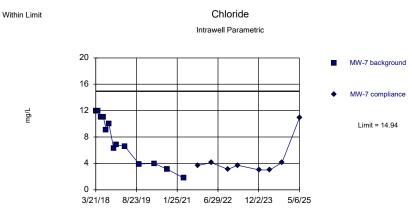
Background Data Summary: Mean=17.31, Std. Dev.=0.8549, n=13. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.8905, critical = 0.866. Kappa = 2.077 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505.

Prediction Limit Analysis Run 5/21/2025 10:59 AM View: Detection 237&9 n=13 5.1.2025


SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

Sanitas™ v.10.0.25 Software licensed to GREDELL Engineering. UG

Background Data Summary: Mean=73, Std. Dev.=11.67, n=13. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.939, critical = 0.866. Kappa = 2.077 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505.



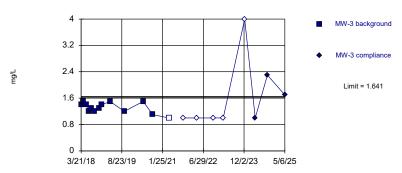
Background Data Summary: Mean=4.431, Std. Dev.=1.49, n=13. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.965, critical = 0.866. Kappa = 2.077 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.05132).

Prediction Limit Analysis Run 5/21/2025 10:59 AM View: Detection 237&9 n=13 5.1.2025

SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

Sanitas™ v.10.0.25 Software licensed to GREDELL Engineering. UG

Background Data Summary: Mean=7.508, Std. Dev.=3.578, n=13. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.9179, critical = 0.866. Kappa = 2.077 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505.

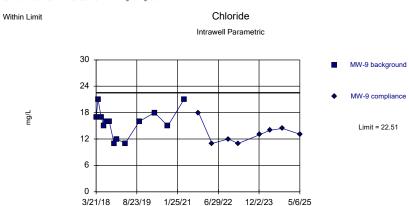

Prediction Limit Analysis Run 5/21/2025 10:59 AM View: Detection 237&9 n=13 5.1.2025

SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

Sanitas™ v.10.0.25 Software licensed to GREDELL Engineering. UG Hollow symbols indicate censored values.

Within Limit

Chloride
Intrawell Parametric

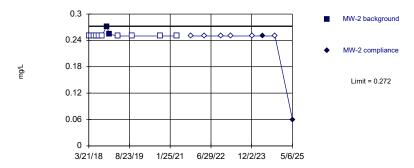


Background Data Summary: Mean=1.308, Std. Dev.=0.1605, n=13, 7.692% NDs. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.925, critical = 0.866. Kappa = 2.077 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505

Prediction Limit Analysis Run 5/21/2025 10:59 AM View: Detection 237&9 n=13 5.1.2025

SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

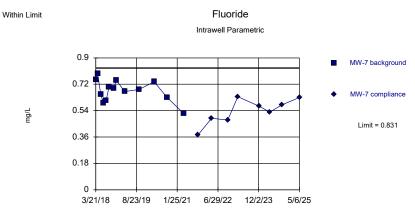
Sanitas™ v.10.0.25 Software licensed to GREDELL Engineering. UG



Background Data Summary: Mean=15.85, Std. Dev.=3.211, n=13. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.9243, critical = 0.866. Kappa = 2.077 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505.

Sanitas™ v.10.0.25 Software licensed to GREDELL Engineering. UG Hollow symbols indicate censored values.

Within Limit

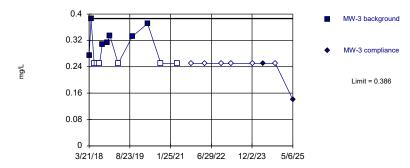


Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 11 background values. 81.82% NDs. Well-constituent pair annual alpha = 0.02537. Individual comparison alpha = 0.01276 (1 of 2).

Prediction Limit Analysis Run 5/21/2025 10:59 AM View: Detection 237&9 n=13 5.1.2025

SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

Sanitas™ v.10.0.25 Software licensed to GREDELL Engineering. UG

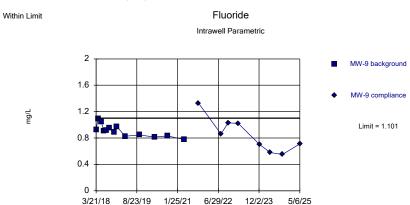


Background Data Summary: Mean=0.6751, Std. Dev.=0.07508, n=13. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.9808, critical = 0.866. Kappa = 2.077 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505.

Prediction Limit Analysis Run 5/21/2025 10:59 AM View: Detection 237&9 n=13 5.1.2025 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

Sanitas™ v.10.0.25 Software licensed to GREDELL Engineering. UG Hollow symbols indicate censored values.

Within Limit Fluoride
Intrawell Non-parametric

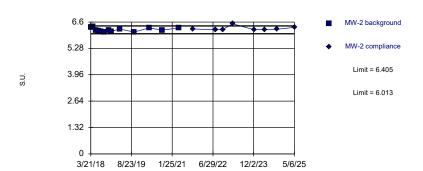


Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.05 alpha level. Limit is highest of 13 background values. 46.15% NDs. Well-constituent pair annual alpha = 0.01929. Individual comparison alpha = 0.009692 (1 of 2).

Prediction Limit Analysis Run 5/21/2025 10:59 AM View: Detection 237&9 n=13 5.1.2025

SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

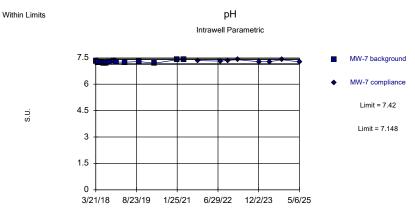
Sanitas™ v.10.0.25 Software licensed to GREDELL Engineering. UG



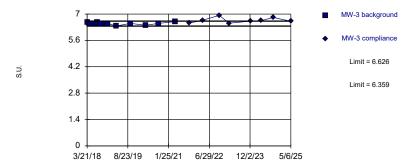
Background Data Summary: Mean=0.9082, Std. Dev.=0.09266, n=13. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.9545, critical = 0.866. Kappa = 2.077 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505.

Prediction Limit Analysis Run 5/21/2025 10:59 AM View: Detection 237&9 n=13 5.1.2025

SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

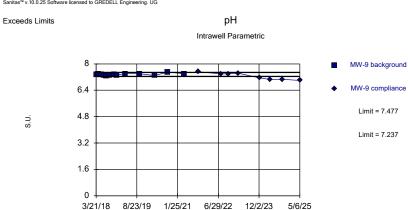

pН Within Limits Intrawell Parametric

Background Data Summary: Mean=6.209, Std. Dev.=0.09429, n=13. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.922, critical = 0.866. Kappa = 2.077 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha =

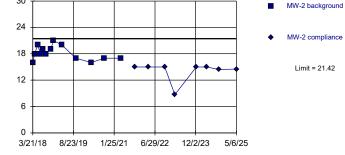

Prediction Limit Analysis Run 5/21/2025 10:59 AM View: Detection 237&9 n=13 5.1.2025

Sanitas™ v.10.0.25 Software licensed to GREDELL Engineering. UG

Background Data Summary: Mean=7.284, Std. Dev.=0.06552, n=13. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.9081, critical = 0.866. Kappa = 2.077 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha =


pН Within Limits Intrawell Parametric

Background Data Summary: Mean=6.492, Std. Dev.=0.06418, n=13. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.944, critical = 0.866. Kappa = 2.077 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505.


Prediction Limit Analysis Run 5/21/2025 10:59 AM View: Detection 237&9 n=13 5.1.2025

Sanitas™ v.10.0.25 Software licensed to GREDELL Engineering. UG

Background Data Summary: Mean=7.357, Std. Dev.=0.05793, n=13. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.91, critical = 0.866. Kappa = 2.077 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505.

Within Limit Sulfate
Intrawell Parametric

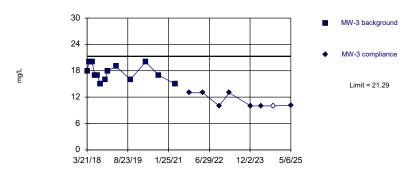
Background Data Summary: Mean=18.15, Std. Dev.=1.573, n=13. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.944, critical = 0.866. Kappa = 2.077 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.00505

Prediction Limit Analysis Run 5/21/2025 10:59 AM View: Detection 237&9 n=13 5.1.2025

SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

Sanitas™ v.10.0.25 Software licensed to GREDELL Engineering. UG

Sulfate
Intrawell Parametric

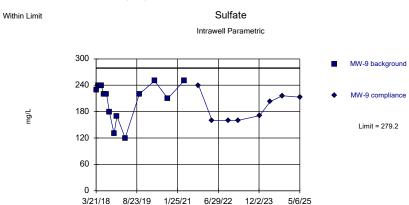

400
320
400
MW-7 background
MW-7 compliance
Limit = 259

Background Data Summary: Mean=186.9, Std. Dev.=34.73, n=13. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.9305, critical = 0.866. Kappa = 2.077 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505.

Prediction Limit Analysis Run 5/21/2025 10:59 AM View: Detection 237&9 n=13 5.1.2025 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

Sanitas™ v.10.0.25 Software licensed to GREDELL Engineering. UG Hollow symbols indicate censored values.

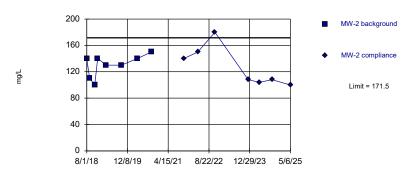
Within Limit Sulfate
Intrawell Parametric



Background Data Summary: Mean=17.54, Std. Dev.=1.808, n=13. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.9124, critical = 0.866. Kappa = 2.077 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505.

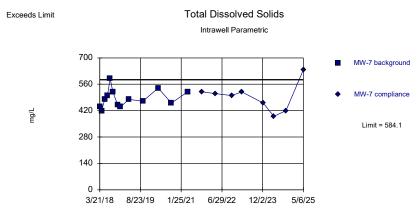
Prediction Limit Analysis Run 5/21/2025 10:59 AM View: Detection 237&9 n=13 5.1.2025

SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background


Sanitas™ v.10.0.25 Software licensed to GREDELL Engineering. UG

Background Data Summary (based on square transformation): Mean=44231, Std. Dev.=16238, n=13. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.8921, critical = 0.866. Kappa = 2.077 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505.

Within Limit



Background Data Summary: Mean=130, Std. Dev.=16.9, n=8. Normality test: Shapiro Wilk @alpha = 0.1, calculated = 0.8844, critical = 0.851. Kappa = 2.458 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505.

Prediction Limit Analysis Run 5/21/2025 10:59 AM View: Detection 237&9 n=13 5.1.2025


Sanitas™ v.10.0.25 Software licensed to GREDELL Engineering. UG

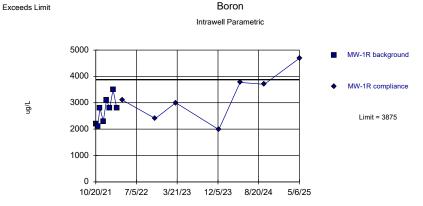
Background Data Summary: Mean=485.4, Std. Dev.=47.54, n=13. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.9501, critical = 0.866. Kappa = 2.077 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = Sanitas™ v.10.0.25 Software licensed to GREDELL Engineering. UG

Total Dissolved Solids Within Limit

Intrawell Parametric

Background Data Summary: Mean=127.7, Std. Dev.=18.78, n=13. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.9524, critical = 0.866. Kappa = 2.077 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505.

Prediction Limit Analysis Run 5/21/2025 10:59 AM View: Detection 237&9 n=13 5.1.2025 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

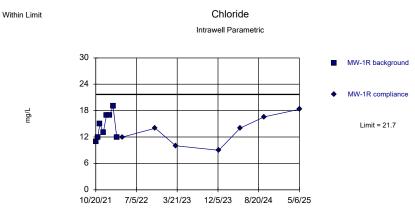

Sanitas™ v.10.0.25 Software licensed to GREDELL Engineering. UG

Total Dissolved Solids Within Limit Intrawell Parametric 700 MW-9 background 560 MW-9 compliance 420 Limit = 653 280 140 3/21/18 8/23/19 1/25/21 6/29/22 12/2/23 5/6/25

Background Data Summary: Mean=496.2, Std. Dev.=75.56, n=13. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.9721, critical = 0.866. Kappa = 2.077 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505.

Prediction Limit

	SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background Printed 5/21/2025, 10:31 AM										
Constituent	<u>Well</u>	Upper Lim.	Lower Lim.	<u>Date</u>	Observ.	Sig.	Bg N	%NDs	<u>Transform</u>	<u>Alpha</u>	Method
Boron (ug/L)	MW-1R	3875	n/a	5/6/2025	4690	Yes	8	0	No	0.002505	Param Intra 1 of 2
Calcium (mg/L)	MW-1R	112.4	n/a	5/6/2025	116	Yes	8	0	No	0.002505	Param Intra 1 of 2
Chloride (mg/L)	MW-1R	21.7	n/a	5/6/2025	18.3	No	8	0	No	0.002505	Param Intra 1 of 2
Fluoride (mg/L)	MW-1R	0.366	n/a	5/6/2025	0.1	No	8	75	n/a	0.02144	NP Intra (NDs) 1 of 2
pH (S.U.)	MW-1R	6.58	6.48	5/6/2025	6.38	Yes	8	0	n/a	0.04288	NP Intra (normality)
Sulfate (mg/L)	MW-1R	249.2	n/a	5/6/2025	289	Yes	8	0	No	0.002505	Param Intra 1 of 2
Total Dissolved Solids (mg/L)	MW-1R	512.1	n/a	5/6/2025	576	Yes	8	0	No	0.002505	Param Intra 1 of 2



Background Data Summary: Mean=2700, Std. Dev.=478.1, n=8. Normality test: Shapiro Wilk @alpha = 0.1, calculated = 0.929, critical = 0.851. Kappa = 2.458 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505

Prediction Limit Analysis Run 5/21/2025 10:31 AM View: Detection 1R 5.1.2025

SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

Sanitas™ v.10.0.25 Software licensed to GREDELL Engineering. UG

Background Data Summary: Mean=14.5, Std. Dev.=2.928, n=8. Normality test: Shapiro Wilk @alpha = 0.1, calculated = 0.9145, critical = 0.851. Kappa = 2.458 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505.

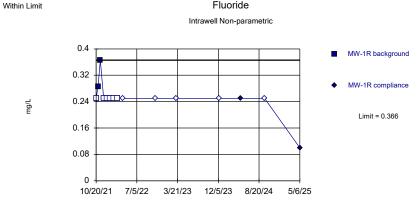
Exceeds Limit

Calcium

Intrawell Parametric

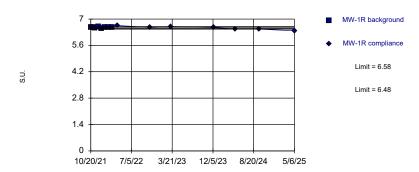
MW-1R background

MW-1R compliance


Limit = 112.4

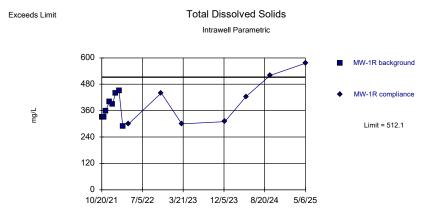
Background Data Summary: Mean=76.25, Std. Dev.=14.69, n=8. Normality test: Shapiro Wilk @alpha = 0.1, calculated = 0.9262, critical = 0.851. Kappa = 2.458 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505.

Prediction Limit Analysis Run 5/21/2025 10:31 AM View: Detection 1R 5.1.2025


SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

Sanitas™ v.10.0.25 Software licensed to GREDELL Engineering. UG Hollow symbols indicate censored values.

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 8 background values. 75% NDs. Well-constituent pair annual alpha = 0.04242. Individual comparison alpha = 0.02144 (1 of 2).

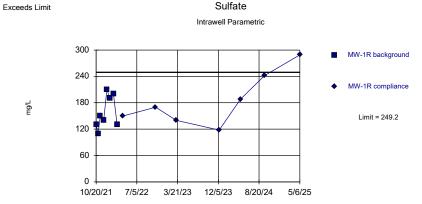


Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.1 alpha level. Limits are highest and lowest of 8 background values. Well-constituent pair annual alpha = 0.08484. Individual comparison alpha = 0.04288 (1 of 2).

Prediction Limit Analysis Run 5/21/2025 10:31 AM View: Detection 1R 5.1.2025

SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

Sanitas™ v.10.0.25 Software licensed to GREDELL Engineering. UG

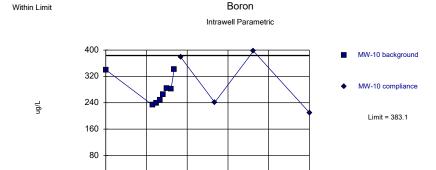


Background Data Summary: Mean=373.8, Std. Dev.=56.3, n=8. Normality test: Shapiro Wilk @alpha = 0.1, calculated = 0.9544, critical = 0.851. Kappa = 2.458 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505.

Prediction Limit Analysis Run 5/21/2025 10:31 AM View: Detection 1R 5.1.2025

SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

Sanitas™ v.10.0.25 Software licensed to GREDELL Engineering. UG


Background Data Summary: Mean=157.5, Std. Dev.=37.32, n=8. Normality test: Shapiro Wilk @alpha = 0.1, calculated = 0.9002, critical = 0.851. Kappa = 2.458 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505

Prediction Limit Analysis Run 5/21/2025 10:31 AM View: Detection 1R 5.1.2025

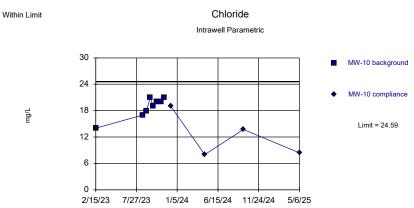
SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

Prediction Limit

	SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background Printed 5/21/2025, 10:28 AM										
Constituent	<u>Well</u>	Upper Lim.	Lower Lim.	<u>Date</u>	Observ.	Sig.	Bg N	%NDs	<u>Transform</u>	<u>Alpha</u>	Method
Boron (ug/L)	MW-10	383.1	n/a	5/6/2025	210	No	8	0	No	0.002505	Param Intra 1 of 2
Calcium (mg/L)	MW-10	94.97	n/a	5/6/2025	88.9	No	8	0	No	0.002505	Param Intra 1 of 2
Chloride (mg/L)	MW-10	24.59	n/a	5/6/2025	8.41	No	8	0	No	0.002505	Param Intra 1 of 2
Fluoride (mg/L)	MW-10	0.42	n/a	5/6/2025	0.24	No	8	12.5	n/a	0.02144	NP Intra (normality)
pH (S.U.)	MW-10	7.143	6.684	5/6/2025	7.08	No	8	0	No	0.001253	Param Intra 1 of 2
Sulfate (mg/L)	MW-10	215.5	n/a	5/6/2025	86.3	No	8	0	No	0.002505	Param Intra 1 of 2
Total Dissolved Solids (mg/L)	MW-10	530.8	n/a	5/6/2025	396	No	8	0	No	0.002505	Param Intra 1 of 2

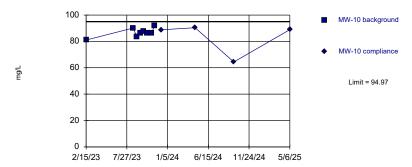
Background Data Summary: Mean=279.4, Std. Dev.=42.18, n=8. Normality test: Shapiro Wilk @alpha = 0.1, calculated = 0.8794, critical = 0.851. Kappa = 2.458 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.02508

1/5/24


Prediction Limit Analysis Run 5/21/2025 10:26 AM View: Detection 10 5.1.2025

SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

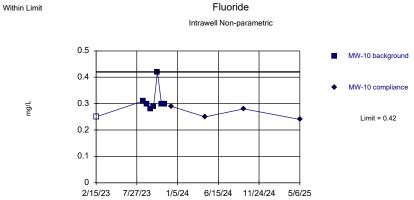
6/15/24 11/24/24 5/6/25


Sanitas™ v.10.0.25 Software licensed to GREDELL Engineering. UG

2/15/23 7/27/23

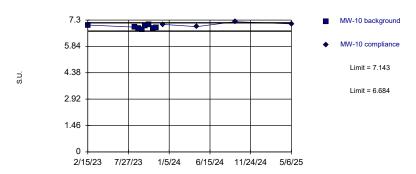
Background Data Summary: Mean=18.75, Std. Dev.=2.375, n=8. Normality test: Shapiro Wilk @alpha = 0.1, calculated = 0.8833, critical = 0.851. Kappa = 2.458 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505.

Within Limit Calcium
Intrawell Parametric



Background Data Summary: Mean=86.64, Std. Dev.=3.388, n=8. Normality test: Shapiro Wilk @alpha = 0.1, calculated = 0.9628, critical = 0.851. Kappa = 2.458 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505.

Prediction Limit Analysis Run 5/21/2025 10:27 AM View: Detection 10 5.1.2025


SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

Sanitas™ v.10.0.25 Software licensed to GREDELL Engineering. UG Hollow symbols indicate censored values.

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.1 alpha level. Limit is highest of 8 background values. 12.5% NDs. Well-constituent pair annual alpha = 0.04242. Individual comparison alpha = 0.02144 (1 of 2).

Within Limits pH
Intrawell Parametric

Background Data Summary: Mean=6.914, Std. Dev.=0.09334, n=8. Normality test: Shapiro Wilk @alpha = 0.1, calculated = 0.9382, critical = 0.851. Kappa = 2.458 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.02505

Prediction Limit Analysis Run 5/21/2025 10:27 AM View: Detection 10 5.1.2025

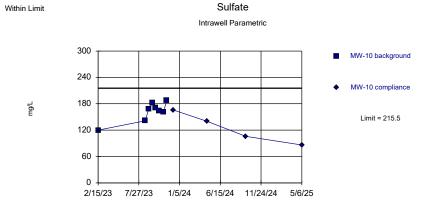
SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

Sanitas™ v.10.0.25 Software licensed to GREDELL Engineering. UG

Within Limit Total Dissolved Solids
Intrawell Parametric

MW-10 background

MW-10 compliance


Limit = 530.8

Background Data Summary: Mean=426.4, Std. Dev.=42.49, n=8. Normality test: Shapiro Wilk @alpha = 0.1, calculated = 0.9823, critical = 0.851. Kappa = 2.458 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505.

Prediction Limit Analysis Run 5/21/2025 10:27 AM View: Detection 10 5.1.2025

SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

Sanitas™ v.10.0.25 Software licensed to GREDELL Engineering. UG

Background Data Summary: Mean=161.8, Std. Dev.=21.88, n=8. Normality test: Shapiro Wilk @alpha = 0.1, calculated = 0.9187, critical = 0.851. Kappa = 2.458 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505.

Prediction Limit Analysis Run 5/21/2025 10:27 AM View: Detection 10 5.1.2025

SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

Appendix 9

Assessment Monitoring Statistical Evaluation Summaries

Appendix 9

Assessment Monitoring Statistical Evaluation Summary

For SBMU – Sikeston Power Station Fly Ash Pond September 25, 2024 and May 6, 2025 Monitoring Events

The following summarizes the results of the Assessment Monitoring Statistical Evaluation for the September 25, 2024 and May 6, 2025 groundwater sampling events for 40 CFR (§) 257 (CCR Rule) compliance for the Fly Ash Pond (FAP) at the Sikeston Board of Municipal Utilities – Sikeston Power Station. Included are the following Tables and Statistical Analysis Summary Reports:

Table 9-1 – Confidence Interval Summary (for each detected Assessment Monitoring Constituent Well Pairs)

Appendix 9-1 – Outlier Analysis Summary (Sanitas* Output Summary)

Appendix 9-2 – Confidence Interval Summary (Sanitas* Output Summary)

Appendix 9-3 – Trend Tests with Confidence Bands (Sanitas* Output Summary)

Outlier Removal (data evaluation and screening)

The §257 Appendix IV - Constituents for Assessment Monitoring were evaluated for Statistically Significant Levels (SSLs) over groundwater protection standards (GWPS) using Sanitas* to calculate confidence intervals based on the monitoring data following traditional data review, quality control, and outlier testing (Appendix 9-1). Sanitas* identified three outliers (associated with Arsenic (1) in MW-1R, and Selenium (2) in MW-2) in the assessment monitoring database. These outliers were removed from the assessment monitoring database, the remaining values were re-screened to confirm there were no masked outliers during the previous test, then confidence intervals were calculated, and trend testing was conducted.

Confidence Intervals/ SSLs

Confidence Intervals were calculated for each well constituent pair as summarized in Table 9-1 and Appendix 9-2. If the lower confidence interval is greater than its respective GWPS, an SSL is apparent. Four SSLs were identified in the data and are indicated on Table 9-1. The SSLs are:

- Molybdenum (MW-1R, MW-7, and MW-9), and
- Cobalt (MW-1R)

 $Note: {}^* = Sanitas @ Statistical Software, @ 1992-2025 SANITAS TECHNOLOGIES, Alamosa Colorado 81101-0012. \\$

Trend Analysis

Trend analysis was also conducted to determine if the SSLs are symptomatic of increasing concentrations of these constituents. Results of the trend analysis are provided in Appendix 9-3, and they demonstrate the following:

- Barium concentrations at MW-7 and MW-9 are increasing with statistically significant trends,
- Fluoride concentrations at MW-7 and MW-9 are decreasing with a statistically significant trend.
- Lithium concentrations at MW-7 and MW-9 are increasing with a statistically significant trend.
- Molybdenum concentrations at MW-7, and MW-9 are decreasing with statistically significant trends,
- Molybdenum and Cobalt concentrations at MW-1R do not have statistically significant trends, and
- Selenium concentrations at MW-7 are decreasing with a statistically significant trend.

•

Recommendations

Sample all FAP System Wells (MW-1R, MW-2, MW-3, MW-7, MW-9, and MW-10):

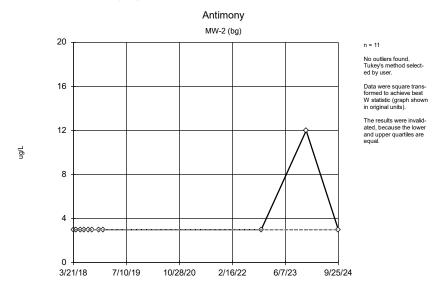
- During the Second half of 2025 (Semi-annual) for <u>all Appendix III</u> Detection and <u>all</u> Appendix IV Assessment Monitoring Constituents.
- During the First half of 2026 (Semi-annual) for <u>all Appendix III</u> Detection and <u>the Appendix IV</u> Assessment Monitoring Constituents <u>that were detected during the previous event</u> (<u>late 2025</u>).

Sikeston Board of Municipal Utilities Sikeston Power Station Fly Ash Pond Statistical Evaluation for Assessment Groundwater Monitoring Sikeston, Missouri

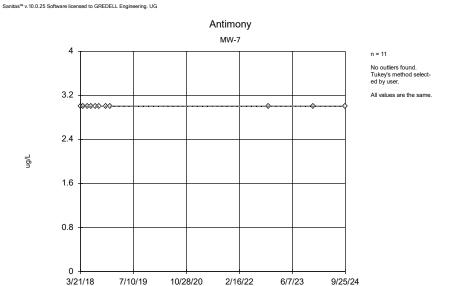
Table 9-1 - Confidence Interval Summary

		MW	-1R	MV	V-2	MV	V-3	MV	V-7	MV	MW-9		e-W		<i>I-</i> 10
40 CFR 257 Appendix IV Constituents for Assessment Monitoring	Units	Upper Confidence Limit	Lower Confidence Limit												
Antimony	ug/L	3	3	3	3	3	3	3	3	3	3	3	3		
Arsenic	ug/L	1.3	1	1	1	1	1	1	1	1.2	1	7.2	5		
Barium	ug/L	49.66	37.48	206.7	152.3	100.1	82.31	66.7	43	90.9	47	149.6	129.9		
Beryllium	ug/L	1	1	1	1	1	1	1	1	1	1	1	1		
Cadmium	ug/L	1	1	1	1	1	1	1	1	1	1	1	1		
Chromium	ug/L	4	4	4	4	4	4	4	4	4	4	4	4		
Cobalt	ug/L	11.2	7.031	2.4	2	2	2	2.8	2	2.2	2	2	1		
Fluoride	mg/L	0.286	0.1	0.254	0.06	0.313	0.25	0.6795	0.5643	0.982	0.7881	0.31	0.25		
Lead	ug/L	1	1	1	1	1	1	1	1	1	1	1	1		
Lithium	ug/L	19	10	20	10	20	10	35.34	24.2	23.98	15.26	40	10		
Mercury	ug/L	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2		
Molybdenum	ug/L	199.1	170.5	1.4	1	1	1	157.2	123.7	555.7	210.7	24.6	18.35		
Selenium	ug/L	1	1	1.4	1	1	1	42	2.4	1	1	1	1		
Thallium	ug/L	1	1	1	1	1	1	1	1	1	1	1	1		
Radium 226/228 (Combined)	pCi/L	0.9191	0.4012	1.482	0.7459	1.178	0.5203	1.47	0.6213	1.19	0.5016	1.5	0.69		

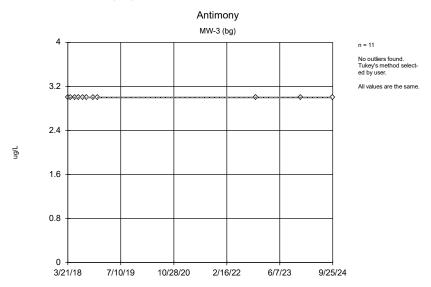
NOTES:


- 1. ug/L micrograms per liter.
- 2. mg/L milligrams per liter.
- 3. pCi/L picocuries per liter.
- 4. Assessment Monitoring determines compliance with the Lower Confidence Limit.
- 5. Corrective Action Monitoring determines compliance with the Upper Confidence Limit.

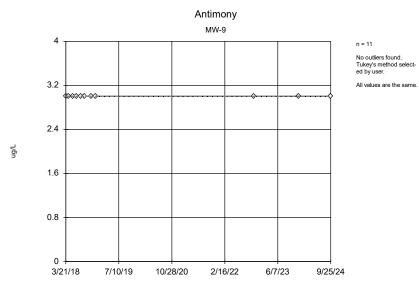
Outlier Analysis


	SBMU	-Sikeston P	ower Station	Client: GREDELL Engineering	Data: SikestonF	FAP Background	Pri	nted 5/21/20	25, 11:51 AM		
<u>Constituent</u>	Well	<u>Outlier</u>	Value(s)	Date(s)	Method	<u>Alpha</u>	<u>N</u>	<u>Mean</u>	Std. Dev.	Distribution	Normality Test
Antimony (ug/L)	MW-2 (bg)	n/a	n/a	n/a	NP	NaN	11	3.818	2.714	unknown	ShapiroWilk
Antimony (ug/L)	MW-3 (bg)	No	n/a	n/a	NP	NaN	11	3	0	normal	ShapiroWilk
Antimony (ug/L)	MW-7	No	n/a	n/a	NP	NaN	11	3	0	normal	ShapiroWilk
Antimony (ug/L)	MW-9	No	n/a	n/a	NP	NaN	11	3	0	normal	ShapiroWilk
Antimony (ug/L)	MW-1R	No	n/a	n/a	NP	NaN	11	3	0	normal	ShapiroWilk
Antimony (ug/L)	MW-10	No	n/a	n/a	NP	NaN	10	3	0	normal	ShapiroWilk
Arsenic (ug/L)	MW-2 (bg)	No	n/a	n/a	NP	NaN	13	1	0	normal	ShapiroWilk
Arsenic (ug/L)	MW-3 (bg)	No	n/a	n/a	NP	NaN	13	1	0	normal	ShapiroWilk
Arsenic (ug/L)	MW-7	No	n/a	n/a	NP	NaN	13	1	0	normal	ShapiroWilk
Arsenic (ug/L)	MW-9	n/a	n/a	n/a	NP	NaN	13	1.015	0.05547	unknown	ShapiroWilk
Arsenic (ug/L)	MW-1R	Yes	2.2	12/11/2023	NP	NaN	13	1.154	0.3503	ln(x)	ShapiroWilk
Arsenic (ug/L)	MW-10	No	n/a	n/a	NP	NaN	12	6.367	1.012	ln(x)	ShapiroWilk
Barium (ug/L)	MW-2 (bg)	No	n/a	n/a	NP	NaN	14	179.5	38.4	x^3	ShapiroWilk
Barium (ug/L)	MW-3 (bg)	No	n/a	n/a	NP	NaN	14	91.19	12.54	x^4	ShapiroWilk
Barium (ug/L)	MW-7	No	n/a	n/a	NP	NaN	14	56.25	16.08	ln(x)	ShapiroWilk
Barium (ug/L)	MW-9	No	n/a	n/a	NP	NaN	14	65.46	21.47	x^2	ShapiroWilk
Barium (ug/L)	MW-1R	No	n/a	n/a	NP	NaN	14	43.57	8.603	x^3	ShapiroWilk
Barium (ug/L)	MW-10	No	n/a	n/a	NP	NaN	12	139.8	12.49	x^6	ShapiroWilk
Beryllium (ug/L)	MW-2 (bg)	No	n/a	n/a	NP	NaN	11	1	0	normal	ShapiroWilk
Beryllium (ug/L)	MW-3 (bg)	No	n/a	n/a	NP	NaN	11	1	0	normal	ShapiroWilk
Beryllium (ug/L)	MW-7	No	n/a	n/a	NP	NaN	11	1	0	normal	ShapiroWilk
Beryllium (ug/L)	MW-9	No	n/a	n/a	NP	NaN	11	1	0	normal	ShapiroWilk
Beryllium (ug/L)	MW-1R	No	n/a	n/a	NP	NaN	11	1	0	normal	ShapiroWilk
Beryllium (ug/L)	MW-10	No	n/a	n/a	NP	NaN	10	1	0	normal	ShapiroWilk
Cadmium (ug/L)	MW-2 (bg)	No	n/a	n/a	NP	NaN	11	1	0	normal	ShapiroWilk
Cadmium (ug/L)	MW-3 (bg)	No	n/a	n/a	NP	NaN	11	1	0	normal	ShapiroWilk
Cadmium (ug/L)	MW-7	No	n/a	n/a	NP	NaN	11	1	0	normal	ShapiroWilk
Cadmium (ug/L)	MW-9	No	n/a	n/a	NP	NaN	11	1	0	normal	ShapiroWilk
Cadmium (ug/L)	MW-1R	No	n/a	n/a	NP	NaN	11	1	0	normal	ShapiroWilk
Cadmium (ug/L)	MW-10	No	n/a	n/a	NP	NaN	10	1	0	normal	ShapiroWilk
Chromium (ug/L)	MW-2 (bg)	No	n/a	n/a	NP	NaN	11	4	0	normal	ShapiroWilk
Chromium (ug/L)	MW-3 (bg)	No	n/a	n/a	NP	NaN	11	4	0	normal	ShapiroWilk
Chromium (ug/L)	MW-7	No	n/a	n/a	NP	NaN	11	4	0	normal	ShapiroWilk
Chromium (ug/L)	MW-9	n/a	n/a	n/a	NP	NaN	11	4.373	1.236	unknown	ShapiroWilk
Chromium (ug/L)	MW-1R	No	n/a	n/a	NP	NaN	11	4	0	normal	ShapiroWilk
Chromium (ug/L)	MW-10	No	n/a	n/a	NP	NaN	10	4	0	normal	ShapiroWilk
Cobalt (ug/L)	MW-2 (bg)	n/a	n/a	n/a	NP	NaN	14	2.457	1.599	unknown	ShapiroWilk
Cobalt (ug/L)	MW-3 (bg)	No	n/a	n/a	NP	NaN	14	2	0	normal	ShapiroWilk
Cobalt (ug/L)	MW-7	No	n/a	n/a	NP	NaN	14	2.414	0.6526	In(x)	ShapiroWilk
Cobalt (ug/L)	MW-9	n/a	n/a	n/a	NP	NaN	14	2.014	0.05345	unknown	ShapiroWilk
Cobalt (ug/L)	MW-1R	No	n/a	n/a	NP	NaN	14	9.114	2.941	In(x)	ShapiroWilk
Cobalt (ug/L)	MW-10	n/a	n/a	n/a	NP	NaN	12	1.917	0.2887	unknown	ShapiroWilk
Fluoride (mg/L)	MW-2 (bg)	n/a	n/a	n/a	NP	NaN	21	0.2503	0.05061	unknown	ShapiroWilk
Fluoride (mg/L)	MW-3 (bg)	No	n/a	n/a	NP	NaN	21	0.2718	0.05336	normal	ShapiroWilk
Fluoride (mg/L)	MW-7	No	n/a	n/a	NP	NaN	21	0.6219	0.1043	x^2	ShapiroWilk
Fluoride (mg/L)	MW-9	No	n/a	n/a	NP	NaN	21	0.885	0.1758	sqrt(x)	ShapiroWilk
Fluoride (mg/L)	MW-1R	n/a	n/a	n/a	NP	NaN	15	0.2501	0.05158	unknown	ShapiroWilk
Fluoride (mg/L)	MW-10	No	n/a	n/a	NP	NaN	12	0.2925	0.04615	In(x)	ShapiroWilk
Lead (ug/L)	MW-2 (bg)	No	n/a	n/a	NP	NaN	11	1	0	normal	ShapiroWilk
Lead (ug/L)	MW-3 (bg)	No	n/a	n/a	NP	NaN	11	1	0	normal	ShapiroWilk

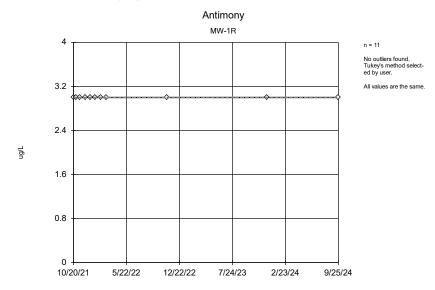
Outlier Analysis


	SBMU	SBMU-Sikeston Power Station		Client: GREDELL Engineering	Data: SikestonFAP Background		Pri	nted 5/21/20	25, 11:52 AN	I	
Constituent	Well	<u>Outlier</u>	Value(s)	Date(s)	Method	<u>Alpha</u>	<u>N</u>	<u>Mean</u>	Std. Dev.	Distribution	Normality Test
Lead (ug/L)	MW-7	No	n/a	n/a	NP	NaN	11	1	0	normal	ShapiroWilk
Lead (ug/L)	MW-9	No	n/a	n/a	NP	NaN	11	1	0	normal	ShapiroWilk
Lead (ug/L)	MW-1R	No	n/a	n/a	NP	NaN	11	1	0	normal	ShapiroWilk
Lead (ug/L)	MW-10	No	n/a	n/a	NP	NaN	10	1	0	normal	ShapiroWilk
Lithium (ug/L)	MW-2 (bg)	n/a	n/a	n/a	NP	NaN	14	11.43	3.631	unknown	ShapiroWilk
Lithium (ug/L)	MW-3 (bg)	n/a	n/a	n/a	NP	NaN	14	11.43	3.631	unknown	ShapiroWilk
Lithium (ug/L)	MW-7	No	n/a	n/a	NP	NaN	14	29.77	7.86	ln(x)	ShapiroWilk
Lithium (ug/L)	MW-9	No	n/a	n/a	NP	NaN	14	19.62	6.16	ln(x)	ShapiroWilk
Lithium (ug/L)	MW-1R	No	n/a	n/a	NP	NaN	14	13.26	4.128	ln(x)	ShapiroWilk
Lithium (ug/L)	MW-10	No	n/a	n/a	NP	NaN	12	24.13	12.74	x^2	ShapiroWilk
Mercury (ug/L)	MW-2 (bg)	No	n/a	n/a	NP	NaN	11	0.2	0	normal	ShapiroWilk
Mercury (ug/L)	MW-3 (bg)	No	n/a	n/a	NP	NaN	11	0.2	0	normal	ShapiroWilk
Mercury (ug/L)	MW-7	No	n/a	n/a	NP	NaN	11	0.2	0	normal	ShapiroWilk
Mercury (ug/L)	MW-9	No	n/a	n/a	NP	NaN	11	0.2	0	normal	ShapiroWilk
Mercury (ug/L)	MW-1R	No	n/a	n/a	NP	NaN	11	0.2	0	normal	ShapiroWilk
Mercury (ug/L)	MW-10	No	n/a	n/a	NP	NaN	10	0.2	0	normal	ShapiroWilk
Molybdenum (ug/L)	MW-2 (bg)	n/a	n/a	n/a	NP	NaN	14	1.029	0.1069	unknown	ShapiroWilk
Molybdenum (ug/L)	MW-3 (bg)	No	n/a	n/a	NP	NaN	14	1	0	normal	ShapiroWilk
Molybdenum (ug/L)	MW-7	No	n/a	n/a	NP	NaN	14	140.4	23.62	x^2	ShapiroWilk
Molybdenum (ug/L)	MW-9	No	n/a	n/a	NP	NaN	14	383.2	243.5	normal	ShapiroWilk
Molybdenum (ug/L)	MW-1R	No	n/a	n/a	NP	NaN	14	184.8	20.18	x^5	ShapiroWilk
Molybdenum (ug/L)	MW-10	No	n/a	n/a	NP	NaN	12	21.48	3.983	x^3	ShapiroWilk
Radium (pCi/L)	MW-2 (bg)	No	n/a	n/a	NP	NaN	12	1.114	0.4689	x^(1/3)	ShapiroWilk
Radium (pCi/L)	MW-3 (bg)	No	n/a	n/a	NP	NaN	12	0.8491	0.4191	normal	ShapiroWilk
Radium (pCi/L)	MW-7	No	n/a	n/a	NP	NaN	12	1.046	0.5406	normal	ShapiroWilk
Radium (pCi/L)	MW-9	No	n/a	n/a	NP	NaN	12	0.8459	0.4388	In(x)	ShapiroWilk
Radium (pCi/L)	MW-1R	No	n/a	n/a	NP	NaN	12	0.6602	0.3301	x^(1/3)	ShapiroWilk
Radium (pCi/L)	MW-10	No	n/a	n/a	NP	NaN	10	0.9613	0.4632	normal	ShapiroWilk
Selenium (ug/L)	MW-2 (bg)	Yes	2,2.2	8/1/2018,	NP	NaN	14	1.186	0.4036	ln(x)	ShapiroWilk
Selenium (ug/L)	MW-3 (bg)	No	n/a	n/a	NP	NaN	14	1	0	normal	ShapiroWilk
Selenium (ug/L)	MW-7	No	n/a	n/a	NP	NaN	14	16.41	19.51	In(x)	ShapiroWilk
Selenium (ug/L)	MW-9	No	n/a	n/a	NP	NaN	14	1	0	normal	ShapiroWilk
Selenium (ug/L)	MW-1R	No	n/a	n/a	NP	NaN	14	1	0	normal	ShapiroWilk
Selenium (ug/L)	MW-10	No	n/a	n/a	NP	NaN	12	1	0	normal	ShapiroWilk
Thallium (ug/L)	MW-2 (bg)	No	n/a	n/a	NP	NaN	11	1	0	normal	ShapiroWilk
Thallium (ug/L)	MW-3 (bg)	No	n/a	n/a	NP	NaN	11	1	0	normal	ShapiroWilk
Thallium (ug/L)	MW-7	No	n/a	n/a	NP	NaN	11	1	0	normal	ShapiroWilk
Thallium (ug/L)	MW-9	No	n/a	n/a	NP	NaN	11	1	0	normal	ShapiroWilk
Thallium (ug/L)	MW-1R	No	n/a	n/a	NP	NaN	11	1	0	normal	ShapiroWilk
Thallium (ug/L)	MW-10	No	n/a	n/a	NP	NaN	10	1	0	normal	ShapiroWilk

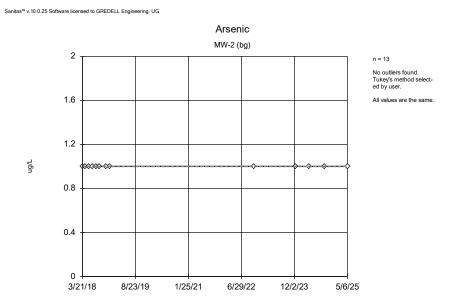
Tukey's Outlier Screening Analysis Run 5/21/2025 11:49 AM View: Assessment Stats 5.1.2025 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

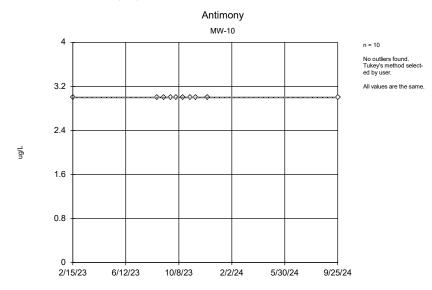


Tukey's Outlier Screening Analysis Run 5/21/2025 11:49 AM View: Assessment Stats 5.1.2025 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

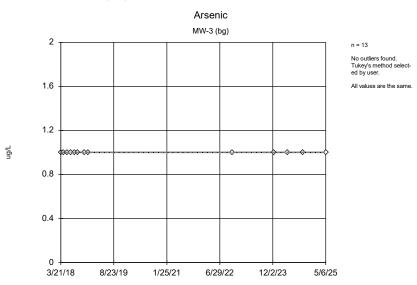


Tukey's Outlier Screening Analysis Run 5/21/2025 11:49 AM View: Assessment Stats 5.1.2025 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

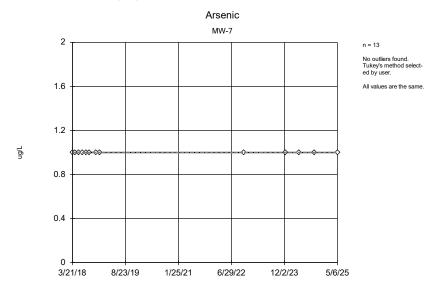



Tukey's Outlier Screening Analysis Run 5/21/2025 11:49 AM View: Assessment Stats 5.1.2025 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

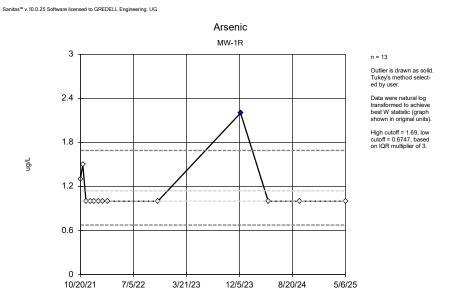
Tukey's Outlier Screening Analysis Run 5/21/2025 11:49 AM View: Assessment Stats 5.1.2025 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

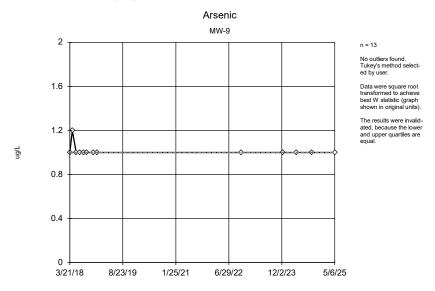


Tukey's Outlier Screening Analysis Run 5/21/2025 11:49 AM View: Assessment Stats 5.1.2025 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

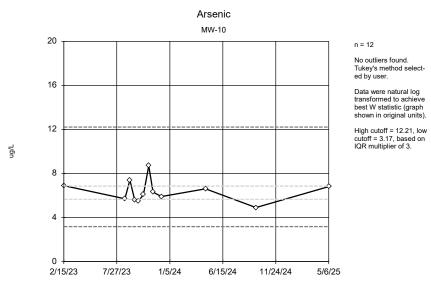


Tukey's Outlier Screening Analysis Run 5/21/2025 11:49 AM View: Assessment Stats 5.1.2025 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

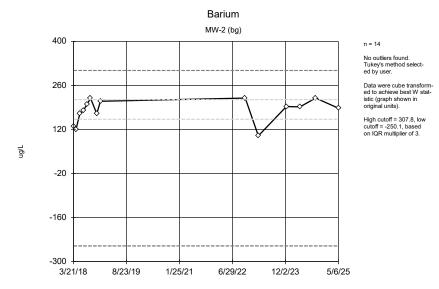



Tukey's Outlier Screening Analysis Run 5/21/2025 11:49 AM View: Assessment Stats 5.1.2025 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

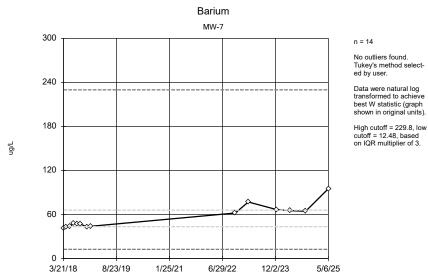
Tukey's Outlier Screening Analysis Run 5/21/2025 11:49 AM View: Assessment Stats 5.1.2025 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background



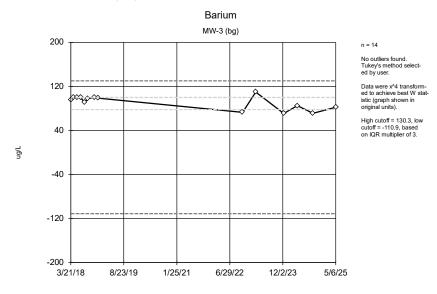
Tukey's Outlier Screening Analysis Run 5/21/2025 11:49 AM View: Assessment Stats 5.1.2025 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background



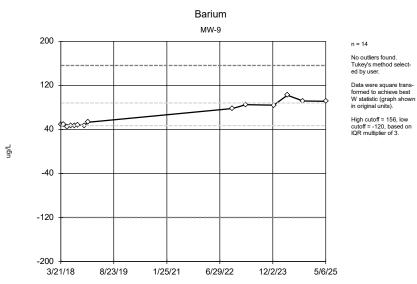
Tukey's Outlier Screening Analysis Run 5/21/2025 11:49 AM View: Assessment Stats 5.1.2025 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

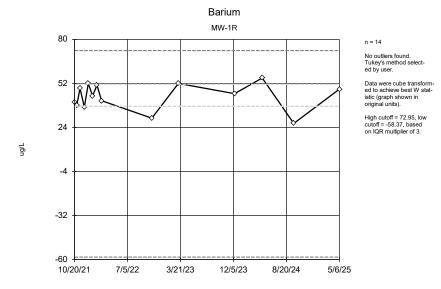


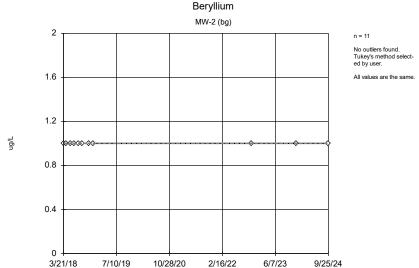
Tukey's Outlier Screening Analysis Run 5/21/2025 11:49 AM View: Assessment Stats 5.1.2025 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

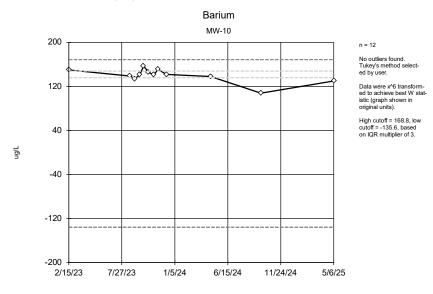


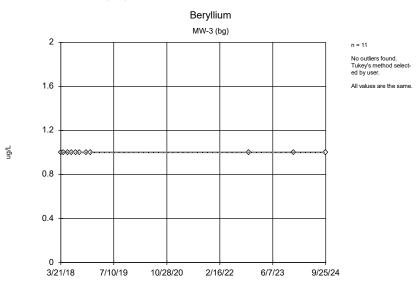
Tukey's Outlier Screening Analysis Run 5/21/2025 11:49 AM View: Assessment Stats 5.1.2025 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

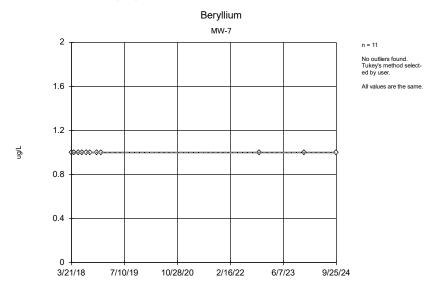


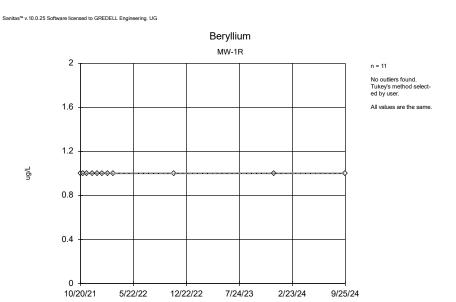

Tukey's Outlier Screening Analysis Run 5/21/2025 11:49 AM View: Assessment Stats 5.1.2025 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

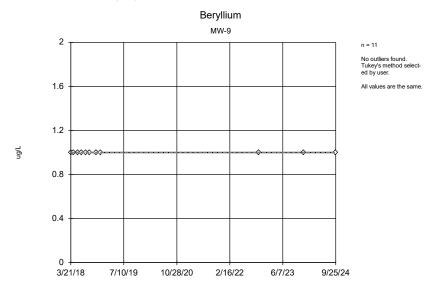

Tukey's Outlier Screening Analysis Run 5/21/2025 11:49 AM View: Assessment Stats 5.1.2025 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background


Tukey's Outlier Screening Analysis Run 5/21/2025 11:49 AM View: Assessment Stats 5.1.2025 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

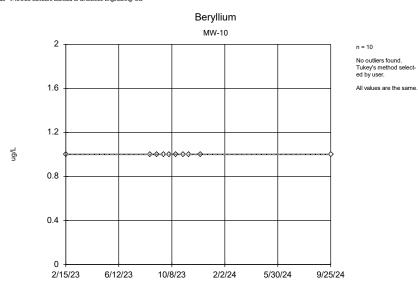

Tukey's Outlier Screening Analysis Run 5/21/2025 11:49 AM View: Assessment Stats 5.1.2025


Tukey's Outlier Screening Analysis Run 5/21/2025 11:49 AM View: Assessment Stats 5.1.2025

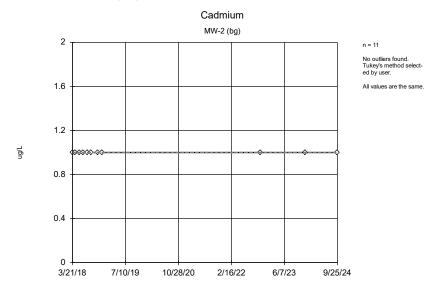

Tukey's Outlier Screening Analysis Run 5/21/2025 11:49 AM View: Assessment Stats 5.1.2025


Tukey's Outlier Screening Analysis Run 5/21/2025 11:49 AM View: Assessment Stats 5.1.2025

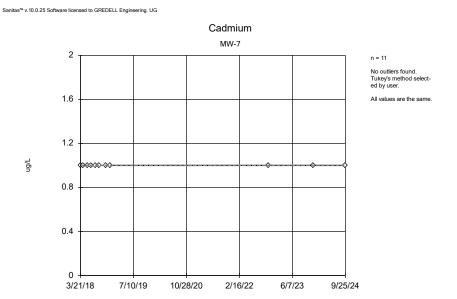
Tukey's Outlier Screening Analysis Run 5/21/2025 11:49 AM View: Assessment Stats 5.1.2025 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

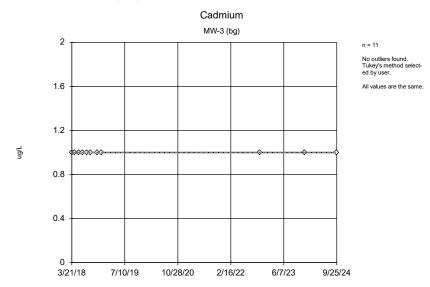


Tukey's Outlier Screening Analysis Run 5/21/2025 11:49 AM View: Assessment Stats 5.1.2025 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

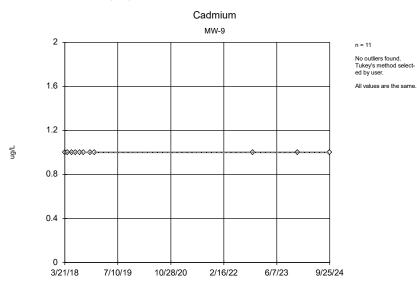


Tukey's Outlier Screening Analysis Run 5/21/2025 11:49 AM View: Assessment Stats 5.1.2025 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

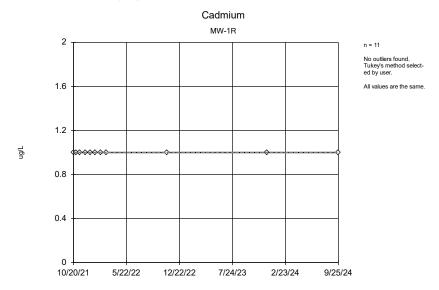



Tukey's Outlier Screening Analysis Run 5/21/2025 11:49 AM View: Assessment Stats 5.1.2025 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

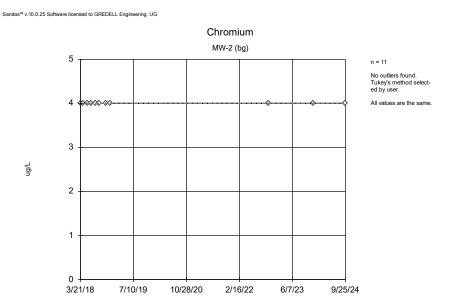
Tukey's Outlier Screening Analysis Run 5/21/2025 11:49 AM View: Assessment Stats 5.1.2025 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

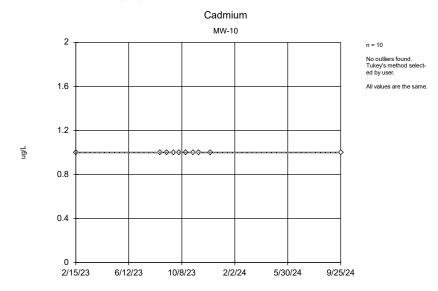


Tukey's Outlier Screening Analysis Run 5/21/2025 11:49 AM View: Assessment Stats 5.1.2025 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

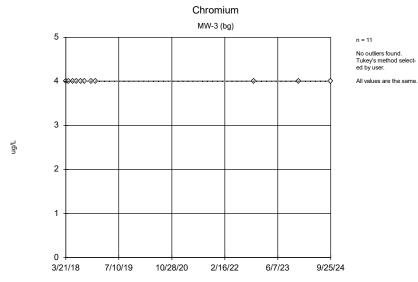


Tukey's Outlier Screening Analysis Run 5/21/2025 11:49 AM View: Assessment Stats 5.1.2025 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

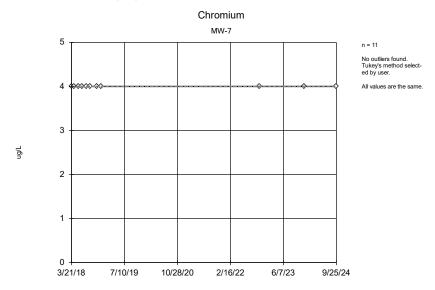



Tukey's Outlier Screening Analysis Run 5/21/2025 11:49 AM View: Assessment Stats 5.1.2025 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

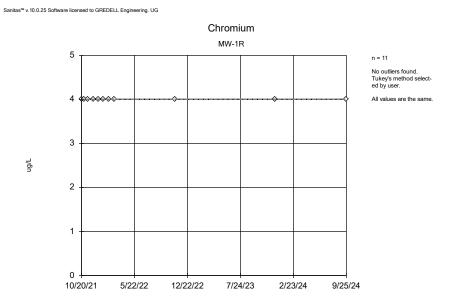
Tukey's Outlier Screening Analysis Run 5/21/2025 11:49 AM View: Assessment Stats 5.1.2025 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

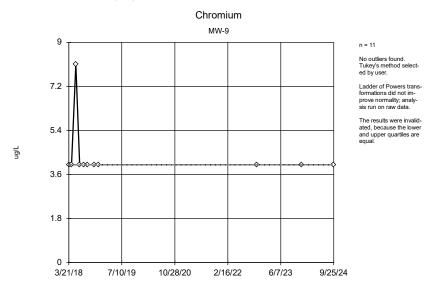


Tukey's Outlier Screening Analysis Run 5/21/2025 11:49 AM View: Assessment Stats 5.1.2025 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

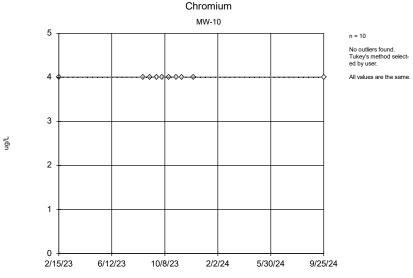


Tukey's Outlier Screening Analysis Run 5/21/2025 11:49 AM View: Assessment Stats 5.1.2025 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

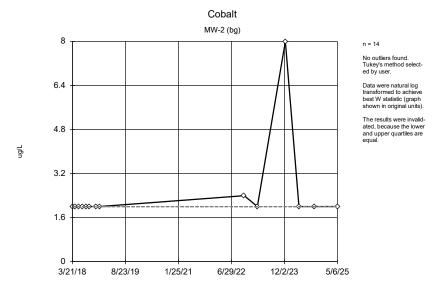



Tukey's Outlier Screening Analysis Run 5/21/2025 11:49 AM View: Assessment Stats 5.1.2025 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

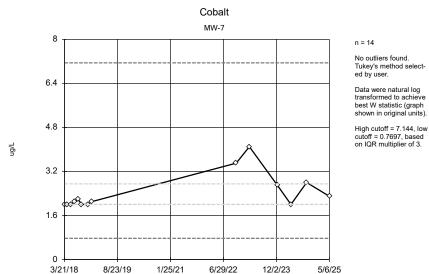
Tukey's Outlier Screening Analysis Run 5/21/2025 11:49 AM View: Assessment Stats 5.1.2025 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

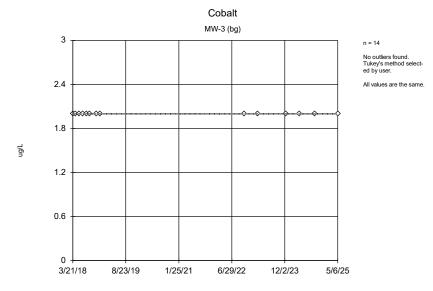


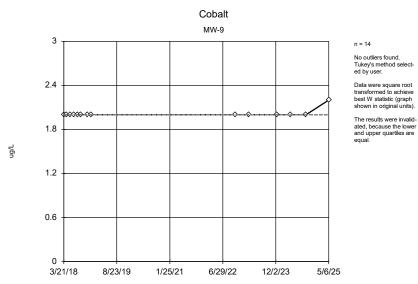
Tukey's Outlier Screening Analysis Run 5/21/2025 11:49 AM View: Assessment Stats 5.1.2025 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

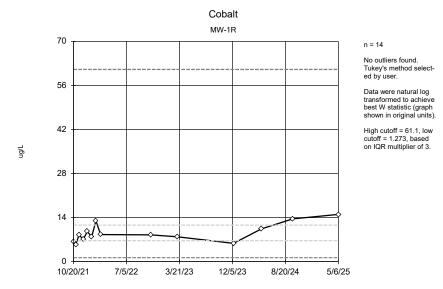


Tukey's Outlier Screening Analysis Run 5/21/2025 11:49 AM View: Assessment Stats 5.1.2025 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

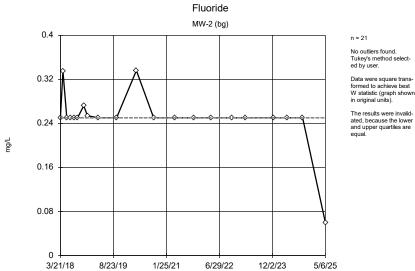



Tukey's Outlier Screening Analysis Run 5/21/2025 11:49 AM View: Assessment Stats 5.1.2025 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

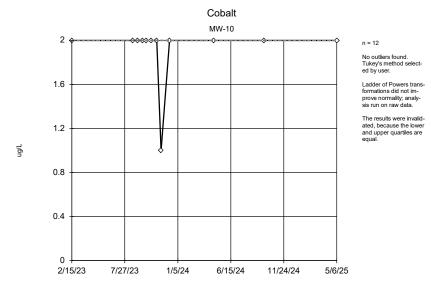

Tukey's Outlier Screening Analysis Run 5/21/2025 11:49 AM View: Assessment Stats 5.1.2025 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background


Tukey's Outlier Screening Analysis Run 5/21/2025 11:49 AM View: Assessment Stats 5.1.2025 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

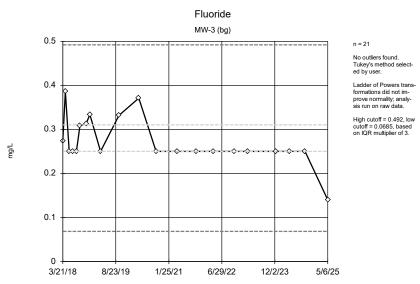
Tukey's Outlier Screening Analysis Run 5/21/2025 11:49 AM View: Assessment Stats 5.1.2025 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background



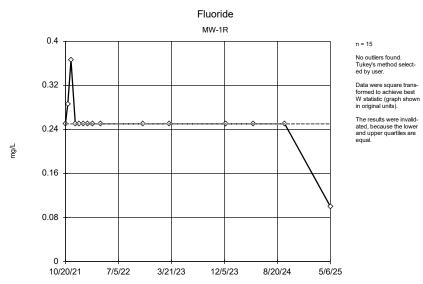
Tukey's Outlier Screening Analysis Run 5/21/2025 11:49 AM View: Assessment Stats 5.1.2025 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

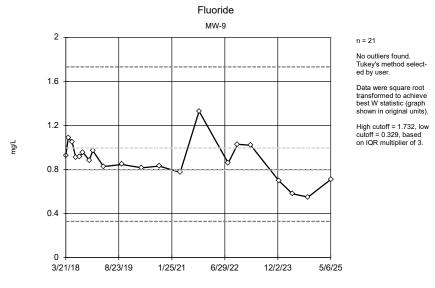


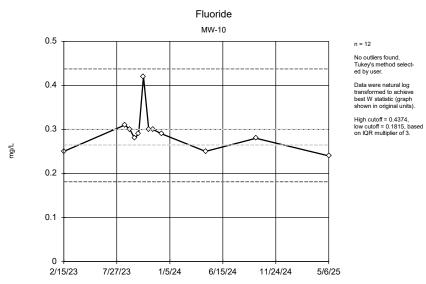
Tukey's Outlier Screening Analysis Run 5/21/2025 11:49 AM View: Assessment Stats 5.1.2025 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

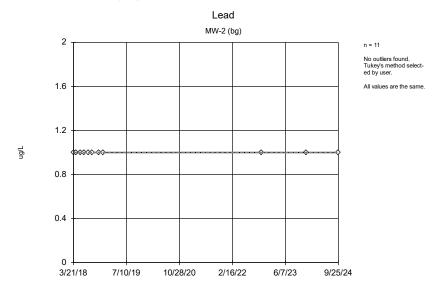


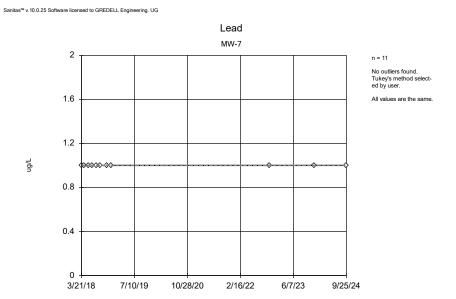

Tukey's Outlier Screening Analysis Run 5/21/2025 11:49 AM View: Assessment Stats 5.1.2025 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

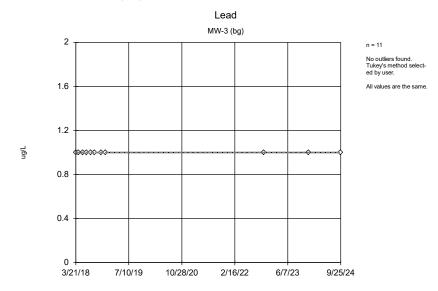

Tukey's Outlier Screening Analysis Run 5/21/2025 11:49 AM View: Assessment Stats 5.1.2025 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background


Tukey's Outlier Screening Analysis Run 5/21/2025 11:49 AM View: Assessment Stats 5.1.2025 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

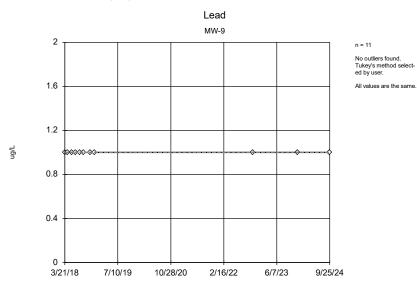

Tukey's Outlier Screening Analysis Run 5/21/2025 11:49 AM View: Assessment Stats 5.1.2025 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background


Tukey's Outlier Screening Analysis Run 5/21/2025 11:49 AM View: Assessment Stats 5.1.2025 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

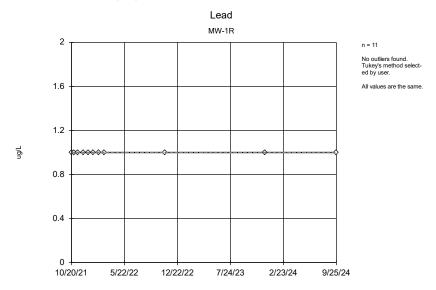

Tukey's Outlier Screening Analysis Run 5/21/2025 11:49 AM View: Assessment Stats 5.1.2025 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background


Tukey's Outlier Screening Analysis Run 5/21/2025 11:49 AM View: Assessment Stats 5.1.2025 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

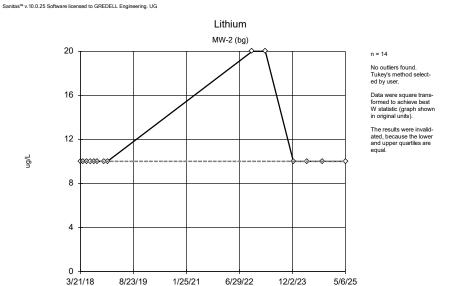
Tukey's Outlier Screening Analysis Run 5/21/2025 11:50 AM View: Assessment Stats 5.1.2025 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

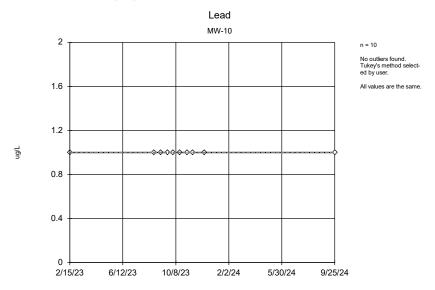


Tukey's Outlier Screening Analysis Run 5/21/2025 11:50 AM View: Assessment Stats 5.1.2025 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

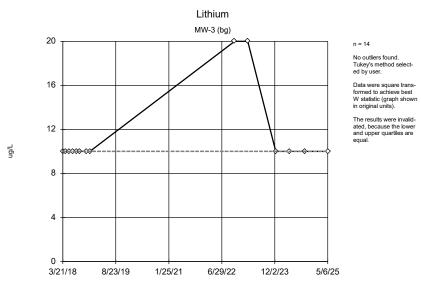


Tukey's Outlier Screening Analysis Run 5/21/2025 11:50 AM View: Assessment Stats 5.1.2025 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background



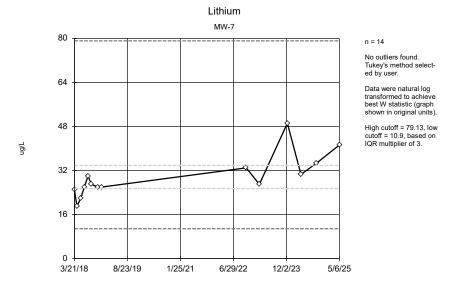

Tukey's Outlier Screening Analysis Run 5/21/2025 11:50 AM View: Assessment Stats 5.1.2025 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

Tukey's Outlier Screening Analysis Run 5/21/2025 11:50 AM View: Assessment Stats 5.1.2025 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background



Tukey's Outlier Screening Analysis Run 5/21/2025 11:50 AM View: Assessment Stats 5.1.2025 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

Tukey's Outlier Screening Analysis Run 5/21/2025 11:50 AM View: Assessment Stats 5.1.2025 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background



Tukey's Outlier Screening Analysis Run 5/21/2025 11:50 AM View: Assessment Stats 5.1.2025 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

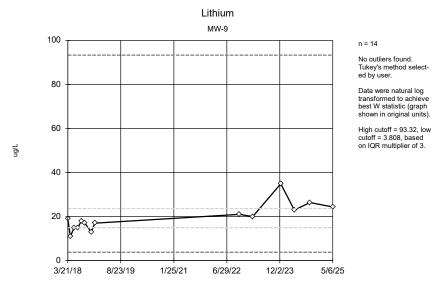
10/20/21

7/5/22

Tukey's Outlier Screening Analysis Run 5/21/2025 11:50 AM View: Assessment Stats 5.1.2025 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

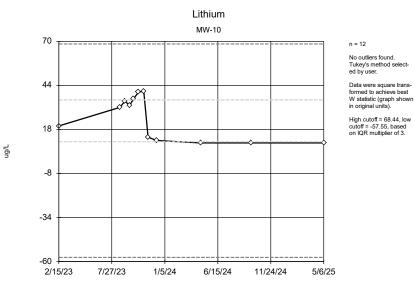
MW-1R n = 14 No outliers found. Tukey's method selected by user. Data were natural log transformed to achieve best W statistic (graph shown in original units). High cutoff = 10/4.3, low cutoff = 1.7/23, based on IQR multiplier of 3.

Lithium


Tukey's Outlier Screening Analysis Run 5/21/2025 11:50 AM View: Assessment Stats 5.1.2025 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

12/5/23

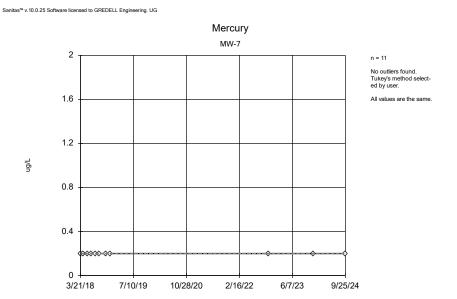
8/20/24

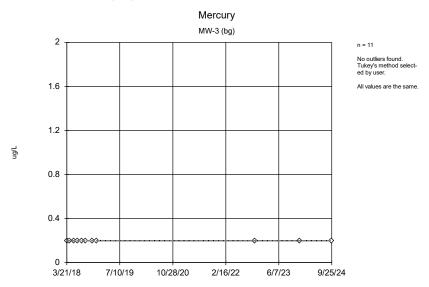

5/6/25

3/21/23

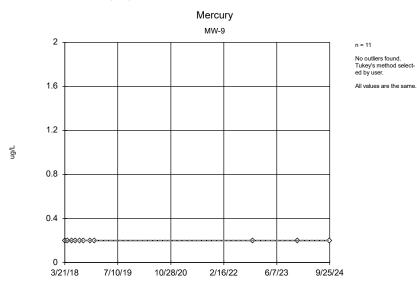


Tukey's Outlier Screening Analysis Run 5/21/2025 11:50 AM View: Assessment Stats 5.1.2025 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

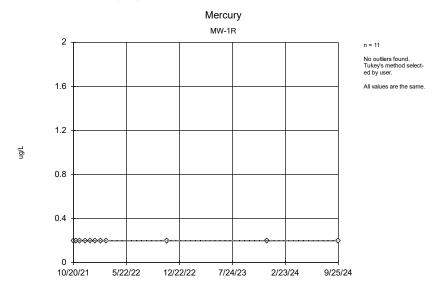



Tukey's Outlier Screening Analysis Run 5/21/2025 11:50 AM View: Assessment Stats 5.1.2025 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

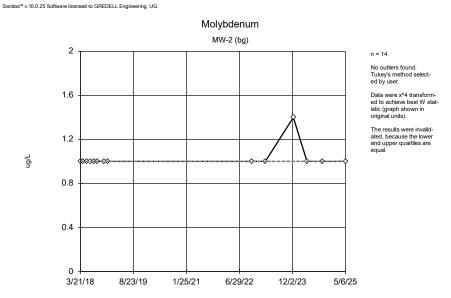
Tukey's Outlier Screening Analysis Run 5/21/2025 11:50 AM View: Assessment Stats 5.1.2025 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

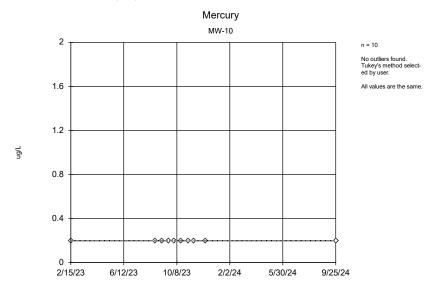


Tukey's Outlier Screening Analysis Run 5/21/2025 11:50 AM View: Assessment Stats 5.1.2025 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

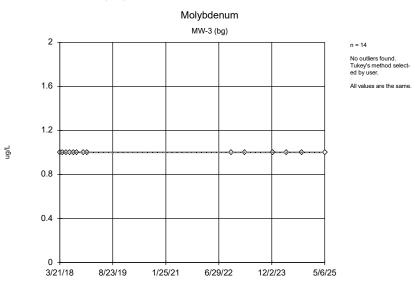


Tukey's Outlier Screening Analysis Run 5/21/2025 11:50 AM View: Assessment Stats 5.1.2025 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

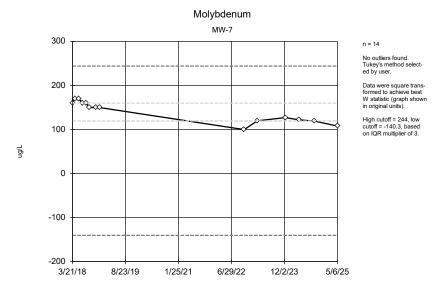



Tukey's Outlier Screening Analysis Run 5/21/2025 11:50 AM View: Assessment Stats 5.1.2025 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

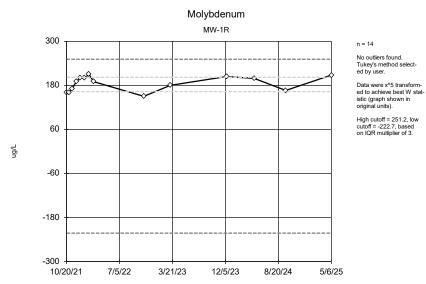
Tukey's Outlier Screening Analysis Run 5/21/2025 11:50 AM View: Assessment Stats 5.1.2025 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

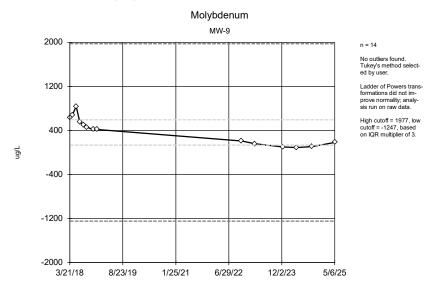


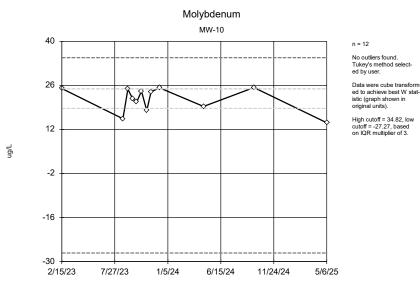
Tukey's Outlier Screening Analysis Run 5/21/2025 11:50 AM View: Assessment Stats 5.1.2025 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

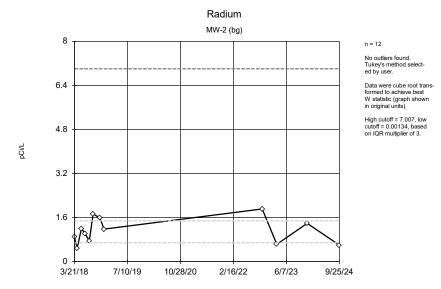


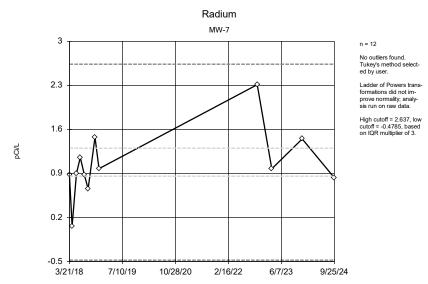
Tukey's Outlier Screening Analysis Run 5/21/2025 11:50 AM View: Assessment Stats 5.1.2025 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

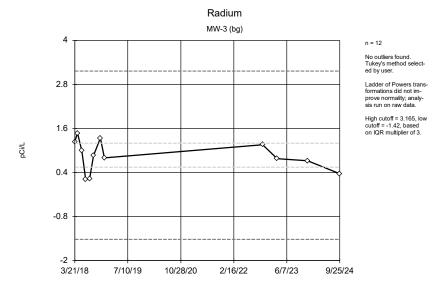


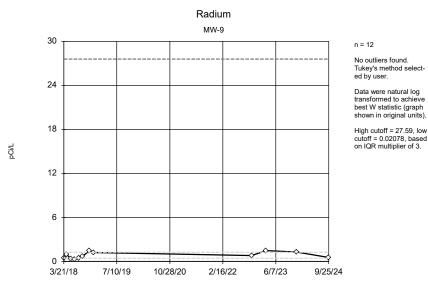

Tukey's Outlier Screening Analysis Run 5/21/2025 11:50 AM View: Assessment Stats 5.1.2025 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

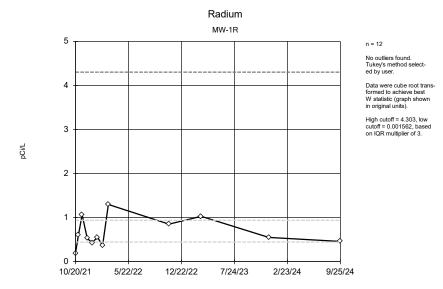

Tukey's Outlier Screening Analysis Run 5/21/2025 11:50 AM View: Assessment Stats 5.1.2025 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background


Tukey's Outlier Screening Analysis Run 5/21/2025 11:50 AM View: Assessment Stats 5.1.2025 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

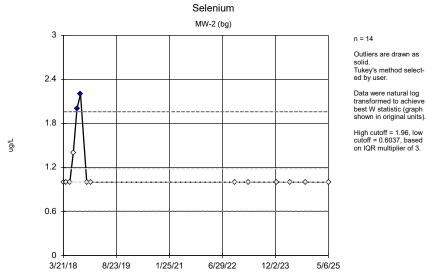

Tukey's Outlier Screening Analysis Run 5/21/2025 11:50 AM View: Assessment Stats 5.1.2025 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background


Tukey's Outlier Screening Analysis Run 5/21/2025 11:50 AM View: Assessment Stats 5.1.2025 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

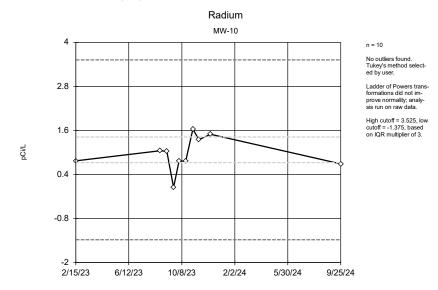

Tukey's Outlier Screening Analysis Run 5/21/2025 11:50 AM View: Assessment Stats 5.1.2025 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background


Tukey's Outlier Screening Analysis Run 5/21/2025 11:50 AM View: Assessment Stats 5.1.2025 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

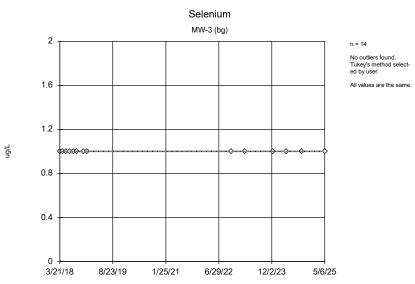
Tukey's Outlier Screening Analysis Run 5/21/2025 11:50 AM View: Assessment Stats 5.1.2025 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

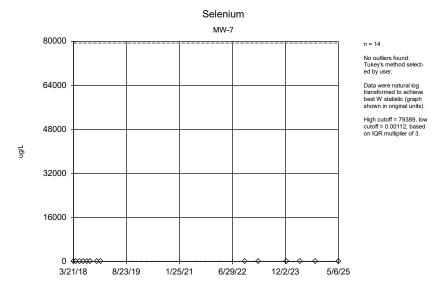


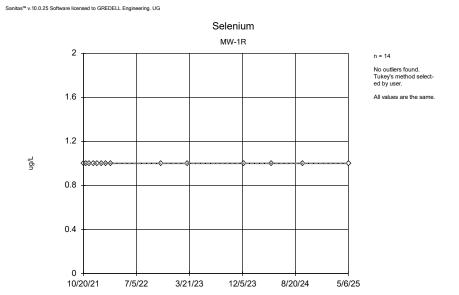
Tukey's Outlier Screening Analysis Run 5/21/2025 11:50 AM View: Assessment Stats 5.1.2025 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

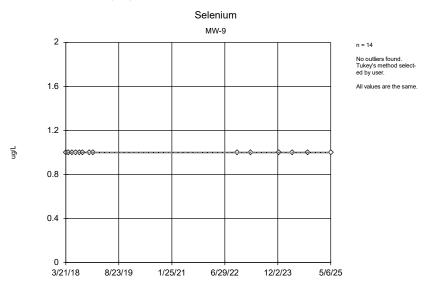


Tukey's Outlier Screening Analysis Run 5/21/2025 11:50 AM View: Assessment Stats 5.1.2025 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background




Tukey's Outlier Screening Analysis Run 5/21/2025 11:50 AM View: Assessment Stats 5.1.2025 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

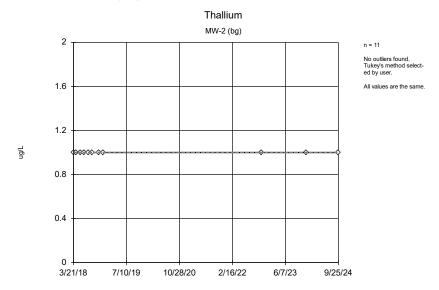

Tukey's Outlier Screening Analysis Run 5/21/2025 11:50 AM View: Assessment Stats 5.1.2025 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background


Tukey's Outlier Screening Analysis Run 5/21/2025 11:50 AM View: Assessment Stats 5.1.2025 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

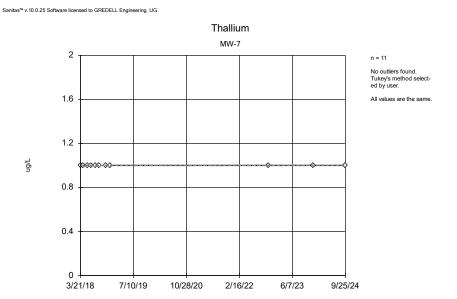
Tukey's Outlier Screening Analysis Run 5/21/2025 11:50 AM View: Assessment Stats 5.1.2025 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

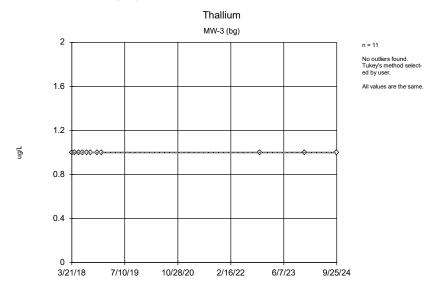


Tukey's Outlier Screening Analysis Run 5/21/2025 11:50 AM View: Assessment Stats 5.1.2025 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background



Tukey's Outlier Screening Analysis Run 5/21/2025 11:50 AM View: Assessment Stats 5.1.2025 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

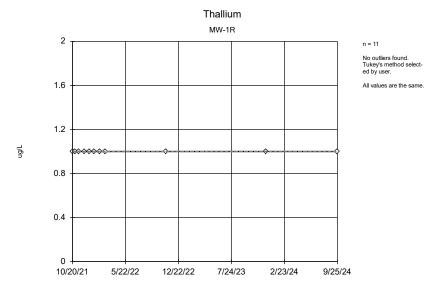



Tukey's Outlier Screening Analysis Run 5/21/2025 11:50 AM View: Assessment Stats 5.1.2025 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

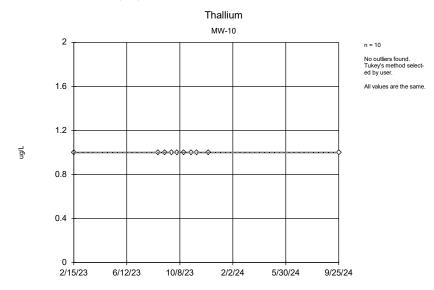
Tukey's Outlier Screening Analysis Run 5/21/2025 11:50 AM View: Assessment Stats 5.1.2025 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background



Tukey's Outlier Screening Analysis Run 5/21/2025 11:50 AM View: Assessment Stats 5.1.2025 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background



Tukey's Outlier Screening Analysis Run 5/21/2025 11:50 AM View: Assessment Stats 5.1.2025 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

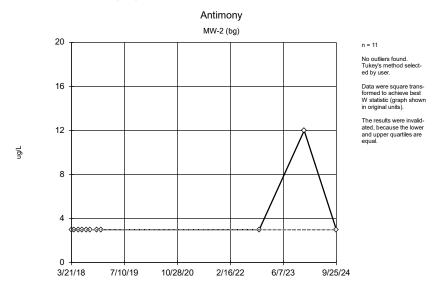


Tukey's Outlier Screening Analysis Run 5/21/2025 11:50 AM View: Assessment Stats 5.1.2025 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

Tukey's Outlier Screening Analysis Run 5/21/2025 11:50 AM View: Assessment Stats 5.1.2025 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

Tukey's Outlier Screening Analysis Run 5/21/2025 11:50 AM View: Assessment Stats 5.1.2025 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

Outlier Analysis


	SBMU	J-Sikeston F	ower Station	Client: GREDELL Engineering	Data: SikestonFA	AP Backgroun	d Pri	nted 5/21/20	25, 11:58 AM	1	
Constituent	Well	<u>Outlier</u>	Value(s)	Date(s)	Method	<u>Alpha</u>	<u>N</u>	<u>Mean</u>	Std. Dev.	Distribution	Normality Test
Antimony (ug/L)	MW-2 (bg)	n/a	n/a	n/a	NP	NaN	11	3.818	2.714	unknown	ShapiroWilk
Antimony (ug/L)	MW-3 (bg)	No	n/a	n/a	NP	NaN	11	3	0	normal	ShapiroWilk
Antimony (ug/L)	MW-7	No	n/a	n/a	NP	NaN	11	3	0	normal	ShapiroWilk
Antimony (ug/L)	MW-9	No	n/a	n/a	NP	NaN	11	3	0	normal	ShapiroWilk
Antimony (ug/L)	MW-1R	No	n/a	n/a	NP	NaN	11	3	0	normal	ShapiroWilk
Antimony (ug/L)	MW-10	No	n/a	n/a	NP	NaN	10	3	0	normal	ShapiroWilk
Arsenic (ug/L)	MW-2 (bg)	No	n/a	n/a	NP	NaN	13	1	0	normal	ShapiroWilk
Arsenic (ug/L)	MW-3 (bg)	No	n/a	n/a	NP	NaN	13	1	0	normal	ShapiroWilk
Arsenic (ug/L)	MW-7	No	n/a	n/a	NP	NaN	13	1	0	normal	ShapiroWilk
Arsenic (ug/L)	MW-9	n/a	n/a	n/a	NP	NaN	13	1.015	0.05547	unknown	ShapiroWilk
Arsenic (ug/L)	MW-1R	n/a	n/a	n/a	NP	NaN	12	1.067	0.1614	unknown	ShapiroWilk
Arsenic (ug/L)	MW-10	No	n/a	n/a	NP	NaN	12	6.367	1.012	ln(x)	ShapiroWilk
Barium (ug/L)	MW-2 (bg)	No	n/a	n/a	NP	NaN	14	179.5	38.4	x^3	ShapiroWilk
Barium (ug/L)	MW-3 (bg)	No	n/a	n/a	NP	NaN	14	91.19	12.54	x^4	ShapiroWilk
Barium (ug/L)	MW-7	No	n/a	n/a	NP	NaN	14	56.25	16.08	ln(x)	ShapiroWilk
Barium (ug/L)	MW-9	No	n/a	n/a	NP	NaN	14	65.46	21.47	x^2	ShapiroWilk
Barium (ug/L)	MW-1R	No	n/a	n/a	NP	NaN	14	43.57	8.603	x^3	ShapiroWilk
Barium (ug/L)	MW-10	No	n/a	n/a	NP	NaN	12	139.8	12.49	x^6	ShapiroWilk
Beryllium (ug/L)	MW-2 (bg)	No	n/a	n/a	NP	NaN	11	1	0	normal	ShapiroWilk
Beryllium (ug/L)	MW-3 (bg)	No	n/a	n/a	NP	NaN	11	1	0	normal	ShapiroWilk
Beryllium (ug/L)	MW-7	No	n/a	n/a	NP	NaN	11	1	0	normal	ShapiroWilk
Beryllium (ug/L)	MW-9	No	n/a	n/a	NP	NaN	11	1	0	normal	ShapiroWilk
Beryllium (ug/L)	MW-1R	No	n/a	n/a	NP	NaN	11	1	0	normal	ShapiroWilk
Beryllium (ug/L)	MW-10	No	n/a	n/a	NP	NaN	10	1	0	normal	ShapiroWilk
Cadmium (ug/L)	MW-2 (bg)	No	n/a	n/a	NP	NaN	11	1	0	normal	ShapiroWilk
Cadmium (ug/L)	MW-3 (bg)	No	n/a	n/a	NP	NaN	11	1	0	normal	ShapiroWilk
Cadmium (ug/L)	MW-7	No	n/a	n/a	NP	NaN	11	1	0	normal	ShapiroWilk
Cadmium (ug/L)	MW-9	No	n/a	n/a	NP	NaN	11	1	0	normal	ShapiroWilk
Cadmium (ug/L)	MW-1R	No	n/a	n/a	NP	NaN	11	1	0	normal	ShapiroWilk
Cadmium (ug/L)	MW-10	No	n/a	n/a	NP	NaN	10	1	0	normal	ShapiroWilk
Chromium (ug/L)	MW-2 (bg)	No	n/a	n/a	NP	NaN	11	4	0	normal	ShapiroWilk
Chromium (ug/L)	MW-3 (bg)	No	n/a	n/a	NP	NaN	11	4	0	normal	ShapiroWilk
Chromium (ug/L)	MW-7	No	n/a	n/a	NP	NaN	11	4	0	normal	ShapiroWilk
Chromium (ug/L)	MW-9	n/a	n/a	n/a	NP	NaN	11	4.373	1.236	unknown	ShapiroWilk
Chromium (ug/L)	MW-1R	No	n/a	n/a	NP	NaN	11	4	0	normal	ShapiroWilk
Chromium (ug/L)	MW-10	No	n/a	n/a	NP	NaN	10	4	0	normal	ShapiroWilk
Cobalt (ug/L)	MW-2 (bg)	n/a	n/a	n/a	NP	NaN	14	2.457	1.599	unknown	ShapiroWilk
Cobalt (ug/L)	MW-3 (bg)	No	n/a	n/a	NP	NaN	14	2	0	normal	ShapiroWilk
Cobalt (ug/L)	MW-7	No	n/a	n/a	NP	NaN	14	2.414	0.6526	In(x)	ShapiroWilk
Cobalt (ug/L)	MW-9	n/a	n/a	n/a	NP	NaN	14	2.014	0.05345	unknown	ShapiroWilk
Cobalt (ug/L)	MW-1R	No	n/a	n/a	NP	NaN	14	9.114	2.941	In(x)	ShapiroWilk
Cobalt (ug/L)	MW-10	n/a	n/a	n/a	NP	NaN	12	1.917	0.2887	unknown	ShapiroWilk
Fluoride (mg/L)	MW-2 (bg)	n/a	n/a	n/a	NP	NaN	20	0.2461	0.04795	unknown	ShapiroWilk
Fluoride (mg/L)	MW-3 (bg)	No	n/a	n/a	NP	NaN	21	0.2718	0.05336	normal	ShapiroWilk
Fluoride (mg/L)	MW-7	No	n/a	n/a	NP	NaN	21	0.6219	0.1043	x^2	ShapiroWilk
Fluoride (mg/L)	MW-9	No	n/a	n/a	NP	NaN	21	0.885	0.1758	sqrt(x)	ShapiroWilk
Fluoride (mg/L)	MW-1R	n/a	n/a	n/a	NP	NaN	15	0.2501	0.05158	unknown	ShapiroWilk
Fluoride (mg/L)	MW-10	No	n/a	n/a	NP	NaN	12	0.2925	0.04615	In(x)	ShapiroWilk
Lead (ug/L)	MW-2 (bg)	No	n/a	n/a	NP	NaN	11	1	0	normal	ShapiroWilk
Lead (ug/L)	MW-3 (bg)	No	n/a	n/a	NP	NaN	11	1	0	normal	ShapiroWilk

Outlier Analysis

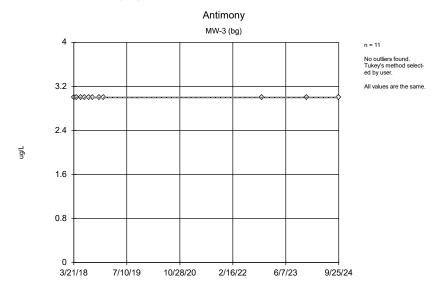
	SBMU-Sikeston Power Station		Client: GREDELL Engineering	Data: SikestonFAP Background		Printed 5/21/2025, 11:58 AM					
Constituent	Well	<u>Outlier</u>	Value(s)	<u>Date(s)</u>	Method	<u>Alpha</u>	N	<u>Mean</u>	Std. Dev.	Distribution	Normality Test
Lead (ug/L)	MW-7	No	n/a	n/a	NP		11	1	0	normal	ShapiroWilk
Lead (ug/L)	MW-9	No	n/a	n/a	NP	NaN	11	1	0	normal	ShapiroWilk
Lead (ug/L)	MW-1R	No	n/a	n/a	NP	NaN	11	1	0	normal	ShapiroWilk
Lead (ug/L)	MW-10	No	n/a	n/a	NP	NaN	10	1	0	normal	ShapiroWilk
Lithium (ug/L)	MW-2 (bg)	n/a	n/a	n/a	NP	NaN	14	11.43	3.631	unknown	ShapiroWilk
Lithium (ug/L)	MW-3 (bg)	n/a	n/a	n/a	NP	NaN	14	11.43	3.631	unknown	ShapiroWilk
Lithium (ug/L)	MW-7	No	n/a	n/a	NP	NaN	14	29.77	7.86	ln(x)	ShapiroWilk
Lithium (ug/L)	MW-9	No	n/a	n/a	NP	NaN	14	19.62	6.16	ln(x)	ShapiroWilk
Lithium (ug/L)	MW-1R	No	n/a	n/a	NP	NaN	14	13.26	4.128	ln(x)	ShapiroWilk
Lithium (ug/L)	MW-10	No	n/a	n/a	NP	NaN	12	24.13	12.74	x^2	ShapiroWilk
Mercury (ug/L)	MW-2 (bg)	No	n/a	n/a	NP	NaN	11	0.2	0	normal	ShapiroWilk
Mercury (ug/L)	MW-3 (bg)	No	n/a	n/a	NP	NaN	11	0.2	0	normal	ShapiroWilk
Mercury (ug/L)	MW-7	No	n/a	n/a	NP	NaN	11	0.2	0	normal	ShapiroWilk
Mercury (ug/L)	MW-9	No	n/a	n/a	NP	NaN	11	0.2	0	normal	ShapiroWilk
Mercury (ug/L)	MW-1R	No	n/a	n/a	NP	NaN	11	0.2	0	normal	ShapiroWilk
Mercury (ug/L)	MW-10	No	n/a	n/a	NP	NaN	10	0.2	0	normal	ShapiroWilk
Molybdenum (ug/L)	MW-2 (bg)	n/a	n/a	n/a	NP	NaN	14	1.029	0.1069	unknown	ShapiroWilk
Molybdenum (ug/L)	MW-3 (bg)	No	n/a	n/a	NP	NaN	14	1	0	normal	ShapiroWilk
Molybdenum (ug/L)	MW-7	No	n/a	n/a	NP	NaN	14	140.4	23.62	x^2	ShapiroWilk
Molybdenum (ug/L)	MW-9	No	n/a	n/a	NP	NaN	14	383.2	243.5	normal	ShapiroWilk
Molybdenum (ug/L)	MW-1R	No	n/a	n/a	NP	NaN	14	184.8	20.18	x^5	ShapiroWilk
Molybdenum (ug/L)	MW-10	No	n/a	n/a	NP	NaN	12	21.48	3.983	x^3	ShapiroWilk
Radium (pCi/L)	MW-2 (bg)	No	n/a	n/a	NP	NaN	12	1.114	0.4689	x^(1/3)	ShapiroWilk
Radium (pCi/L)	MW-3 (bg)	No	n/a	n/a	NP	NaN	12	0.8491	0.4191	normal	ShapiroWilk
Radium (pCi/L)	MW-7	No	n/a	n/a	NP	NaN	12	1.046	0.5406	normal	ShapiroWilk
Radium (pCi/L)	MW-9	No	n/a	n/a	NP	NaN	12	0.8459	0.4388	In(x)	ShapiroWilk
Radium (pCi/L)	MW-1R	No	n/a	n/a	NP	NaN	12	0.6602	0.3301	x^(1/3)	ShapiroWilk
Radium (pCi/L)	MW-10	No	n/a	n/a	NP	NaN	10	0.9613	0.4632	normal	ShapiroWilk
Selenium (ug/L)	MW-2 (bg)	n/a	n/a	n/a	NP	NaN	12	1.033	0.1155	unknown	ShapiroWilk
Selenium (ug/L)	MW-3 (bg)	No	n/a	n/a	NP	NaN	14	1	0	normal	ShapiroWilk
Selenium (ug/L)	MW-7	No	n/a	n/a	NP	NaN	14	16.41	19.51	In(x)	ShapiroWilk
Selenium (ug/L)	MW-9	No	n/a	n/a	NP	NaN	14	1	0	normal	ShapiroWilk
Selenium (ug/L)	MW-1R	No	n/a	n/a	NP	NaN	14	1	0	normal	ShapiroWilk
Selenium (ug/L)	MW-10	No	n/a	n/a	NP	NaN	12	1	0	normal	ShapiroWilk
Thallium (ug/L)	MW-2 (bg)	No	n/a	n/a	NP	NaN	11	1	0	normal	ShapiroWilk
Thallium (ug/L)	MW-3 (bg)	No	n/a	n/a	NP	NaN	11	1	0	normal	ShapiroWilk
Thallium (ug/L)	MW-7	No	n/a	n/a	NP	NaN	11	1	0	normal	ShapiroWilk
Thallium (ug/L)	MW-9	No	n/a	n/a	NP	NaN	11	1	0	normal	ShapiroWilk
Thallium (ug/L)	MW-1R	No	n/a	n/a	NP	NaN	11	1	0	normal	ShapiroWilk
Thallium (ug/L)	MW-10	No	n/a	n/a	NP	NaN	10	1	0	normal	ShapiroWilk

3/21/18

7/10/19

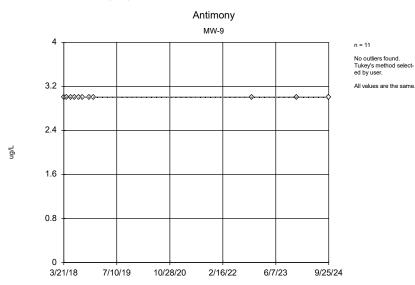
Tukey's Outlier Screening Analysis Run 5/21/2025 11:55 AM View: Assessment Stats 5.1.2025 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

Antimony

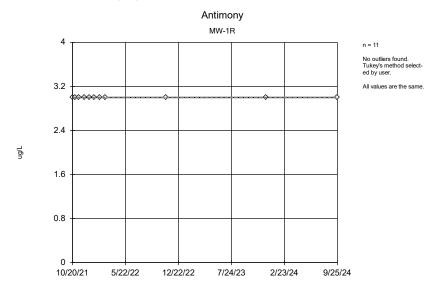

Tukey's Outlier Screening Analysis Run 5/21/2025 11:55 AM View: Assessment Stats 5.1.2025 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

2/16/22

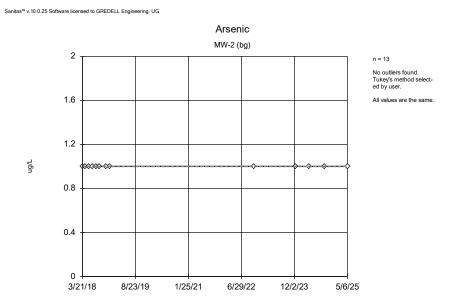
6/7/23

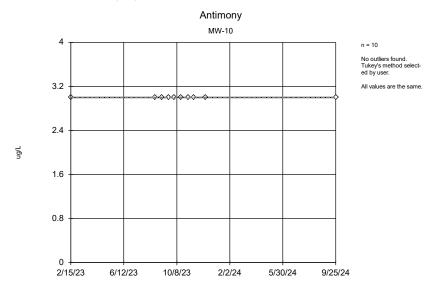

9/25/24

10/28/20



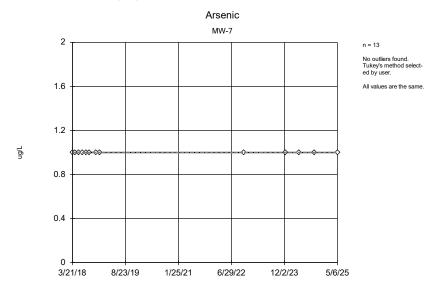
Tukey's Outlier Screening Analysis Run 5/21/2025 11:55 AM View: Assessment Stats 5.1.2025 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background



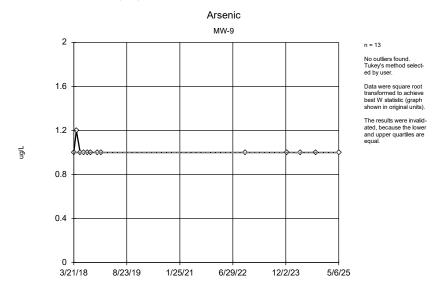

Tukey's Outlier Screening Analysis Run 5/21/2025 11:55 AM View: Assessment Stats 5.1.2025 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

Tukey's Outlier Screening Analysis Run 5/21/2025 11:55 AM View: Assessment Stats 5.1.2025 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

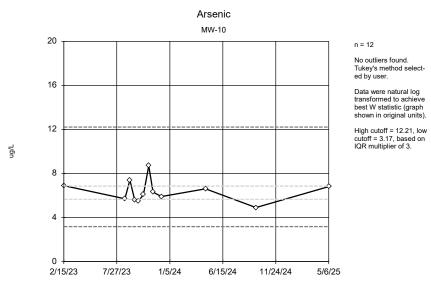
Tukey's Outlier Screening Analysis Run 5/21/2025 11:55 AM View: Assessment Stats 5.1.2025 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background



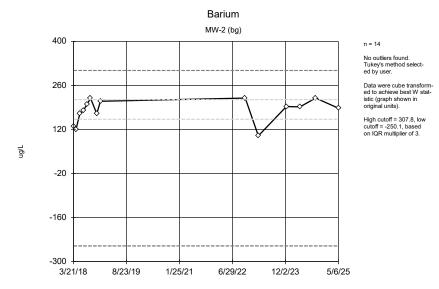
Tukey's Outlier Screening Analysis Run 5/21/2025 11:55 AM View: Assessment Stats 5.1.2025 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background


Tukey's Outlier Screening Analysis Run 5/21/2025 11:55 AM View: Assessment Stats 5.1.2025 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

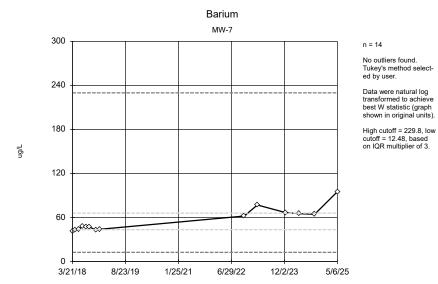
Tukey's Outlier Screening Analysis Run 5/21/2025 11:55 AM View: Assessment Stats 5.1.2025 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background



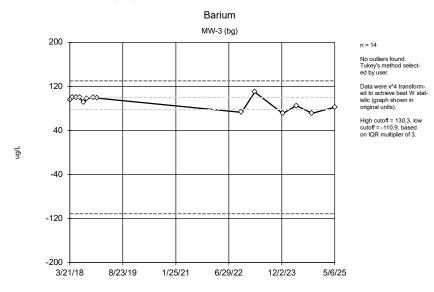
Tukey's Outlier Screening Analysis Run 5/21/2025 11:56 AM View: Assessment Stats 5.1.2025 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background



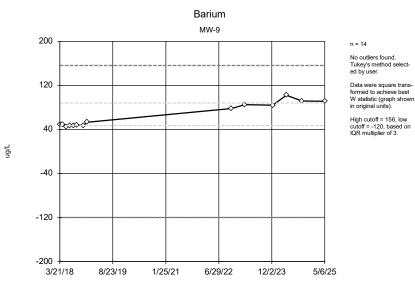
Tukey's Outlier Screening Analysis Run 5/21/2025 11:55 AM View: Assessment Stats 5.1.2025 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

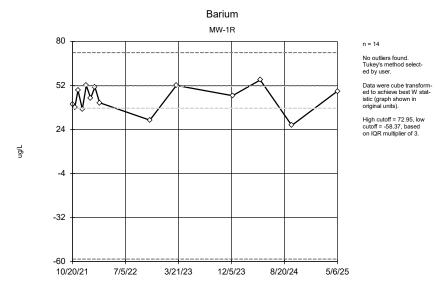


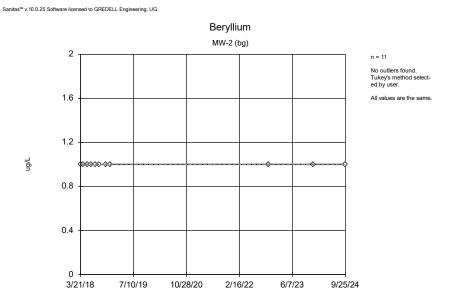
Tukey's Outlier Screening Analysis Run 5/21/2025 11:56 AM View: Assessment Stats 5.1.2025 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

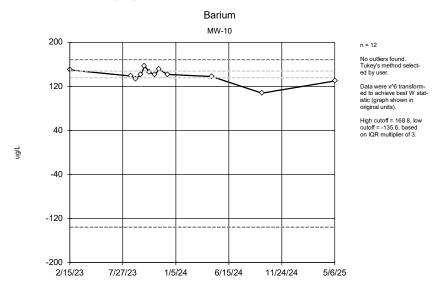


Tukey's Outlier Screening Analysis Run 5/21/2025 11:56 AM View: Assessment Stats 5.1.2025 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

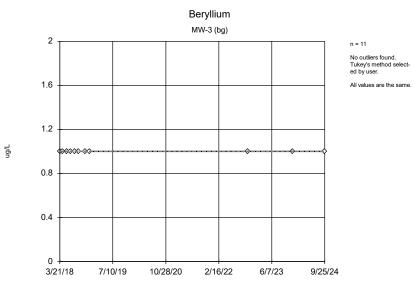



Tukey's Outlier Screening Analysis Run 5/21/2025 11:56 AM View: Assessment Stats 5.1.2025 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

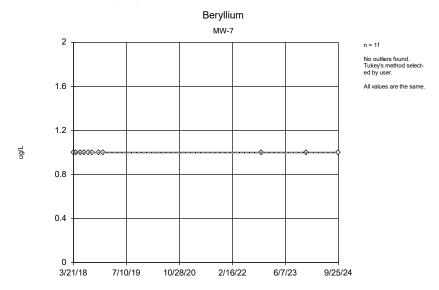

Tukey's Outlier Screening Analysis Run 5/21/2025 11:56 AM View: Assessment Stats 5.1.2025 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background


Tukey's Outlier Screening Analysis Run 5/21/2025 11:56 AM View: Assessment Stats 5.1.2025 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

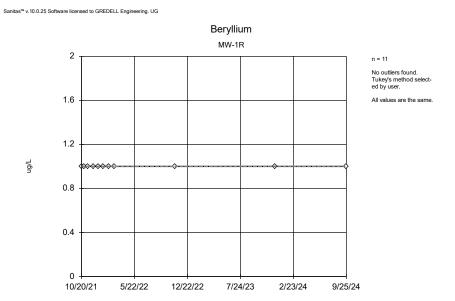
Tukey's Outlier Screening Analysis Run 5/21/2025 11:56 AM View: Assessment Stats 5.1.2025 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

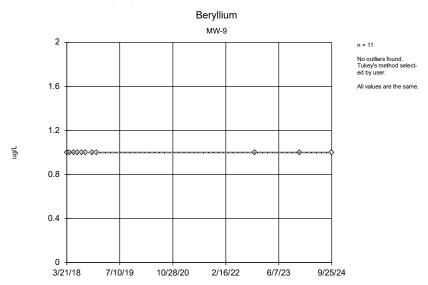


Tukey's Outlier Screening Analysis Run 5/21/2025 11:56 AM View: Assessment Stats 5.1.2025 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

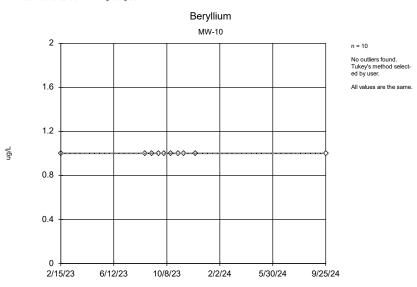


Tukey's Outlier Screening Analysis Run 5/21/2025 11:56 AM View: Assessment Stats 5.1.2025 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

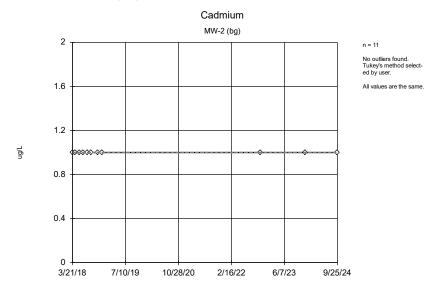



Tukey's Outlier Screening Analysis Run 5/21/2025 11:56 AM View: Assessment Stats 5.1.2025 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

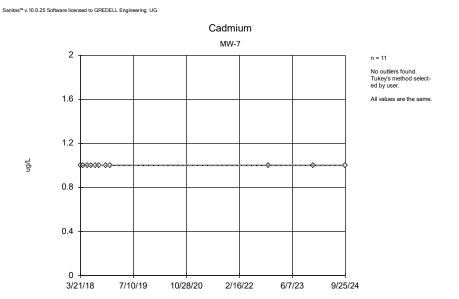
Tukey's Outlier Screening Analysis Run 5/21/2025 11:56 AM View: Assessment Stats 5.1.2025 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

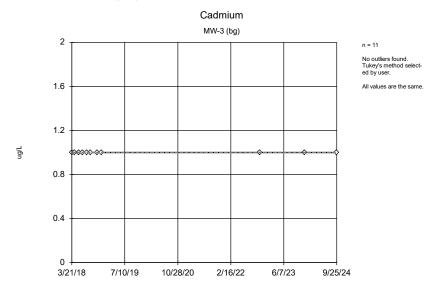


Tukey's Outlier Screening Analysis Run 5/21/2025 11:56 AM View: Assessment Stats 5.1.2025 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

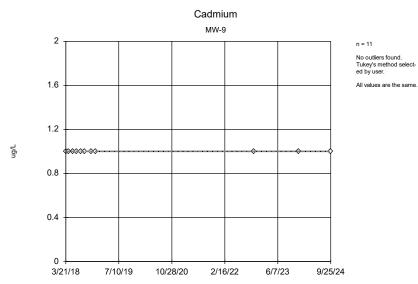


Tukey's Outlier Screening Analysis Run 5/21/2025 11:56 AM View: Assessment Stats 5.1.2025 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

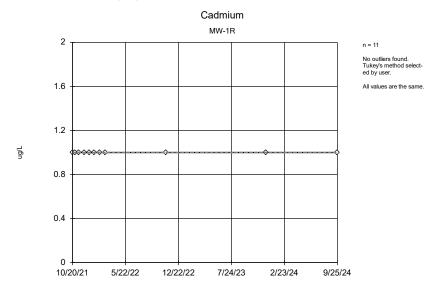



Tukey's Outlier Screening Analysis Run 5/21/2025 11:56 AM View: Assessment Stats 5.1.2025 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

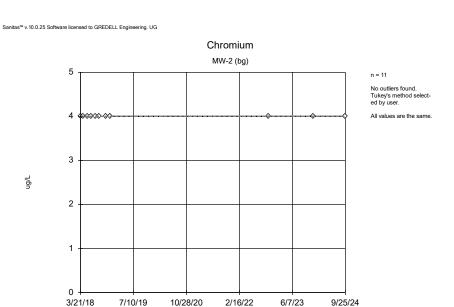
Tukey's Outlier Screening Analysis Run 5/21/2025 11:56 AM View: Assessment Stats 5.1.2025 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

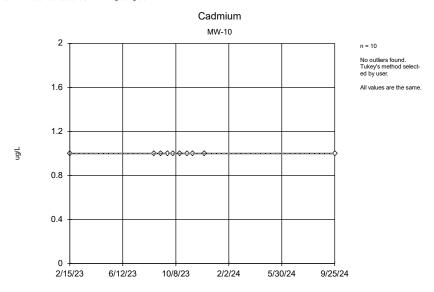


Tukey's Outlier Screening Analysis Run 5/21/2025 11:56 AM View: Assessment Stats 5.1.2025 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

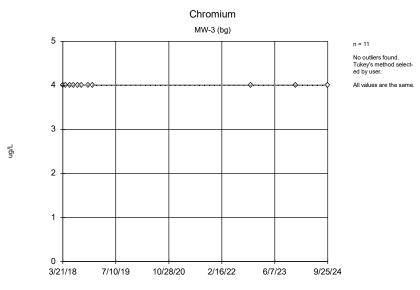


Tukey's Outlier Screening Analysis Run 5/21/2025 11:56 AM View: Assessment Stats 5.1.2025 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

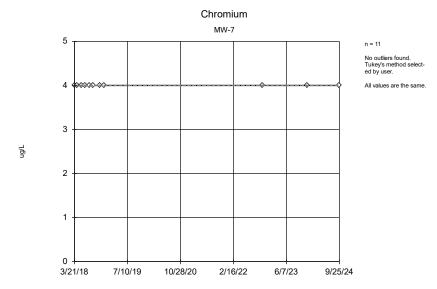



Tukey's Outlier Screening Analysis Run 5/21/2025 11:56 AM View: Assessment Stats 5.1.2025 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

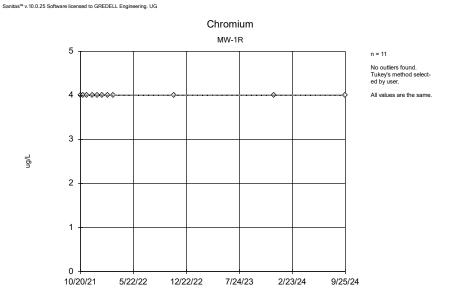
Tukey's Outlier Screening Analysis Run 5/21/2025 11:56 AM View: Assessment Stats 5.1.2025 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

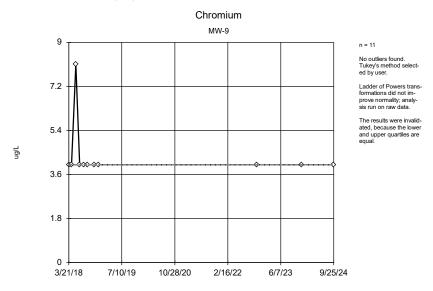


Tukey's Outlier Screening Analysis Run 5/21/2025 11:56 AM View: Assessment Stats 5.1.2025 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

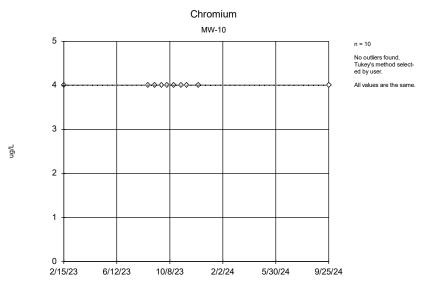


Tukey's Outlier Screening Analysis Run 5/21/2025 11:56 AM View: Assessment Stats 5.1.2025 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background



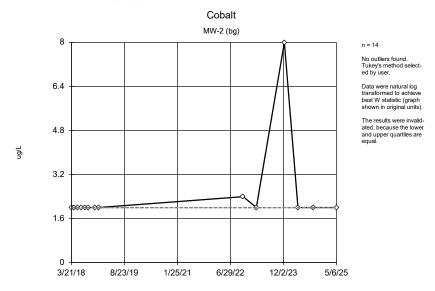

Tukey's Outlier Screening Analysis Run 5/21/2025 11:56 AM View: Assessment Stats 5.1.2025 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

Tukey's Outlier Screening Analysis Run 5/21/2025 11:56 AM View: Assessment Stats 5.1.2025 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background



Tukey's Outlier Screening Analysis Run 5/21/2025 11:56 AM View: Assessment Stats 5.1.2025 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

Tukey's Outlier Screening Analysis Run 5/21/2025 11:56 AM View: Assessment Stats 5.1.2025 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background



Tukey's Outlier Screening Analysis Run 5/21/2025 11:56 AM View: Assessment Stats 5.1.2025 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

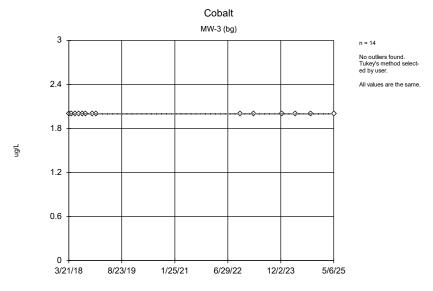
3/21/18

8/23/19

1/25/21

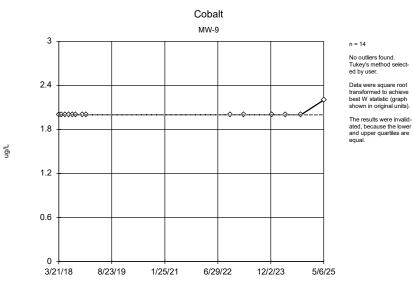
Tukey's Outlier Screening Analysis Run 5/21/2025 11:56 AM View: Assessment Stats 5.1.2025 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

8 6.4 No outliers found. Tukey's method selected by user. Data were natural log transformed to achieve best W statistic (graph shown in original units). High cutoff = 0.7697, based on IQR multiplier of 3.

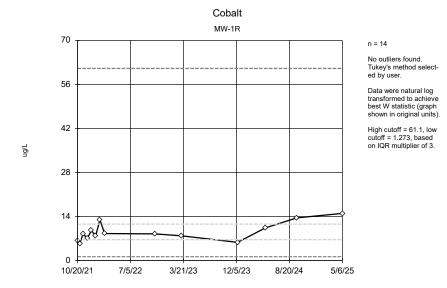

Cobalt

Tukey's Outlier Screening Analysis Run 5/21/2025 11:56 AM View: Assessment Stats 5.1.2025 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

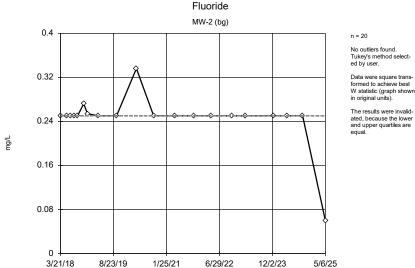
6/29/22


12/2/23

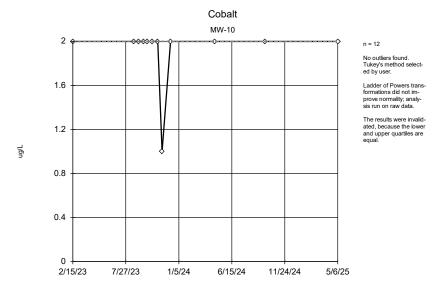
5/6/25



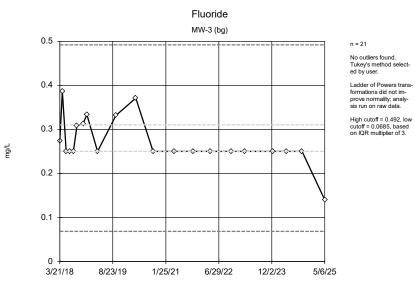
Tukey's Outlier Screening Analysis Run 5/21/2025 11:56 AM View: Assessment Stats 5.1.2025 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

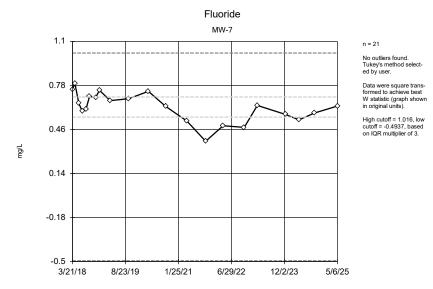


Tukey's Outlier Screening Analysis Run 5/21/2025 11:56 AM View: Assessment Stats 5.1.2025 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

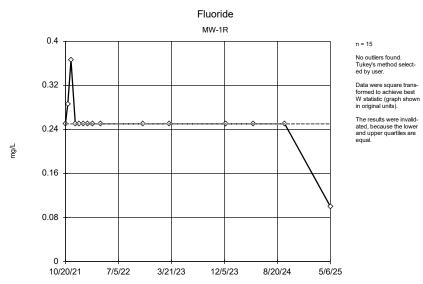


Tukey's Outlier Screening Analysis Run 5/21/2025 11:56 AM View: Assessment Stats 5.1.2025 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

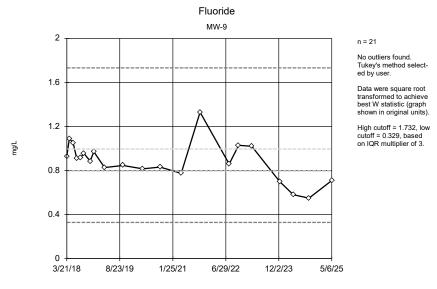



Tukey's Outlier Screening Analysis Run 5/21/2025 11:56 AM View: Assessment Stats 5.1.2025 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

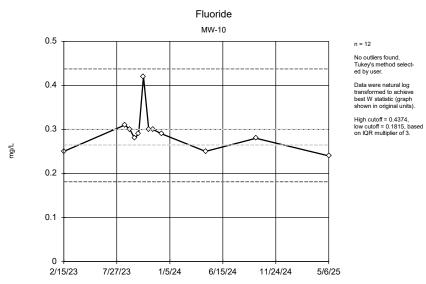
Tukey's Outlier Screening Analysis Run 5/21/2025 11:56 AM View: Assessment Stats 5.1.2025 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

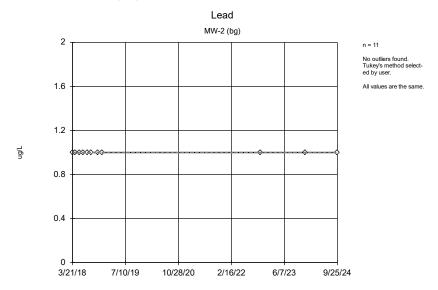


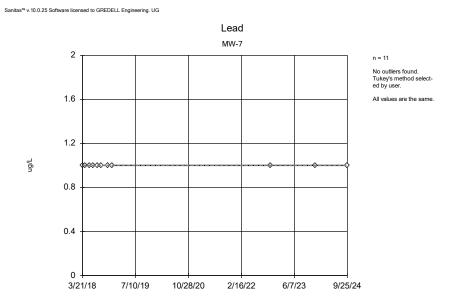
Tukey's Outlier Screening Analysis Run 5/21/2025 11:56 AM View: Assessment Stats 5.1.2025 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

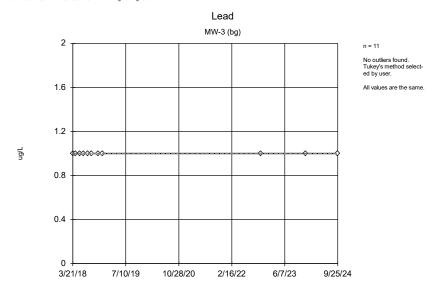


Tukey's Outlier Screening Analysis Run 5/21/2025 11:56 AM View: Assessment Stats 5.1.2025 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

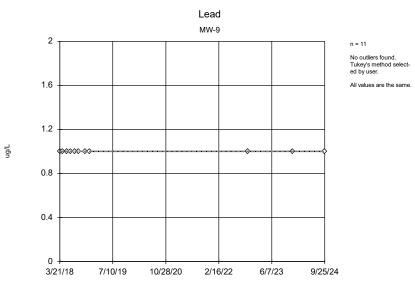



Tukey's Outlier Screening Analysis Run 5/21/2025 11:56 AM View: Assessment Stats 5.1.2025 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background


Tukey's Outlier Screening Analysis Run 5/21/2025 11:56 AM View: Assessment Stats 5.1.2025 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

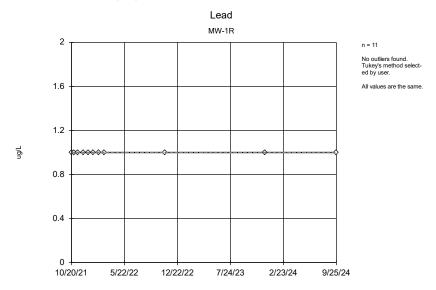

Tukey's Outlier Screening Analysis Run 5/21/2025 11:56 AM View: Assessment Stats 5.1.2025 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

Tukey's Outlier Screening Analysis Run 5/21/2025 11:56 AM View: Assessment Stats 5.1.2025 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background



Tukey's Outlier Screening Analysis Run 5/21/2025 11:56 AM View: Assessment Stats 5.1.2025 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

Tukey's Outlier Screening Analysis Run 5/21/2025 11:56 AM View: Assessment Stats 5.1.2025 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background



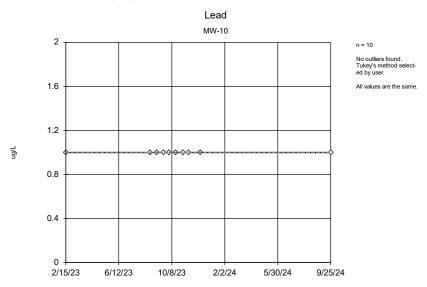
Tukey's Outlier Screening Analysis Run 5/21/2025 11:56 AM View: Assessment Stats 5.1.2025 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

3/21/18

8/23/19

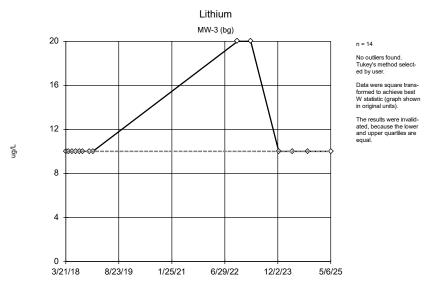
1/25/21

Tukey's Outlier Screening Analysis Run 5/21/2025 11:56 AM View: Assessment Stats 5.1.2025 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

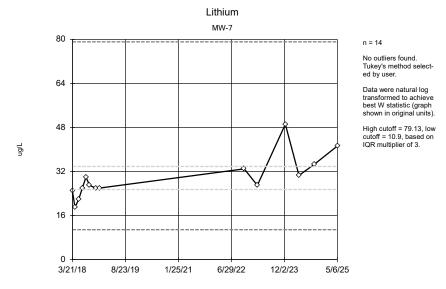

Lithium MW-2 (bg) n = 14 No outliers found. Tukey's method selected by user. Data were square transformed to achieve best W statistic (graph shown in original units). The results were invalidated, because the lower and upper quartiles are equal.

Tukey's Outlier Screening Analysis Run 5/21/2025 11:56 AM View: Assessment Stats 5.1.2025 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

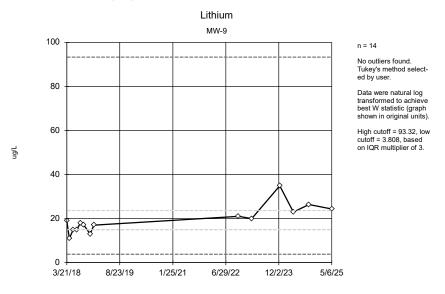
6/29/22


12/2/23

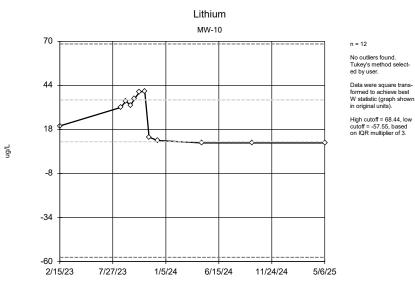
5/6/25



Tukey's Outlier Screening Analysis Run 5/21/2025 11:56 AM View: Assessment Stats 5.1.2025 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background


Tukey's Outlier Screening Analysis Run 5/21/2025 11:56 AM View: Assessment Stats 5.1.2025 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

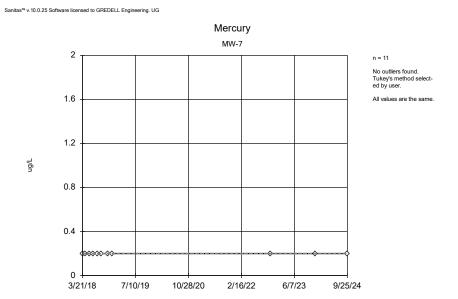
Tukey's Outlier Screening Analysis Run 5/21/2025 11:56 AM View: Assessment Stats 5.1.2025 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

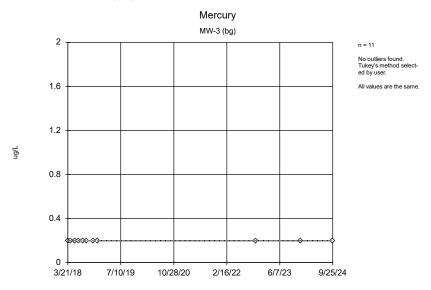

Lithium MW-1R 110 No outliers found. Tukey's method selected by user. 88 Data were natural log transformed to achieve best W statistic (graph shown in original units). 66 High cutoff = 104.3, low cutoff = 1.723, based on IQR multiplier of 3. 22 10/20/21 7/5/22 3/21/23 12/5/23 8/20/24 5/6/25

Tukey's Outlier Screening Analysis Run 5/21/2025 11:56 AM View: Assessment Stats 5.1.2025 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

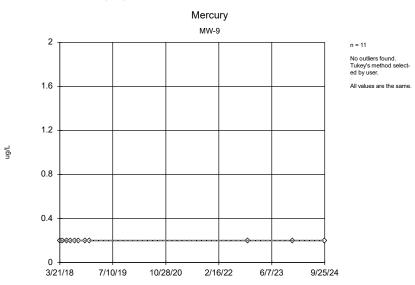


Tukey's Outlier Screening Analysis Run 5/21/2025 11:56 AM View: Assessment Stats 5.1.2025 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

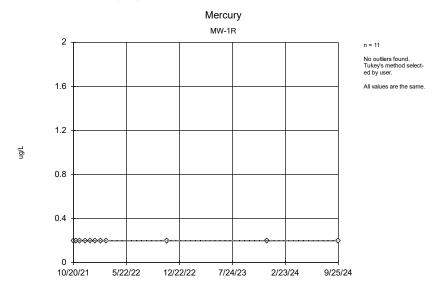



Tukey's Outlier Screening Analysis Run 5/21/2025 11:56 AM View: Assessment Stats 5.1.2025 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

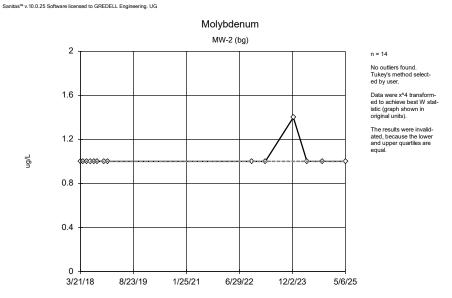
Tukey's Outlier Screening Analysis Run 5/21/2025 11:57 AM View: Assessment Stats 5.1.2025 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

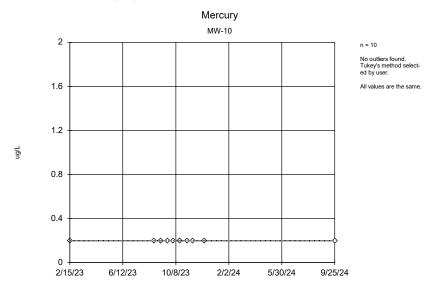


Tukey's Outlier Screening Analysis Run 5/21/2025 11:57 AM View: Assessment Stats 5.1.2025 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

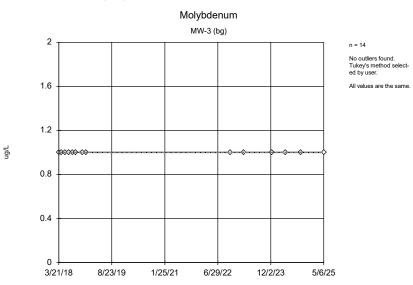


Tukey's Outlier Screening Analysis Run 5/21/2025 11:57 AM View: Assessment Stats 5.1.2025 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

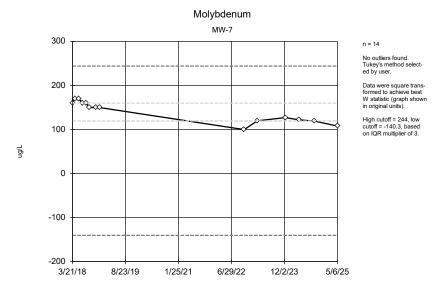



Tukey's Outlier Screening Analysis Run 5/21/2025 11:57 AM View: Assessment Stats 5.1.2025 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

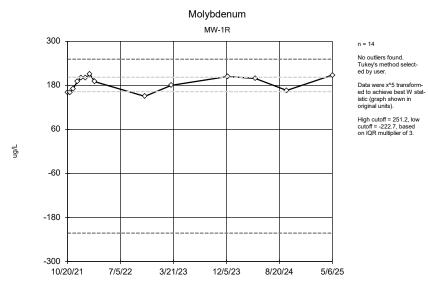
Tukey's Outlier Screening Analysis Run 5/21/2025 11:57 AM View: Assessment Stats 5.1.2025 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

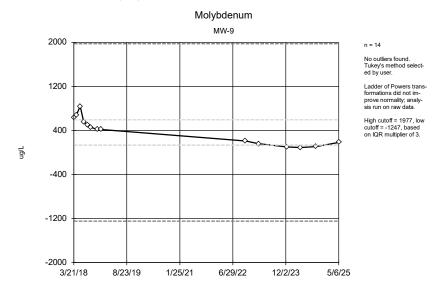


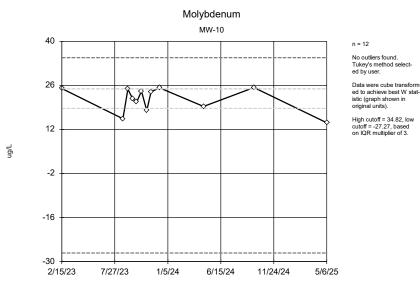
Tukey's Outlier Screening Analysis Run 5/21/2025 11:57 AM View: Assessment Stats 5.1.2025 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

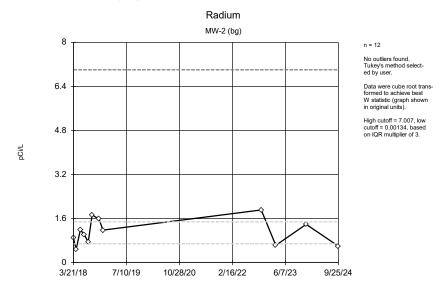


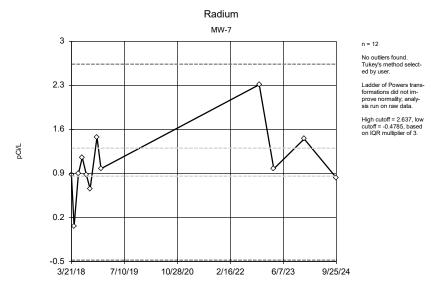
Tukey's Outlier Screening Analysis Run 5/21/2025 11:57 AM View: Assessment Stats 5.1.2025 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

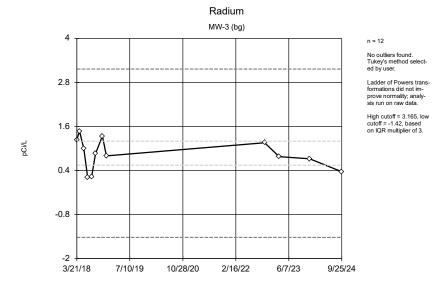


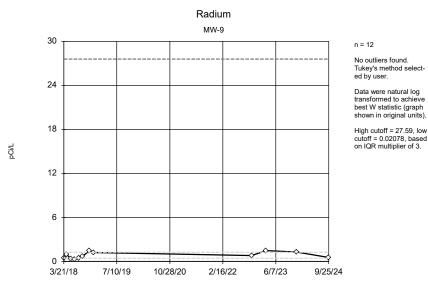

Tukey's Outlier Screening Analysis Run 5/21/2025 11:57 AM View: Assessment Stats 5.1.2025 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

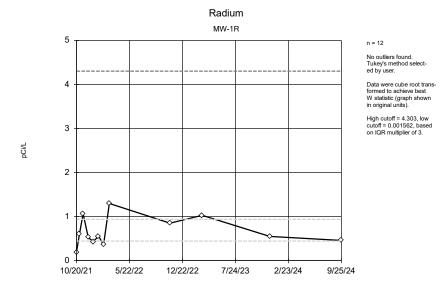

Tukey's Outlier Screening Analysis Run 5/21/2025 11:57 AM View: Assessment Stats 5.1.2025 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background


Tukey's Outlier Screening Analysis Run 5/21/2025 11:57 AM View: Assessment Stats 5.1.2025 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

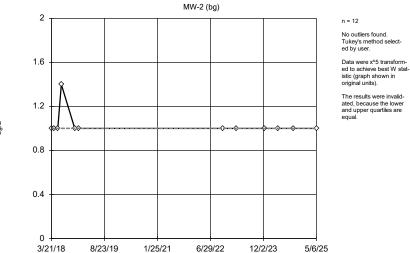

Tukey's Outlier Screening Analysis Run 5/21/2025 11:57 AM View: Assessment Stats 5.1.2025 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

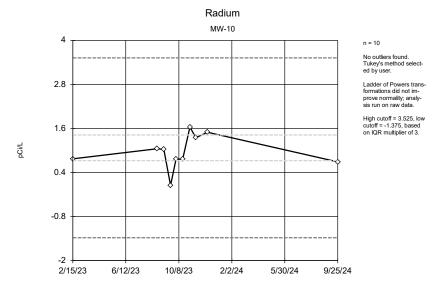

Tukey's Outlier Screening Analysis Run 5/21/2025 11:57 AM View: Assessment Stats 5.1.2025 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background


Tukey's Outlier Screening Analysis Run 5/21/2025 11:57 AM View: Assessment Stats 5.1.2025 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

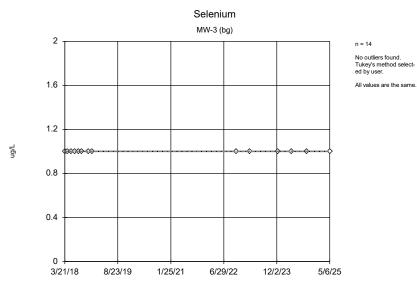

Tukey's Outlier Screening Analysis Run 5/21/2025 11:57 AM View: Assessment Stats 5.1.2025 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

Tukey's Outlier Screening Analysis Run 5/21/2025 11:57 AM View: Assessment Stats 5.1.2025 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background


Tukey's Outlier Screening Analysis Run 5/21/2025 11:57 AM View: Assessment Stats 5.1.2025 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

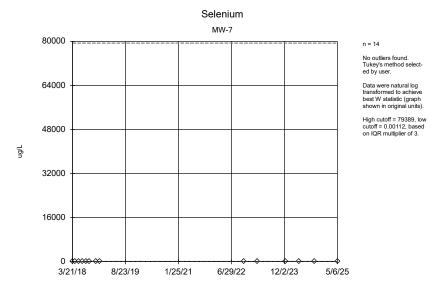

Tukey's Outlier Screening Analysis Run 5/21/2025 11:57 AM View: Assessment Stats 5.1.2025

Selenium 2


Sanitas™ v.10.0.25 Software licensed to GREDELL Engineering. UG

Tukey's Outlier Screening Analysis Run 5/21/2025 11:57 AM View: Assessment Stats 5.1.2025

Tukey's Outlier Screening Analysis Run 5/21/2025 11:57 AM View: Assessment Stats 5.1.2025


Tukey's Outlier Screening Analysis Run 5/21/2025 11:57 AM View: Assessment Stats 5.1.2025

0.4

10/20/21

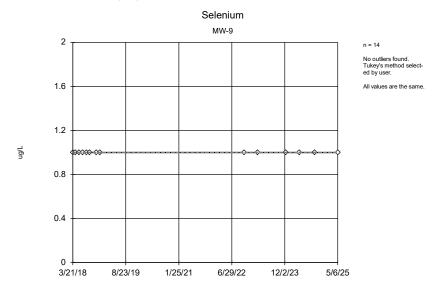
7/5/22

3/21/23

Tukey's Outlier Screening Analysis Run 5/21/2025 11:57 AM View: Assessment Stats 5.1.2025 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

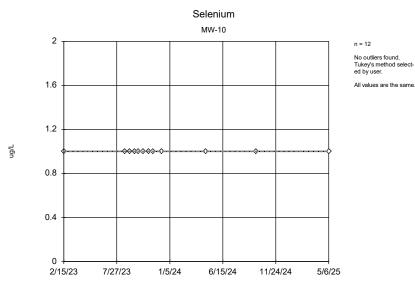
Selenium

MW-1R

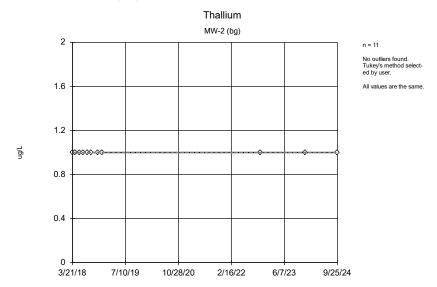

n = 14 No outliers found. Tukey's method selected by user. All values are the same.

Tukey's Outlier Screening Analysis Run 5/21/2025 11:57 AM View: Assessment Stats 5.1.2025 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

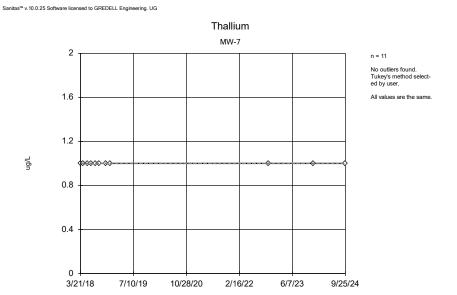
12/5/23

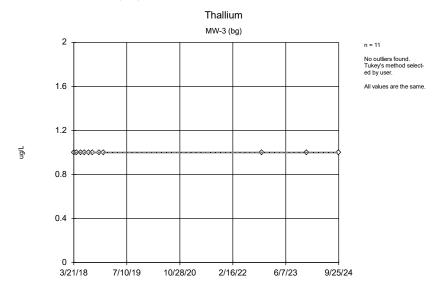

8/20/24

5/6/25



Tukey's Outlier Screening Analysis Run 5/21/2025 11:57 AM View: Assessment Stats 5.1.2025 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

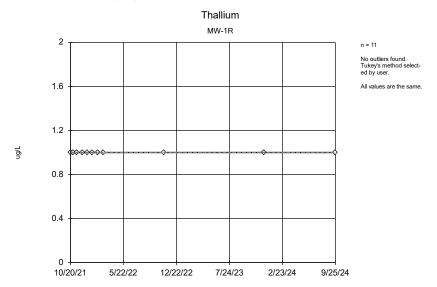



Tukey's Outlier Screening Analysis Run 5/21/2025 11:57 AM View: Assessment Stats 5.1.2025 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

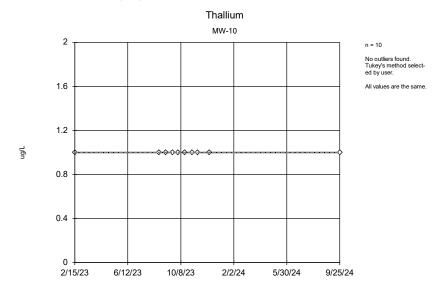
Tukey's Outlier Screening Analysis Run 5/21/2025 11:57 AM View: Assessment Stats 5.1.2025 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background



Tukey's Outlier Screening Analysis Run 5/21/2025 11:57 AM View: Assessment Stats 5.1.2025 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background



Tukey's Outlier Screening Analysis Run 5/21/2025 11:57 AM View: Assessment Stats 5.1.2025 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background



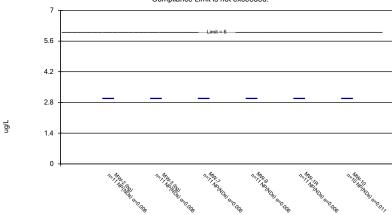
Tukey's Outlier Screening Analysis Run 5/21/2025 11:57 AM View: Assessment Stats 5.1.2025 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

Tukey's Outlier Screening Analysis Run 5/21/2025 11:57 AM View: Assessment Stats 5.1.2025 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

Tukey's Outlier Screening Analysis Run 5/21/2025 11:57 AM View: Assessment Stats 5.1.2025 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

Confidence Interval

	SBMU-Sikesto	on Power Station	Client: GREDELL	Engineering	Data: Si	kestonFA	P Background	d Printed 5/21/2025,	11:59 AM	
Constituent	Well	Upper Lim.	Lower Lim.	<u>Compliance</u>	Sig.	<u>N</u>	%NDs	<u>Transform</u>	<u>Alpha</u>	Method
Antimony (ug/L)	MW-2 (bg)	3	3	6	No	11	100	No	0.006	NP (NDs)
Antimony (ug/L)	MW-3 (bg)	3	3	6	No	11	100	No	0.006	NP (NDs)
Antimony (ug/L)	MW-7	3	3	6	No	11	100	No	0.006	NP (NDs)
Antimony (ug/L)	MW-9	3	3	6	No	11	100	No	0.006	NP (NDs)
Antimony (ug/L)	MW-1R	3	3	6	No	11	100	No	0.006	NP (NDs)
Antimony (ug/L)	MW-10	3	3	6	No	10	100	No	0.011	NP (NDs)
Arsenic (ug/L)	MW-2 (bg)	1	1	10	No	13	100	No	0.01	NP (NDs)
Arsenic (ug/L)	MW-3 (bg)	1	1	10	No	13	100	No	0.01	NP (NDs)
Arsenic (ug/L)	MW-7	1	1	10	No	13	100	No	0.01	NP (NDs)
Arsenic (ug/L)	MW-9	1.2	1	10	No	13	92.31	No	0.01	NP (NDs)
Arsenic (ug/L)	MW-1R	1.3	1	10	No	12	83.33	No	0.01	NP (NDs)
Arsenic (ug/L)	MW-10	7.161	5.573	10	No	12	0	No	0.01	Param.
Barium (ug/L)	MW-2 (bg)	206.7	152.3	2000	No	14	0	No	0.01	Param.
Barium (ug/L)	MW-3 (bg)	100.1	82.31	2000	No	14	0	No	0.01	Param.
Barium (ug/L)	MW-7	66.7	43	2000	No	14	0	No	0.01	NP (normality)
Barium (ug/L)	MW-9	90.9	47	2000	No	14	0	No	0.01	NP (normality)
Barium (ug/L)	MW-1R	49.66	37.48	2000	No	14	0	No	0.01	Param.
Barium (ug/L)	MW-10	149.6	129.9	2000	No	12	0	No	0.01	Param.
Beryllium (ug/L)	MW-2 (bg)	1	1	4	No	11	100	No	0.006	NP (NDs)
Beryllium (ug/L)	MW-3 (bg)	1	1	4	No	11	100	No	0.006	NP (NDs)
Beryllium (ug/L)	MW-7	1	1	4	No	11	100	No	0.006	NP (NDs)
Beryllium (ug/L)	MW-9	1	1	4	No	11	100	No	0.006	NP (NDs)
Beryllium (ug/L)	MW-1R	1	1	4	No	11	100	No	0.006	NP (NDs)
Beryllium (ug/L)	MW-10	1	1	4	No	10	100	No	0.011	NP (NDs)
Cadmium (ug/L)	MW-2 (bg)	1	1	5	No	11	100	No	0.006	NP (NDs)
Cadmium (ug/L)	MW-3 (bg)	1	1	5	No	11	100	No	0.006	NP (NDs)
Cadmium (ug/L)	MW-7	1	1	5	No	11	100	No	0.006	NP (NDs)
Cadmium (ug/L)	MW-9	1	1	5	No	11	100	No	0.006	NP (NDs)
Cadmium (ug/L)	MW-1R	1	1	5	No	11	100	No	0.006	NP (NDs)
Cadmium (ug/L)	MW-10	1	1	5	No	10	100	No	0.011	NP (NDs)
Chromium (ug/L)	MW-2 (bg)	4	4	100	No	11	100	No	0.006	NP (NDs)
Chromium (ug/L)	MW-3 (bg)	4	4	100	No	11	100	No	0.006	NP (NDs)
Chromium (ug/L)	MW-7	4	4	100	No	11	100	No	0.006	NP (NDs)
Chromium (ug/L)	MW-9	4	4	100	No	11	90.91	No	0.006	NP (NDs)
Chromium (ug/L)	MW-1R	4	4	100	No	11	100	No	0.006	NP (NDs)
Chromium (ug/L)	MW-10	4	4	100	No	10	100	No	0.011	NP (NDs)
Cobalt (ug/L)	MW-2 (bg)	2.4	2	6	No	14	78.57	No	0.01	NP (NDs)
Cobalt (ug/L)	MW-3 (bg)	2	2	6	No	14	92.86	No	0.01	NP (NDs)
Cobalt (ug/L)	MW-7	2.8	2	6	No	14	14.29	No	0.01	NP (normality)
Cobalt (ug/L)	MW-9	2.2	2	6	No	14	85.71	No	0.01	NP (NDs)
Cobalt (ug/L)	MW-1R	11.2	7.031	6	Yes	14	0	No	0.01	Param.
Cobalt (ug/L)	MW-10	2	1	6	No	12	91.67	No	0.01	NP (NDs)
Fluoride (mg/L)	MW-2 (bg)	0.254	0.06	4	No	20	75	No	0.01	NP (normality)
Fluoride (mg/L)	MW-3 (bg)	0.313	0.25	4	No	21	57.14	No	0.01	NP (normality)
Fluoride (mg/L)	MW-7	0.6795	0.5643	4	No	21	0	No	0.01	Param.
Fluoride (mg/L)	MW-9	0.982	0.7881	4	No	21	0	No	0.01	Param.
Fluoride (mg/L)	MW-1R	0.286	0.1	4	No	15	73.33	No	0.01	NP (normality)
Fluoride (mg/L)	MW-10	0.31	0.25	4	No	12	8.333	No	0.01	NP (normality)
Lead (ug/L)	MW-2 (bg)	1	1	15	No	11	100	No	0.006	NP (NDs)
Lead (ug/L)	MW-3 (bg)	1	1	15	No	11	100	No	0.006	NP (NDs)

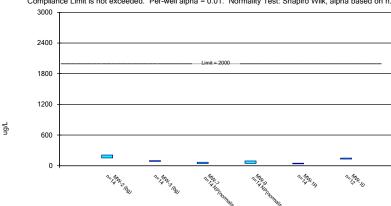

Confidence Interval

Constituent Lead (ug/L) Lead (ug/L) Lead (ug/L) Lead (ug/L) Lithium (ug/L) Lithium (ug/L) Lithium (ug/L) Lithium (ug/L) Lithium (ug/L) Lithium (ug/L) Mercury (ug/L) Mercury (ug/L) Mercury (ug/L) Mercury (ug/L) Mercury (ug/L) Mercury (ug/L) Molybdenum (ug/L) Molybdenum (ug/L) Molybdenum (ug/L) Molybdenum (ug/L) Molybdenum (ug/L) Molybdenum (ug/L) Radium (pCi/L) Radium (pCi/L) Radium (pCi/L) Radium (pCi/L) Radium (pCi/L) Radium (pCi/L) Selenium (ug/L) Selenium (ug/L) Selenium (ug/L) Selenium (ug/L) Selenium (ug/L) Selenium (ug/L) Thallium (ug/L) Thallium (ug/L) Thallium (ug/L) Thallium (ug/L) Thallium (ug/L) Thallium (ug/L)

SBMU-Sike	eston Power Station	Client: GREDE	LL Engineering	Data: Si	ikestonF <i>A</i>	AP Backgroun	d Printed 5/21/202	5, 11:59 AM	
Well	Upper Lim.	Lower Lim.	Compliance	Sig.	<u>N</u>	%NDs	<u>Transform</u>	<u>Alpha</u>	Method
MW-7	1	1	15	No	11	100	No	0.006	NP (NDs)
MW-9	1	1	15	No	11	100	No	0.006	NP (NDs)
MW-1R	1	1	15	No	11	100	No	0.006	NP (NDs)
MW-10	1	1	15	No	10	100	No	0.011	NP (NDs)
MW-2 (bg)	20	10	40	No	14	92.86	No	0.01	NP (NDs)
MW-3 (bg)	20	10	40	No	14	92.86	No	0.01	NP (NDs)
MW-7	35.34	24.2	40	No	14	0	No	0.01	Param.
MW-9	23.98	15.26	40	No	14	7.143	No	0.01	Param.
MW-1R	19	10	40	No	14	28.57	No	0.01	NP (normality)
MW-10	40	10	40	No	12	25	No	0.01	NP (normality)
MW-2 (bg)	0.2	0.2	2	No	11	100	No	0.006	NP (NDs)
MW-3 (bg)	0.2	0.2	2	No	11	100	No	0.006	NP (NDs)
MW-7	0.2	0.2	2	No	11	100	No	0.006	NP (NDs)
MW-9	0.2	0.2	2	No	11	100	No	0.006	NP (NDs)
MW-1R	0.2	0.2	2	No	11	100	No	0.006	NP (NDs)
MW-10	0.2	0.2	2	No	10	100	No	0.011	NP (NDs)
MW-2 (bg)	1.4	1	100	No	14	85.71	No	0.01	NP (NDs)
MW-3 (bg)	1	1	100	No	14	92.86	No	0.01	NP (NDs)
MW-7	157.2	123.7	100	Yes	14	0	No	0.01	Param.
MW-9	555.7	210.7	100	Yes	14	0	No	0.01	Param.
MW-1R	199.1	170.5	100	Yes	14	0	No	0.01	Param.
MW-10	24.6	18.35	100	No	12	0	No	0.01	Param.
MW-2 (bg)	1.482	0.7459	5	No	12	8.333	No	0.01	Param.
MW-3 (bg)	1.178	0.5203	5	No	12	8.333	No	0.01	Param.
MW-7	1.47	0.6213	5	No	12	8.333	No	0.01	Param.
MW-9	1.19	0.5016	5	No	12	8.333	No	0.01	Param.
MW-1R	0.9191	0.4012	5	No	12	8.333	No	0.01	Param.
MW-10	1.5	0.69	5	No	10	90	No	0.011	NP (NDs)
MW-2 (bg)	1.4	1	50	No	12	83.33	No	0.01	NP (NDs)
MW-3 (bg)	1	1	50	No	14	92.86	No	0.01	NP (NDs)
MW-7	42	2.4	50	No	14	0	No	0.01	NP (normality)
MW-9	1	1	50	No	14	92.86	No	0.01	NP (NDs)
MW-1R	1	1	50	No	14	92.86	No	0.01	NP (NDs)
MW-10	1	1	50	No	12	91.67	No	0.01	NP (NDs)
MW-2 (bg)	1	1	2	No	11	100	No	0.006	NP (NDs)
MW-3 (bg)	1	1	2	No	11	100	No	0.006	NP (NDs)
MW-7	1	1	2	No	11	100	No	0.006	NP (NDs)
MW-9	1	1	2	No	11	100	No	0.006	NP (NDs)
MW-1R	1	1	2	No	11	100	No	0.006	NP (NDs)
MW-10	1	1	2	No	10	100	No	0.011	NP (NDs)

Non-Parametric Confidence Interval

Compliance Limit is not exceeded.

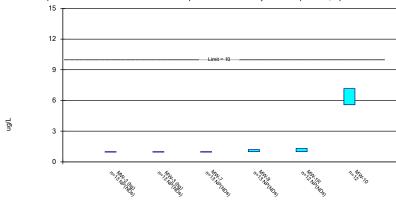


Constituent: Antimony Analysis Run 5/21/2025 11:58 AM View: Assessment Stats 5.1.2025 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

Sanitas™ v.10.0.25 Software licensed to GREDELL Engineering. UG

Parametric and Non-Parametric (NP) Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

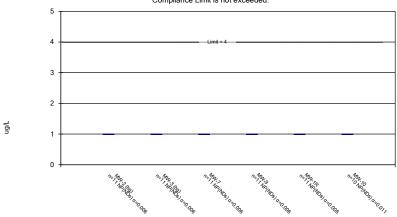


Constituent: Barium Analysis Run 5/21/2025 11:58 AM View: Assessment Stats 5.1.2025

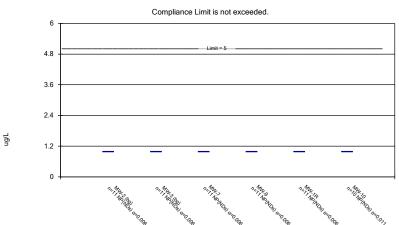
SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

Parametric and Non-Parametric (NP) Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.


Constituent: Arsenic Analysis Run 5/21/2025 11:58 AM View: Assessment Stats 5.1.2025

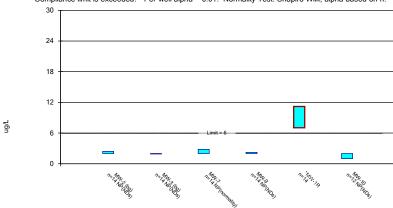
SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background


Sanitas™ v.10.0.25 Software licensed to GREDELL Engineering. UG

Non-Parametric Confidence Interval

Compliance Limit is not exceeded.

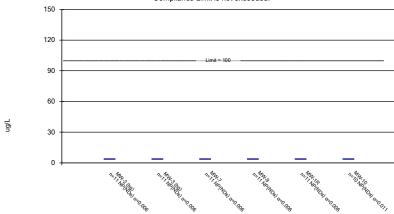
Non-Parametric Confidence Interval



Constituent: Cadmium Analysis Run 5/21/2025 11:58 AM View: Assessment Stats 5.1.2025 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

Sanitas™ v.10.0.25 Software licensed to GREDELL Engineering. UG

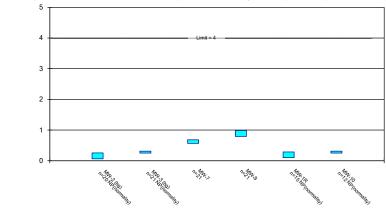
Parametric and Non-Parametric (NP) Confidence Interval


Compliance limit is exceeded.* Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

Constituent: Cobalt Analysis Run 5/21/2025 11:58 AM View: Assessment Stats 5.1.2025
SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

Non-Parametric Confidence Interval

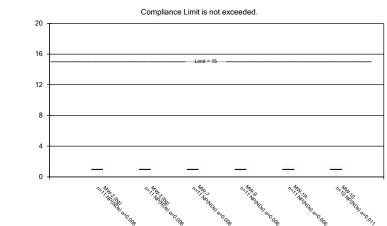
Compliance Limit is not exceeded.


Constituent: Chromium Analysis Run 5/21/2025 11:58 AM View: Assessment Stats 5.1.2025 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

Sanitas™ v.10.0.25 Software licensed to GREDELL Engineering. UG

mg/L

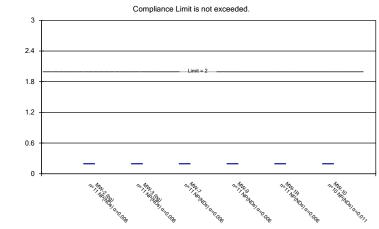
Parametric and Non-Parametric (NP) Confidence Interval


Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

ng/L

ng/L

Non-Parametric Confidence Interval

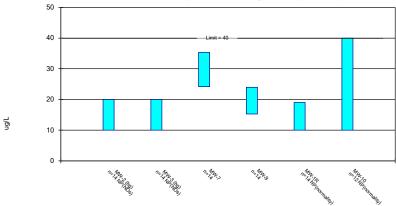


Constituent: Lead Analysis Run 5/21/2025 11:58 AM View: Assessment Stats 5.1.2025

SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

Sanitas™ v.10.0.25 Software licensed to GREDELL Engineering. UG

Non-Parametric Confidence Interval

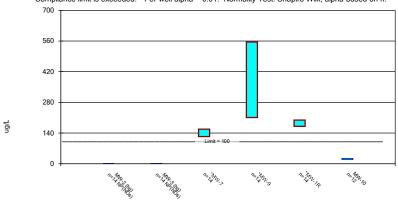


Constituent: Mercury Analysis Run 5/21/2025 11:58 AM View: Assessment Stats 5.1.2025

SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

Parametric and Non-Parametric (NP) Confidence Interval

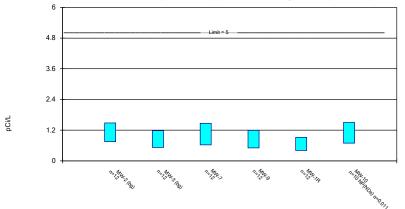
Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.


Constituent: Lithium Analysis Run 5/21/2025 11:58 AM View: Assessment Stats 5.1.2025

SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

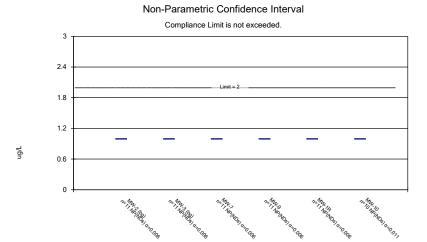
Sanitas™ v.10.0.25 Software licensed to GREDELL Engineering. UG

Parametric and Non-Parametric (NP) Confidence Interval


Compliance limit is exceeded.* Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

Sanitas™ v.10.0.25 Software licensed to GREDELL Engineering. UG

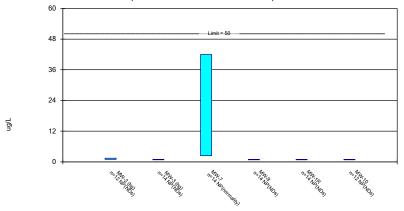
Parametric and Non-Parametric (NP) Confidence Interval


Compliance Limit is not exceeded. Per-well alpha = 0.01 except as noted. Normality Test: Shapiro Wilk, alpha based on n.

Constituent: Radium Analysis Run 5/21/2025 11:58 AM View: Assessment Stats 5.1.2025

SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

Sanitas™ v.10.0.25 Software licensed to GREDELL Engineering. UG



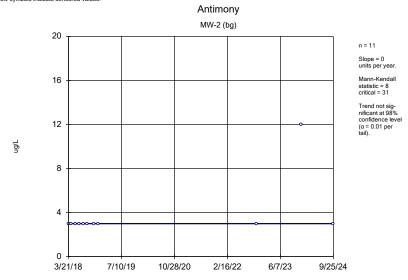
Constituent: Thallium Analysis Run 5/21/2025 11:58 AM View: Assessment Stats 5.1.2025 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

Sanitas™ v.10.0.25 Software licensed to GREDELL Engineering. UG

Non-Parametric Confidence Interval

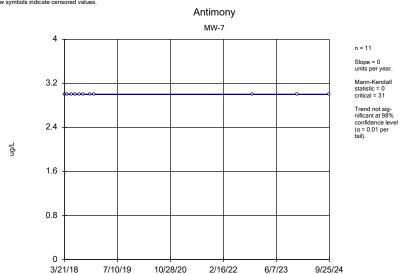
Compliance Limit is not exceeded. Per-well alpha = 0.01.

Constituent: Selenium Analysis Run 5/21/2025 11:58 AM View: Assessment Stats 5.1.2025 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

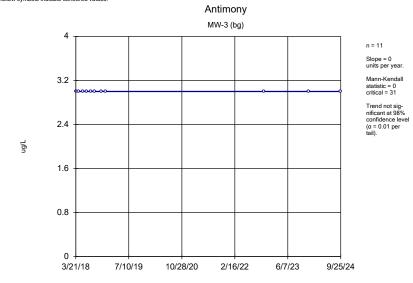

Trend Test

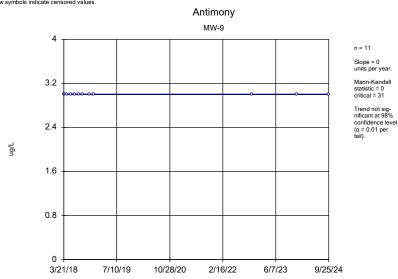
	SBMU-Sikeston Power	Station Client	: GREDELL E	ngineering	Data: Sikesto	nFAP Bac	kground	Printed 5/21/202	25, 12:02 PM		
Constituent	<u>Well</u>	Slope	Calc.	Critical	Sig.	<u>N</u>	%NDs	Normality	<u>Xform</u>	<u>Alpha</u>	Method
Antimony (ug/L)	MW-2 (bg)	0	8	31	No	_ 11	100	n/a	n/a	0.02	NP
Antimony (ug/L)	MW-3 (bg)	0	0	31	No	11	100	n/a	n/a	0.02	NP
Antimony (ug/L)	MW-7	0	0	31	No	11	100	n/a	n/a	0.02	NP
Antimony (ug/L)	MW-9	0	0	31	No	11	100	n/a	n/a	0.02	NP
Antimony (ug/L)	MW-1R	0	0	31	No	11	100	n/a	n/a	0.02	NP
Antimony (ug/L)	MW-10	0	0	27	No	10	100	n/a	n/a	0.02	NP
Arsenic (ug/L)	MW-2 (bg)	0	0	39	No	13	100	n/a	n/a	0.02	NP
Arsenic (ug/L)	MW-3 (bg)	0	0	39	No	13	100	n/a	n/a	0.02	NP
Arsenic (ug/L)	MW-7	0	0	39	No	13	100	n/a	n/a	0.02	NP
Arsenic (ug/L)	MW-9	0	-10	-39	No	13	92.31	n/a	n/a	0.02	NP
Arsenic (ug/L)	MW-1R	0	-19	-35	No	12	83.33	n/a	n/a	0.02	NP
Arsenic (ug/L)	MW-10	-0.1487	-2	-35	No	12	0	n/a	n/a	0.02	NP
Barium (ug/L)	MW-2 (bg)	4.511	27	44	No	14	0	n/a	n/a	0.02	NP
Barium (ug/L)	MW-3 (bg)	-2.514	-33	-44	No	14	0	n/a	n/a	0.02	NP
Barium (ug/L)	MW-7	4.086	58	44	Yes	14	0	n/a	n/a	0.02	NP
Barium (ug/L)	MW-9	6.795	57	44	Yes	14	0	n/a	n/a	0.02	NP
Barium (ug/L)	MW-1R	2.035	10	44	No	14	0	n/a	n/a	0.02	NP
Barium (ug/L)	MW-10	-8.15	-19	-35	No	12	0	n/a	n/a	0.02	NP
Beryllium (ug/L)	MW-2 (bg)	0	0	31	No	11	100	n/a	n/a	0.02	NP
Beryllium (ug/L)	MW-3 (bg)	0	0	31	No	11	100	n/a	n/a	0.02	NP
Beryllium (ug/L)	MW-7	0	0	31	No	11	100	n/a	n/a	0.02	NP
Beryllium (ug/L)	MW-9	0	0	31	No	11	100	n/a	n/a	0.02	NP
Beryllium (ug/L)	MW-1R	0	0	31	No	11	100	n/a	n/a	0.02	NP
Beryllium (ug/L)	MW-10	0	0	27	No	10	100	n/a	n/a	0.02	NP
Cadmium (ug/L)	MW-2 (bg)	0	0	31	No	11	100	n/a	n/a	0.02	NP
Cadmium (ug/L)	MW-3 (bg)	0	0	31	No	11	100	n/a	n/a	0.02	NP
Cadmium (ug/L)	MW-7	0	0	31	No	11	100	n/a	n/a	0.02	NP
Cadmium (ug/L)	MW-9	0	0	31	No	11	100	n/a	n/a	0.02	NP
Cadmium (ug/L)	MW-1R	0	0	31	No	11	100	n/a	n/a	0.02	NP
Cadmium (ug/L)	MW-10	0	0	27	No	10	100	n/a	n/a	0.02	NP
Chromium (ug/L)	MW-2 (bg)	0	0	31	No	11	100	n/a	n/a	0.02	NP
Chromium (ug/L)	MW-3 (bg)	0	0	31	No	11	100	n/a	n/a	0.02	NP
Chromium (ug/L)	MW-7	0	0	31	No	11	100	n/a	n/a	0.02	NP
Chromium (ug/L)	MW-9	0	-6	-31	No	11	90.91	n/a	n/a	0.02	NP
Chromium (ug/L)	MW-1R	0	0	31	No	11	100	n/a	n/a	0.02	NP
Chromium (ug/L)	MW-10	0	0	27	No	10	100	n/a	n/a	0.02	NP
Cobalt (ug/L)	MW-2 (bg)	0	11	44	No	14	78.57	n/a	n/a	0.02	NP
Cobalt (ug/L)	MW-3 (bg)	0	0	44	No	14	92.86	n/a	n/a	0.02	NP
Cobalt (ug/L)	MW-7	0.1099	37	44	No	14	14.29	n/a	n/a	0.02	NP
Cobalt (ug/L)	MW-9	0	13	44	No	14	85.71	n/a	n/a	0.02	NP
Cobalt (ug/L)	MW-1R	1.873	41	44	No	14	0	n/a	n/a	0.02	NP
Cobalt (ug/L)	MW-10	0	-3	-35	No	12	91.67	n/a	n/a	0.02	NP
Fluoride (mg/L)	MW-2 (bg)	0	-32	-73	No	20	75	n/a	n/a	0.02	NP
Fluoride (mg/L)	MW-3 (bg)	0	-68	-78	No	21	57.14	n/a	n/a	0.02	NP
Fluoride (mg/L)	MW-7	-0.02625	-86	-78	Yes	21	0	n/a	n/a	0.02	NP
Fluoride (mg/L)	MW-9	-0.04866	-92	-78	Yes	21	0	n/a	n/a	0.02	NP
Fluoride (mg/L)	MW-1R	0	-33	-48	No	15	73.33	n/a	n/a	0.02	NP
Fluoride (mg/L)	MW-10	-0.02388	-20	-35	No	12	8.333	n/a	n/a	0.02	NP
Lead (ug/L)	MW-2 (bg)	0	0	31	No	11	100	n/a	n/a	0.02	NP
Lead (ug/L)	MW-3 (bg)	0	0	31	No	11	100	n/a	n/a	0.02	NP

Trend Test Page 2

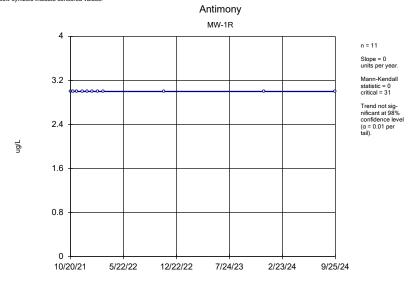

Constituent Lead (ug/L) Lead (ug/L) Lead (ug/L) Lead (ug/L) Lithium (ug/L) Lithium (ug/L) Lithium (ug/L) Lithium (ug/L) Lithium (ug/L) Lithium (ug/L) Mercury (ug/L) Mercury (ug/L) Mercury (ug/L) Mercury (ug/L) Mercury (ug/L) Mercury (ug/L) Molybdenum (ug/L) Molybdenum (ug/L) Molybdenum (ug/L) Molybdenum (ug/L) Molybdenum (ug/L) Molybdenum (ug/L) Radium (pCi/L) Radium (pCi/L) Radium (pCi/L) Radium (pCi/L) Radium (pCi/L) Radium (pCi/L) Selenium (ug/L) Selenium (ug/L) Selenium (ug/L) Selenium (ug/L) Selenium (ug/L) Selenium (ug/L) Thallium (ug/L) Thallium (ug/L) Thallium (ug/L) Thallium (ug/L) Thallium (ug/L) Thallium (ug/L)

Well	Slope	Calc.	Critical	Sig.	<u>N</u>	%NDs	Normality	Xform	Alpha	Me
MW-7	<u>010pe</u> 0	<u>oaic.</u> 0	31	<u>oig.</u> No	11	100	n/a	n/a	0.02	NP
MW-9	0	0	31	No	11	100	n/a	n/a	0.02	NP
MW-1R	0	0	31	No	11	100	n/a	n/a	0.02	NP
MW-10	0	0	27	No	10	100	n/a	n/a	0.02	NP
MW-2 (bg)	0	8	44	No	14	92.86	n/a	n/a	0.02	NP
MW-3 (bg)	0	8	44	No	14	92.86	n/a	n/a	0.02	NF
MW-7	1.798	61	44	Yes	14	0	n/a	n/a	0.02	NP
MW-9	1.364	53	44	Yes	14	7.143	n/a	n/a	0.02	NP
MW-1R	0.07961	22	44	No	14	28.57	n/a	n/a	0.02	NP
MW-10	-9.661	-23	-35	No	12	25	n/a	n/a	0.02	NF
MW-2 (bg)	0	0	31	No	11	100	n/a	n/a	0.02	NP
MW-3 (bg)	0	0	31	No	11	100	n/a	n/a	0.02	NP
MW-7	0	0	31	No	11	100	n/a	n/a	0.02	NF
MW-9	0	0	31	No	11	100	n/a	n/a	0.02	NF
MW-1R	0	0	31	No	11	100	n/a	n/a	0.02	NF
MW-10	0	0	27	No	10	100	n/a	n/a	0.02	NF
MW-2 (bg)	0	7	44	No	14	85.71	n/a	n/a	0.02	NF
MW-3 (bg)	0	0	44	No	14	92.86	n/a	n/a	0.02	NF
MW-7	-7.597	- 66	-44	Yes	14	0	n/a	n/a	0.02	NF
MW-9	-80.4	-72	-44	Yes	14	0	n/a	n/a	0.02	NF
MW-1R	6.962	26	44	No	14	0	n/a	n/a	0.02	NF
MW-10	-0.9786	-4	-35	No	12	0	n/a	n/a	0.02	NF
MW-2 (bg)	0.03819	6	35	No	12	8.333	n/a	n/a	0.02	NF
MW-3 (bg)	-0.07972	-22	-35	No	12	8.333	n/a	n/a	0.02	NF
MW-7	0.09699	18	35	No	12	8.333	n/a	n/a	0.02	NF
MW-9	0.1037	24	35	No	12	8.333	n/a	n/a	0.02	NF
MW-1R	0.0489	6	35	No	12	8.333	n/a	n/a	0.02	NF
MW-10	0.5407	5	27	No	10	90	n/a	n/a	0.02	NF
MW-2 (bg)	0.5407	-5	-35	No	12	83.33	n/a	n/a	0.02	NF
MW-3 (bg)	0	0	44	No	14	92.86	n/a	n/a	0.02	NF
MW-7	-1.6	-49	-44	Yes	14	0	n/a	n/a	0.02	NF
MW-9	0	0	44	No	14	92.86	n/a	n/a	0.02	NF
MW-1R	0	0	44	No	14	92.86	n/a	n/a	0.02	NF
MW-10	0	0	35	No	12	91.67	n/a	n/a	0.02	NF
MW-2 (bg)	0	0	31	No	11	100	n/a	n/a	0.02	NF
MW-3 (bg)	0	0	31	No	11	100	n/a	n/a	0.02	NF
MW-7	0	0	31	No	11	100	n/a	n/a	0.02	NF
MW-9	0	0	31	No	11	100	n/a	n/a	0.02	NF
MW-1R	0	0	31	No	11	100	n/a	n/a	0.02	NF
MW-10	0	0	27	No	10	100	n/a	n/a	0.02	NF

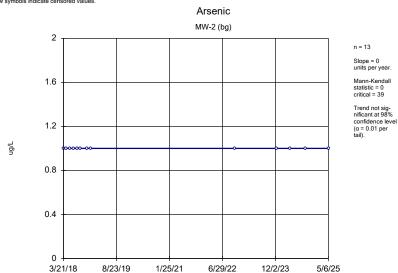

Sen's Slope and 95% Confidence Band Analysis Run 5/21/2025 12:00 PM View: Assessment Stats 5.1.20 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background



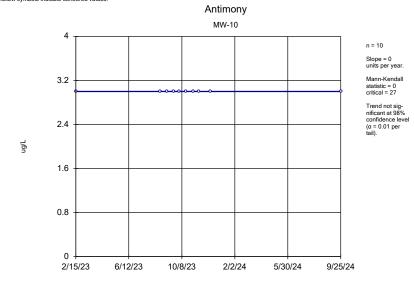
Sen's Slope and 95% Confidence Band Analysis Run 5/21/2025 12:00 PM View: Assessment Stats 5.1.20 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background


Sanitas™ v.10.0.25 Software licensed to GREDELL Engineering. UG Hollow symbols indicate censored values.

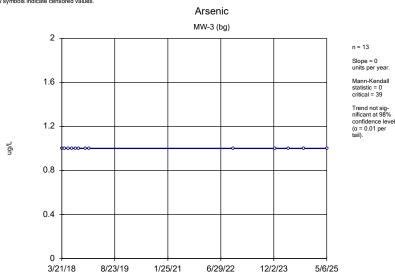
Sen's Slope and 95% Confidence Band Analysis Run 5/21/2025 12:00 PM View: Assessment Stats 5.1.20 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background



Sen's Slope and 95% Confidence Band Analysis Run 5/21/2025 12:00 PM View: Assessment Stats 5.1.20 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background



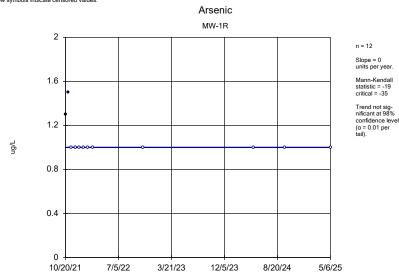
Sen's Slope and 95% Confidence Band Analysis Run 5/21/2025 12:00 PM View: Assessment Stats 5.1.20 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background



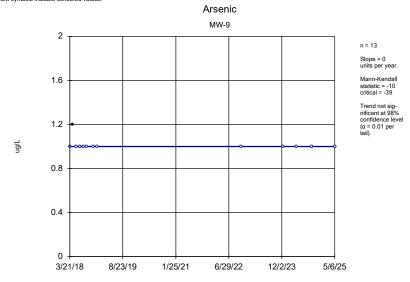
Sen's Slope and 95% Confidence Band Analysis Run 5/21/2025 12:00 PM View: Assessment Stats 5.1.20 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

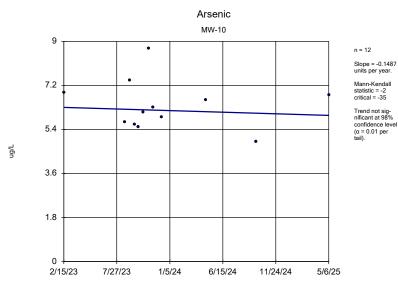
Sen's Slope and 95% Confidence Band Analysis Run 5/21/2025 12:00 PM View: Assessment Stats 5.1.20 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

Sanitas™ v.10.0.25 Software licensed to GREDELL Engineering. UG Hollow symbols indicate censored values.

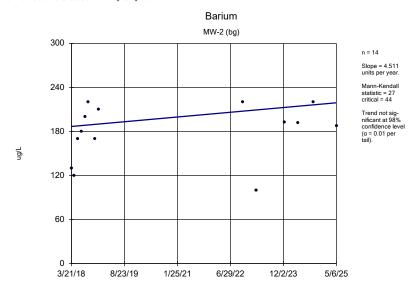


Sen's Slope and 95% Confidence Band Analysis Run 5/21/2025 12:00 PM View: Assessment Stats 5.1.20 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

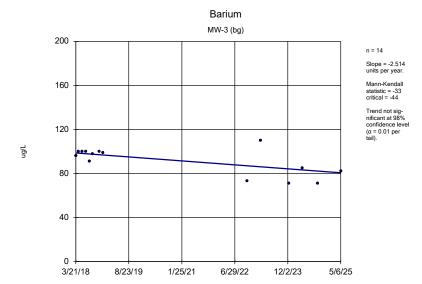

Sen's Slope and 95% Confidence Band Analysis Run 5/21/2025 12:00 PM View: Assessment Stats 5.1.20 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background


Sen's Slope and 95% Confidence Band Analysis Run 5/21/2025 12:00 PM View: Assessment Stats 5.1.20 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

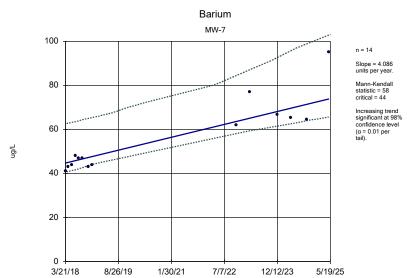
Sanitas™ v.10.0.25 Software licensed to GREDELL Engineering. UG Hollow symbols indicate censored values.



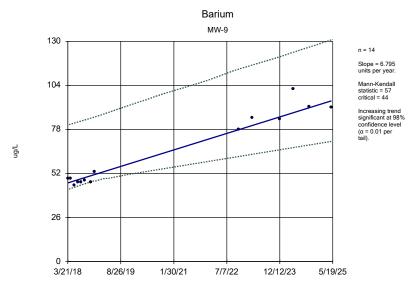
Sen's Slope and 95% Confidence Band Analysis Run 5/21/2025 12:00 PM View: Assessment Stats 5.1.20 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background


Sanitas™ v.10.0.25 Software licensed to GREDELL Engineering. UG

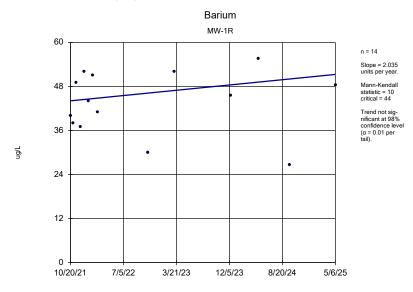
Sen's Slope and 95% Confidence Band Analysis Run 5/21/2025 12:00 PM View: Assessment Stats 5.1.20 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background



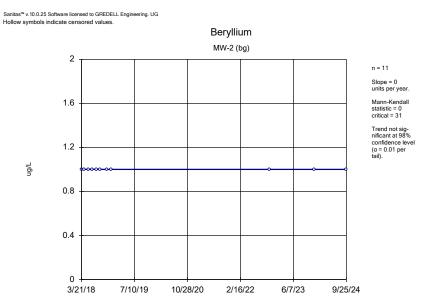
Sen's Slope and 95% Confidence Band Analysis Run 5/21/2025 12:00 PM View: Assessment Stats 5.1.20 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

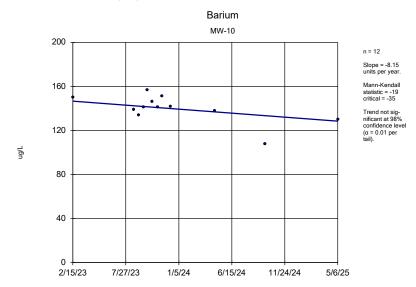

Sen's Slope and 95% Confidence Band Analysis Run 5/21/2025 12:00 PM View: Assessment Stats 5.1.20 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

Sanitas™ v.10.0.25 Software licensed to GREDELL Engineering. UG

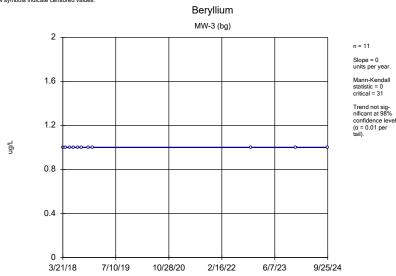


Sen's Slope and 95% Confidence Band Analysis Run 5/21/2025 12:00 PM View: Assessment Stats 5.1.20 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

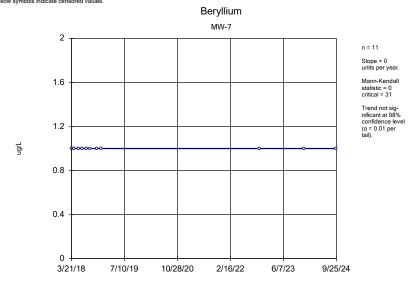

Sanitas™ v.10.0.25 Software licensed to GREDELL Engineering. UG


Sen's Slope and 95% Confidence Band Analysis Run 5/21/2025 12:00 PM View: Assessment Stats 5.1.20 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

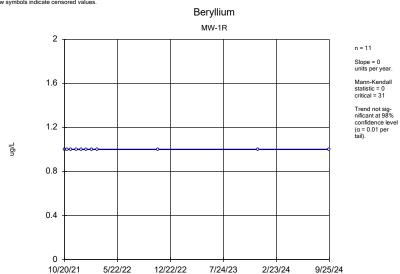
Sen's Slope and 95% Confidence Band Analysis Run 5/21/2025 12:00 PM View: Assessment Stats 5.1.20 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background



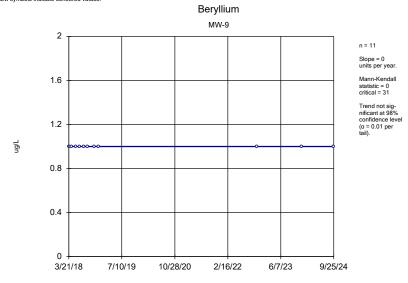
Sen's Slope and 95% Confidence Band Analysis Run 5/21/2025 12:00 PM View: Assessment Stats 5.1.20 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

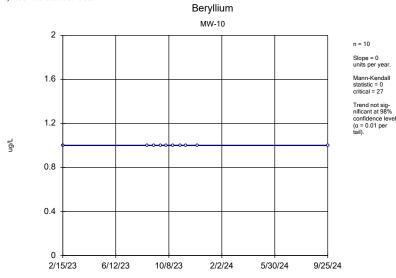


Sen's Slope and 95% Confidence Band Analysis Run 5/21/2025 12:00 PM View: Assessment Stats 5.1.20 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

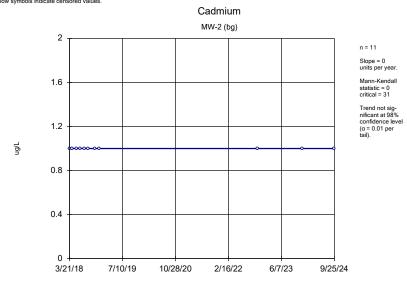


Sen's Slope and 95% Confidence Band Analysis Run 5/21/2025 12:00 PM View: Assessment Stats 5.1.20 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

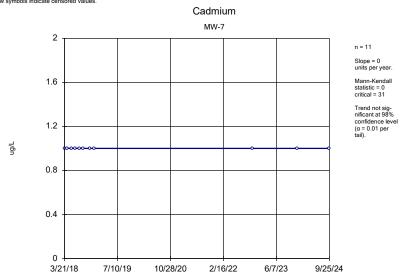

Sen's Slope and 95% Confidence Band Analysis Run 5/21/2025 12:00 PM View: Assessment Stats 5.1.20 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background



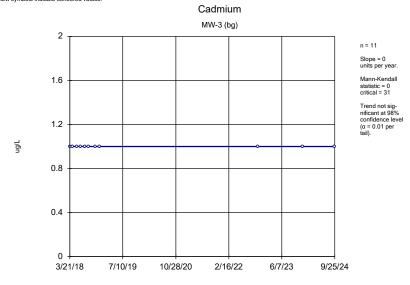
Sen's Slope and 95% Confidence Band Analysis Run 5/21/2025 12:00 PM View: Assessment Stats 5.1.20 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

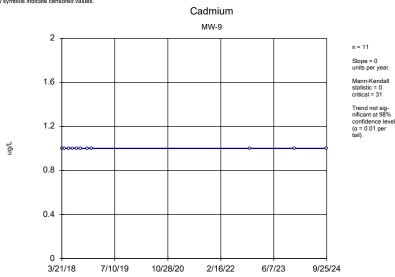

Sanitas™ v.10.0.25 Software licensed to GREDELL Engineering. UG Hollow symbols indicate censored values.

Sen's Slope and 95% Confidence Band Analysis Run 5/21/2025 12:00 PM View: Assessment Stats 5.1.20 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

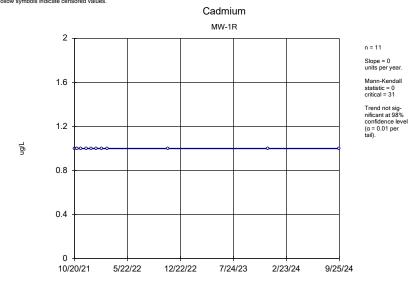


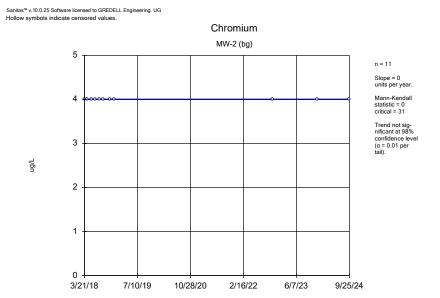
Sen's Slope and 95% Confidence Band Analysis Run 5/21/2025 12:00 PM View: Assessment Stats 5.1.20 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

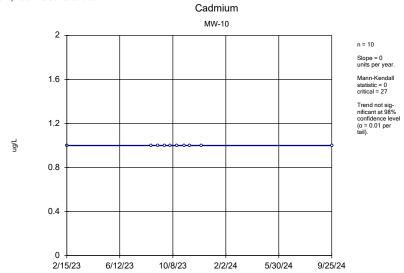

Sen's Slope and 95% Confidence Band Analysis Run 5/21/2025 12:00 PM View: Assessment Stats 5.1.20 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background



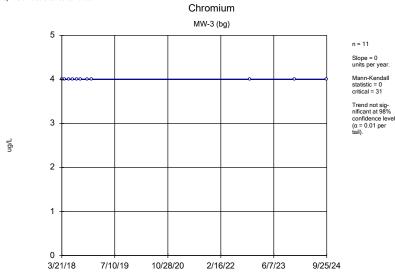
Sen's Slope and 95% Confidence Band Analysis Run 5/21/2025 12:00 PM View: Assessment Stats 5.1.20 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background


Sanitas™ v.10.0.25 Software licensed to GREDELL Engineering. UG Hollow symbols indicate censored values.

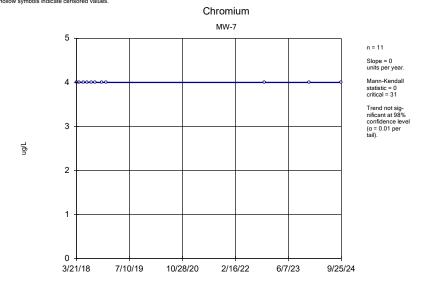

Sen's Slope and 95% Confidence Band Analysis Run 5/21/2025 12:00 PM View: Assessment Stats 5.1.20 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background


Sen's Slope and 95% Confidence Band Analysis Run 5/21/2025 12:00 PM View: Assessment Stats 5.1.20 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

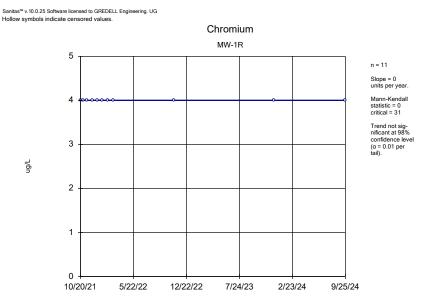
Sen's Slope and 95% Confidence Band Analysis Run 5/21/2025 12:00 PM View: Assessment Stats 5.1.20 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

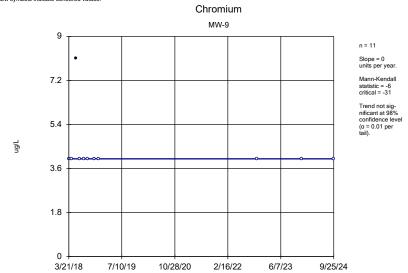


Sen's Slope and 95% Confidence Band Analysis Run 5/21/2025 12:00 PM View: Assessment Stats 5.1.20 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

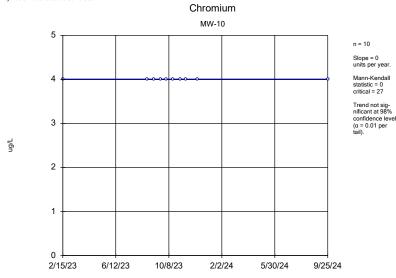


Sen's Slope and 95% Confidence Band Analysis Run 5/21/2025 12:00 PM View: Assessment Stats 5.1.20 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

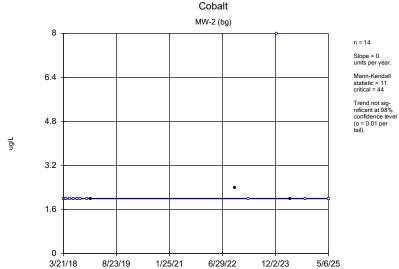


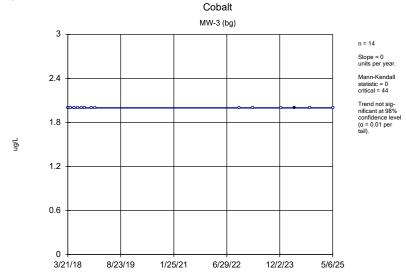

Sen's Slope and 95% Confidence Band Analysis Run 5/21/2025 12:00 PM View: Assessment Stats 5.1.20 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

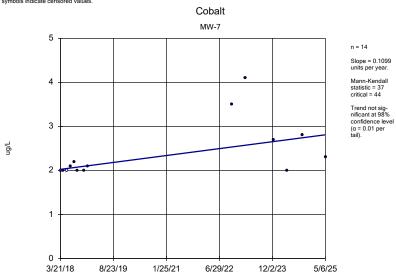
Sen's Slope and 95% Confidence Band Analysis Run 5/21/2025 12:00 PM View: Assessment Stats 5.1.20 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background



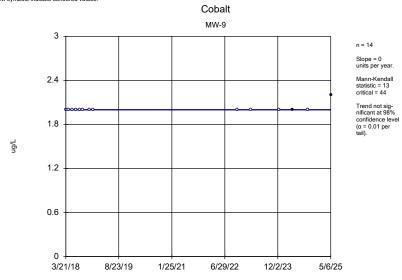
Sen's Slope and 95% Confidence Band Analysis Run 5/21/2025 12:00 PM View: Assessment Stats 5.1.20 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background


Sen's Slope and 95% Confidence Band Analysis Run 5/21/2025 12:00 PM View: Assessment Stats 5.1.20 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

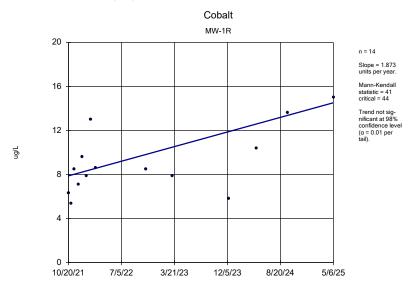

Sen's Slope and 95% Confidence Band Analysis Run 5/21/2025 12:00 PM View: Assessment Stats 5.1.20 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background


3/21/18 8/23/19 1/25/21 6/29/22 12/2/23 5/6/25

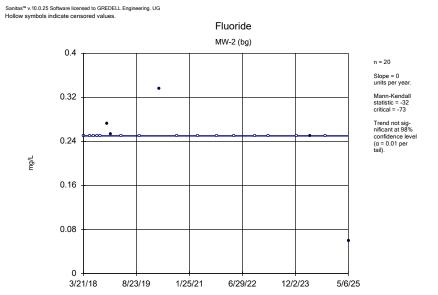
Sen's Slope and 95% Confidence Band Analysis Run 5/21/2025 12:00 PM View: Assessment Stats 5.1.20

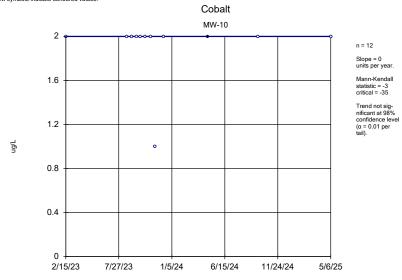

Sen's Slope and 95% Confidence Band Analysis Run 5/21/2025 12:00 PM View: Assessment Stats 5.1.20 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

Sanitas™ v.10.0.25 Software licensed to GREDELL Engineering. UG Hollow symbols indicate censored values.

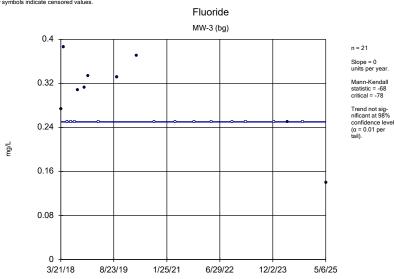


Sen's Slope and 95% Confidence Band Analysis Run 5/21/2025 12:00 PM View: Assessment Stats 5.1.20 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

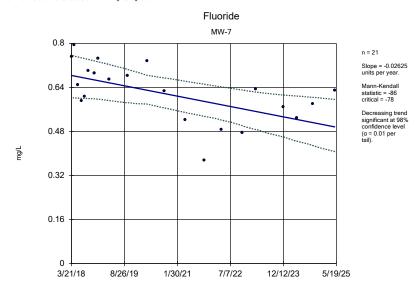

Sanitas™ v.10.0.25 Software licensed to GREDELL Engineering. UG Hollow symbols indicate censored values.


Sen's Slope and 95% Confidence Band Analysis Run 5/21/2025 12:00 PM View: Assessment Stats 5.1.20 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

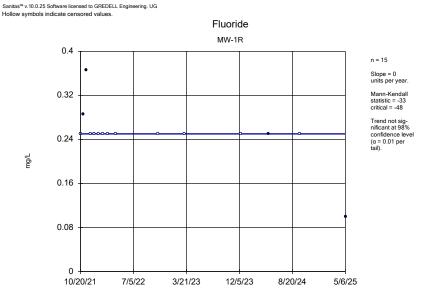
Sen's Slope and 95% Confidence Band Analysis Run 5/21/2025 12:00 PM View: Assessment Stats 5.1.20 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

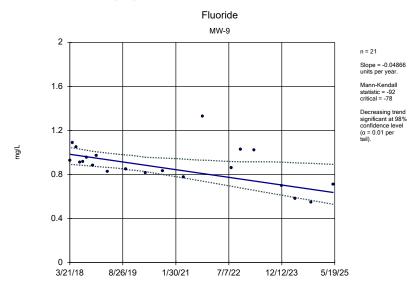


Sen's Slope and 95% Confidence Band Analysis Run 5/21/2025 12:00 PM View: Assessment Stats 5.1.20 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

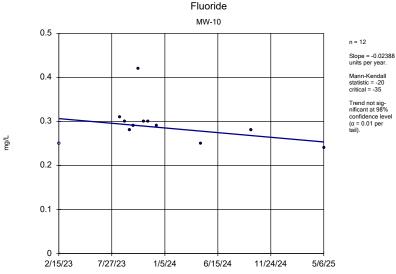


Sen's Slope and 95% Confidence Band Analysis Run 5/21/2025 12:00 PM View: Assessment Stats 5.1.20 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

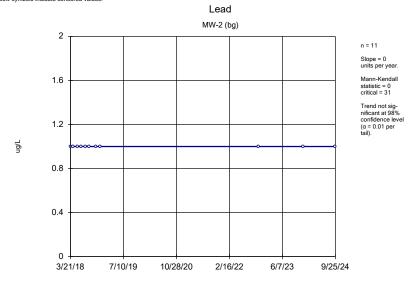



Sen's Slope and 95% Confidence Band Analysis Run 5/21/2025 12:00 PM View: Assessment Stats 5.1.20 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

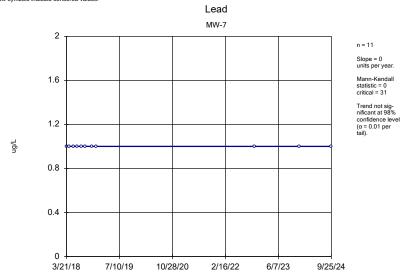
Sen's Slope and 95% Confidence Band Analysis Run 5/21/2025 12:00 PM View: Assessment Stats 5.1.20 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background



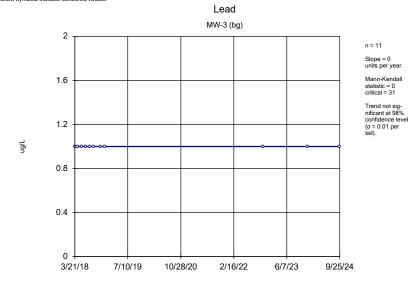
Sen's Slope and 95% Confidence Band Analysis Run 5/21/2025 12:01 PM View: Assessment Stats 5.1.20 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

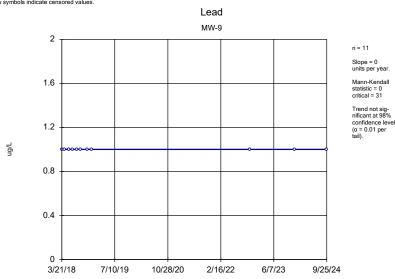


Sen's Slope and 95% Confidence Band Analysis Run 5/21/2025 12:01 PM View: Assessment Stats 5.1.20 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background



Sen's Slope and 95% Confidence Band Analysis Run 5/21/2025 12:01 PM View: Assessment Stats 5.1.20 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background


Sen's Slope and 95% Confidence Band Analysis Run 5/21/2025 12:01 PM View: Assessment Stats 5.1.20 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

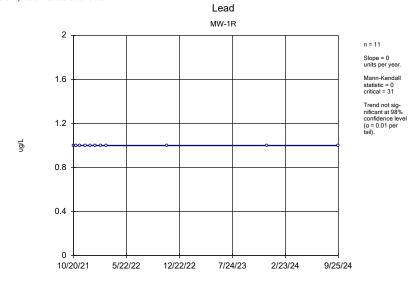


Sen's Slope and 95% Confidence Band Analysis Run 5/21/2025 12:01 PM View: Assessment Stats 5.1.20 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

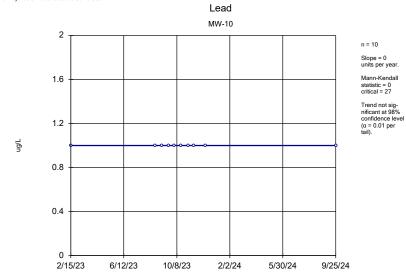
Sanitas™ v.10.0.25 Software licensed to GREDELL Engineering. UG Hollow symbols indicate censored values.

Sen's Slope and 95% Confidence Band Analysis Run 5/21/2025 12:01 PM View: Assessment Stats 5.1.20 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

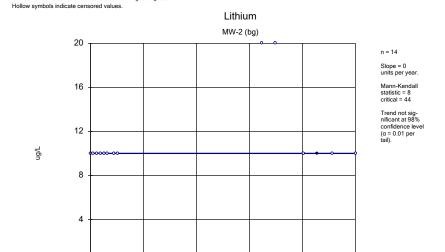
Sen's Slope and 95% Confidence Band Analysis Run 5/21/2025 12:01 PM View: Assessment Stats 5.1.20 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background


Sanitas™ v.10.0.25 Software licensed to GREDELL Engineering. UG

3/21/18

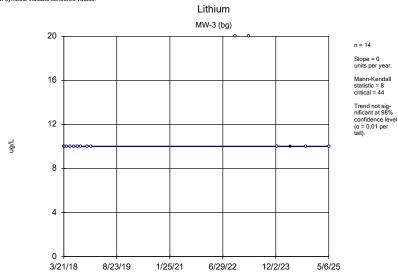

8/23/19

1/25/21

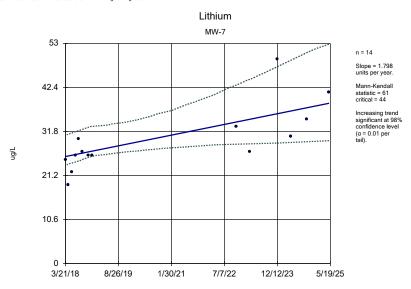


Sen's Slope and 95% Confidence Band Analysis Run 5/21/2025 12:01 PM View: Assessment Stats 5.1.20 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

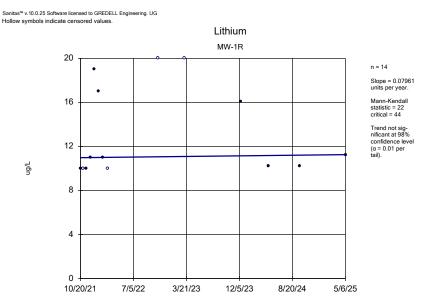
Sen's Slope and 95% Confidence Band Analysis Run 5/21/2025 12:01 PM View: Assessment Stats 5.1.20 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

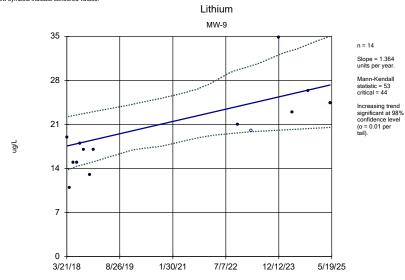

Sen's Slope and 95% Confidence Band Analysis Run 5/21/2025 12:01 PM View: Assessment Stats 5.1.20 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

6/29/22

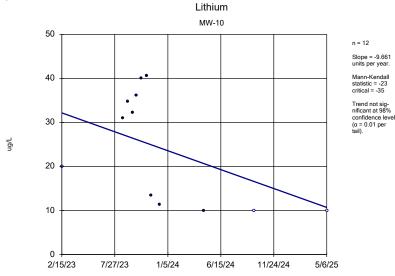

12/2/23

5/6/25

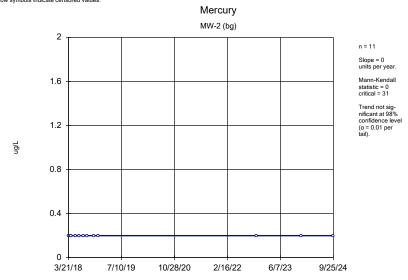



Sen's Slope and 95% Confidence Band Analysis Run 5/21/2025 12:01 PM View: Assessment Stats 5.1.20 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

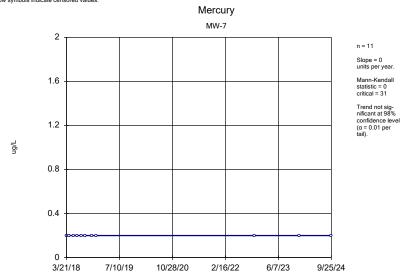
Sen's Slope and 95% Confidence Band Analysis Run 5/21/2025 12:01 PM View: Assessment Stats 5.1.20 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background



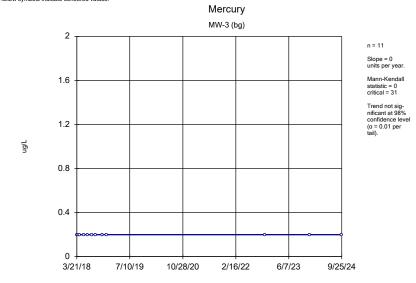
Sen's Slope and 95% Confidence Band Analysis Run 5/21/2025 12:01 PM View: Assessment Stats 5.1.20 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background



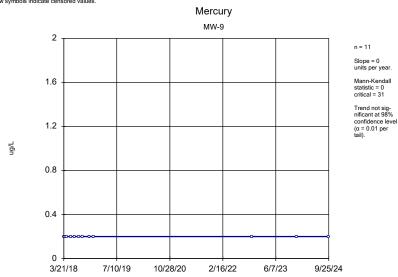
Sen's Slope and 95% Confidence Band Analysis Run 5/21/2025 12:01 PM View: Assessment Stats 5.1.20 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background



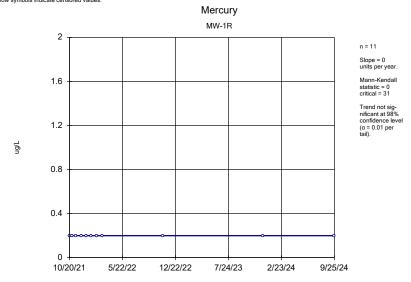
Sen's Slope and 95% Confidence Band Analysis Run 5/21/2025 12:01 PM View: Assessment Stats 5.1.20 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background


Sen's Slope and 95% Confidence Band Analysis Run 5/21/2025 12:01 PM View: Assessment Stats 5.1.20 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

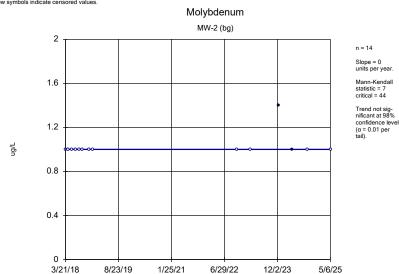
Sanitas™ v.10.0.25 Software licensed to GREDELL Engineering. UG Hollow symbols indicate censored values.



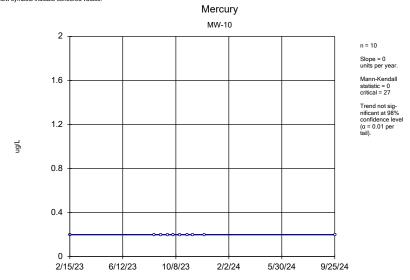
Sen's Slope and 95% Confidence Band Analysis Run 5/21/2025 12:01 PM View: Assessment Stats 5.1.20 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

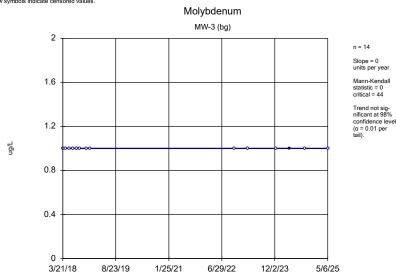

Sanitas™ v.10.0.25 Software licensed to GREDELL Engineering. UG Hollow symbols indicate censored values.

Sen's Slope and 95% Confidence Band Analysis Run 5/21/2025 12:01 PM View: Assessment Stats 5.1.20 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

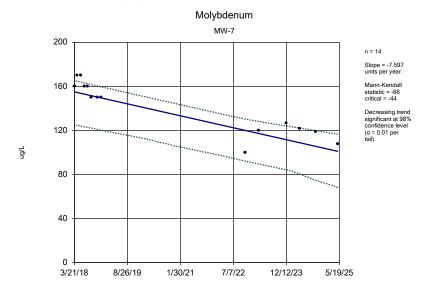


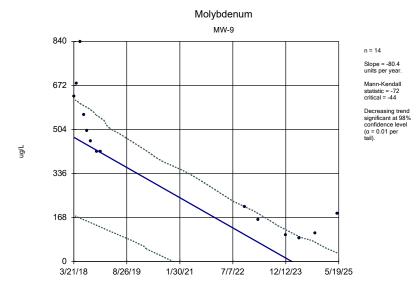
Sen's Slope and 95% Confidence Band Analysis Run 5/21/2025 12:01 PM View: Assessment Stats 5.1.20 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background


Sen's Slope and 95% Confidence Band Analysis Run 5/21/2025 12:01 PM View: Assessment Stats 5.1.20 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

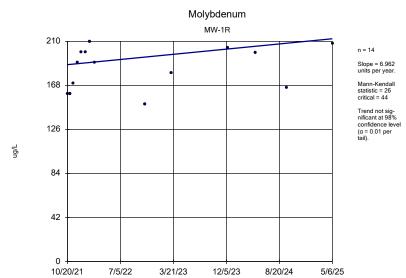


Sen's Slope and 95% Confidence Band Analysis Run 5/21/2025 12:01 PM View: Assessment Stats 5.1.20 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

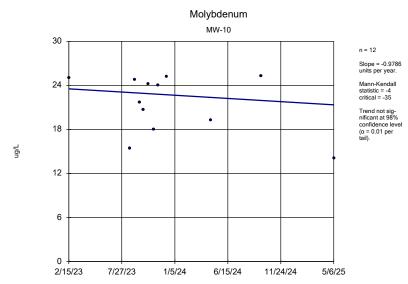

Sanitas™ v.10.0.25 Software licensed to GREDELL Engineering. UG Hollow symbols indicate censored values.


Sen's Slope and 95% Confidence Band Analysis Run 5/21/2025 12:01 PM View: Assessment Stats 5.1.20 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

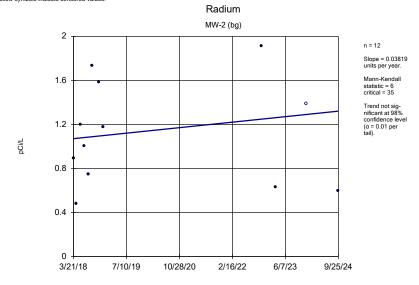
Sen's Slope and 95% Confidence Band Analysis Run 5/21/2025 12:01 PM View: Assessment Stats 5.1.20 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background



Sen's Slope and 95% Confidence Band Analysis Run 5/21/2025 12:01 PM View: Assessment Stats 5.1.20 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background


Sen's Slope and 95% Confidence Band Analysis Run 5/21/2025 12:01 PM View: Assessment Stats 5.1.20 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

Sanitas™ v.10.0.25 Software licensed to GREDELL Engineering. UG


Sen's Slope and 95% Confidence Band Analysis Run 5/21/2025 12:01 PM View: Assessment Stats 5.1.20 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

Sanitas™ v.10.0.25 Software licensed to GREDELL Engineering. UG

Sen's Slope and 95% Confidence Band Analysis Run 5/21/2025 12:01 PM View: Assessment Stats 5.1.20 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

Mann-Kendall statistic = -22 critical = -35

Trend not significant at 98% confidence level (a = 0.01 per tail).

10/28/20

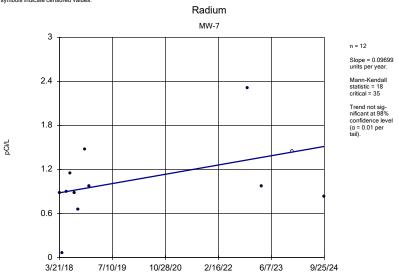
Radium

MW-3 (bg)

Slope = -0.07972

units per year.

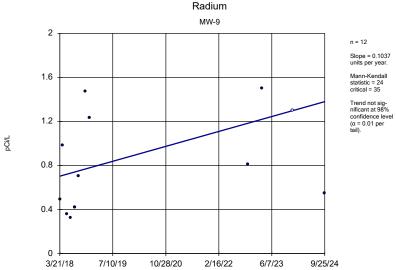
9/25/24


Sen's Slope and 95% Confidence Band Analysis Run 5/21/2025 12:01 PM View: Assessment Stats 5.1.20 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

Sen's Slope and 95% Confidence Band Analysis Run 5/21/2025 12:01 PM View: Assessment Stats 5.1.20 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

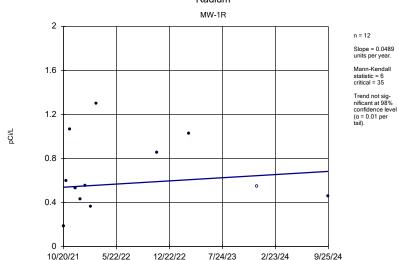
2/16/22

6/7/23


Sanitas™ v.10.0.25 Software licensed to GREDELL Engineering. UG Hollow symbols indicate censored values.

Sanitas** v.10.0.25 Software licensed to GREDELL Engineering. UG Hollow symbols indicate censored values.

3/21/18


7/10/19

Sen's Slope and 95% Confidence Band Analysis Run 5/21/2025 12:01 PM View: Assessment Stats 5.1.20 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

Sen's Slope and 95% Confidence Band Analysis Run 5/21/2025 12:01 PM View: Assessment Stats 5.1.20 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

Sen's Slope and 95% Confidence Band Analysis Run 5/21/2025 12:01 PM View: Assessment Stats 5.1.20 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

2/2/24

5/30/24

9/25/24

10/8/23

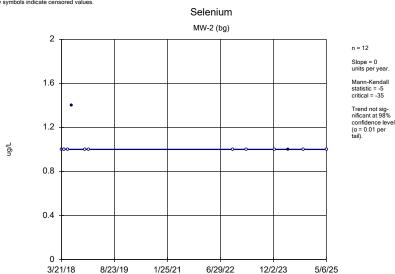
Radium

MW-10

n = 10

Slope = 0.5407

units per year.


Mann-Kendall

Trend not significant at 98% confidence level

(a = 0.01 per

statistic = 5 critical = 27

Sen's Slope and 95% Confidence Band Analysis Run 5/21/2025 12:01 PM View: Assessment Stats 5.1.20 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

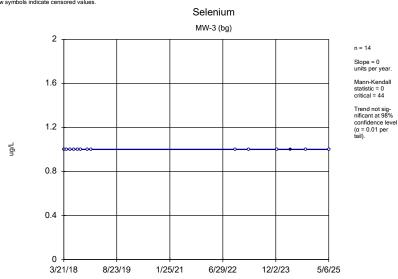
Sanitas™ v.10.0.25 Software licensed to GREDELL Engineering. UG Hollow symbols indicate censored values.

Sanitas™ v.10.0.25 Software licensed to GREDELL Engineering. UG

Hollow symbols indicate censored values.

1.6

1.2

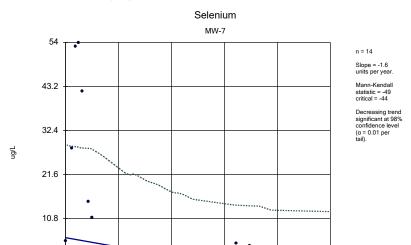

0.8

0.4

2/15/23

6/12/23

pCi/L

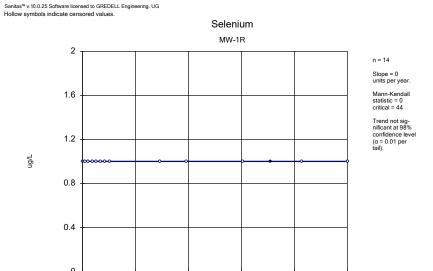

Sen's Slope and 95% Confidence Band Analysis Run 5/21/2025 12:01 PM View: Assessment Stats 5.1.20 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

3/21/18

10/20/21

7/5/22

8/26/19


Sen's Slope and 95% Confidence Band Analysis Run 5/21/2025 12:01 PM View: Assessment Stats 5.1.20 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

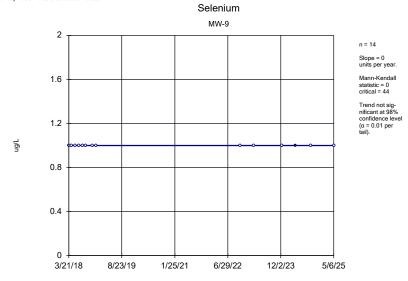
7/7/22

12/12/23

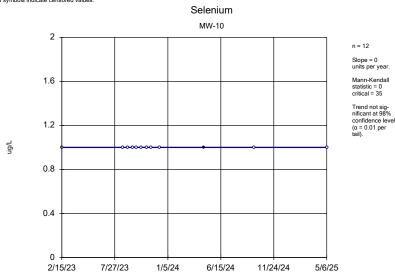
5/19/25

1/30/21

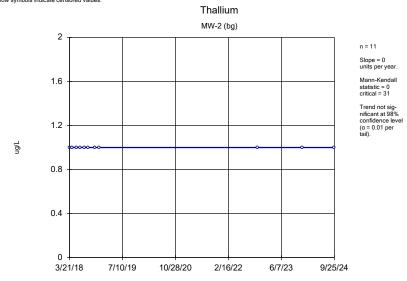
Sen's Slope and 95% Confidence Band Analysis Run 5/21/2025 12:01 PM View: Assessment Stats 5.1.20 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background


12/5/23

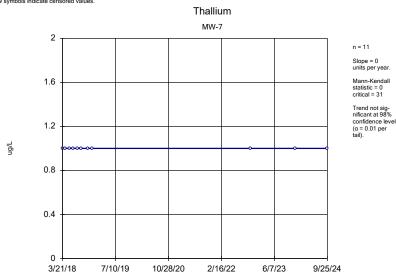
8/20/24


5/6/25

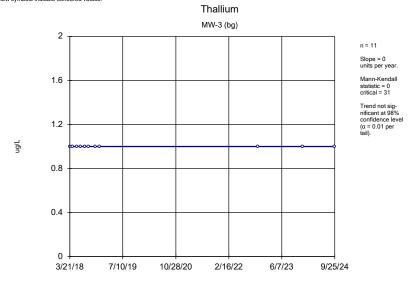
3/21/23

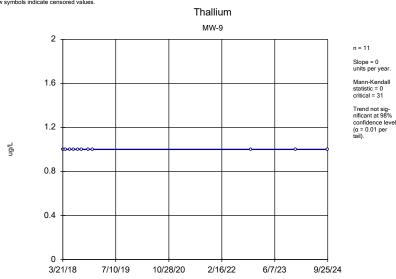

Sanitas™ v.10.0.25 Software licensed to GREDELL Engineering. UG Hollow symbols indicate censored values.

Sen's Slope and 95% Confidence Band Analysis Run 5/21/2025 12:01 PM View: Assessment Stats 5.1.20 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

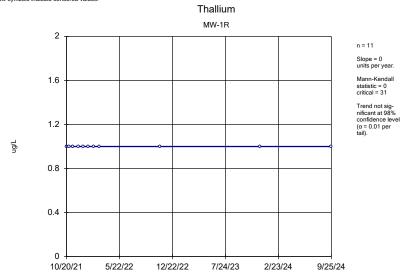


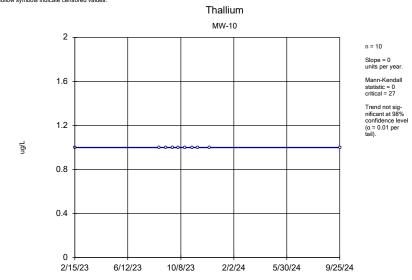
Sen's Slope and 95% Confidence Band Analysis Run 5/21/2025 12:01 PM View: Assessment Stats 5.1.20 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background


Sen's Slope and 95% Confidence Band Analysis Run 5/21/2025 12:01 PM View: Assessment Stats 5.1.20 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

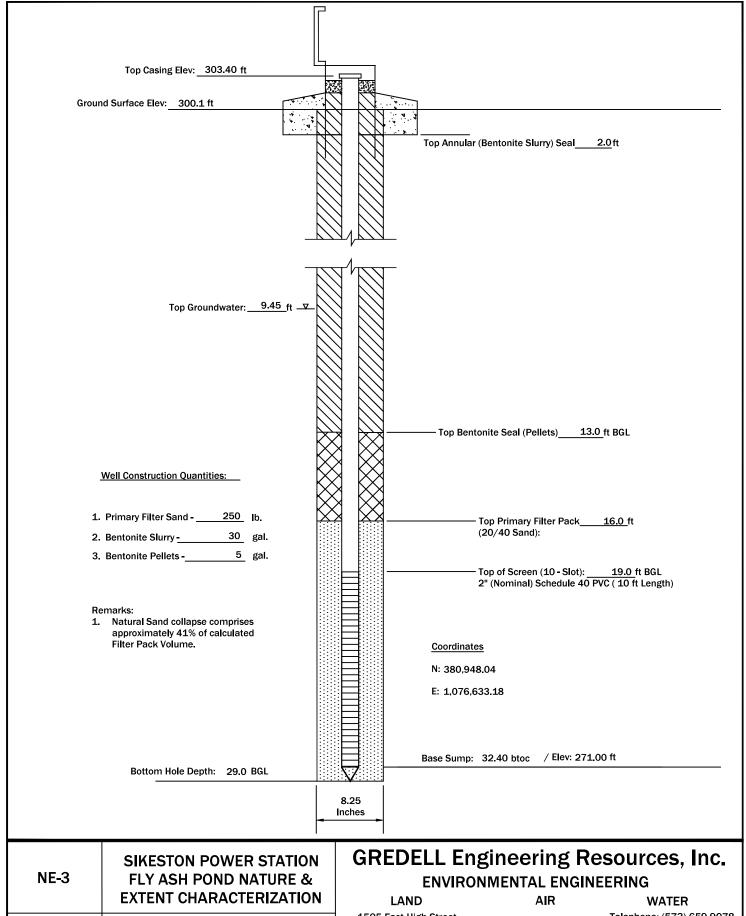


Sen's Slope and 95% Confidence Band Analysis Run 5/21/2025 12:01 PM View: Assessment Stats 5.1.20 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background


Sanitas™ v.10.0.25 Software licensed to GREDELL Engineering. UG Hollow symbols indicate censored values.


Sen's Slope and 95% Confidence Band Analysis Run 5/21/2025 12:01 PM View: Assessment Stats 5.1.20 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

Sen's Slope and 95% Confidence Band Analysis Run 5/21/2025 12:01 PM View: Assessment Stats 5.1.20 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background


Sen's Slope and 95% Confidence Band Analysis Run 5/21/2025 12:01 PM View: Assessment Stats 5.1.20 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

Sen's Slope and 95% Confidence Band Analysis Run 5/21/2025 12:01 PM View: Assessment Stats 5.1.20
SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

Appendix 10

NE-3 Construction Data

NE-3

FLY ASH POND NATURE & ENVIRONMENTAL ENGINEERING

EXTENT CHARACTERIZATION

Date Piezometer Installed:
2-9-23

PIEZOMETER CONSTRUCTION DIAGRAM

NATURE AND EXTENT

DATE
03/2023

ENVIRONMENTAL ENGINEERING

LAND

AIR

WATER

Telephone: (573) 659-9078
Facsimile: (573) 659-9079

PATE
03/2023

DATE
03/2023

DAT

Well Development Record

Locatio	n: Sikes	ston Power Statio	on Nature and Extent		Date: 2-9-2	023								
Well/Pi	ezomete	er:	NE-3		Initial Depth to Groundwater (ft, btoc): 9.45 ft.									
Boreho	le Diame	eter:	8.25 "		Base of Well (ft, btoc): 32.4 ft.									
Casing	Diamete	er:	2 "		Filter Pack Hgt (ft): 13.0 ft.									
	oment n		Bailer/ Submersible Pump		Screened Interval Lithology: Alluvium									
Date/Time Purge Volume (cummulative)		_	Notes	Turbidity	pН	Specific Conductance	Temperature	Initial Water Level	Ending Water Level					
		(gallons)	110.00	(NTU)	(s.u.)	(umhos/cm)	(°C)	(ft., btoc)	(ft., btoc)					
2/9		5	Bailed to remove fines		, ,	/	, ,	NA	NA					
2/15	7:40	-	Pump on					9.45						
2/15	7:42	50	off at 7:55 / on at 8:00	36.02	6.99		16.1	9.51						
2/15	8:08	60	off at 8:15 / on at 8:20	16.62	7.13		16.6	9.53	9.46					
2/15	8:28	90	off at 8:35 / on at 8:41	2.36	7.13		16.7	9.52	9.46					
2/15	8:48	120	off at 8:56 / on at 9:01	8.55	7.16		16.7	9.52	9.45					
2/15	9:05	150	off at 9:16 / on at 9:21	1.32	7.15		16.8	9.53	9.46					
2/15	9:26	160		1.49	7.16		16.8	9.53						
2/15	9:29	170		1.73	7.16		16.8	9.53						
2/15	9:32	185	off at 9:37	1.15	7.17		16.8	9.53	9.46					
Comme	ents:		lculation based on minimum	depth to gr	oundwater.									
		Developed via b	pailer, and geosquirt pump			One V	Vell Volume =	13.8	gallons					
					Potabl	le Water Used W	/hile Drilling =	150.0	gallons					
Name:		K Ewers and J F	-itzpatrick		Company:	GREDELL Engi	neering Resource	ces, Inc.						

GREDELL Engineering Resources, Inc.

BORING LOG NE-3

Nature & Extent Evaluation

LOCATION: See Plan of Boring Locations

Sikeston, Missouri

G.S. ELEVATION: 300.1 **T.O.C. ELEVATION:** 303.40

CLIENT: SBMU Sikeston Power Station NORTHING: 380,948.04

EASTING: 1,076,633.18

CLIENT: SBMU Sikeston Power Station NORTHING: 380,948.04							EASTING: 1,076,633.18									
		ERY			LITHOLOGY											
DEPTH (FEET) ELEVATION	WELL CONSTRUCTION DIAGRAM WATER TABLE GRAPHIC LOG	PERCENT RECOVERY	DESCRI	FACIES I.D.	CLAY SILTY CLAY	SILT	VF SAND	F SAND	M SAND	C SAND	VC SAND	SM GRAVEL	LG GRAVEL			
0 - 300			SILTY SAND: Dark ye 3/6), interbedded with 1			:		:								
- - 																
2 - 298		80														
_ _ _ _																
4 – 296			SAND: Dark yellowish coarse.	brown (10YR 4/6),						:						
- - - -			SANDY SILT: Dark gra 2).	ayish brown (10YR 4/												
6 – 294			SANDY CLAY: Dark g	gray (10YR 4/1).												
- - - -	<u> </u>	77	SAND: Dark grayish br some coarse.	own (10YR 4/2), fine,												
8 – 292	$\frac{\sum}{z}$, ,	- wet.													
- - - -																
10 - 290			SAND: Dark grayish br to medium, few small g													
- - - -			SAND: Dark gray (10Y medium, few small grav													
DRILLING CO.: DRILLER: Re	Bulldog Drilling ob Scharringhausen		STRATIFICATION LINES ARE APPROXIMATE LITHOLOGIC B ONLY.	OUNDARIES WATER LE	EVELS:	DURIN AFTER			_			FEE				

Printed: 3/17/2023

LOGGED BY:

START TIME:

END TIME:

DATE DRILLED:

BOREHOLE DIA.:

JZ Upp

02-09-23

7:52

10:30

8.25"

NOTES: Sand heave noted at 10 feet BGS. Used 150 gallons potable water. VERTICAL DATUM: NAVD 88

HORIZONTAL DATUM: MO State Plane NAD 83 **WEATHER:** Cool, mostly cloudy, windy, 48°F

DATE: 02-09-23

PIEZOMETER: INSTALLED AT +/- 29.0

GREDELL Engineering BORING LOG NE-3 Resources, Inc. **Nature & Extent Evaluation LOCATION:** See Plan of Boring Locations Sikeston, Missouri **G.S. ELEVATION: 300.1 T.O.C. ELEVATION: 303.40 EASTING:** 1,076,633.18 **CLIENT: SBMU Sikeston Power Station NORTHING:** 380,948.04 LITHOLOGY PERCENT RECOVERY WELL CONSTRUCTION DIAGRAM CLAY SM GRAVEL WATER TABLE **DEPTH (FEET)** .G GRAVEL **DESCRIPTION** ELEVATION SAND ₫ SAND F SAND 12 288 80 14 286 - Dark grayish brown (10YR 4/2) - Dark gray (10YR 4/1), grading to fine to medium sand at 18 feet. 16 284 61 18 282 SAND: Dark gray (10YR 4/1), fine to medium. 20 - 280 SAND: Dark gray (10YR 4/1), fine to medium, few small gravel. 22 278 60 STRATIFICATION LINES ARE **WATER LEVELS:** DRILLING CO.: **Bulldog Drilling DURING DRILLING** APPROXIMATE LITHOLOGIC BOUNDARIES DRILLER: AFTER DRILLING: **FEET** Rob Scharringhausen ONLY. LOGGED BY: JZ Upp DATE: PIEZOMETER: INSTALLED AT +/- 29.0 DATE DRILLED: 02-09-23 NOTES: Sand heave noted at 10 feet **VERTICAL DATUM: NAVD 88** START TIME: 7:52 BGS. Used 150 gallons HORIZONTAL DATUM: MO State Plane NAD 83 **END TIME:** 10:30 potable water. WEATHER: Cool, mostly cloudy, windy, 48°F **BOREHOLE DIA.:** 8.25"

GREDELL Engineering BORING LOG NE-3 Resources, Inc. **Nature & Extent Evaluation LOCATION:** See Plan of Boring Locations Sikeston, Missouri **G.S. ELEVATION: 300.1 T.O.C. ELEVATION: 303.40 EASTING:** 1,076,633.18 **CLIENT: SBMU Sikeston Power Station NORTHING:** 380,948.04 **LITHOLOGY** PERCENT RECOVERY WELL CONSTRUCTION DIAGRAM CLAY SM GRAVEL WATER TABLE **DEPTH (FEET)** -G GRAVEL **DESCRIPTION** ELEVATION VF SAND VC SAND ₫ SAND F SAND C SAND 24 276 SAND: Dark gray (10YR 4/1), fine to medium, few small gravel. 26 274 60 28 272 30 - 270 Boring terminated at 30.0 feet in Sand. 32 268 34 266 STRATIFICATION LINES ARE **WATER LEVELS:** DRILLING CO.: **Bulldog Drilling DURING DRILLING** APPROXIMATE LITHOLOGIC BOUNDARIES DRILLER: AFTER DRILLING: **FEET** Rob Scharringhausen ONLY. LOGGED BY: JZ Upp DATE: PIEZOMETER: INSTALLED AT +/- 29.0 DATE DRILLED: 02-09-23 NOTES: Sand heave noted at 10 feet **VERTICAL DATUM: NAVD 88** START TIME: 7:52 BGS. Used 150 gallons HORIZONTAL DATUM: MO State Plane NAD 83 **END TIME:** 10:30 potable water. WEATHER: Cool, mostly cloudy, windy, 48°F **BOREHOLE DIA.:** 8.25"