1505 East High Street Jefferson City, Missouri 65101 Telephone (573) 659-9078 Facsimile (573) 659-9079

## **GREDELL Engineering Resources, Inc.**

# Sikeston Power Station 2021 Annual Groundwater Monitoring Report for Bottom Ash Pond For Compliance with USEPA 40 CFR 257.90(e)

Prepared for:



Mr. Luke St. Mary Sikeston Power Station 1551 West Wakefield Avenue Sikeston, Missouri 63801



# Sikeston Power Station 2021 Annual Groundwater Monitoring Report for Bottom Ash Pond For Compliance with USEPA 40 CFR 257.90(e)

#### **Prepared for:**

Sikeston Board of Municipal Utilities 1551 West Wakefield Avenue Sikeston, Missouri 63801

January 2022

Prepared by:

GREDELL Engineering Resources, Inc.
1505 East High Street
Jefferson City, Missouri 65101
Phone: (573) 659-9078
www.ger-inc.biz

# Sikeston Power Station 2021 Annual Groundwater Monitoring Report for Bottom Ash Pond For Compliance with USEPA 40 CFR 257.90(e)

#### January 2022

#### **Table of Contents**

| 1.0                                    | INTRODUCTION                                                  | 1           |
|----------------------------------------|---------------------------------------------------------------|-------------|
| 2.0                                    | GROUNDWATER MONITORING SYSTEM                                 | 3           |
| 3.0<br>3.1                             | FIELD SAMPLING SUMMARYField Quality Assurance/Quality Control |             |
| 4.0<br>4.1<br>4.2<br>4.3<br>4.4<br>4.5 | RepresentativenessComparability                               | 5<br>5<br>6 |
| 5.0<br>5.1                             | STATISTICAL ANALYSISStatistical Results                       |             |
| 6.0                                    | SUMMARY                                                       | 10          |
| 7.0                                    | LIMITATIONS                                                   | 11          |
| 8.0                                    | REFERENCES                                                    | 12          |

#### **List of Figures**

Figure 1 – Groundwater Contour Map – April 16, 2021

#### **List of Tables**

- Table 1 Groundwater Monitoring Network Summary
- Table 2 Historical Groundwater Level Summary
- Table 3 Water Level and Field Parameter Summary
- Table 4 Groundwater Monitoring Constituents
- Table 5 Relative Percent Difference Summary
- Table 6 Alternate Data Sets
- Table 7 Intra-Well Prediction Limit Summary

#### **List of Appendices**

- Appendix 1 Field Sampling Notes
- Appendix 2 Laboratory Analytical Results
- Appendix 3 Laboratory Quality Assurance/Quality Control Data
- Appendix 4 Groundwater Quality Data Base
- Appendix 5 Statistical Power Curve
- Appendix 6 Time Series Plots
- Appendix 7 Box and Whiskers Plots
- Appendix 8 Prediction Limit Charts

#### 1.0 INTRODUCTION

The Sikeston Power Station (SPS), owned and operated by the Sikeston Board of Municipal Utilities (SBMU), is an electric power producer and distributor located within the western city limits of Sikeston, in southern Scott County, Missouri. The SBMU-SPS began operation in 1981 and produces approximately 235 megawatts. Coal combustion residuals (approximately 10,000 tons per annum) are currently sold or placed in the facility's two coal ash surface impoundments located immediately east of the power station. Both impoundments are on properties owned and controlled by SBMU. One coal ash impoundment measuring approximately 61 acres in size is used for bottom ash disposal. The second coal ash impoundment measuring approximately 30 acres in size is primarily used for fly ash disposal. It is subject to the alternate compliance schedule specified by the United States Environmental Protection Agency (USEPA) under 40 CFR Part 257.100(e)(5)(ii) due to its initial inactive status and the Response to Partial Vacatur (the Direct Final Rule). Consequently, this report pertains specifically to the Bottom Ash Pond.

Pursuant to USEPA's 40 CFR Part 257 (§257) Federal Criteria for Classification of Solid Waste Disposal Facilities and Practices, Subpart D – Standards for Disposal of Coal Combustion Residuals (CCR) in Landfills and Surface Impoundments (ponds), the establishment of a groundwater monitoring system and routine detection sampling and reporting is required at all coal ash surface impoundments. The purpose of a monitoring well system is to evaluate the quality of groundwater as it passes beneath the waste mass within an impoundment. Groundwater samples are collected and analyzed on a semi-annual basis in accordance with §257.93, or as otherwise detailed in a site-specific Groundwater Monitoring and Sampling Plan (GMSAP). Statistical analyses of the resulting data are conducted in accordance with §257.93(f), and the results are included in this Annual Groundwater Monitoring Report in accordance with §257.90(e). If results suggest a statistically significant increase (SSI) in one or more constituents for detection monitoring listed in Appendix III of §257, a written demonstration is required to determine if the SSI is attributable to an ash pond release or to other causative factors. If a successful demonstration is not made, an assessment monitoring program must be initiated as required under §257.95.

Prior to completion of the 2018 Annual Groundwater Monitoring and Corrective Action Report (Gredell Engineering, 2019), an Alternate Source Demonstration (ASD) was prepared to address three suspected SSIs in one of the wells comprising the groundwater monitoring network for the Bottom Ash Pond. The ASD was successfully completed and certified in accordance with §257.94(e)(2) on September 26, 2018. The ASD report (Gredell Engineering, 2019) documented that the suspected SSIs in monitoring well MW-8 (Chloride, Sulfate, and Calcium) resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. As a result of this successful ASD, semi-annual detection monitoring in accordance with §257.94 has continued as specified in §257.94(b). The ASD also concluded that a minimum of eight additional rounds of background data be collected and analyzed for the constituents listed in Appendix III and IV to Part 257. Following the collection of the 8<sup>th</sup> additional round of background sampling in October 2020, the additional data were reviewed, and the data were used to update the baseline

data sets for each well. A collection of statistical tools, including time series plots, box and whisker plots, histograms, probability plots, outlier analysis, trend analysis, and analysis of variation, was used to explore, understand, and prepare the data sets for statistical analysis. This analysis allowed for censoring of outliers and data set detrending, revised prediction limits were calculated for comparison to detection monitoring results compiled after October 2020. This statistical analysis was performed in accordance with §257.93(f) using the appropriate statistical analysis method as filed in the SBMU-SPS operating record on October 17, 2017.

This report describes the results of the eighth semiannual detection groundwater sampling event conducted at the SPS Bottom Ash Pond on April 16 and 17, 2021. Included is a description of the sampling event, groundwater elevations, water table surface, summary of field activities, analytical results, and statistical analysis results. Field sampling and reporting activities were conducted in accordance with the site-specific GMSAP. The ninth semi-annual groundwater sampling field activities were initiated on November 1, 2021, but data analysis was not complete at the time of this report and will therefore be included in the next Annual Groundwater Monitoring Report.

#### 2.0 GROUNDWATER MONITORING SYSTEM

The groundwater monitoring system for the Bottom Ash Pond consists of five monitoring wells. Well locations are depicted on Figure 1. The wells are identified as MW-3, MW-4, MW-5, MW-6, and MW-8. Monitoring wells MW-3 and MW-6 are located hydraulically upgradient of the Bottom Ash Pond, whereas MW-4, MW-5 and MW-8 are hydraulically downgradient of the Bottom Ash Pond. MW-3 through MW-6 were installed during characterization of the site in May 2016 (Gredell Engineering, 2017). MW-8 was installed in April 2017 to serve as an additional downgradient monitoring well. Well construction activities were performed under the direction of a Registered Geologist in the State of Missouri. Well design and installation techniques were completed in accordance with 10 CSR 23-4, which is consistent with the standards summarized in 40 CFR 257.91(e). All five wells monitor uppermost groundwater, which is within the alluvial aquifer at the Bottom Ash Pond site. Each well is between 34 and 36 feet deep as measured from ground surface and yields sufficient quantities of water for the purposes of sampling and analysis.

Table 1 presents a construction summary of the wells comprising the Bottom Ash Pond groundwater monitoring system. Figure 1 depicts well locations and groundwater contour map of the uppermost aquifer for the April 2021 semi-annual sampling event. This map confirms that water in the uppermost aquifer continues to move in a west-southwesterly direction, consistent with the conclusions of the Site Characterization Report (Gredell Engineering, 2017). Table 2 summarizes historical piezometric data from the Bottom Ash Pond groundwater monitoring system and indicates that groundwater flow direction has remained consistent since the system was installed. All groundwater wells are equipped with dedicated tubing for use with a peristaltic pump. This system has been used for chemical sampling since inception of groundwater sampling with the Bottom Ash Pond monitoring system. The Bottom Ash Pond monitoring system is described in more detail in the site-specific GMSAP for this facility.

#### 3.0 FIELD SAMPLING SUMMARY

SPS environmental staff initiated the eighth semi-annual detection groundwater sampling event on April 16, 2021, at the Sikeston Power Station. Following this sampling event, it was noted that Total Dissolved Solids (TDS) analysis for sample MW-3 was completed after the hold time had expired. Monitoring well MW-3 is also a component of the Fly Ash Pond monitoring system, and because MW-3 was also sampled on April 17, 2021 and analyzed within the holding time, this TDS result was used for Bottom Ash Pond detection monitoring compliance for this sampling event.

Groundwater samples were collected using low-flow sampling techniques and dedicated sampling equipment. Field tests of indicator parameters were performed using an In-Situ, Inc. SmarTROLL<sup>TM</sup> MP flow cell unit and HF Scientific MicroTPI field portable turbidimeter. Each groundwater sample was subsequently analyzed for the constituents listed in §257 Appendix III. All monitoring wells produced sufficient volumes of groundwater for full analysis.

The environmental staff inspected each monitoring well upon arrival. Wells appeared to be in satisfactory condition and had locks in place. Staff initially gauged water levels in the monitoring wells using a standard electronic water level meter graduated in increments of 0.01 feet. Static water levels were recorded on forms provided in the GMSAP. Each well was then purged while staff monitored water quality until indicator parameters (pH and specific conductance) stabilized in accordance with the criteria in the GMSAP. Additional parameters (turbidity, temperature, dissolved oxygen, and oxidation/reduction potential) were monitored for stability prior to groundwater sample collection. Following stabilization of indicator parameters, final field data were recorded, and groundwater samples were then collected.

Field notes documenting the sampling event and a copy of the chain-of-custody form are presented in Appendix 1. Field sampling notes are also summarized in Table 3, including initial and final water level measurements, purge volumes, and pH. Laboratory analytical reports for the sampling event, including the field blanks and sample duplicates, are included in Appendix 2. Quality Assurance/Quality Control (QA/QC) documentation is presented in Appendix 3. A summary of background and detection monitoring analytical data, including field parameters, is presented in Appendix 4.

#### 3.1 Field Quality Assurance/Quality Control

Field QA/QC during the April 16, 2021 sampling event included the collection of one field blank and one field duplicate. The duplicate was collected from MW-8 (Table 5). Rinsate blanks were not collected because dedicated sampling equipment was used. Samples were immediately shipped to PDC Laboratories' (PDC Labs) primary facility located in Peoria, Illinois using standard chain-of-custody documentation procedures. Samples collected during this sampling event were received by the primary facility on April 20, 2021 and subsequently analyzed for the six detection monitoring constituents listed in §257 Appendix III and required under §257.94(b) (Table 4). Final analytical reports were received from PDC Laboratories on June 11, 2021.

#### 4.0 ANALYTICAL SUMMARY

Analytical data summary data reports for each monitoring well sampled during the April 2021 detection monitoring event are provided in Appendix 2. The data pertain to water quality results from the uppermost aquifer in the area bordering the Bottom Ash Pond, along with sample duplicate and field blank results.

#### 4.1 Laboratory Quality Control

Laboratory analyses of all groundwater samples collected in April 2021 were completed by PDC Laboratories, Inc., of Peoria, Illinois. The results were accompanied by appropriate QA/QC documentation. That documentation is presented in Appendix 3.

#### 4.2 Precision and Accuracy

Precision is a measure of the reproducibility of analytical results, generally expressed as a *Relative Percent Difference (RPD)*. Laboratory quality control procedures to measure precision consist of laboratory control sample (LCS) analysis and analysis of matrix spike/matrix spike duplicates (MS/MSD). These analyses are used to define analytical variability. Accuracy is defined as the degree of agreement between the measured amount of a species and the amount actually known to be present, expressed as a percentage. It is generally determined by calculating the percent recoveries for analyses of surrogate compounds, laboratory control samples, continuing calibration check standards and matrix spike samples. Acceptable percent recoveries are established for SW-846 and USEPA methods. Field and laboratory blank analyses are also used to address measurement bias.

The analyses of the samples collected on April 16, 2021 were performed within appropriate hold times (except as noted above for TDS in MW-3) and both initial and continuing calibrations met acceptance criteria for all analyses. Similarly, method blanks and LCS analyses met acceptance criteria. The case narrative for the April 16, 2021 sampling event indicates that all testing was performed according to the lab's TNI accreditations. Several results from the April 16, 2021 event were qualified as follows:

- TDS analysis for MW-3 was conducted outside hold time (subsequent sampling at MW-3 on April 17, 2021 resulted in a TDS result within hold time).
- The Sulfate result for MW-6 is qualified with "Q4" to signify that the MS recovery result is greater than four times the spike level. The associated blank spike was acceptable.

Additional QA/QC comments for this sampling event include the following:

Field Duplicates: Analyses of duplicate samples are used to define the total variability of
the sampling/analytical system as a whole. One field duplicate from MW-8 was collected
during the April 16, 2021 sampling event. RPDs were calculated for all detected chemical
parameters, and a summary table showing the results of the RPD calculations is included
as Table 5. Using a tolerance level of ±20 percent, all calculated RPDs were within
acceptable ranges for each parameter.

- Field Blank: One field blank was incorporated into the data set for the April 16, 2021 sampling event. The field blank analytical results do not indicate concentrations above detection limits for sampled parameters.
- Laboratory Blanks: Method blanks, artificial, and matrix-less samples are analyzed to
  monitor the laboratory system for interferences and contamination from glassware,
  reagents, etc. Method blanks are taken throughout the entire sample preparation process.
  They are included with each batch of extractions or digestions prepared, or with each 20
  samples, whichever is more frequent. Reference to Appendix 3 should be made for
  comments related to these and other laboratory control samples.

The analysis of TDS for the sample collected at MW-3 on April 17, 2021 was performed within appropriate hold time and both initial and continuing calibrations met acceptance criteria. Accordingly, the TDS result for MW-3 is not qualified. Similarly, method blanks and LCS analyses met acceptance criteria. The analytical data report for the April 17, 2021 (Appendix 2) sampling event indicates that all testing was performed according to the lab's TNI accreditations.

#### 4.3 Representativeness

Representativeness expresses the degree to which sample data accurately and precisely reflect site conditions. Representativeness of the data is determined by comparing actual sampling procedures to those delineated in the field sampling plan, comparing results from field duplicate samples and reviewing the results of field blanks.

Approved sampling procedures are described in the GMSAP. Procedures specified in that plan have been followed. Approved sampling procedures should be reviewed annually. Groundwater monitoring data is evaluated using an intrawell statistical analysis methodology and is conducted separately for each constituent in each monitoring well using prediction limits in accordance with §257.93(f)(3) and the performance standards in §257.93(g). The stated statistical approach, along with supporting documentation and engineering certification, are available in the SBMU-SPS On-Site Operating Record.

#### 4.4 Comparability

Comparability expresses the confidence with which one data set can be compared to another data set measuring the same property. Comparability is ensured by using established and approved sample collection techniques and analytical methods, consistent basis of analysis, consistent reporting units, and analyzing standard reference materials

#### 4.5 Completeness

Completeness is a measure of the amount of valid data obtained from a measurement system compared to the amount expected under controlled laboratory conditions. Completeness is defined as the valid data percentage of the total tests requested. Valid data are defined as those where the sample arrived at the laboratory intact, properly preserved, in sufficient quantity to perform the requested analyses, and accompanied by a completed chain-of-custody form

(Appendix 3). Furthermore, the sample must have been analyzed within the specified holding time and in such a manner that analytical QC acceptance criteria are met.

#### 5.0 STATISTICAL ANALYSIS

The statistical analysis approach used to evaluate groundwater within the uppermost aquifer for the Bottom Ash Pond monitoring well network at SBMU-SPS consists of intra-well analysis using prediction limits. The analysis is conducted separately for each constituent in each of the five monitoring wells for each sampling event in accordance with §257.93(f)(3). This statistical method complies with the accepted performance standards listed in §257.93(g).

The background data used to evaluate current groundwater quality is based on 18 rounds of groundwater sampling of MW-3, MW-4, MW-5, and MW-6 spanning November 2016 to October 2020 and MW-8 spanning May 2017 to October 2020. In general, all background data were used for each well constituent pair. However, data trend removal and screening of outliers reduced the background sample population for some well constituent pairs. The background may be updated every two years, but any SSIs will not be included in background unless they are unconfirmed in accordance with Unified Guidance (USEPA, 2009).

Statistical analysis was performed in accordance with §257.93 using Sanitas© for Ground Water (Version 9.6.31; 2021). Intra-well prediction intervals were compared at the 99 percent confidence level for each constituent with a 1 of 2 retest methodology to improve accuracy and reduce false positives. The groundwater results from the April 2021 monitoring event were compared to the prediction limits (Table 7) to determine if potential SSIs over background are apparent.

If the number of reportable concentrations of a given constituent in a given well is not sufficient to permit parametric analysis, non-parametric prediction interval analysis is conducted. Both parametric and non-parametric prediction limit analysis were performed for the Bottom Ash Pond groundwater monitoring well network data. Following review of baseline data for outliers and trends, prediction intervals are computed based on the reviewed and screened background monitoring data sets (Appendix 4), including values reported as less than detection limits.

Initially, outlier analysis was performed for the background data set using Exploratory Data Analysis (EDA) with Sanitas©, time-series plots, box and whiskers plots, histograms, and probability plots. These analyses resulted in the identification of 12 outliers from the 630 data points. The outliers are identified in Appendix 4 and were screened from the background data prior to additional statistical analysis. Trend analysis was conducted on the screened background data sets using Sanitas© and modification of data sets was completed where constituent-well pairs were found to be significantly trending upward (or downward in the case of pH). The resulting alternate data sets are summarized in Table 6 and in Appendix 4.

The results of the statistical analysis for the April 2021 sampling event are described below. A complete database summarizing the sample results, dates of sampling, and the purpose of sampling event, as per §257.90(e)(3), is provided in Appendix 4. A statistical power curve, based on the background data, is provided in Appendix 5. Trend analysis (time-series) plots of background data for all detection monitoring constituents are presented in Appendix 6. Box and whiskers plots of background data are presented in Appendix 7. Prediction limit charts are provided in Appendix 8.

#### 5.1 Statistical Results

The results of the statistical analysis for the April 2021 Bottom Ash Pond groundwater monitoring data did not suggest the presence of SSIs. Consequently, semi-annual detection monitoring should continue as specified in §257.94(b).

#### 6.0 SUMMARY

The statistical analysis results for samples obtained during the eighth groundwater detection monitoring event conducted on April 16 and 17, 2021, do not indicate the presence of SSIs associated with a release from the Bottom Ash Pond. Therefore, it is recommended that semi-annual detection monitoring of the Bottom Ash Pond continue in accordance with §257.94(b).

#### 7.0 LIMITATIONS

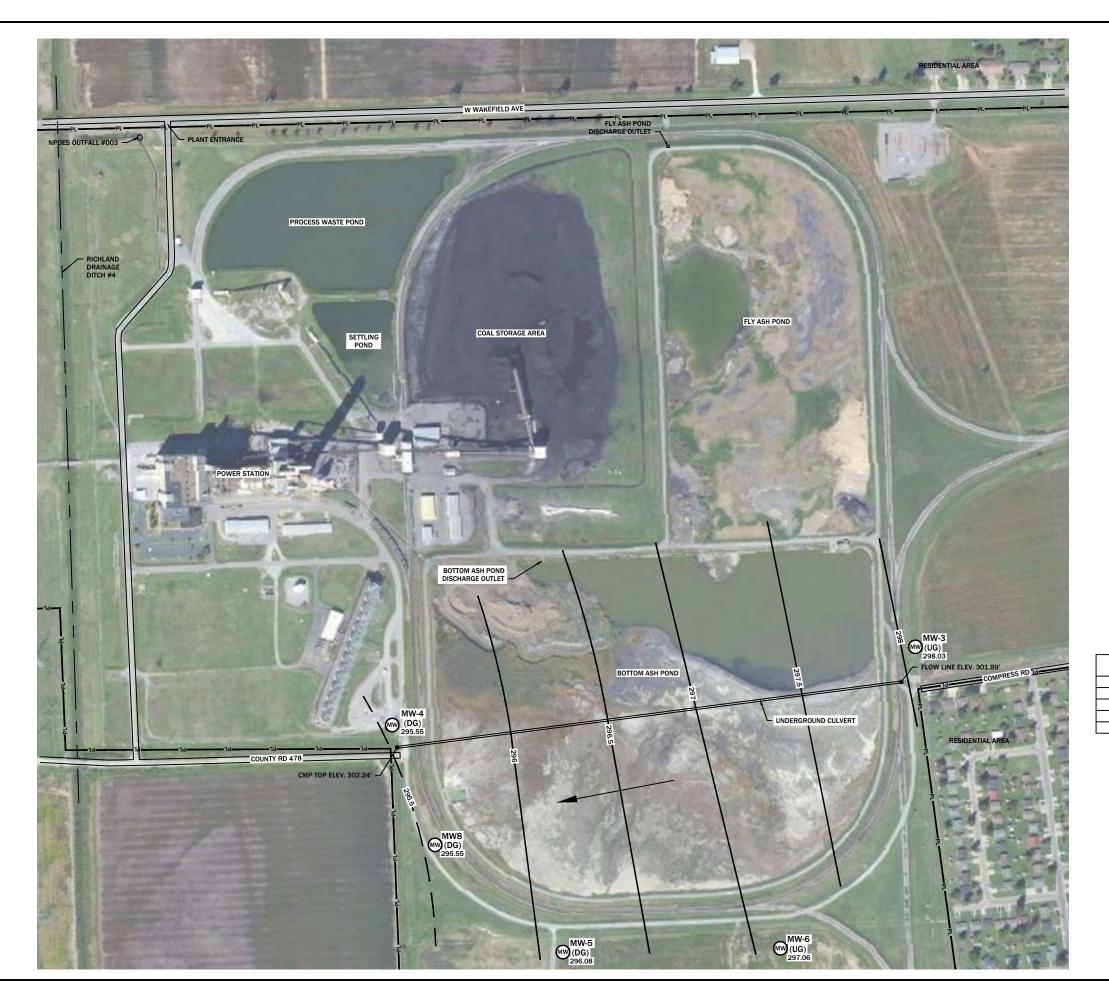
This report has been prepared for the exclusive use of the client and GREDELL Engineering Resources, Inc. for the specific project discussed in accordance with generally accepted environmental practices common to this locale at this time. The report is applicable only to this specific project and identified site conditions as they existed at the time of report preparation. The use of this report by others to develop independent interpretations of data or conclusions not explicitly stated in this report are the sole responsibility of those firms or individuals.

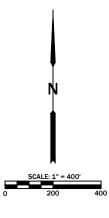
This report is not a guarantee of subsurface conditions. Variations in subsurface conditions may be present that were not identified during this or previous investigations. Interpretations of data and recommendations made in this report are based on observations of data that were available and referred to in this report unless otherwise noted. No other warranties, expressed or implied, are provided.

#### 8.0 REFERENCES

GREDELL Engineering Resources, Inc., 2017, Sikeston Power Station Site Characterization for Compliance with Missouri State Operating Permit #MO-0095575, dated May 2017.

GREDELL Engineering Resources, Inc., 2019, Sikeston Power Station, 2018 Annual Groundwater Monitoring and Corrective Action Report for Bottom Ash Pond for Compliance with USEPA 40 CFR 257.90(e), dated January 30, 2019.


GREDELL Engineering Resources, Inc., 2020, Sikeston Power Station, 2019 Annual Groundwater Monitoring Report for Bottom Ash Pond for Compliance with USEPA 40 CFR 257.90(e), dated January 30, 2020.


GREDELL Engineering Resources, Inc., 2021, Sikeston Power Station, 2020 Annual Groundwater Monitoring Report for Bottom Ash Pond for Compliance with USEPA 40 CFR 257.90(e), dated January 29, 2021.

Sanitas Statistical Software, © 1992-2021 SANITAS TECHNOLOGIES, Alamosa Colorado 81101-0012.

U.S. Environmental Protection Agency, March 2009, Statistical Analysis of Groundwater Monitoring *Data at RCRA Facilities Unified Guidance*: USEPA 530/R-09-007, Office of Resource Conservation and Recovery, Program Implementation and Information Division, Washington, D.C.

# **FIGURES**





LEGEND PROPERTY LINE GROUNDWATER CONTOUR MONITORING WELL UP GRADIENT MONITORING LOCATION DOWN GRADIENT MONITORING LOCATION DG GENERAL FLOW DIRECTION

- NOTES:
  1. IMAGE PROVIDED BY BING MAPS.
  2. MONITORING WELL LOCATIONS, CASING ELEVATIONS & UNDERGROUND CULVERT ELEVATIONS SURVEYED BY BOWEN ENGINEERING & SURVEYING.
  3. GROUNDWATER ELEVATIONS MEASURED BY SIKESTON POWER STATION STAFF ON APRIL 16, 2021.
  4. MAP DEVELOPMENT BASED ON CONTOURS GENERATED BY SURFER® SOFTWARE.
  5. RANGE OF HYDRAULIC GRADIENT AS DETERMINED BY SURFER® SOFTWARE.

| GROUNDWATER<br>ELEVATION | CASING<br>ELEVATION                  | NORTHING                                                                        | EASTING                                                                                                                                                                                                                                              |
|--------------------------|--------------------------------------|---------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 298.03                   | 308.55                               | 381130.00                                                                       | 1079946.62                                                                                                                                                                                                                                           |
| 295.55                   | 305.61                               | 380804.62                                                                       | 1077766.95                                                                                                                                                                                                                                           |
| 296.08                   | 305.91                               | 379858.94                                                                       | 1078477.85                                                                                                                                                                                                                                           |
| 297.06                   | 307.72                               | 379874.77                                                                       | 1079384.36                                                                                                                                                                                                                                           |
| 295.55                   | 304.77                               | 380311.20                                                                       | 1077940.08                                                                                                                                                                                                                                           |
|                          | 298.03<br>295.55<br>296.08<br>297.06 | ELEVATION ELEVATION  298.03 308.55  295.55 305.61  296.08 305.91  297.06 307.72 | ELEVATION         ELEVATION         NORTHING           298.03         308.55         381130.00           295.55         305.61         380804.62           296.08         305.91         379858.94           297.06         307.72         379874.77 |

# GREDELL Engineering Resources, Inc. ENVIRONMENTAL ENGINEERING LAND - AIR - WATER 1505 East High Street Telephone: (573) 659-9078 Jefferson City, Missouri Facsimile: (573) 659-9079

SIKESTON POWER STATION BOTTOM ASH POND 2021 ANNUAL GROUNDWATER MONITORING & REPORT

FIGURE 1 GROUNDWATER CONTOUR MAP APRIL 16, 2021

# **TABLES**

## Table 1 Groundwater Monitoring Network Summary

| Monitoring Well ID <sup>1,2</sup> | Northing<br>Location <sup>3,4</sup> | Easting<br>Location <sup>3,4</sup> | Ground<br>Surface<br>Elevation <sup>3,4</sup><br>(feet) | Top of Riser<br>Elevation <sup>3,4</sup><br>(feet) | Well<br>Depth <sup>5</sup><br>(feet) | Base of Well<br>Elevation <sup>6</sup><br>(feet) | Screen<br>Length <sup>7</sup><br>(feet) | Top of<br>Screen<br>Elevation<br>(feet) |
|-----------------------------------|-------------------------------------|------------------------------------|---------------------------------------------------------|----------------------------------------------------|--------------------------------------|--------------------------------------------------|-----------------------------------------|-----------------------------------------|
| MW-3                              | 381130.00                           | 1079946.62                         | 306.11                                                  | 308.55                                             | 37.21                                | 271.34                                           | 10                                      | 281.5                                   |
| MW-4                              | 380804.62                           | 1077766.95                         | 303.26                                                  | 305.61                                             | 37.55                                | 268.06                                           | 10                                      | 278.3                                   |
| MW-5                              | 379858.94                           | 1078477.85                         | 303.57                                                  | 305.91                                             | 37.17                                | 268.74                                           | 10                                      | 278.9                                   |
| MW-6                              | 379874.77                           | 1079384.36                         | 305.37                                                  | 307.72                                             | 38.03                                | 269.69                                           | 10                                      | 279.9                                   |
| MW-8                              | 380311.20                           | 1077940.08                         | 302.37                                                  | 304.77                                             | 37.41                                | 267.36                                           | 10                                      | 277.6                                   |

#### NOTES:

- 1. Refer to Figure 1 for monitoring well locations.
- 2. Refer to Sikeston Power Station On-Site Operating Record for well construction diagrams.
- 3. Monitoring well survey data provided by Bowen Engineering & Surveying, Inc.
- 4. Horizontal Datum: Missouri State Plane Coordinates NAD 83 (Feet), Vertical Datum: NAVD 88 (Feet).
- 5. Depth measurements relative to surveyed point on top of well casing.
- 6. Sump installed at base of screen (0.2 feet length).
- 7. Actual screen length (9.7 feet) is the machine-slotted section of the 10-foot length of Schedule 40 PVC pipe.

Prepared by: KAE Checked by: MCC

#### Table 2 Historical Groundwater Level Summary

| Well ID  | MW-3   | MW-4    | MW-5           | MW-6       | MW-8   |  |  |
|----------|--------|---------|----------------|------------|--------|--|--|
| Date     |        | Groundw | ater Elevation | (feet MSL) |        |  |  |
| 05/12/16 | 298.13 | 296.01  | 296.68         | 297.41     | NM     |  |  |
| 06/28/16 | 297.58 | 294.75  | 295.51         | 296.57     | NM     |  |  |
| 07/15/16 | 297.37 | 294.77  | 295.53         | 296.44     | NM     |  |  |
| 08/08/16 | 297.05 | 294.66  | 294.87         | 295.77     | NM     |  |  |
| 09/08/16 | 296.76 | 294.40  | 294.96         | 295.84     | NM     |  |  |
| 10/05/16 | 296.40 | 294.02  | 294.70         | 295.57     | NM     |  |  |
| 11/01/16 | 296.10 | 293.99  | 294.49         | 295.24     | NM     |  |  |
| 11/30/16 | 296.03 | 294.26  | 294.80         | 295.37     | NM     |  |  |
| 01/24/17 | 296.35 | 294.73  | 295.19         | 295.77     | NM     |  |  |
| 01/26/17 | 296.35 | 294.73  | 295.19         | 295.77     | NM     |  |  |
| 02/22/17 | 296.00 | 294.40  | 294.81         | 295.41     | NM     |  |  |
| 02/24/17 | 296.00 | 294.40  | 294.81         | 295.41     | NM     |  |  |
| 03/20/17 | 296.45 | 295.10  | 295.46         | 295.97     | NM     |  |  |
| 04/19/17 | 296.35 | 294.73  | 295.19         | 295.81     | NM     |  |  |
| 04/27/17 | 296.72 | 295.41  | 295.78         | 296.20     | NM     |  |  |
| 05/17/17 | 297.81 | 295.76  | 296.31         | 297.11     | NM     |  |  |
| 05/18/17 | NM     | NM      | NM             | NM         | 295.67 |  |  |
| 06/08/17 | 297.81 | 295.64  | 296.17         | 296.96     | NM     |  |  |
| 06/09/17 | NM     | NM      | NM             | NM         | 295.57 |  |  |
| 07/13/17 | 296.98 | 294.60  | 295.22         | 296.06     | 294.70 |  |  |
| 08/03/17 | NM     | NM      | NM             | NM         | 294.12 |  |  |
| 08/15/17 | NM     | NM      | NM             | NM         | 294.02 |  |  |
| 08/30/17 | NM     | NM      | NM             | NM         | 293.72 |  |  |
| 09/14/17 | NM     | NM      | NM             | NM         | 293.57 |  |  |
| 09/27/17 | NM     | NM      | NM             | NM         | 293.26 |  |  |
| 10/31/17 | 295.22 | 293.11  | 293.65         | 294.41     | 293.20 |  |  |
| 06/13/18 | 297.33 | 294.93  | 295.60         | 296.47     | 295.02 |  |  |
| 11/26/18 | 295.63 | 293.76  | 294.27         | 294.91     | 293.88 |  |  |
| 12/26/18 | 296.04 | 294.19  | 294.64         | 295.36     | 294.31 |  |  |
| 01/08/19 | 296.38 | 294.62  | 295.17         | 295.77     | 294.73 |  |  |
| 02/05/19 | 296.73 | 294.99  | 295.46         | 296.06     | 295.07 |  |  |
| 02/22/19 | 298.35 | 296.58  | 297.33         | 297.94     | 296.79 |  |  |
| 03/27/19 | 298.51 | 296.05  | 296.72         | 297.69     | 296.15 |  |  |
| 04/16/19 | 298.93 | 296.58  | 297.31         | 298.22     | 296.67 |  |  |
| 05/14/19 | 299.25 | 296.36  | 297.10         | 298.21     | 296.45 |  |  |
| 05/28/19 | 298.95 | 296.01  | 296.80         | 297.91     | 296.16 |  |  |
| 06/12/19 | 298.82 | 296.00  | 296.71         | 297.82     | 296.10 |  |  |
| 07/17/19 | 298.38 | 295.84  | 296.46         | 297.44     | 295.97 |  |  |
| 07/24/19 | 298.41 | 295.97  | 296.66         | 297.57     | 296.13 |  |  |
| 08/14/19 | 297.80 | 295.03  | 295.70         | 296.76     | 295.12 |  |  |
| 08/28/19 | 297.55 | 294.81  | 295.47         | 296.51     | 294.91 |  |  |
| 09/16/19 | 297.22 | 294.51  | 295.20         | 296.20     | 294.63 |  |  |
| 10/10/19 | 296.84 | 294.29  | 294.89         | 295.85     | 294.36 |  |  |
| 10/22/19 | 296.80 | 294.40  | 295.00         | 295.88     | 294.50 |  |  |
| 11/04/19 | 297.34 | 295.24  | 295.80         | 296.57     | 295.32 |  |  |
| 02/18/20 | 299.00 | 296.50  | 297.28         | 298.22     | 296.66 |  |  |
| 03/30/20 | 300.09 | 297.66  | 298.48         | 299.40     | 297.81 |  |  |
| 07/21/20 | 298.35 | 295.16  | 295.98         | 297.19     | 295.32 |  |  |
| 10/20/20 | 297.08 | 294.53  | 295.29         | 296.17     | 294.77 |  |  |
|          | 298.03 | 295.55  | 296.08         | 297.06     | 295.55 |  |  |
| 04/16/21 | 230.00 | 200.00  | 230.00         | 231.00     | 200.00 |  |  |

#### NOTES:

- 1. Refer to Figure 1 for monitoring well locations.
- 2. Refer to Sikeston Power Station On-Site Operating Record for well construction diagrams.
- 3. NM Not Measured.
- 4. Maximum and minimum groundwater elevations are shaded.

# Table 3 Water Level and Field Parameter Summary April 16, 2021

| Monitoring<br>Well I.D. | Hydraulic Position | Initial Water<br>Level<br>(ft, BTOC <sup>2</sup> ) | Final Water<br>Level<br>(ft, BTOC <sup>2</sup> ) | Minimum <sup>3</sup><br>Purge Vol.<br>(mL <sup>4</sup> ) | Actual Purge<br>Vol.<br>(mL <sup>4</sup> ) | pH<br>(S.U.⁵) |
|-------------------------|--------------------|----------------------------------------------------|--------------------------------------------------|----------------------------------------------------------|--------------------------------------------|---------------|
| MW-3                    | Upgradient         | 10.52                                              | 10.52                                            | 300                                                      | 8,360                                      | 6.5           |
| MW-4                    | Downgradient       | 10.06                                              | 10.06                                            | 300                                                      | 9,420                                      | 7.4           |
| MW-5                    | Downgradient       | 9.83                                               | 9.83                                             | 300                                                      | 7,040                                      | 6.9           |
| MW-6                    | Upgradient         | 10.66                                              | 10.66                                            | 300                                                      | 4,500                                      | 6.8           |
| MW-8                    | Downgradient       | 9.22                                               | 9.22                                             | 300                                                      | 6,420                                      | 7.2           |

#### NOTES:

- 1. Sequence of sampling is MW-3, MW-6, MW-5, MW-8, MW-4.
- 2. BTOC: Below Top of Casing
- 3. Purge calculations based on 1/4" ID tubing and complete evacuation of single tubing volume.
- 4. mL: milliliter
- 5. S.U.: Standard Unit.

## Table 4 Groundwater Monitoring Constituents

|                               | U            | SEPA 40 CFR 257                        |                   |  |  |  |  |  |
|-------------------------------|--------------|----------------------------------------|-------------------|--|--|--|--|--|
| Appendix III                  | -            | Appendix IV -                          |                   |  |  |  |  |  |
| Constituents for Detectio     | n Monitoring | Constituents for Assessment Monitoring |                   |  |  |  |  |  |
| Chemical Constituent          | Method       | Chemical Constituent                   | Method            |  |  |  |  |  |
| pH (S.U.)                     | Field        | Antimony (μg/L)                        | SW 6020           |  |  |  |  |  |
| Boron (µg/L)                  | SW 6020      | Arsenic (μg/L)                         | SW 6020           |  |  |  |  |  |
| Calcium (mg/L)                | SW 6020      | Barium (µg/L)                          | SW 6020           |  |  |  |  |  |
| Chloride (mg/L)               | EPA 300.0    | Beryllium (µg/L)                       | SW 6020           |  |  |  |  |  |
| Fluoride (mg/L)               | EPA 300.0    | Cadmium (µg/L)                         | SW 6020           |  |  |  |  |  |
| Sulfate (mg/L)                | EPA 300.0    | Chromium (µg/L)                        | SW 6020           |  |  |  |  |  |
| Total Dissolved Solids (mg/L) | SM 2540C     | Cobalt (µg/L)                          | SW 6020           |  |  |  |  |  |
|                               |              | Fluoride (mg/L)                        | EPA 300           |  |  |  |  |  |
|                               |              | Lead (µg/L)                            | SW 6020           |  |  |  |  |  |
|                               |              | Lithium (µg/L)                         | SW 6020           |  |  |  |  |  |
|                               |              | Mercury (µg/L)                         | SW 6020           |  |  |  |  |  |
|                               |              | Molybdenum (µg/L)                      | SW 6020           |  |  |  |  |  |
|                               |              | Selenium (μg/L)                        | SW 6020           |  |  |  |  |  |
|                               |              | Thallium (µg/L)                        | SW 6020           |  |  |  |  |  |
|                               |              | Radium 226 and 228 combined (pCi/L)    | EPA 903.1 & 904.0 |  |  |  |  |  |

#### NOTES:

- 1. S.U. = Standard Unit.
- 2.  $\mu$ g/L = micrograms per liter.
- 3. mg/L = milligrams per liter.
- 4. pCi/L = picocurie per liter.

# Table 5 Relative Percent Difference Summary April 16, 2021

| Chemical Parameter     | Units | MW-8   | DUP    | Relative Percent Difference |
|------------------------|-------|--------|--------|-----------------------------|
| рН                     | S.U.  | 7.2    | 7.2    | 0.00                        |
| Boron                  | μg/L  | 460    | 460    | 0.00                        |
| Calcium                | mg/L  | 100    | 100    | 0.00                        |
| Chloride               | mg/L  | 51     | 59     | 14.55                       |
| Fluoride               | mg/L  | <0.250 | <0.250 | N/A                         |
| Sulfate                | mg/L  | 130    | 120    | 8.00                        |
| Total Dissolved Solids | mg/L  | 400    | 420    | 4.88                        |

#### NOTES:

- 1. S.U. = Standard Unit.
- 2. μg/L = micrograms per liter.
- 3. mg/L = milligrams per liter.
- 4. Relative Percent Difference tolerance = 20%.
- 5. N/A = Not applicable parameter concentration below reporting limit.

Prepared by: KAE Checked by: MCC

## Table 6 Alternate Data Sets

| Constitu | ent-Well Pair <sup>1</sup> | Proposed Background Data Base             | Background   |
|----------|----------------------------|-------------------------------------------|--------------|
| Well ID  | Constituent                | (to eliminate trending data) <sup>2</sup> | set size (n) |
| MW-3     | pН                         | June 2017 through October 2020            | 12           |
| MW-6     | рН                         | January 2017 through October 2020         | 17           |
| IVIVV-0  | Boron                      | November 2018 through October 2020        | 8            |
|          | Calcium                    | November 2018 through October 2020        | 8            |
| MW-8     | Chloride                   | June 2018 through October 2020            | 8            |
|          | Total Dissolved Solids     | November 2018 through October 2020        | 8            |

#### Notes:

- 1. Trending constituent-well pairs identified based on Mann-Kendall Sen's Slope Trend Analysis of data.
- 2. Alternate background data sets proposed to eliminate significant increasing (or decreasing for pH) trends in data sets.

Prepared by: KAE

Checked by: MCC

## Table 7 Intra-Well Prediction Limit Summary

| 40 CFR 257 Appendix III Constituents for<br>Detection Monitoring | Units | MW-3  | MW-4  | MW-5  | MW-6  | MW-8  |
|------------------------------------------------------------------|-------|-------|-------|-------|-------|-------|
| pH Upper                                                         | S.U.  | 6.749 | 7.498 | 6.997 | 7.00  | 7.233 |
| pH Lower                                                         | S.U.  | 6.278 | 7.232 | 6.694 | 6.67  | 7.047 |
| Chloride                                                         | mg/L  | 2.363 | 19.09 | 18.9  | 2.956 | 76.4  |
| Fluoride                                                         | mg/L  | 0.438 | 0.259 | 0.272 | 0.338 | 0.26  |
| Sulfate                                                          | mg/L  | 28.98 | 140.5 | 262.2 | 39.39 | 146.6 |
| Total Dissolved Solids                                           | mg/L  | 180   | 407.2 | 539.8 | 246.7 | 532.9 |
| Boron                                                            | μg/L  | 49.58 | 1517  | 481.6 | 57.75 | 571.1 |
| Calcium                                                          | mg/L  | 23.15 | 95.47 | 131   | 48.1  | 117.8 |

#### Notes:

- 1. Prediction limits for MW-3 through MW-6 based on data spanning November 2016 to October 2020, except as noted in Table 2.
- 2. Prediction limits for MW-8 based on data spanning May 2017 to October 2020, except as noted in Table 2.

Prepared by: KAE Checked by: MCC

# **APPENDICES**

# **Appendix 1**

Field Sampling Notes

# **Appendix 1**

Field Sampling Notes – April 16, 2021 (First 2021 Semi-annual Event) Field Instrumentation Calibration Log

| Date Time Standard Measurement Standard (µS/cm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | Field Instr | ruments:       | In-Situ    | sma   | rTROLL Fie   | ld Meter              |         | 9                          | -                   | HF scientific, | , In | c. Micro TPI Fi                       | eld Portable Tu | rbid   | imeter  | B. I      |      |                                    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-------------|----------------|------------|-------|--------------|-----------------------|---------|----------------------------|---------------------|----------------|------|---------------------------------------|-----------------|--------|---------|-----------|------|------------------------------------|
| Date Time Standards Measurement (µS/cm)    Date Time   Date   Time   Date   Dat |                      |             | S/N #:         | _4         | 7     | 424          | 7                     |         |                            | S/                  | N#: 201        | 6    | 0736                                  | 5               |        |         |           |      |                                    |
| Tap Water   Source   Standard     |                      | Date        | Time           |            | rds   | Measure-     | Conductan<br>Standard | ce<br>I | Conductance<br>Measurement |                     | iard (mV)      | - 1  | Reduction<br>Potential<br>Measurement | (%              |        | ygen    | Standards |      | Turbidity<br>Measurements<br>(NTU) |
| Temperature   2/0.5°C   Temperature   2/0.5°C   Temperature   2/0.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   | <u> </u>             |             |                | 4.00       | =     | 4.00         |                       |         |                            |                     | = 22.030       |      |                                       |                 | =      | 2143    | C 0.02    | =    | 0.02                               |
| Temperature   2/0.5°C   Temperature   2/0.5°C   Temperature   2/0.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   | 10 E                 | 11-16       |                | 7.00       | =     | 200          |                       |         |                            |                     |                |      |                                       |                 | =      | Skyst   | 10.0      | =    | 15.0                               |
| Temperature = 7.06    10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00    | Beginning<br>Calibra | Jerl        | 0630           |            | =     |              | 1413                  | =       | 1412.6                     |                     | = 229          | =    | 229,5                                 | Pressure        | н      |         | 1000      | =    | 1500                               |
| Tap Water Source Source Source   Sike 10.0   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   1 | ם                    |             |                |            |       | /6,09        |                       |         |                            |                     |                |      |                                       | Measurement     | =      | 100.06  | 70        |      |                                    |
| Tap Water Source   Standard (mV)   Standard (m | d of Day Check       |             |                | 4.00       | =     | 4.03         |                       |         |                            | Temperature<br>(°C) | = 72.65°C      | 1    |                                       |                 | =      |         |           | =    | 10.0                               |
| tes: The Multi-Probe Field Meter measures Temperature, Specific Conductance, Dissolved Oxygen, pH, and Oxidation Reduction Potential.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                      | . 11        | -u             | 7.00       | =     |              |                       |         | -                          |                     | 11             | 166  |                                       | =               | Siller | 10.0    | =         | 9.84 |                                    |
| The Multi-Probe Field Meter measures Temperature, Specific Conductance, Dissolved Oxygen, pH, and Oxidation Reduction Potential.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      | 3021        | 1534           | 10.00      | =     | 10.00        | 1413                  | 1413 =  | /398.7                     |                     | = 229          | =    | 213.0                                 | Pressure        | =      |         |           | =    | 989.                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Enc                  |             |                | 1,0,00     |       |              |                       |         |                            |                     |                | 1    |                                       | Measurement     | =      | 100.550 |           |      |                                    |
| Dissolved oxygen is calibrated via % saturation method; however, field measurements are recorded as mg/L.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | es:                  | The HF so   | cientific, inc | . Micro TF | PI Fi | eld Portable | Turbidimeter i        | nea     | sures Turbidity.           |                     |                | Re   | eduction Potenti                      | al.             |        |         |           |      |                                    |

#### **Monitoring Well Field Inspection**

| Facility: SBMU SPS - CCR Groundwater Monitoring  Monitoring Well ID: MW3  Name (Field Staff): A Patel D D: Ilingham  Date: U-16-2!                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Access: Accessibility: Good Fair Poor Well clear of weeds and/or debris?: Yes No Well identification clearly visible?: Yes No Remarks:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Concrete Pad: Condition of Concrete Pad: Conditi |
| Protective Outer Casing: Material = 4" x 4" Steel Hinged Casing with Hasp  Condition of Protective Casing: Good Damaged  Condition of Locking Cap: Good Damaged  Condition of Lock: Good Damaged  Condition of Weep Hole: Good Damaged  Remarks:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Well Riser: Material = 2" Diameter, Schedule 40 PVC, Flush Threaded  Condition of Riser: Good ✓ Damaged  Condition of Riser Cap: Good ✓ Damaged  Measurement Reference Point: Yes ✓ No  Remarks:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Dedicated Purging/Sampling Device: Type = ½ " ID Semi-Rigid Polyethylene & 0.170" ID Flexible Silicone Tubing  Condition: Good  Damaged Missing  Remarks:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Monitoring Well Locked/Secured Post Sampling?: Yes L No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

Prepared by: GREDELL Engineering Resources, Inc.

January 2017

#### Field Sampling Log

| Initial Water | r Level (fee  | t btoc):        | 10.50          | }           |           | Date:        | 04-1                                           | 6-20               | 21                                     |             |       |
|---------------|---------------|-----------------|----------------|-------------|-----------|--------------|------------------------------------------------|--------------------|----------------------------------------|-------------|-------|
|               |               | evation (NAVE   |                | 75 b        |           | Air Pressur  | e in Well?                                     | Y /1               |                                        |             |       |
|               | FORMATIO      |                 |                |             |           |              |                                                |                    |                                        |             |       |
| and the same  |               | 6-202           | 1              | ,           |           |              |                                                |                    |                                        |             |       |
| Name (San     | nole Collect  | tor):           | DI             | lingh       | CIM       |              |                                                |                    |                                        |             |       |
|               |               |                 |                | 0           |           | dicated Tub  | oing?                                          | Ŷ) N               |                                        |             |       |
| wethod of     | Well Purge:   |                 | v Perstaltic F | ump         |           | nçated rub   | mig:                                           | יייי               |                                        |             |       |
| Time Purgi    | ng Initiated: |                 | 731            |             | One       | e (1) Well V | /olume (mL):                                   | 9                  | NA                                     |             |       |
| Beginning \   | Water Leve    | I (feet btoc):  | 10             | .52         | Tota      | al Volume l  | Purged (mL)                                    | : ,                | 836                                    | <u>S</u>    |       |
| Beginning (   | Groundwate    | er Elevation (N | NAVD88):       |             | We        | II Purged T  | o Dryness?                                     |                    | Y / (N)                                |             |       |
|               |               |                 | _              | 20          |           | _            | -                                              | n (feet htoc):     | 10.5                                   | ر<br>ا      |       |
|               |               | btoc):          |                | 17          | vva       |              | e., pump is c                                  |                    | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |             |       |
| Casing Dia    | meter (feet)  | 2" Sch 4        | 0 PVC          |             | Tim       | ne Sampline  | g Completed                                    | ):                 | 0837                                   | 7           |       |
|               |               |                 |                |             |           |              | <b>5</b> • • • • • • • • • • • • • • • • • • • |                    |                                        |             |       |
| PURGE ST      | ABILIZATI     | Cumulative      |                | Specific    | Dissolved |              | Oxidation                                      |                    | Water                                  | Notes       |       |
| Time          | Purge<br>Rate | Volume          | Temp<br>(°C)   | Conductance | Oxygen    | pH<br>(S.U.) | Reduction Potential                            | Turbidity<br>(NTU) | Level                                  | (e.g., opac | city, |
|               | (mL/min)      | (mL)            |                | (µS/cm)     | (mg/Ļ)    |              | (mV)                                           |                    | (feet btoc)                            | color, odd  |       |
| 0733          |               | 400             | 15.43          |             | 29.67     | 6.8          | 51.3                                           | 53.64              | 10.52                                  | Art Flake   |       |
| 0735          | 300           | 1000            | 14.54          |             |           | 6.5          | 64.0                                           | 70.06              |                                        |             | 1,    |
| 0737          | 350           | 1700            | 14.31          | 204.14      | 24.71     | 6.4          | 62.7                                           | 61.05              |                                        | 11          |       |
| 0739          | -             | 2320            | 14.26          | 203.00      |           | 6.4          | 61.1                                           | 24.64              |                                        | 1           | 1     |
| 0741          |               | 2860            | 14.17          | 200.46      |           |              | 60.1                                           | 23.48              |                                        | 11          |       |
| 0743          |               | 3400            |                | 196.83      |           |              | 56.5                                           |                    | 10.52                                  |             | -     |
| 0745          |               | 4023            | 14.16          | 195.06      |           |              | 55.0                                           |                    | 10.50                                  | "           | 1     |
| 0747          |               |                 |                | 194.27      |           |              | 53.5                                           | 7.49               | 10.52                                  |             | 79    |
| 0749          |               | 5320            | 14.13          | 196.(3      | 15.78     | 6.5          | 52.5                                           | 5.17               | 10.52                                  | 11          | e,    |
| 0751          |               | 5640            | 14.05          | 191.53      | 14.49     | 6.5          | 50.7                                           | 7.79               | 10.52                                  |             | 77    |
| 0753          |               | 6200            | 14.00          |             | 13.85     | 6.5          | 49.5                                           | 6.62               | 10.52                                  |             | 17.   |
| 0755          |               | 6740            | 13.99          |             |           | 6.5          | 47.3                                           | 6.41               | 13.52                                  |             | 1/    |
| 0757          |               | 7260            |                | 191.92      |           | 6.5          | 45.6                                           | 4.70               | الى. جدا                               |             | •     |
| 0759          | 280           |                 | 14.04          |             |           |              |                                                | 4.25               |                                        |             |       |
| 0801          | 210           | 8360            | 14.15          | 184.2       | 12.69     | 6.5          | 41.3                                           | 4.03               | 10.52                                  |             |       |
|               |               |                 |                |             |           |              |                                                |                    |                                        |             |       |
|               |               |                 |                |             |           |              | -                                              |                    |                                        |             | _     |
|               |               |                 |                |             |           | 11           |                                                |                    |                                        |             |       |

btoc - below top of casing

#### Field Sampling Log

| Facility:                                                                                                | ODIVIO OIKESTOITI                       | Power Station                      |                                    |                                           |              | /ell ID:                                    |                    |
|----------------------------------------------------------------------------------------------------------|-----------------------------------------|------------------------------------|------------------------------------|-------------------------------------------|--------------|---------------------------------------------|--------------------|
| ampling Informa                                                                                          | tion:                                   |                                    |                                    |                                           |              |                                             |                    |
| lethod of Sampling                                                                                       | g: Low Flow -                           | Perstaltic Pun                     | np & Tubing                        |                                           |              | Dedicated:                                  | (V) / N            |
| Vater Level @ San                                                                                        | npling (feet btoc)                      | 10.9                               | <u>ئ</u>                           |                                           |              |                                             |                    |
| Monitoring Event:                                                                                        | Annual ( )                              | Semi-Annu                          | ual 😝 Quartei                      | fly() Mo                                  | nthly ( )    | Other ( )                                   |                    |
| inal Purge Stabliza                                                                                      | ation Sampling D                        | ata:                               |                                    |                                           |              |                                             |                    |
| <u>Date</u><br>Sample Time                                                                               | Sample Rate<br>(mL/min)                 | Temp<br>(°C)                       | Specific<br>Conductance<br>(µS/cm) | Dissolved Oxygen<br>(mg/L)                | pH<br>(S.U.) | Oxidation<br>Reduction<br>Potential<br>(mV) | Turbidity<br>(NTU) |
| 04-16-2021                                                                                               | 270                                     | 14.0                               | 189.23                             | 12.69                                     | 6.5          | 41.3                                        | 4.03               |
| 2 - HF scientific, in                                                                                    | c. Micro TPI Fiel                       | eld Meter (Ten<br>d Portable Tur   | nperature, Specific<br>bidimeter   | ng instruments:<br>c Conductance, Dissolv | ed Oxygen, p | H, Oxidation Red                            | uction Pote        |
| 2 - HF scientific, in<br>General Information<br>Weather Conditions                                       | on:  on:  s @ time of samp              | eld Meter (Tend Portable Tur       | nperature, Specific bidimeter      | c Conductance, Dissolv                    |              | oH, Oxidation Red                           | uction Pote        |
| 2 - HF scientific, in General Information Weather Conditions 45 °F Sample Characteris                    | on: s @ time of samp stics:             | eld Meter (Tend Portable Turbling: | nperature, Specific<br>bidimeter   | c Conductance, Dissolv                    |              | oH, Oxidation Red                           | uction Pote        |
| 2 - HF scientific, in<br>General Informations<br>Weather Conditions                                      | on: s @ time of samp stics:             | eld Meter (Tend Portable Tur       | nperature, Specific bidimeter      | c Conductance, Dissolv                    |              | oH, Oxidation Red                           | uction Pote        |
| 2 - HF scientific, in General Information Veather Conditions 45 °F  Sample Characteris Sample Collection | on: s @ time of samp stics:  Acc Order: | eld Meter (Tend Portable Turbling: | nperature, Specific bidimeter      | c Conductance, Dissolv                    |              | oH, Oxidation Red                           | uction Pote        |
| 2 - HF scientific, in General Information Veather Conditions 45 F Gample Characteris Sample Collection   | on: s @ time of samp stics: Aed Order:  | eld Meter (Tend Portable Turbling: | nperature, Specific bidimeter      | c Conductance, Dissolv                    |              | oH, Oxidation Red                           | uction Pote        |
| 2 - HF scientific, in General Information Veather Conditions 45 F Gample Characteris Sample Collection   | on: s @ time of samp stics:  Acc Order: | eld Meter (Tend Portable Turbling: | nperature, Specific bidimeter      | c Conductance, Dissolv                    |              | oH, Oxidation Red                           | uction Pote        |
| 2 - HF scientific, in General Information Veather Conditions 45 F Gample Characteris Sample Collection   | on: s @ time of samp stics: Aed Order:  | eld Meter (Tend Portable Turbling: | nperature, Specific bidimeter      | c Conductance, Dissolv                    |              | oH, Oxidation Red                           | uction Pote        |
| 2 - HF scientific, in General Information Veather Conditions 45 F Gample Characteris Sample Collection   | on: s @ time of samp stics: Aed Order:  | eld Meter (Tend Portable Turbling: | nperature, Specific bidimeter      | c Conductance, Dissolv                    |              | oH, Oxidation Red                           | uction Pote        |
| 2 - HF scientific, in General Information Veather Conditions 45 °F  Sample Characteris Sample Collection | on: s @ time of samp stics: Aed Order:  | eld Meter (Tend Portable Turbling: | nperature, Specific bidimeter      | c Conductance, Dissolv                    |              | oH, Oxidation Red                           | uction Pote        |
| 2 - HF scientific, in General Information Veather Conditions 45 °F  Sample Characteris Sample Collection | on: s @ time of samp stics: Aed Order:  | eld Meter (Tend Portable Turbling: | nperature, Specific bidimeter      | c Conductance, Dissolv                    |              | oH, Oxidation Red                           | uction Pote        |
| 2 - HF scientific, in General Information Veather Conditions 45 °F  Sample Characteris Sample Collection | on: s @ time of samp stics: Aed Order:  | eld Meter (Tend Portable Turbling: | nperature, Specific bidimeter      | c Conductance, Dissolv                    |              | oH, Oxidation Red                           | uction Pote        |
| 2 - HF scientific, in General Information Veather Conditions 45 °F Sample Characteris                    | on: s @ time of samp stics: Aed Order:  | eld Meter (Tend Portable Turbling: | nperature, Specific bidimeter      | c Conductance, Dissolv                    |              | oH, Oxidation Red                           | uction Pote        |

#### **Monitoring Well Field Inspection**

| Facility: SBMU SPS - CCR Groundwater Monitoring Monitoring Well ID: Mw 6 Name (Field Staff): A Parter D Dilling Man Date: 04-16-20의 |
|-------------------------------------------------------------------------------------------------------------------------------------|
| Accessibility: Good Fair Poor                                                                                                       |
| Well clear of weeds and/or debris?: Yes No                                                                                          |
| Well identification clearly visible?: Yes Ves No                                                                                    |
| Remarks:                                                                                                                            |
| Concrete Pad:  Condition of Concrete Pad:  Good  Inadequate                                                                         |
| Depressions or standing water around well?: Yes No                                                                                  |
| Remarks:                                                                                                                            |
| Protective Outer Casing: Material = $4" \times 4"$ Steel Hinged Casing with Hasp                                                    |
| Condition of Protective Casing: Good Damaged                                                                                        |
| Condition of Locking Cap: Good Damaged                                                                                              |
| Condition of Lock: Good <u>  Condition of Lock: Good </u> Damaged                                                                   |
| Condition of Weep Hole: Good Damaged                                                                                                |
| Remarks:                                                                                                                            |
| Well Riser: Material = 2" Diameter, Schedule 40 PVC, Flush Threaded                                                                 |
| Condition of Riser: Good L Damaged                                                                                                  |
| Condition of Riser Cap: Good L Damaged                                                                                              |
| Measurement Reference Point: Yes No                                                                                                 |
| Remarks:                                                                                                                            |
| <u>Dedicated Purging/Sampling Device</u> : Type = 1/4 " ID Semi-Rigid Polyethylene & 0.170" ID Flexible Silicone Tubing             |
| Condition: Good Damaged Missing                                                                                                     |
| Remarks:                                                                                                                            |
| Monitoring Well Locked/Secured Post Sampling?: Yes No                                                                               |
| Remarks:                                                                                                                            |

Field Certification ASWER Pass Lab Feet 4-16-2,
Signed Title Date

#### Field Sampling Log

| Initial Wate | er Level (fee | et btoc):       | 10.6           | 6                      |                  | Date: 0      | 4-16.                  | 2021          |                      |                              |
|--------------|---------------|-----------------|----------------|------------------------|------------------|--------------|------------------------|---------------|----------------------|------------------------------|
| Initial Grou | ndwater Ele   | evation (NAVI   | 088):          |                        |                  | Air Pressu   | re in Well?            | Y 1           |                      |                              |
| PURGE IN     | FORMATIC      | ON              |                |                        |                  |              |                        |               |                      |                              |
| Date:        | 04-           | 16-20           |                |                        |                  |              |                        |               |                      |                              |
| Name (Sar    | nple Collec   | tor):           | 0:11           | ingha                  | M                |              |                        |               |                      |                              |
| Method of    | Well Purge:   | : Low Flov      | v Perstaltic I | Pump                   | Dec              | dicated Tul  | bing?                  | Y) N          |                      |                              |
|              |               | -               | 854            |                        |                  | *            |                        |               | NIA                  |                              |
| i ime Purgi  | ng Initiated  |                 | -              |                        |                  |              | Volume (mL)            |               | NA / I C             | 22                           |
| 3eginning    | Water Leve    | el (feet btoc): |                | 0.66                   | Tot              | al Volume    | Purged (mL)            |               | 458                  |                              |
| Beginning    | Groundwate    | er Elevation (I | NAVD88):       |                        | We               | ell Purged T | To Dryness?            |               | Y / 🔇                |                              |
| Well Total   | Depth (feet   | btoc):          | 37.76          |                        | Wa               | nter Level a | ıfter Samplin          | g (feet btoc) | 10.                  | 66                           |
|              |               |                 |                |                        |                  | <b>(</b> i.  | .e., pump is d         | off)          |                      |                              |
| Casing Dia   | meter (feet   | ): 2" Sch 4     | UPVC           |                        | Tin              | ne Samplin   | g Completed            | l:            | 0947                 | 7                            |
| PLIRGE S     | TABILIZATI    | ON DATA         |                |                        |                  |              |                        |               |                      |                              |
|              | Purge         | Cumulative      | _              | Specific               | Dissolved        | -14          | Oxidation<br>Reduction | Turbidity     | Water                | Notes                        |
| Time         | Rate          | Volume          | Temp<br>(°C)   | Conductance<br>(µS/cm) | Oxygen<br>(mg/L) | pH<br>(S.U.) | Potential              | (NTU)         | Level<br>(feet btoc) | (e.g., opacity, color, odor) |
| 200          | (mL/min)      | (mL)            | > 1            |                        | 12.12            | (0           | (mV)                   | 72.20         |                      | Vertity #                    |
| 0856         |               | 360             | 14.00          | 439.18                 |                  | 6.9          | -5.0                   | 13.82         |                      | 11 ciake, 0                  |
| 0857         | 260           | 830             |                | 435.53                 | 10.07<br>9.03    | 6.9          | -9.3                   | 15.04         | 13.66                | 11                           |
| COPG         | 250           | 1380            | 14.51          | 417.50                 | 8-21             | 6.9          | -11.2                  | 17.79         |                      | 11 /                         |
| 0901         | 260           | 2420            | 14.62          | 411.30                 | 6.62             | 6.9          | -9.2                   | 20.35         |                      | 14                           |
| 0905         |               | 2943            | 14.63          | 413.84                 |                  | 6.9          | -8.6                   | 19.25         | 13 66                | 111                          |
| 0907         |               | 3480            | 14.67          | 405.42                 |                  | 6.9          | -9.2                   | 16.91         | 10.66                | Clear node                   |
| 0909         | 230           |                 |                | 393.37                 |                  | 6.8          | -6.9                   | 16.79         | 10.66                |                              |
| 0911         | 280           | 4500            |                | 399.31                 |                  | 6.8          | -7.1                   | 16.55         | 10.66                | (1                           |
|              |               |                 |                |                        |                  |              |                        |               |                      |                              |
|              |               |                 |                |                        |                  |              |                        |               |                      |                              |
|              |               |                 |                |                        |                  |              |                        |               |                      |                              |
|              |               |                 |                |                        |                  |              |                        |               |                      |                              |
|              |               |                 |                |                        |                  |              |                        |               |                      |                              |
|              |               |                 |                |                        |                  |              | 7 - 7 -                |               |                      |                              |
|              |               |                 |                |                        |                  |              | -                      |               |                      |                              |
|              |               |                 |                |                        |                  |              |                        |               |                      |                              |
|              |               |                 |                |                        | -                | -            |                        |               | 3                    |                              |

btoc - below top of casing

#### Field Sampling Log

| Sample Time (mL/min) (°C) Conductance (µS/cm) (mg/L) (S.U.) Potential (mV)  QU-16-21 280 14.69 399.31 6.78 6.8 -7.1 16.  Instrument Calibration Data:  See instrument Calibration Data:  See instrument Calibration Ing of daily calibration data for the following instruments:  1 - In-Situ SmarTroll Multi-Probe Field Meter (Temperature, Specific Conductance, Dissolved Oxygen, pH, Oxidation Reduction Potential Information:  Weather Conditions @ time of sampling: Sunny  52 9 F  Sample Characteristics: Clear, Coloness, Sample Collection Order: Per SAP  Comments and Observations:  I certify that sampling procedures were in accordance with applicable EPA and State protocols.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Facility:                                                    |                           |                  |                    |             |            |                        |                    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|---------------------------|------------------|--------------------|-------------|------------|------------------------|--------------------|
| Water Level @ Sampling (feet bloc):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Sampling Informa                                             | tion:                     |                  |                    |             |            |                        | _                  |
| Monthoring Event: Annual ( ) Semi-Annual ( ) Quarterly ( ) Monthly ( ) Other ( )  Final Purge Stabilization Sampling Data:    Date   Sample Rate   Temp   Conductance   Dissolved Oxygen   pH   Reduction   Potential   (mV)   (mV)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Method of Samplin                                            | g: Low Flow -             | - Perstaltic Pur | np & Tubing        |             |            | Dedicated:             | (Y) / N            |
| Table Sample Rate Sample Rate (mL/min) CCC Conductance (µS/m) Dissolved Oxygen pH Reduction Potential (mV) Pote | Water Level @ Sar                                            | npling (feet btoc)        | ): 13.(          | 6                  |             |            |                        |                    |
| Date Sample Rate (mL/min) C'C) Conductance (mg/L) Dissolved Oxygen pH Reduction Potential (mV)  OCI-16-21 QRO 14.69 399.31 G. 78 F. 8 -7.1 16.:  Instrument Calibration Data: See instruments: See instr | Monitoring Event:                                            | Annual ( )                | Semi⊦Annı        | ual 💜 Quarte       | erly ( ) Mo | onthly ( ) | Other ( )              |                    |
| Date Sample Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | inal Purge Stabliz                                           | ation Sampling D          | Data:            |                    |             | -          | 1 0 111                | 1                  |
| nstrument Calibration Data: See instrument calibration log of daily calibration data for the following instruments: 1 - In-situs SmarTroll Multi-Probe Field Meter (Temperature, Specific Conductance, Dissolved Oxygen, pH, Oxidation Reduction Po 2 - HF scientific, inc. Micro TPI Field Portable Turbidimeter  Seneral Information:  Weather Conditions @ time of sampling:  Sunny  52° F  Sample Characteristics:  Clear, Coloness, Sloviess  Sample Collection Order:  Per SAP  Comments and Observations:  Certify that sampling procedures were in accordance with applicable EPA and State protocols.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                              |                           |                  | Conductance        |             |            | Reduction<br>Potential | Turbidity<br>(NTU) |
| See instrument calibration log of daily calibration data for the following instruments:  1 - In-Situ SmarTroll Multi-Probe Field Meter (Temperature, Specific Conductance, Dissolved Oxygen, pH, Oxidation Reduction Po 2 - HF scientific, inc. Micro TPI Field Portable Turbidimeter  3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                              | 280                       | 14.69            | 399.31             | 6.28        | 6. 8       | -7.1                   | 16.5               |
| Comments and Observations:  Certify that sampling procedures were in accordance with applicable EPA and State protocols.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | General Information                                          | on:                       |                  |                    |             |            |                        |                    |
| Comments and Observations:  Certify that sampling procedures were in accordance with applicable EPA and State protocols.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                              | s @ time of sam           | pling: <u>S</u>  | unny               |             |            |                        |                    |
| certify that sampling procedures were in accordance with applicable EPA and State protocols.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 52°F                                                         |                           |                  |                    | odoness     |            |                        |                    |
| certify that sampling procedures were in accordance with applicable EPA and State protocols.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 52°F                                                         | stics:                    | lear, C          |                    | odoness     |            |                        | · ,                |
| certify that sampling procedures were in accordance with applicable EPA and State protocols.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 52° F cample Characteristample Collection                    | stics:                    | lear, C          |                    | odorless    |            |                        | .,                 |
| certify that sampling procedures were in accordance with applicable EPA and State protocols.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 52° F Sample Characterist                                    | stics:                    | lear, C          |                    | odoness     |            |                        | ,                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 52° F Cample Characteristample Collection                    | stics:                    | lear, C          |                    | odoness     |            |                        |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 52° F Cample Characteristample Collection                    | stics:                    | lear, C          |                    | odoness     |            |                        |                    |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 52° F Sample Characteris Sample Collection                   | stics:                    | lear, C          |                    | storless    |            | 4.4                    | •                  |
| • • • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 52° F Sample Characterist                                    | stics:                    | lear, C          |                    | storless    |            |                        |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 52° F Cample Characteristample Collection                    | stics:                    | lear, C          |                    | storless    |            |                        |                    |
| • • • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 52° F Sample Characterist                                    | stics:                    | lear, C          |                    | odoness     |            |                        |                    |
| • • • • • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 52° F Sample Characteris Sample Collection                   | stics:                    | lear, C          |                    | odoness     |            |                        |                    |
| 11 11 21 11 11 11 11 11 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 52° F Sample Characteris Sample Collection                   | stics:                    | lear, C          |                    | odoness     |            |                        |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 52° F Sample Characteris Sample Collection Comments and Ob   | stics: Order: servations: | lear, C Per SAP  | oloness;           |             |            | 4.4                    |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 52° F Sample Characterists Sample Collection Comments and Ob | order: servations:        | Per SAP          | ince with applical |             | ocols.     | 1eoh                   |                    |

Page 2 of 2

## **Monitoring Well Field Inspection**

| Facility: SBMU SPS – CCR Groundwater Monitoring  Monitoring Well ID: MW 5                                                                 |     |
|-------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Name (Field Staff): A Parte ( D Dilling ham                                                                                               |     |
| Date: <u>4-16-21</u>                                                                                                                      |     |
| Access:                                                                                                                                   |     |
| Accessibility: Good Fair Poor Poor                                                                                                        |     |
| Well clear of weeds and/or debris?: Yes No                                                                                                |     |
| Well identification clearly visible?: Yes No                                                                                              |     |
| Remarks:                                                                                                                                  | - 3 |
| Concrete Pad:  Condition of Concrete Pad:  Good  Inadequate                                                                               |     |
| Depressions or standing water around well?: Yes No                                                                                        |     |
| Remarks:                                                                                                                                  |     |
| Protective Outer Casing: Material = $4" \times 4"$ Steel Hinged Casing with Hasp                                                          |     |
| Condition of Protective Casing: Good Damaged                                                                                              |     |
| Condition of Locking Cap: Good Damaged                                                                                                    |     |
| Condition of Lock: Good Damaged                                                                                                           |     |
| Condition of Weep Hole: Good Damaged                                                                                                      |     |
| Remarks:                                                                                                                                  |     |
| Well Riser: Material = 2" Diameter, Schedule 40 PVC, Flush Threaded                                                                       |     |
| Condition of Riser: Good Damaged                                                                                                          |     |
| Condition of Riser Cap: Good Lamaged                                                                                                      |     |
| Measurement Reference Point: Yes V No                                                                                                     |     |
| Remarks:                                                                                                                                  |     |
| <u>Dedicated Purging/Sampling Device</u> : Type = <u>1/4</u> " <u>ID Semi-Rigid Polyethylene &amp; 0.170" ID Flexible Silicone Tubing</u> |     |
| Condition: Good Damaged Missing                                                                                                           |     |
| Remarks:                                                                                                                                  |     |
| Monitoring Well Locked/Secured Post Sampling?: Yes No                                                                                     |     |
| Remarks:                                                                                                                                  |     |
| ield Certification Ashibh Parel Leis Tech 4-16-21                                                                                         |     |
| Signed Title Date                                                                                                                         |     |

Prepared by: GREDELL Engineering Resources, Inc.

January 2017

| Initial Wate | r Level (fee     | t btoc):        | 9.83           |                        |                  | Date: 0        | U-16-                  | 2)        |                |                 |           |
|--------------|------------------|-----------------|----------------|------------------------|------------------|----------------|------------------------|-----------|----------------|-----------------|-----------|
| Initial Grou | ndwater Ele      | evation (NAVE   | 088):          |                        |                  | Air Pressu     | re in Well?            | Y / (N)   |                |                 |           |
| PURGE IN     | FORMATIO         | )N              |                |                        |                  | 12.11.2        |                        |           |                |                 |           |
| Date:        | 04-11            | 5-21            |                |                        |                  |                |                        |           |                |                 |           |
| Name (Sar    | nple Collect     | tor):           | Dilli          | nghan                  | )                |                |                        |           |                |                 | -         |
| Method of    | Well Purge:      | Low Flow        | / Perstaltic I | Pump                   | Ded              | licated Tub    | oing?                  | Y) N      |                |                 |           |
|              |                  |                 | 1034           |                        | One              | . /1) \/\ell \ | /olume (mL):           |           | NA             |                 |           |
|              | ng Initiated:    |                 |                |                        |                  |                |                        |           | 701            | 10              | -         |
| 3eginning 1  | Water Leve       | I (feet btoc):  |                | .83                    | Tota             | al Volume      | Purged (mL)            |           |                | 10              | -         |
| 3eginning    | Groundwate       | er Elevation (N | NAVD88):       |                        | We               | Il Purged T    | o Dryness?             |           | Y / 10         |                 |           |
| Well Total   | Depth (feet      | btoc):          | 37.15          |                        | Wa               |                | fter Sampling          |           | 9.             | 83              |           |
|              |                  | ): 2" Sch 40    |                |                        |                  | (i.            | e., pump is o          | itt)      | 11-            |                 |           |
| odoling Bid  |                  |                 |                |                        | Tim              | e Samplin      | g Completed            | : 1       | 11.3           | 6               | -         |
| PURGE ST     | TABILIZATI       | ON DATA         |                |                        |                  |                | 10:15:-1               |           |                |                 |           |
| Time         | Purge            | Cumulative      | Temp           | Specific               | Dissolved        | рН             | Oxidation<br>Reduction | Turbidity | Water<br>Level | Not<br>(e.g., o |           |
| Time         | Rate<br>(mL/min) | Volume<br>(mL)  | (°C)           | Conductance<br>(µS/cm) | Oxygen<br>(mg/L) | (S.U.)         | Potential<br>(mV)      | (NTU)     | (feet btoc)    | color,          |           |
| 1036         |                  | 400             | 17.23          | 752.07                 | W. 90            | 6.8            | 2.4                    | 93.93     | 9.83           | FIGHE .         | ns<br>ode |
| 1038         | 270              | 940             | 16.21          | 768.74                 |                  | 6.8            | 4.5                    | Se?, US   | 9.83           | 11              |           |
| 1040         | 270              | 1480            | 15.94          | 781.44                 |                  | 6.8            | 09                     | 29.94     | 9.83           | 14              | "         |
| 1042         | 210              | 2020            | 15.66          | 799.40                 | 10.56            | 6.8            | 0.4                    | 16.15     | 9.83           | "               | •         |
| 1044         | 290              | 2600            | 15.62          | 807.01                 |                  | 6. 3           | -0.5                   | 14.57     | 9.83           | "               |           |
| 1046         | 275              | 3140            | 15.66          | हेर्या तर              |                  | 6.8            | -3.3                   | 12.93     | 9.83           |                 |           |
| 1048         | 873              | 3680            | 15.84          | 6-29.89                |                  | 6.8            | -4.0                   | 6.65      | 9.83           | clear,          | 000 d     |
| 1050         |                  | 4260            | 15.65          |                        |                  | 6,9            | -4.8                   | 7.07      | 9.73           | "               |           |
| 1052         | 280              | 4820            | 15.84          |                        |                  | 6.9            | -5.4                   | 5.04      | 9.83           | 11              |           |
| 1054         |                  |                 | 15.99          |                        | _                | 6.9            | -7.2                   | 5,04      | 9.83           | 61              | t         |
| 1056         |                  | 5900            | 15.88          |                        |                  | 6. 9           | -7.8                   | 3.56      | 9.83           | 11              | 1,        |
|              | 300              | 6500            | 15.80          |                        |                  | 6.9            | -9.0                   | 3.55      | 9.83           | n               | - (       |
| 1100         | 275              | 7040            | 15.79          | 837.4                  | 7.27             | 6.9            | -11, ]                 | 2.84      | 9.83           |                 |           |
|              |                  |                 |                |                        |                  |                | -                      |           |                |                 |           |
|              |                  |                 |                |                        |                  |                | +                      |           |                |                 |           |
|              |                  |                 |                |                        |                  |                |                        |           |                |                 |           |
|              |                  |                 |                |                        |                  |                |                        |           |                |                 |           |
|              |                  |                 |                |                        |                  |                |                        |           |                |                 |           |

| Facility:                                   | SBMU Sikeston           | Power Station  | ı - CCR Groundwa                   | ter Monitoring         | Monitoring V       | Vell ID:                                    | 1W 5               |
|---------------------------------------------|-------------------------|----------------|------------------------------------|------------------------|--------------------|---------------------------------------------|--------------------|
| Sampling Informa                            | ntion:                  |                |                                    |                        |                    |                                             |                    |
| Method of Samplin                           | g: Low Flow -           | Perstaltic Pu  | mp & Tubing                        |                        |                    | Dedicated:                                  | (Y) / N            |
| Water Level @ Sa                            | mpling (feet btoc       | 9.             | 83                                 |                        |                    |                                             |                    |
| Monitoring Event:                           | Annual ( )              | Semi-Ann       | ual V Quarte                       | rly ( )                | Monthly ( )        | Other ( )                                   |                    |
| Final Purge Stabliz                         | ation Sampling D        | Data:          |                                    |                        |                    |                                             | -                  |
| <u>Date</u><br>Sample Time                  | Sample Rate<br>(mL/min) | Temp<br>(°C)   | Specific<br>Conductance<br>(µS/cm) | Dissolved Ox<br>(mg/L) | cygen pH<br>(S.U.) | Oxidation<br>Reduction<br>Potential<br>(mV) | Turbidity<br>(NTU) |
| 1100                                        | 270                     | 15.79          | 837.40                             | 7.27                   | 6.9                | 41.1                                        | 2.84               |
| General Information Weather Condition  55°F | s @ time of sam         |                | olorless,                          | od mlo                 | 36                 |                                             |                    |
| Sample Characteri<br>Sample Collection      | 100                     | Per SAP        | 0101 1233,                         | Device                 |                    | - 19                                        |                    |
| Sample Collection                           | Older.                  | Teron          | 1 1 1                              |                        |                    | 1                                           |                    |
| Comments and Ob                             | servations:             | 1.             | •                                  |                        |                    |                                             |                    |
|                                             |                         |                |                                    | 1                      |                    |                                             |                    |
| 18                                          | 100                     |                |                                    |                        |                    | , ,                                         |                    |
|                                             |                         | -30 4 4        |                                    |                        | - F                |                                             | 13.13              |
| A                                           |                         |                |                                    | 2. *                   | 2 4                | 7                                           |                    |
| 47.1                                        | 4. 4.                   |                | ų.                                 |                        | •                  |                                             |                    |
|                                             | 365                     |                | · ·                                |                        |                    | V.                                          |                    |
|                                             | 4.4.                    | 97.            | 1.41 =                             |                        | -                  | *                                           |                    |
| I certify that sampl                        | ing procedures w        | vere in accord | ance with applicab                 | le EPA and Sta         | ite protocols.     |                                             |                    |
| Date:04-16-6                                | L[ By: _                | dr. 82         | More                               | _                      | Title:             | Tech                                        |                    |

## Monitoring Well Field Inspection

| Facility: SBMU SPS - CCR Groundwater Monitoring Monitoring Well ID: Mw 8 Name (Field Staff): A PGセ」 D Dillingham Date: 04-16-21                                                                                |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Access:  Accessibility:  Good  Fair  Poor  Well clear of weeds and/or debris?:  Yes  No  No  Remarks:                                                                                                          |
| Concrete Pad: Condition of Concrete Pad:  Depressions or standing water around well?: Yes No  Remarks:                                                                                                         |
| Protective Outer Casing: Material = 4" x 4" Steel Hinged Casing with Hasp  Condition of Protective Casing: Good                                                                                                |
| Well Riser: Material = 2" Diameter, Schedule 40 PVC, Flush Threaded  Condition of Riser: Good Damaged Damaged  Condition of Riser Cap: Good Damaged Damaged  Measurement Reference Point: Yes No Remarks:      |
| Dedicated Purging/Sampling Device: Type = ½ " ID Semi-Rigid Polyethylene & 0.170" ID Flexible Silicone Tubing  Condition: Good Damaged Missing Remarks:  Monitoring Well Locked/Secured Post Sampling?: Yes No |
| ield Certification ALSh Fuser Less Teach 64-16-21 Signed Title Date                                                                                                                                            |

Prepared by: GREDELL Engineering Resources, Inc.

January 2017

| Initial Wate | er Level (fee | t btoc):        | 9.2          | 2.                     | _                | Date:          | 04-16.                 | -21       |                      | 5 -    |                     |
|--------------|---------------|-----------------|--------------|------------------------|------------------|----------------|------------------------|-----------|----------------------|--------|---------------------|
| Initial Grou | ndwater Ele   | evation (NAVE   | 088):        |                        | _                | Air Pressu     | re in Well?            | Y /       | (                    |        |                     |
| PURGE IN     | FORMATIC      | )N              |              |                        |                  |                |                        |           |                      |        |                     |
| Date:        | 04-11         | 6-21            |              |                        |                  |                |                        |           |                      |        |                     |
| Name (Sar    | nple Collect  | or):            | 1110         | ngha                   | M                | £              |                        |           |                      |        | _                   |
| Method of    | Well Purge:   | Low Flow        | / Perstaltic | Pump                   | Dec              | dicated Tub    | oing? (                | Ŷ/ N      |                      |        |                     |
|              | •             |                 | 1230         |                        |                  | - (4) \A(a)  \ | /okumo /ml \           |           | NA                   |        |                     |
|              | ng Initiated: |                 |              |                        |                  |                | /olume (mL)            |           | 642                  |        | -                   |
| Beginning '  | Water Leve    | I (feet btoc):  | 9            | .22                    | Tot              | al Volume      | Purged (mL)            | •         |                      |        | -                   |
| Beginning    | Groundwate    | er Elevation (N | (88dVAA      |                        | We               | ll Purged T    | o Dryness?             |           | Y / 🕦                |        |                     |
| Well Total   | Depth (feet   | btoc):          | 37.0         | 7                      | Wa               |                | fter Samplin           |           | 9                    | २२     |                     |
| Casing Dia   | meter (feet)  | : 2" Sch 40     | ) PVC        |                        |                  | (i.            | e., pump is o          | off)      | 120                  |        |                     |
| odding Bid   |               |                 |              |                        | Tim              | ne Samplin     | g Completed            | i:        | <u> 133</u>          | 3      | -                   |
| PURGE ST     | ABILIZATION   | ON DATA         |              |                        | -                |                |                        |           |                      |        |                     |
| Time         | Purge         | Cumulative      | Temp         | Specific               | Dissolved        | рН             | Oxidation<br>Reduction | Turbidity | Water                |        | tes                 |
| Time         | Rate (mL/min) | Volume<br>(mL)  | (°C)         | Conductance<br>(µS/cm) | Oxygen<br>(mg/L) | (S.U.)         | Potential              | (NTU)     | Level<br>(feet btoc) |        | opacity,<br>, odor) |
| 1232         |               | 420             | 17.55        | 722.64                 | 7.21             | 7.2            | (mV)<br>-20.4          | 2.04      | 9,22                 | clear, | PO CHOY             |
| 1234         | 260           | 943             | 16.30        | 742.03                 |                  | 7.2            | -28.4                  | 0.65      | 9.22                 | u      | ty                  |
| 1236         | 270           | 1480            | 16.04        |                        | 4.13             | 7.2            | -30.4                  | 1.57      | 9.22                 | 11     | 11                  |
| 1238         | 260           | 2000            | 15.98        | 741.72                 | 3.84             | 7.2            | -33.0                  | 1-57      | 9.22                 | 5/     | 1                   |
| 1240         | 285           | 2560            | 15.83        | 743.90                 | 3.79             | 7.2            | -34.6                  | 1.67      | 9.22                 | "      | 1                   |
| 1242         | 270           | 3/00            | 15.88        |                        | 3.68             | 7.3            | -36.9                  | 5.60      | 9.22                 | t)     | •                   |
| 1244         | 273           |                 | 15.84        | 742.03                 | 3.77             | 7.3            | -34.6                  | 6.52      | 9.22                 |        |                     |
|              | वं १०         | 4220            | 15.43        | 740.83                 | 3.37             | 7.3            |                        | 5.24      | 1.70                 | 11     | ,                   |
| laus         | 275           | 4765            | 15-13        | 743.94                 | 3.45             | 7.3            | -41.6                  | 4.28      | 9.22                 | 11     | 1                   |
| 1250         |               |                 |              | 748.97                 |                  | 7.3            |                        | 5.46      |                      | 11     | 1                   |
| 1253         | 270           | 5840            | 15.85        |                        |                  | 7.2            | -44.7                  |           | 9.22                 | TT.    | ,                   |
| L# 03        | 067           | 0 420           | (2.03        | (30.3)                 | 5.71             |                |                        | 20        | 1.72                 |        |                     |
|              |               |                 |              |                        |                  |                |                        |           |                      | 102    |                     |
|              |               |                 |              |                        |                  |                |                        |           |                      |        |                     |
|              |               |                 |              |                        |                  |                |                        |           |                      |        |                     |
|              |               |                 |              |                        |                  |                |                        |           |                      |        |                     |
|              |               |                 |              |                        |                  |                | 1                      |           | 1                    | 1      |                     |

btoc - below top of casing

| Facility:                           | SBMU Sikeston           | Power Station    | <ul> <li>CCR Groundwa</li> </ul>   | ter Monitoring                          | _ M         | onitoring We | ell ID:                                     | W &                |
|-------------------------------------|-------------------------|------------------|------------------------------------|-----------------------------------------|-------------|--------------|---------------------------------------------|--------------------|
| Sampling Inform                     | ation:                  |                  |                                    |                                         |             |              |                                             |                    |
| Method of Samplin                   | ng: Low Flow -          | - Perstaltic Pun | np & Tubing                        |                                         |             |              | Dedicated:                                  | (Y) / N            |
| Water Level @ Sa                    | mpling (feet btoc       | ): 9.5           | 22                                 |                                         |             |              |                                             |                    |
| Monitoring Event:                   | Annual ( )              | Semi-Annu        | al 💜 Quarte                        | пу ( )                                  | Mont        | hly()        | Other ( )                                   |                    |
| Final Purge Stabli                  | zation Sampling D       | Data:            |                                    | *************************************** |             |              |                                             | ,                  |
| <u>Date</u><br>Sample Time          | Sample Rate<br>(mL/min) | Temp<br>(°C)     | Specific<br>Conductance<br>(µS/cm) | Dissolved Ox<br>(mg/L)                  |             | pH<br>(S.U.) | Oxidation<br>Reduction<br>Potential<br>(mV) | Turbidity<br>(NTU) |
| 04-16-21                            | 290                     | 15.85            | 758.55                             | 3.47                                    |             | 7.2          | -44.7                                       | 5.16               |
| General Informate Weather Condition |                         | pling: <u>M</u>  | 63+14 5                            | Svany                                   |             |              | -                                           |                    |
| Sample Character                    | istics: CI              | ear. c           | DIMESS,                            | 046/40                                  | 229         | 24.          |                                             | - N                |
| Sample Collection                   | 1.0                     | Per SAP          |                                    |                                         |             |              | - V                                         |                    |
| Sample Collection                   | Older,                  | TOTORI           |                                    |                                         | * .         | -            |                                             |                    |
| Comments and Ol                     |                         | · ' ·            | v                                  | ***                                     |             |              |                                             |                    |
| collecte                            | Field                   | Ovpla            | cate                               |                                         | - 33        |              | 4                                           |                    |
|                                     |                         |                  | 1 (6.)                             |                                         | 4           |              | +                                           |                    |
|                                     | 0.00                    |                  |                                    | 140                                     |             | ~            |                                             |                    |
|                                     | * .                     |                  | P                                  | 4                                       |             | T            | (A)                                         |                    |
|                                     |                         |                  |                                    | 4.                                      | 74-3        |              | ,                                           |                    |
|                                     |                         |                  |                                    | *                                       | •           |              |                                             |                    |
| 10.00                               |                         | ,                |                                    | -                                       |             | 3            | 4                                           | -                  |
|                                     |                         |                  |                                    |                                         |             |              |                                             |                    |
|                                     |                         |                  |                                    |                                         |             |              |                                             |                    |
|                                     |                         |                  |                                    |                                         |             |              |                                             |                    |
| I certify that sample               | ing procedures w        | ere in accorda   | nce with applicab                  | le EPA and Sta                          | ate protoco | ls.          |                                             |                    |
|                                     |                         |                  |                                    |                                         |             |              |                                             |                    |
| Date: 04 -16 -                      | 21                      | Mark             | Paser                              |                                         | Title       | Leis         | Tell                                        |                    |

## **Monitoring Well Field Inspection**

| Facility: SBMU SPS - CCR Groundwater Monitoring  Monitoring Well ID: MW H  Name (Field Staff): PGHE DOTTING hum                |
|--------------------------------------------------------------------------------------------------------------------------------|
| Date: 04 -16-21                                                                                                                |
| Access: Accessibility: Good Fair Poor Poor                                                                                     |
| Well clear of weeds and/or debris?: Yes Vo No No                                                                               |
| Well identification clearly visible?: Yes No                                                                                   |
| Remarks:                                                                                                                       |
| Concrete Pad:  Condition of Concrete Pad:  Good Inadequate                                                                     |
| Depressions or standing water around well?: Yes No                                                                             |
| Remarks:                                                                                                                       |
| Protective Outer Casing: Material = $4^{\circ} \times 4^{\circ}$ Steel Hinged Casing with Hasp                                 |
| Condition of Protective Casing: Good Damaged                                                                                   |
| Condition of Locking Cap: Good 🗹 Damaged                                                                                       |
| Condition of Lock: Good <u>L</u> Damaged                                                                                       |
| Condition of Weep Hole: Good Damaged                                                                                           |
| Remarks:                                                                                                                       |
| Well Riser: Material = 2" Diameter, Schedule 40 PVC, Flush Threaded                                                            |
| Condition of Riser: Good 🗠 Damaged                                                                                             |
| Condition of Riser Cap: Good Damaged                                                                                           |
| Measurement Reference Point: Yes No                                                                                            |
| Remarks:                                                                                                                       |
| <u>Dedicated Purging/Sampling Device</u> : Type = <u>1/4</u> " ID Semi-Rigid Polyethylene & 0.170" ID Flexible Silicone Tubing |
| Condition: Good Damaged Missing                                                                                                |
| Remarks:                                                                                                                       |
| Monitoring Well Locked/Secured Post Sampling?: Yes Vo No                                                                       |
| Remarks:                                                                                                                       |
| Field Certification Ashish Parker Ces Feen 04-16-21                                                                            |
| Signed Title Date                                                                                                              |

Prepared by: GREDELL Engineering Resources, Inc.

January 2017

| (mL/min) (mL) (°C) (µS/cm) (mg/L) (S.U.) Potential (NTU) (feet btoc) color, odor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Initial Wate      | er Level (fee | et btoc):             | 10.      | 06          | _         | Date:        | 4-16         | -2/         |             |                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|---------------|-----------------------|----------|-------------|-----------|--------------|--------------|-------------|-------------|-----------------|
| Date:   OH - 16 - 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Initial Grou      | ndwater Ele   | evation (NAVE         | 088):    |             |           | Air Pressu   | re in Well?  | YIN         |             |                 |
| Name (Sample Coffector): D Oiling hom  Method of Well Purge: Low Flow Perstallic Pump Dedicated Tubing?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | PURGE IN          | FORMATIC      | N                     |          |             |           |              |              |             |             |                 |
| Dedicated Tubing?   Dedicated Tubing?   NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Date:             | 04-1          |                       |          |             |           |              |              |             |             |                 |
| Dedicated Tubing?   Dedicated Tubing?   NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Name (Sar         | nple Collect  | tor): _ <i>D</i>      | Oilli    | ngho        | M         |              |              |             |             |                 |
| Time Purging Initiated:   1349                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Method of         | Well Purge:   |                       |          |             |           | dicated Tub  | oina?        | Ŷ/ N        |             |                 |
| Total Volume Purged (mL):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                   |               |                       |          |             |           |              |              |             |             |                 |
| Well Total Depth (feet bloc):   37.23   Water Level after Sampling (feet bloc):   10.06     Casing Diameter (feet):   2" Sch 40 PVC   Time Sampling Completed:   145     Time   Purge   Temp   Conductance (µS/cm)   (MIL)     |                   | _             |                       |          |             | One       | e (1) Well \ | /olume (mL)  | 109         |             |                 |
| Water   Level after Sampling (feet bloc):   10.06     Casing Diameter (feet):   2" Sch 40 PVC     Time   Sampling Completed:   14 S     Time   Purge   Rate (mL/min)   Rate (mL/min)   (mL)   (mS/cm)   (mS/   | 3eginning         | Water Leve    | l (feet btoc):        |          | 0.06        | Tot       | al Volume    | Purged (mL)  |             | 442         | S               |
| Water Level after Sampling (feet bloc):   10.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3eginning         | Groundwate    | er Elevation (N       | NAVD88): |             | We        | II Purged T  | o Dryness?   |             | Y / 🕡       |                 |
| Casing Diameter (feet): 2" Sch 40 PVC  Time Sampling Completed: 1457  PURGE STABILIZATION DATA  Time Purge Rate (mL/min) (mL) (rC) (conductance (mS/cm) (mg/L) (s.u.) (my) (ntu) (refer bloc) (refer blo | ALCOHOL: NO WARRY |               |                       |          | 23          | Wa        | ter Level a  | fter Samnlin | (feet bloc) | 10.         | 06              |
| Time Sampling Completed:  Type Cumulative (mL/min) (mL) (mL) (mL) (mL) (mL) (mL) (mL) (mL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                   |               |                       |          |             |           |              |              |             |             |                 |
| Time Purge (mL) Conductance (mS/cm)   Dissolved (myL)   Conductance (mS/cm)   PH (S.U.)   Conductance (myL)   Conductance (myL | Casing Dia        | meter (feet)  | : 2" Sch 4            | 0 PVC    |             | — Tim     | ne Samplin   | g Completed  | l:          | 145         | 8               |
| Time Rate (mL/min) remp (volume (mL) remp (volume (mL)) remp (volume (mR)) remp (volume ( | NIBOL O           | FARU IZATU    | ON DATA               |          |             | -         |              |              |             |             |                 |
| Time Rate (mL/min)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ORGE S            |               |                       |          | Specific    | Dissolved |              |              |             | Water       | Notes           |
| 1361                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Time              | Rate          | Volume                |          | Conductance | Oxygen    |              |              |             | Level       | (e.g., opacity, |
| 1363   300   1020   16.26   581.73   9.72   7.4   -44.6   189.9   10.06   1355   300   1620   16.28   587.37   9.23   7.4   -46.1   157.8   10.06   1357   290   2200   1604   592.61   6.59   7.4   -48.4   477.8   10.06   1359   280   2760   16.09   594.63   5.99   7.4   -48.4   477.8   10.06   1401   280   3320   16.24   593.21   5.47   7.4   -51.0   92.57   10.06   1403   290   2900   16.01   592.26   5.31   7.4   -51.8   123.4   10.06   1405   280   4460   16.22   547.76   5.13   7.4   -52.5   61.64   10.06   1407   270   5000   15.98   59231   4.77   7.4   -52.6   31.10   10.06   1409   290   5580   16.05   584.47   6.25   7.4   -54.2   26.07   10.06   1411   270   6120   16.07   594.07   5.97   7.4   -54.2   26.07   10.06   1411   270   6120   16.07   594.07   5.97   7.4   -54.9   10.59   10.06   1411   270   7780   16.00   594.52   4.86   7.4   -56.3   22.13   10.06   1416   270   7780   16.00   594.52   4.86   7.4   -56.3   22.13   10.06   1418   290   8360   16.01   591.04   4.82   7.4   -56.3   22.13   10.06   1418   290   8360   16.01   591.04   4.82   7.5   -57.5   13.92   10.06   1418   290   8360   16.01   591.04   4.82   7.5   -57.5   13.92   10.06   1418   290   8900   16.00   596.44   5.76   7.5   -56.1   13.64   10.06   1418   290   8900   16.00   596.44   5.76   7.5   -56.1   13.64   10.06   1418   290   8900   16.00   596.44   5.76   7.5   -56.1   13.64   10.06   1418   290   8900   16.00   596.44   5.76   7.5   -56.1   13.64   10.06   1418   290   8900   16.00   596.44   5.76   7.5   -56.1   13.64   10.06   1418   290   8900   16.00   596.44   5.76   7.5   -56.1   13.64   10.06   1418   290   8900   16.00   596.44   5.76   7.5   -56.1   13.64   10.06   1418   290   8900   16.00   596.44   5.76   7.5   -56.1   13.64   10.06   1418   2900   16.00   596.44   5.76   7.5   -56.1   13.64   10.06   1418   2900   16.00   596.44   5.76   7.5   -56.1   13.64   10.06   1418   1418   2900   16.00   596.44   5.76   7.5   -56.1   13.64   10.06   1418   1418   1418   1418   1418   1418   1418   1418   141   | )                 | (mL/min)      |                       |          |             |           |              | (mV)         | ,           | (feet btoc) |                 |
| 1353 300 1020 16.25 581.73 9.72 7.4 -44.6 189.9 10.06 1355 300 1620 16.08 587.37 9.03 7.4 -46.1 157.8 10.06 11 1357 290 2200 16.04 592.61 6.59 7.4 -48.4 477.8 10.06 11 1357 290 2760 16.04 592.61 5.99 7.4 -48.4 477.8 10.06 11 1401 270 3320 16.04 593.91 5.47 7.4 -51.0 92.57 10.06 11 1403 290 8900 16.01 592.26 5.31 7.4 -51.8 123.4 10.06 11 1405 280 4460 16.02 597.76 5.13 7.4 -52.5 61.64 10.06 11 1407 270 5000 15.98 59231 4.77 7.4 -52.5 61.64 10.06 11 1409 290 5680 16.05 594.47 6.25 7.4 -64.2 26.07 10.06 11 1411 270 6120 16.07 594.07 5.97 7.4 -54.2 26.07 10.06 11 1413 240 6700 16.02 595.60 4.92 7.4 -54.9 10.59 10.06 11 1413 240 6700 16.02 594.52 4.86 7.4 -56.3 22.13 10.06 11 1416 270 7240 16.00 594.52 4.86 7.4 -56.3 22.13 10.06 11 1418 290 8360 16.01 591.04 4.52 7.5 -57.5 13.92 10.06 11 1418 290 8360 16.01 591.04 4.52 7.5 -57.5 13.92 10.06 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   |               | 420                   |          |             |           |              |              |             |             | Flake, Oct      |
| 1357 290 2200 1604 542.61 6.59 7.4 -48.4 477.8 10.06 " 1359 280 2760 16.09 599.60 5.99 1.4 -48.4 477.8 10.06 " 1401 280 3320 16.04 593.91 5.47 7.4 -51.0 92.57 10.06 " 1403 290 8900 16.01 592.26 5.31 7.4 -51.8 123.4 10.06 " 1405 280 4460 16.22 547.76 5.13 7.4 -52.6 31.10 10.06 " 1409 290 5580 16.05 524.47 6.25 7.4 -52.6 31.10 10.06 " 1409 290 5580 16.05 524.47 6.25 7.4 -54.2 26.07 10.06 " 1411 270 6120 16.07 594.07 5.97 7.4 -54.9 10.59 10.06 " 1413 240 6700 16.22 595.60 4.92 7.4 -54.9 10.59 10.06 " 1413 240 6700 16.22 595.60 4.92 7.4 -54.9 10.59 10.06 " 1418 270 7240 16.20 594.52 4.86 7.4 -56.3 22.13 10.06 " 1418 290 8360 16.01 591.24 4.52 7.5 -57.5 13.92 10.06 " 1418 290 8360 16.01 591.24 4.52 7.5 -57.5 13.92 10.06 "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | A CARCOLL S       |               |                       |          |             |           |              |              |             |             |                 |
| 1357 290 2200 1604 592.61 6.09 7.4 -48.4 477.8 10.06 1359 280 2760 16.09 599.10 5.99 7.4 -48.4 477.8 10.06 11 1401 280 3320 16.04 593.91 5.47 7.4 -51.0 92.57 10.06 11 1403 290 8900 16.01 592.26 5.31 7.4 -51.8 123.4 10.06 11 1405 280 4460 16.02 597.76 5.13 7.4 -52.6 31.10 10.06 11 1409 290 5080 16.05 694.47 6.25 7.4 -52.6 31.10 10.06 11 1409 290 5080 16.05 694.47 6.25 7.4 -54.2 26.07 10.06 11 1411 270 6120 16.07 594.07 5.97 7.4 -54.2 26.07 10.06 11 1413 240 6700 16.02 595.60 4.92 7.4 -54.9 10.59 10.06 11 1413 240 6700 16.00 594.50 4.92 7.4 -56.3 22.13 10.06 11 1416 270 7280 16.00 594.50 4.86 7.4 -56.3 22.13 10.06 11 1416 270 7280 15.98 597.47 4.95 7.4 -56.3 22.13 10.06 11 1418 290 8360 16.01 591.04 4.52 7.5 -57.5 13.92 10.06 11 1418 290 8360 16.01 591.04 4.52 7.5 -57.5 13.92 10.06 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                   |               |                       |          |             |           |              |              |             |             |                 |
| 1359 280 2760 16.09 594.0 5.49 7.4 -44.3 540.4 10.06 1401 280 3320 16.04 593.91 5.47 7.4 -51.0 92.57 10.06 1403 290 8900 16.01 592.26 5.31 7.4 -51.8 123.4 10.06 14 1405 280 14460 16.02 547.76 5.13 7.4 -52.5 61.64 10.06 14 1409 290 5680 16.05 592.31 14.77 7.4 -52.6 31.10 10.06 14 1409 290 5680 16.05 594.47 6.25 7.4 -54.2 26.07 10.06 14 14 14 14 14 14 14 14 14 14 14 14 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   |               |                       |          |             |           |              |              | 4           | 70-         | CALTHE          |
| 1401   270   3320   16.04   593.47   5.47   7.4   -51.5   74.57   10.06   1403   290   290   16.01   592.26   5.31   7.4   -51.8   183.4   10.06   10.06   1409   270   5000   15.98   59231   4.77   7.4   -52.6   31.10   10.06   1409   290   5680   16.05   594.47   6.25   7.4   -54.2   26.07   10.06   1413   240   6120   16.07   594.07   5.97   7.4   -54.9   20.6   10.06   1413   240   6700   16.02   594.52   4.86   7.4   -54.9   10.59   10.06   1413   270   7240   16.00   594.52   4.86   7.4   -56.3   22.13   10.06   1418   270   7780   15.98   597.47   4.95   7.4   -56.3   22.13   10.06   1418   290   8360   16.01   591.04   4.52   7.5   -57.5   13.92   10.06   1418   290   8360   16.01   591.04   4.52   7.5   -57.5   13.92   10.06   1418   290   8900   16.00   596.44   5.76   7.5   -56.1   13.64   10.06   1418   290   8900   16.00   596.44   5.76   7.5   -56.1   13.64   10.06   1418   290   8900   16.00   596.44   5.76   7.5   -56.1   13.64   10.06   1418   290   8900   16.00   596.44   5.76   7.5   -56.1   13.64   10.06   1418   290   8900   16.00   596.44   5.76   7.5   -56.1   13.64   10.06   1418   290   8900   16.00   596.44   5.76   7.5   -56.1   13.64   10.06   1418   2900   16.00   596.44   5.76   7.5   -56.1   13.64   10.06   1418   2900   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   200   | 1359              |               | Comment of the French |          |             |           | 7.4          |              |             |             |                 |
| 1403 290 8900 16.01 592.26 5.31 7.4 -518 183.4 10.06 1405 280 4460 16.02 547.76 5.13 7.4 -52.6 61.64 10.06 1407 270 6000 15.98 59231 4.77 7.4 -52.6 31.10 10.06 1409 290 5680 16.05 694.07 6.25 7.4 -64.2 26.07 10.06 1401 270 6120 16.07 594.07 5.97 7.4 -64.4 36.87 10.06 1413 240 6700 16.02 595.60 4.92 7.4 -54.9 10.59 10.06 1413 240 16.00 594.50 4.92 7.4 -56.3 22.13 10.06 1418 270 7240 16.00 594.50 4.86 7.4 -66.3 22.13 10.06 1418 290 8360 16.01 591.04 4.52 7.5 -57.5 13.92 10.06 1418 290 8360 16.01 591.04 4.52 7.5 -57.5 13.92 10.06 1418 290 8360 16.01 591.04 4.52 7.5 -57.5 13.92 10.06 1418 290 8900 16.00 696.44 5.76 7.5 -56.1 13.64 10.06 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1401              |               | 3320                  | 16.04    |             |           |              |              |             |             |                 |
| 1405 283 4460 16.02 541.16 5.13 7.4 5.3 61.64 10.06 1407 270 6000 15.98 59231 4.77 7.4 -52.6 31.10 10.06 16.09 584.47 6.25 7.4 -54.2 26.07 10.06 16.01 1411 270 6120 16.07 594.07 5.97 7.4 -54.2 26.07 10.06 16.01 1413 240 6700 16.02 595.60 4.92 7.4 -54.9 10.59 10.06 61294, 10.06 1413 270 7240 16.00 594.50 4.86 7.4 -56.3 22.13 10.06 1416 270 7780 15.98 597.47 4.95 7.4 -56.3 22.13 10.06 1418 290 8360 16.01 591.04 4.52 7.5 -57.5 13.92 10.06 1418 290 8360 16.01 591.04 4.52 7.5 -57.5 13.92 10.06 1418 290 8360 16.01 591.04 4.52 7.5 -57.5 13.92 10.06 1418 270 8900 16.00 596.44 5.76 7.5 -56.1 13.64 10.06 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1403              | 290           | 8900                  | 16.01    | 592.26      |           |              |              |             |             |                 |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1405              | 280           | 4460                  | 16.02    | 547.76      |           | 7.4          |              | 61.69       | 10.06       |                 |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   |               |                       | 15.98    | 59231       | 4.77      | 7.4          | -52.6        | 31.10       | 10.06       |                 |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   |               | 5680                  |          | 594.47      | 6.25      | 7.4          | - 64.2       | 26.07       | 10,06       |                 |
| 1413 240 6700 16.02 595.00 4.92 7.4 -54.9 10.59 10.06 Clear, 10.4 1418 270 7240 16.00 594.52 4.86 7.4 -66.3 22.13 10.06 11 1418 290 8360 16.01 591.04 4.52 7.5 -57.5 13.92 10.06 11 1420 270 8900 16.00 596.44 5.76 7.5 -56.1 13.64 10.06 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1411              |               |                       |          |             |           |              | -54.4        |             | 10,06       | tı              |
| 1418 290 18.00 594.50 4.86 7.4 -56.3 22.13 10.06 \\ 1418 290 8360 16.01 591.04 4.52 7.5 -57.5 13.92 10.06 \\ 1420 270 8900 16.00 696.44 5.76 7.5 -56.1 13.64 10.06 \\                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1413              |               |                       |          |             |           |              |              |             |             | Clear, no       |
| 1418 290 8360 16.01 591.24 4.95 7.4 -55.6 23.61 10.06 " 1418 290 8360 16.01 591.24 4.52 7.5 -57.5 13.92 10.06 " 1420 270 8900 16.00 696.44 5.76 7.5 -56.1 13.64 10.06 "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   |               | 34                    |          |             |           | -            |              |             |             | "               |
| 1418 290 8360 16.01 591.24 4.52 7.5 -57.5 13.92 10.06 " 1420 270 8900 16.00 696.44 5.76 7.5 -56.1 13.64 10.06 "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1416              |               |                       |          |             |           |              |              |             |             | 11              |
| 1420 270 8900 16.00 696.44 5.76 7.5 -56.1 13.64 10.06 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                   |               |                       |          |             |           |              |              |             | -           | 0               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |               | 2000                  |          |             |           | -            |              |             |             | To              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |               |                       | 16.00    |             |           |              |              |             |             | 4               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |               |                       |          | -           |           |              | -            |             |             |                 |

|                            | SBMU Sikeston                          | Power Station -                         | CCR Groundwa                       | ter Monitoring                     | Monitoring W             | ell ID:                                     | W 4                |
|----------------------------|----------------------------------------|-----------------------------------------|------------------------------------|------------------------------------|--------------------------|---------------------------------------------|--------------------|
| Sampling Informa           | ation:                                 |                                         |                                    |                                    |                          |                                             |                    |
| Method of Samplir          | ng: Low Flow -                         | Perstaltic Pump                         | o & Tubing                         |                                    |                          | Dedicated:                                  | (Y) / N            |
| Nater Level @ Sa           | impling (feet btoc)                    | 10.0                                    | 06                                 |                                    |                          |                                             |                    |
| Monitoring Event:          | Annual ( )                             | Semi-Annua                              | Quarte                             | rly ( ) Mo                         | onthly ( )               | Other ( )                                   |                    |
| inal Purge Stabliz         | zation Sampling E                      | Data:                                   |                                    | MINISAUR IN 1 2 THE TOTAL TOTAL OF | potencia de la constanta | T-2                                         | ·                  |
| <u>Date</u><br>Sample Time | Sample Rate<br>(mL/min)                | Temp<br>(°C)                            | Specific<br>Conductance<br>(µS/cm) | Dissolved Oxygen<br>(mg/L)         | pH<br>(S.U.)             | Oxidation<br>Reduction<br>Potential<br>(mV) | Turbidity<br>(NTU) |
| 04-16-21<br>[422           | 260                                    | 15.99                                   | 591.21                             | 4.85                               | 7.4                      | -58.4                                       | 12.85              |
| 62°F Sample Character      | istics;                                | Jear, 1                                 | colones.                           | s, odonass                         |                          |                                             |                    |
| Sample Character           | istics:                                | lear, 1                                 | colones.                           | s, udonass                         |                          |                                             |                    |
| Sample Collection          | Order:                                 | Per SAP                                 |                                    |                                    | - see-tra                |                                             |                    |
| Comments and Ol            | 1.0                                    | Ł Blar                                  | 16                                 |                                    |                          |                                             |                    |
| sile 040                   | C 1-12.                                | C Blu                                   | 4                                  |                                    | 1, 1,                    |                                             |                    |
|                            | 7                                      | - 20                                    | / I                                |                                    |                          |                                             |                    |
|                            |                                        |                                         | -                                  |                                    |                          |                                             |                    |
|                            |                                        |                                         |                                    |                                    |                          | 15                                          |                    |
|                            |                                        | • • • • • • • • • • • • • • • • • • • • |                                    |                                    |                          | 1000                                        |                    |
| 1-2                        |                                        |                                         |                                    |                                    |                          |                                             |                    |
|                            | * ************************************ |                                         |                                    |                                    |                          |                                             |                    |
|                            |                                        |                                         |                                    |                                    |                          |                                             |                    |
|                            |                                        |                                         |                                    |                                    |                          |                                             |                    |

# **Appendix 1**

Field Sampling Notes – April 17, 2021 (MW-3 TDS Re-sample)

## Field Instrumentation Calibration Log

|                                 | Facility:   | umontes            | In City      | -      | -TROLL FI               | Id Made                                      | _    |                                                   |                     | _   |                          |      |                                                            | Pas                               |      |                   |                                 |   |                                    |
|---------------------------------|-------------|--------------------|--------------|--------|-------------------------|----------------------------------------------|------|---------------------------------------------------|---------------------|-----|--------------------------|------|------------------------------------------------------------|-----------------------------------|------|-------------------|---------------------------------|---|------------------------------------|
|                                 | Pieta mst   | S/N #:             |              |        | 442L                    |                                              | - 2  |                                                   | S                   | -N  |                          |      | 6073                                                       |                                   | rbio | dimeter           |                                 |   |                                    |
|                                 | Date        | Time               | pH<br>Standa | rds    | pH<br>Measure-<br>ments | Specific<br>Conductar<br>Standard<br>(µS/cm) | ice  | Specific<br>Conductance<br>Measurement<br>(µS/cm) | Oxidation Re        |     | uction Potent<br>rd (mV) | ial  | Oxidation<br>Reduction<br>Potential<br>Measurement<br>(mV) | Dissolved<br>(%                   |      | xygen             | Turbidity<br>Standards<br>(NTU) |   | Turbidity<br>Measurements<br>(NTU) |
| ay                              |             |                    | 4.00         | =      | 4.0                     |                                              |      |                                                   | Temperature<br>(°C) | =   | 2316                     |      |                                                            | Temperature<br>(°C)               | =    | 21.82             | 0.02                            | = | 0.02                               |
| g of E                          | 4-17-       | જરુ                | 7.00         | =      | 7.0                     |                                              |      |                                                   |                     |     |                          |      |                                                            | Tap Water<br>Source               | =    | Si hestor<br>City | 10.0                            | = | 10.0                               |
| Beginning of Day<br>Calibration | ~(          |                    | 10.00        | =      | 10.0                    | 1413                                         | =    | 1412.9                                            | Standard<br>(mV)    | =   | -2.29                    | 22   | એ3ઘુુ                                                      | Barometric<br>Pressure<br>(mm/Hg) |      | 100.4             |                                 | = | 1000.0                             |
|                                 |             |                    |              | Ц      |                         |                                              | L    |                                                   |                     |     |                          |      |                                                            | Measurement                       |      | 10206             |                                 |   |                                    |
| eck                             |             |                    | 4.00         | =      | 4.1                     |                                              |      | :4                                                | Temperature<br>(°C) | =   | 21.81                    |      | MP                                                         | Temperature<br>(°C)               |      | 19.96             | 0.02                            | = | 0.01                               |
| y Ch                            | 4-17.       | <b>∮\$</b> ≥>      | 7.00         | =      | 7.0                     |                                              |      | 10.                                               |                     |     |                          |      | 7W                                                         | Tap Water<br>Source               | =    | Sikesta           | 10.0                            | = | 9.89                               |
| End of Day Check                | 20          | 4300               | 10.00        | =      | 10.0                    | 1413                                         | =    | 1468.3                                            | Standard<br>(mV)    | =   | २२०                      | =    | 8120                                                       | Barometric<br>Pressure<br>(mm/Hg) |      | 1001.8            | 1000                            | = | 980,3                              |
| Ш                               |             |                    |              |        |                         |                                              |      |                                                   |                     |     |                          |      | 0                                                          | Measurement                       | =    | <b>ा</b> ०वा      |                                 |   |                                    |
|                                 | The HF scie | entific, inc. I    | Micro TP     | l Fiel | d Portable T            | urbidimeter m                                | eas  | ductance, Dissolures Turbidity.                   |                     |     |                          | n Re | eduction Potentia                                          | l.                                |      |                   |                                 |   |                                    |
|                                 |             | ) gon 10 00        | illo loco    | 10 /   | oata atom               | notriod, nove                                | 701, | nela measureme                                    | ents are record     | icu | as mg/L.                 | _    |                                                            |                                   |      |                   |                                 | _ |                                    |
|                                 |             |                    |              |        |                         |                                              |      |                                                   |                     |     |                          |      |                                                            |                                   |      |                   |                                 |   |                                    |
|                                 |             |                    |              |        |                         |                                              |      |                                                   |                     | ī   |                          |      |                                                            |                                   |      |                   |                                 |   |                                    |
| 29                              |             |                    |              |        |                         |                                              |      |                                                   |                     |     |                          | -    |                                                            |                                   |      |                   |                                 | _ |                                    |
|                                 |             | the aforem<br>4-17 |              |        |                         | brated within                                | the  | manufacturers s                                   | pecifications.      |     |                          |      |                                                            |                                   |      |                   |                                 |   |                                    |

## **Monitoring Well Field Inspection**

| Monitoring Well ID:                 | - CCR Groundwater Monito<br>MW 3<br>トロナモト のかに                |                                                  |
|-------------------------------------|--------------------------------------------------------------|--------------------------------------------------|
| Date: <u>4-17-21</u>                |                                                              |                                                  |
| Access: Accessibility:              | Good <u>i</u>                                                | air Poor                                         |
| Well clear of weeds an              | d/or debris?: Yes 崖                                          | No                                               |
| Well identification clear           | rly visible?: Yes $\underline{ u}$                           | No                                               |
| Remarks:                            |                                                              |                                                  |
| Concrete Pad: Condition of Concrete | Pad: G                                                       | ood Inadequate                                   |
| Depressions or standir              | ng water around well?: Y                                     | es No <u>/</u> _                                 |
| Remarks:                            |                                                              |                                                  |
| Protective Outer Casing:            | Material = 4" x 4" Steel                                     | Hinged Casing with Hasp                          |
| Condition of Protective             |                                                              | Damaged                                          |
| Condition of Locking C              |                                                              | Damaged                                          |
| Condition of Lock:                  | Good 📈                                                       | Damaged                                          |
| Condition of Weep Ho                | le: Good 上                                                   | Damaged                                          |
| Remarks:                            |                                                              |                                                  |
| Well Riser: Material = 2" Dia       | ameter, Schedule 40 PVC,                                     | Flush Threaded                                   |
| Condition of Riser:                 | Good 📈                                                       | Damaged                                          |
| Condition of Riser Car              | o: Good <u>\(\bu\)</u>                                       | Damaged                                          |
| Measurement Referen                 | nce Point: Yes 📈                                             | No                                               |
| Remarks:                            |                                                              |                                                  |
| Dedicated Purging/Sampling          | <u>Device</u> : Type = <u>¼ " ID Se</u><br><u>Silicone T</u> | mi-Rigid Polyethylene & 0.170" ID Flexible ubing |
| Condition: Goo                      | d L Damaged                                                  | Missing                                          |
| Remarks:                            |                                                              |                                                  |
| Monitoring Well Locke               | d/Secured Post Sampling?                                     | ?: Yes No                                        |
| Remarks:                            |                                                              |                                                  |
| Field Certification Ashish          | 1                                                            | 5 Tech . 4-17-21<br>tle Date                     |

Title

Signed

| Initial Wate | r Level (fee        | t btoc):                                | 10.5         | 0                      |                  | Date:        | 1-17-                          | -21       |                |                       |
|--------------|---------------------|-----------------------------------------|--------------|------------------------|------------------|--------------|--------------------------------|-----------|----------------|-----------------------|
| Initial Grou | ndwater Ele         | vation (NAVE                            | 088):        |                        |                  | Air Pressur  | e in Well?                     | Y /(N)    |                |                       |
| PURGE IN     | FORMATIO            | N                                       |              |                        |                  |              |                                |           |                |                       |
|              | 4-17                |                                         |              |                        |                  |              |                                |           |                |                       |
| Name (Sar    | nple Collect        | or):                                    | Dilli        | nyhum                  | ١                | 2 2          |                                |           |                |                       |
| Method of    | Well Purge:         | Low Flow                                | Perstaltic F | Pump                   | Dec              | dicated Tub  | oing?                          | Y) / N    |                |                       |
| Time Purai   | ng Initiated:       |                                         | 0711         |                        | One              | e (1) Well V | /olume (mL):                   | :         | NA             |                       |
| _            |                     | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |              | ری.(                   |                  |              | Purged (mL)                    |           | 646            | 2                     |
|              |                     | (feet btoc):                            |              |                        |                  |              |                                |           |                |                       |
| (20) (20)    |                     |                                         |              |                        | We               | Il Purged 1  | o Dryness?                     |           | Y /(N)         | -                     |
| Well Total   | Depth (feet         | btoc):                                  | 36.9         | 9                      | Wa               |              | fter Sampling<br>e., pump is c |           | 10.9           | رح                    |
| Casing Dia   | meter (feet)        | : 2" Sch 40                             | ) PVC        |                        |                  |              |                                |           | 061            | 2                     |
|              |                     |                                         |              |                        | Tin              | ne Samplin   | g Completed                    | i:        | 081            | ~                     |
| PURGE ST     | <b>FABILIZATION</b> | ON DATA                                 |              |                        |                  |              | Oxidation                      |           |                |                       |
| Time         | Purge               | Cumulative                              | Temp         | Specific               | Dissolved        | pН           | Reduction                      | Turbidity | Water<br>Level | Notes (e.g., opacity, |
| 1            | Rate<br>(mL/min)    | Volume<br>(mL)                          | (°C)         | Conductance<br>(µS/cm) | Oxyģen<br>(mg/L) | (S.U.)       | Potential<br>(mV)              | (NTU)     | (feet btoc)    | color, odor)          |
| 0713         |                     | 340                                     | 16,24        | 204.02                 | 22.6             | 7.2          | 243                            | 22,23     | 10.50          | Red FIGHE, ad         |
| 0715         | 260                 | 860                                     | 14.99        | 201.36                 |                  | 6.7          | 43.3                           | 17.30     | 10.50          | " *                   |
| 0717         | 260                 | 1380                                    | 14.52        | 209.46                 | 14.97            | 6.6          | 42.9                           | 16.28     | 10.50          | Clear, nept           |
| 0719         | 260                 | 1900                                    | 14.36        | 208.46                 | 19.65            | 6.5          | 44.3                           | 12.20     | 10.50          | 11 h                  |
| 0721         | 250                 | 2400                                    | 14.24        | 206.96                 | 18.42            | 6.5          | 43.6                           | 11.95     | N.50           |                       |
| 5723         | 250                 | 2400                                    | 1418         | 205.72                 | 17.46            | 6.5          | 41.0                           | 9.89      | 10.50          |                       |
| 0725         | 260                 | 3420                                    | 14.14        | 202.87                 | 16.46            | 6-5          | 41.3                           | 9.08      | 10.50          |                       |
| 0727         |                     | 3920                                    | 14.13        | 201.22                 | 16.04            | 6.5          | 39.5                           | 6.99      | 12.50          | "                     |
| 0729         |                     | 4440                                    | 14.09        | 199.89                 | 14.55            | 6.5          | 38.8                           | 5.59      | 10.50          | <b>U</b> 1            |
| 0731         | 250                 | 4940                                    | -            | 197.34                 | 13.77            | 6.6          | 37.7                           | 4.81      | 10.50          | lt }                  |
| 0733         | 240                 | 5420                                    | 14.05        | 196.29                 | 13.12            | 6.6          | 36.7                           | 4.36      | 10.50          | 1, 2,                 |
| 0735         | 250                 | 5920                                    | 14.04        | 195.11                 | 12.57            | 6.6          | 35/                            | 3.74      | N. 60          | \(\(\)                |
|              | 270                 | 6460                                    | 1404         | 1 - 1                  | וששו             | 6.6          | 343                            | 3.47      | 13.50          | t.                    |
|              |                     |                                         |              |                        |                  |              |                                |           |                |                       |
|              |                     |                                         |              |                        |                  |              |                                |           |                |                       |
|              |                     |                                         |              |                        |                  |              | 1                              |           |                |                       |
|              |                     |                                         |              |                        |                  |              |                                |           |                |                       |
|              |                     |                                         |              |                        |                  |              |                                |           |                |                       |
|              |                     |                                         |              |                        |                  |              |                                |           |                |                       |

| Facility:                                     | SBMU Sikeston           | Power Station - | CCR Groundwa                       | ter Monitoring            | Monitoring W   | ell ID: //                                  | IW3                |
|-----------------------------------------------|-------------------------|-----------------|------------------------------------|---------------------------|----------------|---------------------------------------------|--------------------|
| Sampling Information                          | tion:                   |                 |                                    |                           |                |                                             |                    |
| Method of Sampling                            | g: Low Flow -           | Perstaltic Pum  | p & Tubing                         |                           |                | Dedicated:                                  | (Y) / N            |
| Water Level @ San                             | npling (feet btoc)      | ): 10.9         | GO_                                |                           |                |                                             |                    |
| Monitoring Event:                             | Annual ( )              | Semi⊦Annu       | al Quarte                          | rly ( )                   | Monthly ( )    | Other ( )                                   |                    |
| Final Purge Stabliza                          | ation Sampling D        | Data:           |                                    |                           |                | T 0.11.                                     |                    |
| <u>Date</u><br>Sample Time                    | Sample Rate<br>(mL/min) | Temp            | Specific<br>Conductance<br>(µS/cm) | Dissolved Oxyge<br>(mg/L) | n pH<br>(S.U.) | Oxidation<br>Reduction<br>Potential<br>(mV) | Turbidity<br>(NTU) |
| 0737                                          | 270                     | 14.04           | 196.77                             | 12.04                     | 6.6            | 34.3                                        | 3.47               |
| Weather Conditions  49° F  Sample Characteris |                         |                 | ostly c                            |                           | **             | · × 3                                       |                    |
| Sample Collection                             |                         | Per SAP         | ,                                  | A en es                   | i i            |                                             | × ×                |
|                                               | 19                      |                 | . 7                                | -2                        | 2 82           | ě                                           | d                  |
| Comments and Ob                               | servations:             | -3,3            | , ·                                | *                         |                | . 1                                         |                    |
| ** * ,                                        |                         | ×               | *                                  |                           |                |                                             |                    |
| **                                            |                         |                 |                                    |                           |                |                                             |                    |
|                                               |                         |                 | *                                  |                           |                |                                             |                    |
| Maria of d                                    | € © 6:                  |                 | 9                                  | .8 47                     | 9 9            | - v.                                        |                    |
| - ×                                           |                         | (42)            | E 91 - 8                           | 5. 2                      | 1              |                                             |                    |
| 0.00 M                                        |                         | *               |                                    | * ·                       |                | 9 A                                         | (4)                |
| F_ +H - +                                     |                         |                 | *                                  |                           | ¥ 100          | ŧ                                           |                    |
|                                               |                         |                 |                                    | 90 x                      |                |                                             |                    |
|                                               |                         |                 |                                    |                           |                |                                             |                    |
| 1 4'f . 4b -41'i                              |                         |                 |                                    |                           |                |                                             |                    |
| Date: 4-17-                                   |                         | Stan            | 0                                  | ole EPA and State p       | rotocols.      |                                             |                    |

# **Appendix 2**

Laboratory Analytical Results – April 16, 2021 (First 2021 Semi-annual Event)



Luke St Mary Sikeston BMU, Sikeston Power Station 1551 W Wakefield Sikeston, MO 63801

#### Dear Luke St Mary:

Please find enclosed the **revised** analytical results for the sample(s) the laboratory received. All testing is performed according to our current TNI accreditations unless otherwise noted. This report cannot be reproduced, except in full, without the written permission of PDC Laboratories, Inc.

If you have any questions regarding your report, please contact your project manager. Quality and timely data is of the utmost importance to us.

PDC Laboratories, Inc. appreciates the opportunity to provide you with analytical expertise. We are always trying to improve our customer service and we welcome you to contact the Director of Client Services, Lisa Grant, with any feedback you have about your experience with our laboratory at 309-683-1764 or Igrant@pdclab.com.

Sincerely,

Dave g Schindler

Project Manager (309) 692-9688 x1716 gschindler@pdclab.com





### SAMPLE RECEIPT CHECK LIST

### Items not applicable will be marked as in compliance

| Work Order ED03829 |
|--------------------|
|--------------------|

| YES | Samples received within temperature compliance when applicable |
|-----|----------------------------------------------------------------|
| YES | COC present upon sample receipt                                |
| YES | COC completed & legible                                        |
| YES | Sampler name & signature present                               |
| YES | Unique sample IDs assigned                                     |
| YES | Sample collection location recorded                            |
| YES | Date & time collected recorded on COC                          |
| YES | Relinquished by client signature on COC                        |
| YES | COC & labels match                                             |
| YES | Sample labels are legible                                      |
| YES | Appropriate bottle(s) received                                 |
| YES | Sufficient sample volume received                              |
| YEŞ | Sample containers received undamaged                           |
| NO_ | Zero headspace, <6 mm present in VOA vials                     |
| NO  | Trip blank(s) received                                         |
| YES | All non-field analyses received within holding times           |
| NO_ | Short hold time analysis                                       |
| YES | Current PDC COC submitted                                      |
| NO  | Case narrative provided                                        |



Sample: ED03829-01

Name: MW-3

Matrix: Ground Water - Regular Sample

Sampled: 04/16/21 08:01 Received: 04/20/21 09:40

PO #:

25816

| Parameter                             | Result  | Unit | Qualifier | Prepared       | Dilution | MRL   | Analyzed       | Analyst | Method            |
|---------------------------------------|---------|------|-----------|----------------|----------|-------|----------------|---------|-------------------|
| Anions - PIA                          |         |      |           |                |          |       |                |         |                   |
| Chloride                              | 1,2     | mg/L |           | 04/27/21 21:29 | 1        | 1.0   | 04/27/21 21:29 | EJO     | EPA 300.0 REV 2.1 |
| Sulfate                               | 16      | mg/L |           | 04/27/21 21:47 | 10       | 10    | 04/27/21 21:47 | EJO     | EPA 300.0 REV 2.1 |
| General Chemistry - PIA               |         |      |           |                |          |       |                |         |                   |
| Fluoride                              | < 0.250 | mg/L |           | 04/29/21 12:13 | 1        | 0.250 | 04/29/21 12:13 | ттн     | SM 4500F C 1997   |
| Solids - total dissolved solids (TDS) | 170     | mg/L | Н         | 05/11/21 08:51 | 1        | 26    | 05/11/21 12:23 | BCR     | SM 2540C          |
| Total Metals - PIA                    |         |      |           |                |          |       |                |         |                   |
| Boron                                 | 25      | ug/L |           | 04/26/21 14:13 | 5        | 10    | 04/29/21 10:16 | JMW     | EPA 6020A         |
| Calcium                               | 17000   | ug/L |           | 04/26/21 14:13 | 5        | 200   | 04/29/21 10:16 | JMW     | EPA 6020A         |

Sample: ED03829-02

Name: MW-4

Matrix: Ground Water - Regular Sample

Sampled: 04/16/21 14:22 Received: 04/20/21 09:40

| Parameter                                                                          | Result               | Unit         | Qualifier | Prepared                     | Dilution | MRL       | Analyzed                         | Analyst | Method                 |
|------------------------------------------------------------------------------------|----------------------|--------------|-----------|------------------------------|----------|-----------|----------------------------------|---------|------------------------|
| Anions - PIA                                                                       |                      |              |           |                              |          |           |                                  |         |                        |
| Chloride                                                                           | 19                   | mg/L         | 04        | 1/26/21 14:59                | 5        | 5.0       | 04/26/21 14:59                   | CRD     | EPA 300.0 REV 2.1      |
| Fluoride                                                                           | < 0.250              | mg/L         | 04        | 1/26/21 14:41                | 1        | 0.250     | 04/26/21 14:41                   | CRD     | EPA 300.0 REV 2.1      |
| Sulfate                                                                            | 100                  | mg/L         | 04        | 1/26/21 15:17                | 25       | 25        | 04/26/21 15:17                   | CRD     | EPA 300,0 REV 2.1      |
| General Chemistry - PIA  Solids - total dissolved solids (TDS)  Total Metals - PIA | 340                  | mg/L         | 04        | l/21/21 13:06                | 1        | 26        | 04/21/21 16:42                   | ВМА     | SM 2540C               |
| Boron<br>Calcium                                                                   | 92 <b>0</b><br>85000 | ug/L<br>ug/L |           | /26/21 14:13<br>/26/21 14:13 | 5<br>5   | 10<br>200 | 04/29/21 10:20<br>04/29/21 10:20 | JMW     | EPA 6020A<br>EPA 6020A |



Sample: ED03829-03

Name: MW-5

Matrix: Ground Water - Regular Sample

**Sampled:** 04/16/21 11:00 Received: 04/20/21 09:40

PO #: 25816

| Parameter                             | Result  | Unit | Qualifier | Prepared       | Dilution | MRL   | Analyzed       | Analyst | Method            |
|---------------------------------------|---------|------|-----------|----------------|----------|-------|----------------|---------|-------------------|
| Anions - PIA                          |         |      |           |                |          |       |                |         |                   |
| Chloride                              | 10      | mg/L |           | 04/26/21 15:53 | 5        | 5.0   | 04/26/21 15:53 | CRD     | EPA 300.0 REV 2.1 |
| Fluoride                              | < 0.250 | mg/L |           | 04/26/21 15:35 | 1        | 0.250 | 04/26/21 15:35 | CRD     | EPA 300.0 REV 2,1 |
| Sulfate                               | 240     | mg/L |           | 04/26/21 16:11 | 50       | 50    | 04/26/21 16:11 | CRD     | EPA 300.0 REV 2.1 |
| General Chemistry - PIA               |         |      |           |                |          |       |                |         |                   |
| Solids - total dissolved solids (TDS) | 510     | mg/L |           | 04/21/21 13:06 | 1        | 26    | 04/21/21 16:42 | ВМА     | SM 2540C          |
| Total Metals - PIA                    |         |      |           |                |          |       |                |         |                   |
| Boron                                 | 370     | ug/L |           | 04/27/21 07:20 | 5        | 10    | 04/30/21 06:57 | JMW     | EPA 6020A         |
| Calcium                               | 120000  | ug/L |           | 04/27/21 07:20 | 5        | 200   | 04/29/21 15:34 | JMW     | EPA 6020A         |

Sample: ED03829-04 Name: MW-6

Matrix: Ground Water - Regular Sample

**Sampled:** 04/16/21 09:11 Received: 04/20/21 09:40

| Parameter                             | Result  | Unit | Qualifier | Prepared       | Dilution | MRL   | Analyzed       | Analyst | Method            |
|---------------------------------------|---------|------|-----------|----------------|----------|-------|----------------|---------|-------------------|
| Anions - PIA                          |         |      |           |                |          |       |                |         |                   |
| Chloride                              | 2.0     | mg/L |           | 04/26/21 16:29 | 1        | 1.0   | 04/26/21 16:29 | CRD     | EPA 300.0 REV 2.1 |
| Fluoride                              | < 0.250 | mg/L |           | 04/26/21 16:29 | 1        | 0.250 | 04/26/21 16:29 | CRD     | EPA 300.0 REV 2.1 |
| Sulfate                               | 24      | mg/L | Q4        | 04/26/21 18:00 | 5        | 5.0   | 04/26/21 18:00 | CRD     | EPA 300.0 REV 2.1 |
| General Chemistry - PIA               |         |      |           |                |          |       |                |         |                   |
| Solids - total dissolved solids (TDS) | 200     | mg/L |           | 04/21/21 13:06 | 1        | 26    | 04/21/21 16:42 | ВМА     | SM 2540C          |
| Total Metals - PIA                    |         |      |           |                |          |       |                |         |                   |
| Boron                                 | 52      | ug/L |           | 04/27/21 07:20 | 5        | 10    | 04/30/21 07:08 | JMW     | EPA 6020A         |
| Calcium                               | 44000   | ug/L |           | 04/27/21 07:20 | 5        | 200   | 04/29/21 15:52 | JMW     | EPA 6020A         |



Sample: ED03829-05

Name: MW-8

Matrix: Ground Water - Regular Sample

Sampled: 04/16/21 12:53 Received: 04/20/21 09:40

PO #: 25816

| Parameter                             | Result        | Unit | Qualifier | Prepared       | Dilution | MRL   | Analyzed       | Analyst | Method            |
|---------------------------------------|---------------|------|-----------|----------------|----------|-------|----------------|---------|-------------------|
| Anions - PIA                          | <del></del> - |      |           |                |          |       |                |         |                   |
| Chloride                              | 51            | mg/L |           | 04/26/21 18:36 | 25       | 25    | 04/26/21 18:36 | CRD     | EPA 300.0 REV 2.1 |
| Fluoride                              | < 0.250       | mg/L |           | 04/26/21 18:18 | 1        | 0.250 | 04/26/21 18:18 | CRD     | EPA 300.0 REV 2,1 |
| Sulfate                               | 130           | mg/L |           | 04/26/21 18:36 | 25       | 25    | 04/26/21 18:36 | CRD     | EPA 300.0 REV 2.1 |
| General Chemistry - PIA               |               |      |           |                |          |       |                |         |                   |
| Solids - total dissolved solids (TDS) | 400           | mg/L |           | 04/21/21 13:06 | 1        | 26    | 04/21/21 16:42 | BMA     | SM 2540C          |
| Total Metals - PIA                    |               |      |           |                |          |       |                |         |                   |
| Boron                                 | 460           | ug/L |           | 04/27/21 07:20 | 5        | 10    | 04/30/21 07:12 | JMW     | EPA 6020A         |
| Calcium                               | 100000        | ug/L |           | 04/27/21 07:20 | 5        | 200   | 04/29/21 15:56 | JMW     | EPA 6020A         |

Sample: ED03829-06 Name: FIELD DUPLICATE

Matrix: Ground Water - Regular Sample

Sampled: 04/16/21 00:00 Received: 04/20/21 09:40

| Parameter                             | Result  | Unit | Qualifier | Prepared       | Dilution | MRL   | Analyzed       | Analyst | Method            |
|---------------------------------------|---------|------|-----------|----------------|----------|-------|----------------|---------|-------------------|
| Anions - PiA                          |         |      |           |                |          |       | ·              |         |                   |
| Chloride                              | 59      | mg/L | C         | 04/27/21 19:44 | 25       | 25    | 04/27/21 19:44 | EJO     | EPA 300.0 REV 2.1 |
| Fluoride                              | < 0.250 | mg/L | O         | 14/26/21 18:54 | 1        | 0.250 | 04/26/21 18:54 | CRD     | EPA 300.0 REV 2.1 |
| Sulfate                               | 120     | mg/L | O         | 4/26/21 19:30  | 50       | 50    | 04/26/21 19:30 | CRD     | EPA 300.0 REV 2.1 |
| General Chemistry - PIA               |         |      |           |                |          |       |                |         |                   |
| Solids - total dissolved solids (TDS) | 420     | mg/L | 0         | 94/21/21 13:06 | 1        | 26    | 04/21/21 16:42 | ВМА     | SM 2540C          |
| Total Metals - PIA                    |         |      |           |                |          |       |                |         |                   |
| Boron                                 | 460     | ug/L | 0         | 4/27/21 07:20  | 5        | 10    | 04/30/21 07:15 | JMW     | EPA 6020A         |
| Calcium                               | 100000  | ug/L | 0         | 4/27/21 07:20  | 5        | 200   | 04/29/21 16:00 | WML     | EPA 6020A         |



Sample: ED03829-07

Name: FIELD BLANK

Matrix: Ground Water - Regular Sample

Sampled: 04/16/21 14:22

Received: 04/20/21 09:40

| Parameter                             | Result  | Unit | Qualifier | Prepared       | Dilution | MRL   | Analyzed       | Analyst | Method            |
|---------------------------------------|---------|------|-----------|----------------|----------|-------|----------------|---------|-------------------|
| Anions - PIA                          |         |      | - *-      |                |          | -     |                | •       | ·                 |
| Chloride                              | < 1.0   | mg/L |           | 04/26/21 19:48 | 1        | 1.0   | 04/26/21 19:48 | CRD     | EPA 300.0 REV 2.1 |
| Fluoride                              | < 0.250 | mg/L |           | 04/26/21 19:48 | 1        | 0.250 | 04/26/21 19:48 | CRD     | EPA 300.0 REV 2.1 |
| Sulfate                               | < 1.0   | mg/L |           | 04/26/21 19:48 | 1        | 1.0   | 04/26/21 19:48 | CRD     | EPA 300.0 REV 2.1 |
| General Chemistry - PIA               |         |      |           |                |          |       |                |         |                   |
| Solids - total dissolved solids (TDS) | < 17    | mg/L |           | 04/21/21 13:06 | 1        | 17    | 04/21/21 16:42 | ВМА     | SM 2540C          |
| Total Metals - PIA                    |         |      |           |                |          |       |                |         |                   |
| Boron                                 | < 10    | ug/L |           | 04/27/21 07:20 | 5        | 10    | 04/30/21 07:19 | JMW     | EPA 6020A         |
| Calcium                               | < 200   | ug/L |           | 04/27/21 07:20 | 5        | 200   | 04/29/21 16:03 | JMW     | EPA 6020A         |

# **Appendix 2**

Laboratory Analytical Results – April 17, 2021 (MW-3 TDS Re-sample)



Luke St Mary Sikeston BMU, Sikeston Power Station 1551 W Wakefield Sikeston, MO 63801

### Dear Luke St Mary:

Please find enclosed the **revised** analytical results for the sample(s) the laboratory received. All testing is performed according to our current TNI accreditations unless otherwise noted. This report cannot be reproduced, except in full, without the written permission of PDC Laboratories, Inc.

If you have any questions regarding your report, please contact your project manager. Quality and timely data is of the utmost importance to us.

PDC Laboratories, Inc. appreciates the opportunity to provide you with analytical expertise. We are always trying to improve our customer service and we welcome you to contact the Director of Client Services, Lisa Grant, with any feedback you have about your experience with our laboratory at 309-683-1764 or Igrant@pdclab.com.

Sincerely,

Paul g Schindler Project Manager (309) 692-9688 x1716

gschindler@pdclab.com





### **SAMPLE RECEIPT CHECK LIST**

### Items not applicable will be marked as in compliance

ED03824

Work Order

| YES | Samples received within temperature compliance when applicable |
|-----|----------------------------------------------------------------|
| YES | COC present upon sample receipt                                |
| YES | COC completed & legible                                        |
| YES | Sampler name & signature present                               |
| YES | Unique sample IDs assigned                                     |
| YES | Sample collection location recorded                            |
| YES | Date & time collected recorded on COC                          |
| YES | Relinquished by client signature on COC                        |
| YES | COC & labels match                                             |
| YES | Sample labels are legible                                      |
| YES | Appropriate bottle(s) received                                 |
| YES | Sufficient sample volume received                              |
| YES | Sample containers received undamaged                           |
| NO  | Zero headspace, <6 mm present in VOA vials                     |
| NO  | Trip blank(s) received                                         |
| YES | All non-field analyses received within holding times           |
| NO  | Short hold time analysis                                       |
| YES | Current PDC COC submitted                                      |
| NO  | Case narrative provided                                        |



Sample: ED03824-01

Sampled: 04/17/21 10:48

Name: MW-1

Received: 04/20/21 09:40 25815

PO #:

Matrix: Ground Water - Grab

| Parameter                             | Result  | Unit | Qualifier | Prepared       | Dilution | MRL   | Analyzed       | Analyst | Method            |
|---------------------------------------|---------|------|-----------|----------------|----------|-------|----------------|---------|-------------------|
| Anions - PIA                          |         |      |           |                |          |       |                | •       |                   |
| Chloride                              | 3.5     | mg/L | QЗ        | 04/26/21 10:46 | 1        | 1.0   | 04/26/21 10:46 | CRD     | EPA 300.0 REV 2.1 |
| Fluoride                              | < 0.250 | mg/L |           | 04/26/21 10:46 | 1        | 0.250 | 04/26/21 10:46 | CRD     | EPA 300.0 REV 2.1 |
| Sulfate                               | 37      | mg/L | Q4        | 04/26/21 11:40 | 10       | 10    | 04/26/21 11:40 | CRD     | EPA 300.0 REV 2.1 |
| General Chemistry - PIA               |         |      |           |                |          |       |                |         |                   |
| Solids - total dissolved solids (TDS) | 200     | mg/L |           | 04/21/21 13:06 | 1        | 26    | 04/21/21 16:42 | ВМА     | SM 2540C          |
| Total Metals - PIA                    |         |      |           |                |          |       |                |         |                   |
| Boron                                 | 500     | ug/L |           | 04/26/21 14:13 | 5        | 10    | 04/29/21 09:14 | JMW     | EPA 6020A         |
| Calcium                               | 53000   | ug/L |           | 04/26/21 14:13 | 5        | 200   | 04/29/21 09:14 | JMW     | EPA 6020A         |

Sample: ED03824-02

Sampled: 04/17/21 08:42 Received: 04/20/21 09:40

Name: MW-2

Matrix: Ground Water - Grab

| Parameter                             | Result  | Unit | Qualifier | Prepared       | Dilution | MRL   | Analyzed       | Analyst | Method                                  |
|---------------------------------------|---------|------|-----------|----------------|----------|-------|----------------|---------|-----------------------------------------|
| Anions - PIA                          | -       |      | -         |                |          |       |                |         | *************************************** |
| Chloride                              | 3.8     | mg/L |           | 04/28/21 01:37 | 1        | 1.0   | 04/28/21 01:37 | EJO     | EPA 300.0 REV 2.1                       |
| Fluoride                              | < 0.250 | mg/L |           | 04/28/21 01:37 | 1        | 0.250 | 04/28/21 01:37 | EJO     | EPA 300.0 REV 2.1                       |
| Sulfate                               | 17      | mg/L |           | 04/28/21 14:23 | 5        | 5.0   | 04/28/21 14:23 | EJO     | EPA 300.0 REV 2.1                       |
| General Chemistry - PIA               |         |      |           |                |          |       |                |         |                                         |
| Solids - total dissolved solids (TDS) | 150     | mg/L | н         | 05/11/21 08:51 | 1        | 26    | 05/11/21 12:23 | BCR     | SM 2540C                                |
| Total Metals - PIA                    |         |      |           |                |          |       |                |         |                                         |
| Baron                                 | 41      | ug/L |           | 04/26/21 14:13 | 5        | 10    | 04/29/21 09:18 | JMW     | EPA 6020A                               |
| Calcium                               | 19000   | ug/L |           | 04/26/21 14:13 | 5        | 200   | 04/29/21 09:18 | JMW     | EPA 6020A                               |



Sample: ED03824-03

Name: MW-3

Matrix: Ground Water - Grab

**Sampled:** 04/17/21 07:37 Received: 04/20/21 09:40

PO #: 25815

| Parameter                             | Result  | Unit Qualifier |    | Prepared       | Dilution | MRL   | Analyzed       | Analyst | Method            |
|---------------------------------------|---------|----------------|----|----------------|----------|-------|----------------|---------|-------------------|
| Anions - PIA                          |         |                |    |                |          |       |                |         |                   |
| Chloride                              | < 1.0   | mg/L           | Q3 | 04/26/21 11:58 | 1        | 1.0   | 04/26/21 11:58 | CRD     | EPA 300.0 REV 2.1 |
| Fluoride                              | < 0.250 | mg/L           |    | 04/26/21 11:58 | 1        | 0.250 | 04/26/21 11:58 | CRD     | EPA 300,0 REV 2.1 |
| Sulfate                               | 15      | mg/L           | Q4 | 04/26/21 12:52 | 10       | 10    | 04/26/21 12:52 | CRD     | EPA 300.0 REV 2.1 |
| General Chemistry - PIA               |         |                |    |                |          |       |                |         |                   |
| Solids - total dissolved solids (TDS) | 150     | mg/L           |    | 04/21/21 13:06 | 1        | 26    | 04/21/21 16:42 | ВМА     | SM 2540C          |
| Total Metals - PIA                    |         |                |    |                |          |       |                |         |                   |
| Boron                                 | 16      | ug/L           |    | 04/26/21 14:13 | 5        | 10    | 04/29/21 09:21 | JMW     | EPA 6020A         |
| Calcium                               | 17000   | ug/L           |    | 04/26/21 14:13 | 5        | 200   | 04/29/21 09:21 | JMW     | EPA 6020A         |

Sample: ED03824-04

Name: MW-7

Matrix: Ground Water - Grab

Sampled: 04/17/21 12:28 Received: 04/20/21 09:40

DO#- 05045

| Parameter                             | Result | Unit | Qualifier Prep | ared    | Dilution | MRL   | Analyzed       | Analyst | Method            |
|---------------------------------------|--------|------|----------------|---------|----------|-------|----------------|---------|-------------------|
| Anions - PIA                          |        |      |                | _       |          |       |                |         |                   |
| Chloride                              | 1.8    | mg/L | 04/26/2        | 1 13:10 | 1        | 1.0   | 04/26/21 13:10 | CRD     | EPA 300.0 REV 2.1 |
| Fluoride                              | 0.522  | mg/L | 04/26/2        | 1 13:10 | 1        | 0.250 | 04/26/21 13:10 | CRD     | EPA 300.0 REV 2.1 |
| Sulfate                               | 160    | mg/L | 04/26/2        | 1 14:23 | 25       | 25    | 04/26/21 14:23 | CRD     | EPA 300.0 REV 2.1 |
| General Chemistry - PIA               |        |      |                |         |          |       |                |         |                   |
| Solids - total dissolved solids (TDS) | 520    | mg/L | 04/21/2        | 1 13:06 | 1        | 26    | 04/21/21 16:42 | BMA     | SM 2540C          |
| Total Metals - PIA                    |        |      |                |         |          |       |                |         |                   |
| Boron                                 | 2200   | ug/L | 04/26/2        | 1 14:13 | 5        | 10    | 05/11/21 10:02 | JMW     | EPA 6020A         |
| Calcium                               | 120000 | ug/L | 04/26/2        | 1 14:13 | 5        | 200   | 04/29/21 09:25 | JMW     | EPA 6020A         |



Sample: ED03824-05

Sampled: 04/17/21 13:26

Name: MW-9

Received: 04/20/21 09:40

Matrix: Ground Water - Grab

PO #: 25815

| Parameter                             | Result | Unit | Qualifier Prepa | ared Dilu | rtion MRL | Analyzed       | Analyst | Method            |
|---------------------------------------|--------|------|-----------------|-----------|-----------|----------------|---------|-------------------|
| Anions - PIA                          |        |      |                 |           |           |                |         |                   |
| Chloride                              | 21     | mg/L | 04/23/21        | 15:04 10  | 10        | 04/23/21 15:04 | CRD     | EPA 300.0 REV 2.1 |
| Fluoride                              | 0.775  | mg/L | 05/11/21        | 21:30 1   | 0.250     | 05/11/21 21:30 | CRD     | EPA 300.0 REV 2.1 |
| Sulfate                               | 250    | mg/L | 04/23/21        | 15:23 50  | 50        | 04/23/21 15:23 | CRD     | EPA 300.0 REV 2.1 |
| General Chemistry - PIA               |        |      |                 |           |           |                |         |                   |
| Solids - total dissolved solids (TDS) | 630    | mg/L | 04/21/21        | 13:10 1   | 26        | 04/21/21 14:48 | BMA     | SM 2540C          |
| <u>Total Metals - PIA</u>             |        |      |                 |           |           |                |         |                   |
| Boron                                 | 6200   | ug/L | 04/26/21        | 14:13 5   | 10        | 04/29/21 10:05 | JMW     | EPA 6020A         |
| Calcium                               | 57000  | ug/L | 04/26/21        | 14:13 5   | 200       | 04/29/21 10:05 | JMW     | EPA 6020A         |

Sample: ED03824-06

Sampled: 04/17/21 00:00 Received: 04/20/21 09:40

Name: DUPLICATE WELL

Matrix: Ground Water - Field Duplicate

25815 PO #:

| Parameter                             | Result  | Unit | Qualifier Prepared | Dilution    | MRL   | Analyzed       | Analyst | Method            |
|---------------------------------------|---------|------|--------------------|-------------|-------|----------------|---------|-------------------|
| Anions - PIA                          |         |      |                    |             |       |                |         |                   |
| Chloride                              | 4.1     | mg/L | 04/23/21 16:       | 17 1        | 1.0   | 04/23/21 16:17 | CRD     | EPA 300.0 REV 2.1 |
| Fluoride                              | < 0.250 | mg/L | 04/23/21 16:       | 17 <b>1</b> | 0.250 | 04/23/21 16:17 | CRD     | EPA 300.0 REV 2.1 |
| Sulfate                               | 38      | mg/L | 04/23/21 16:       | 35 5        | 5.0   | 04/23/21 16:35 | CRD     | EPA 300.0 REV 2.1 |
| General Chemistry - PIA               |         |      |                    |             |       |                |         |                   |
| Solids - total dissolved solids (TDS) | 210     | mg/L | 04/21/21 13:       | 10 1        | 26    | 04/21/21 14:48 | ВМА     | SM 2540C          |
| Total Metals - PIA                    |         |      |                    |             |       |                |         |                   |
| Baron .                               | 550     | ug/L | 04/26/21 14:       | 13 5        | 10    | 04/29/21 10:09 | JMW     | EPA 6020A         |
| Calcium                               | 52000   | ug/L | 04/26/21 14:       | 13 5        | 200   | 04/29/21 10:09 | JMW     | EPA 6020A         |

Page 5 of 11 Customer #: 254748 www.pdclab.com



Sample: ED03824-07

Sampled: 04/17/21 12:28 Received: 04/20/21 09:40

Name: FIELD BLANK

PO #: 25815

Matrix: Ground Water - Field Blank

| Parameter                             | Result  | Unit | Qualifier Prepared Dilutio |                | Dilution | MRL   | Analyzed       | Analyst | Method            |
|---------------------------------------|---------|------|----------------------------|----------------|----------|-------|----------------|---------|-------------------|
| Anions - PIA                          |         |      |                            |                |          | -     |                |         | ·                 |
| Chloride                              | < 1.0   | mg/L |                            | 04/28/21 00:04 | 1        | 1.0   | 04/28/21 00:04 | EJO     | EPA 300.0 REV 2.1 |
| Fluoride                              | < 0.250 | mg/L |                            | 04/28/21 00:04 | 1        | 0.250 | 04/28/21 00:04 | EJO     | EPA 300.0 REV 2.1 |
| Sulfate                               | < 1.0   | mg/L |                            | 04/28/21 00:04 | 1        | 1.0   | 04/28/21 00:04 | EJO     | EPA 300.0 REV 2.1 |
| General Chemistry - PIA               |         |      |                            |                |          |       |                |         |                   |
| Solids - total dissolved solids (TDS) | < 17    | mg/L | Н                          | 05/11/21 08:55 | 1        | 17    | 05/11/21 12:23 | BCR     | SM 2540C          |
| Total Metals - PIA                    |         |      |                            |                |          |       |                |         |                   |
| Baron                                 | 10      | ug/L |                            | 04/26/21 14:13 | 5        | 10    | 05/12/21 12:46 | JMW     | EPA 6020A         |
| Calcium                               | < 200   | ug/L |                            | 04/26/21 14:13 | 5        | 200   | 04/29/21 10:12 | JMW     | EPA 6020A         |

# **Appendix 3**

Laboratory Quality Assurance/Quality Control Data

# **Appendix 3**

Laboratory QA/QC Data – April 16, 2021 (First 2021 Semi-annual Event)



### **QC SAMPLE RESULTS**

| Parameter                                      | Result        | Unit  | Qual | Spike<br>Level | Source<br>Result | %REC          | %REC<br>Limits | RPD | RPC<br>Limi |
|------------------------------------------------|---------------|-------|------|----------------|------------------|---------------|----------------|-----|-------------|
| Batch B128301 - No Prep - SM 2540C             |               |       |      |                |                  |               |                | -   |             |
| Blank (B128301-BLK1)                           |               |       |      | Prepared &     | Analyzed: 04/    | 21/21         |                |     |             |
| Solids - total dissolved solids (TDS)          | < 17          | mg/L  |      |                |                  |               |                |     |             |
| LCS (B128301-BS1)                              |               |       |      | Prepared &     | Analyzed: 04/    | 21/21         |                |     |             |
| Solids - total dissolved solids (TDS)          | 967           | mg/L  |      | 1000           | -                | 97            | 84.9-109       |     |             |
| Batch B128517 - No Prep - SM 2540C             |               |       |      |                |                  |               |                |     |             |
| Blank (B128517-BLK1)                           |               |       |      | Prepared &     | Analyzed: 04/    | 23/21         |                |     |             |
| Solids - total dissolved solids (TDS)          | < 17          | mg/L  |      |                |                  |               |                |     |             |
| LCS (B128517-BS1)                              |               |       |      | Prepared &     | Analyzed: 04/    | 23/21         |                |     |             |
| Solids - total dissolved solids (TDS)          | 1040          | mg/L  |      | 1000           |                  | 104           | 84.9-109       |     |             |
| Duplicate (B128517-DUP2)                       | Sample: ED038 | 29-01 |      | Prepared &     | Analyzed: 04/    | 23/21         |                |     |             |
| Solids - total dissolved solids (TDS)          | 220           | mg/L  |      |                | 230              |               |                | 4   | 5           |
| Batch B128694 - SW 3015 - EPA 6020A            |               |       |      |                |                  |               |                |     |             |
| Blank (B128694-BLK1)                           |               |       |      | Prepared: 0    | 4/26/21 Analy    | /zed: 04/29/2 | 1              |     |             |
| Boron                                          | < 10          | ug/L  |      |                |                  |               |                |     |             |
| Calcium                                        | < 200         | ug/L  |      |                |                  |               |                |     |             |
| LCS (B128694-BS1)                              |               |       |      | Prepared: 0    | 4/26/21 Analy    | zed: 04/29/2  | 1              |     |             |
| Boron                                          | 486           | ug/L  |      | 555,6          |                  | 88            | 80-120         |     |             |
| Calcium                                        | 5720          | ug/L  |      | 5556           |                  | 103           | 80-120         |     |             |
| Batch B128759 - SW 3015 - EPA 6020A            |               |       |      |                |                  |               |                |     |             |
| Blank (B128759-BLK1)                           |               |       |      | Prepared: 0    | 4/27/21 Analy    | zed: 04/30/2  | 1              |     |             |
| Boron                                          | < 10          | ug/L  | _    |                |                  |               |                |     |             |
| Calcium                                        | < 200         | ug/L  |      |                |                  |               |                |     |             |
| LCS (B128759-BS1)                              |               |       |      | Prepared: 0    | 4/27/21 Analy    | zed: 04/30/2  | 1              |     |             |
| Boron                                          | 511           | ug/L  |      | 555.6          |                  | 92            | 80-120         |     |             |
| Calcium                                        | 5530          | ug/L  |      | 5556           |                  | 99            | 80-120         |     |             |
| Matrix Spike (B128759-MS1)                     | Sample: ED038 | 29-03 |      | Prepared: 0    | 4/27/21 Analy    | zed: 04/30/2  | 1              |     |             |
| Boron                                          | 831           | ug/L  |      | 555.6          | 366              | 84            | 75-125         |     |             |
| Calcium                                        | 122000        | ug/L  | Q4   | 5556           | 118000           | 87            | 75-125         |     |             |
| Matrix Spike Dup (B128759-MSD1)                | Sample: ED038 | 29-03 |      | Prepared: 0    | 4/27/21 Analy    | zed: 04/30/2  | 1              |     |             |
| Boron                                          | 845           | ug/L  |      | 555.6          | 366              | 86            | 75-125         | 2   | 20          |
| Calcium                                        | 121000        | ug/L  | Q4   | 5556           | 118000           | 62            | 75-125         | 1   | 20          |
| Batch B128788 - IC No Prep - EPA 300.0 REV 2.1 |               |       |      |                |                  |               |                |     |             |
| Calibration Blank (B128788-CCB1)               |               |       |      | Prepared &     | Analyzed: 04/    | 26/21         |                |     |             |
| Fluoride                                       | 0.00          | mg/L  | _    |                |                  |               |                | -   |             |
| Sulfate                                        | 0.00          | mg/L  |      |                |                  |               |                |     |             |
| Chloride                                       | 0.00          | mg/L  |      |                |                  |               |                |     |             |
| Calibration Check (B128768-CCV1)               |               |       |      | Prepared &     | Analyzed: 04/    | 26/21         |                |     |             |
| Chloride                                       | 4.72          | mg/L  |      | 5.000          |                  | 94            | 90-110         |     |             |
| Fluoride                                       | 4.87          | mg/L  |      | 5.000          |                  | 97            | 90-110         |     |             |

Customer #: 264748 www.pdclab.com Page 7 of 10



### **QC SAMPLE RESULTS**

| Danner et au                                                                                                                                                                                                                                                                          |                            |                |      | Spike                                                                    | Source                                          |                                                | %REC        |               | RPD  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|----------------|------|--------------------------------------------------------------------------|-------------------------------------------------|------------------------------------------------|-------------|---------------|------|
| Parameter                                                                                                                                                                                                                                                                             | Result                     | Unit           | Qual | Level                                                                    | Result                                          | %REC                                           | Limits      | RPD           | Limi |
| Batch B128788 - IC No Prep - EPA 300.0 REV 2.1                                                                                                                                                                                                                                        |                            |                |      |                                                                          |                                                 |                                                |             |               |      |
| Calibration Check (B128788-CCV1)                                                                                                                                                                                                                                                      |                            |                |      | Prepared &                                                               | Analyzed: 04                                    | 26/21                                          |             |               |      |
| Sulfate                                                                                                                                                                                                                                                                               | 4,88                       | mg/L           |      | 5.000                                                                    | ,                                               | 98                                             | 90-110      |               |      |
| Matrix Spike (B128788-MS3)                                                                                                                                                                                                                                                            | Sample: ED038              | 29-04          |      | Prepared &                                                               | Analyzed: 04                                    | 26/21                                          |             |               |      |
| Chloride                                                                                                                                                                                                                                                                              | 3,6                        | mg/L           |      | 1.500                                                                    | 2.0                                             | 105                                            | 80-120      |               |      |
| Fluoride                                                                                                                                                                                                                                                                              | 1.88                       | mg/L           |      | 1.500                                                                    | 0.174                                           | 114                                            | 80-120      |               |      |
| Sulfate                                                                                                                                                                                                                                                                               | 1.00E9                     | mg/L           | Q4   | 1.500                                                                    | 23.7                                            | NR                                             | 80-120      |               |      |
| Matrix Spike Dup (B128788-MSD3)                                                                                                                                                                                                                                                       | Sample: ED038              |                |      |                                                                          | Analyzed: 04/                                   | 26/21                                          |             |               | _    |
| Fluoride                                                                                                                                                                                                                                                                              | 1.87                       | mg/L           |      | 1.500                                                                    | 0.174                                           | 113                                            | 80-120      | 0.6           | 20   |
| Sulfate                                                                                                                                                                                                                                                                               | 1.00E9                     | mg/L           | Q4   | 1.500                                                                    | 23.7                                            | NR                                             | 80-120      | 0             | 20   |
| Chloride                                                                                                                                                                                                                                                                              | 3.5                        | mg/L           |      | 1.500                                                                    | 2.0                                             | 99                                             | 80-120      | 3             | 20   |
| Batch B128932 - IC No Prep - EPA 300.0 REV 2.1                                                                                                                                                                                                                                        |                            |                |      |                                                                          |                                                 |                                                |             |               |      |
| Calibration Blank (B128932-CCB1)                                                                                                                                                                                                                                                      |                            |                |      | Prepared &                                                               | Analyzed: 04/                                   | 27/21                                          |             |               |      |
| Sulfate                                                                                                                                                                                                                                                                               | 0.0762                     | mg/L           |      |                                                                          |                                                 |                                                |             |               |      |
| Chloride                                                                                                                                                                                                                                                                              | 0.401                      | mg/L           |      |                                                                          |                                                 |                                                |             |               |      |
| Calibration Check (B128932-CCV1)                                                                                                                                                                                                                                                      |                            |                |      | Prepared &                                                               | Analyzed: 04/                                   | 27/21                                          |             |               |      |
| Chloride                                                                                                                                                                                                                                                                              | 4.98                       | mg/L           |      | 5.000                                                                    |                                                 | 100                                            | 90-110      |               |      |
| Sulfate                                                                                                                                                                                                                                                                               | 5.13                       | mg/L           |      | 5.000                                                                    |                                                 | 103                                            | 90-110      |               |      |
| Batch B128934 - IC No Prep - EPA 300.0 REV 2.1                                                                                                                                                                                                                                        |                            |                |      |                                                                          |                                                 |                                                |             |               |      |
|                                                                                                                                                                                                                                                                                       |                            |                |      |                                                                          |                                                 |                                                |             |               |      |
| Calibration Blank (B128934-CCB1)                                                                                                                                                                                                                                                      |                            |                |      | Prepared &                                                               | Analyzed: 04/                                   | 27/21                                          |             |               |      |
| Calibration Blank (B128934-CCB1) Chloride                                                                                                                                                                                                                                             | 0.943                      | mg/L           |      | Prepared &                                                               | Analyzed: 04/                                   | 27/21                                          |             |               |      |
|                                                                                                                                                                                                                                                                                       | 0.943                      | mg/L           |      | -                                                                        | Analyzed: 04/                                   |                                                | <del></del> | <del></del>   |      |
| Chloride                                                                                                                                                                                                                                                                              | 0.943                      | mg/L           |      | -                                                                        | -                                               |                                                | 90-110      | <del></del> - |      |
| Chloride Calibration Check (B128934-CCV1)                                                                                                                                                                                                                                             |                            |                |      | Prepared &                                                               | -                                               | 27/21                                          | 90-110      |               |      |
| Chloride Calibration Check (B128934-CCV1) Chloride                                                                                                                                                                                                                                    |                            |                |      | Prepared & 2                                                             | -                                               | 27/21<br>101                                   | 90-110      |               |      |
| Chloride Calibration Check (B128934-CCV1) Chloride Batch B129058 - No Prep - SM 4500F C 1997                                                                                                                                                                                          |                            |                |      | Prepared & 2                                                             | Analyzed: 04/                                   | 27/21<br>101                                   | 90-110      |               |      |
| Chloride  Calibration Check (B128934-CCV1)  Chloride  Batch B129058 - No Prep - SM 4500F C 1997  Calibration Blank (B129058-CCB1)                                                                                                                                                     | 5.05                       | mg/L           |      | Prepared & A                                                             | Analyzed: 04/                                   | 27/21<br>101<br>29/21                          | 90-110      |               |      |
| Chloride  Calibration Check (B128934-CCV1)  Chloride  Batch B129058 - No Prep - SM 4500F C 1997  Calibration Blank (B129058-CCB1)  Fluoride                                                                                                                                           | 5.05                       | mg/L           |      | Prepared & A                                                             | Analyzed: 04/<br>Analyzed: 04/                  | 27/21<br>101<br>29/21                          | 90-110      |               |      |
| Chloride Calibration Check (B128934-CCV1) Chloride Batch B129058 - No Prep - SM 4500F C 1997 Calibration Blank (B129058-CCB1) Fluoride Calibration Blank (B129058-CCB2)                                                                                                               | 0.0170                     | mg/L           |      | Prepared & A  Prepared & A  Prepared & A                                 | Analyzed: 04/<br>Analyzed: 04/                  | 27/21<br>101<br>29/21                          | 90-110      |               |      |
| Chloride  Calibration Check (B128934-CCV1)  Chloride  Batch B129058 - No Prep - SM 4500F C 1997  Calibration Blank (B129058-CCB1)  Fluoride  Calibration Blank (B129058-CCB2)  Fluoride                                                                                               | 0.0170                     | mg/L           |      | Prepared & A  Prepared & A  Prepared & A                                 | Analyzed: 04/<br>Analyzed: 04/<br>Analyzed: 04/ | 27/21<br>101<br>29/21                          | 90-110      |               |      |
| Chloride  Calibration Check (B128934-CCV1)  Chloride  Batch B129058 - No Prep - SM 4500F C 1997  Calibration Blank (B129058-CCB1)  Fluoride  Calibration Blank (B129058-CCB2)  Fluoride  Calibration Check (B129058-CCV2)                                                             | 0.0170                     | mg/L<br>mg/L   |      | Prepared & A Prepared & A Prepared & A                                   | Analyzed: 04/<br>Analyzed: 04/<br>Analyzed: 04/ | 27/21<br>101<br>29/21<br>29/21                 |             |               |      |
| Chloride Calibration Check (B128934-CCV1) Chloride Batch B129058 - No Prep - SM 4500F C 1997 Calibration Blank (B129058-CCB1) Fluoride Calibration Blank (B129058-CCB2) Fluoride Calibration Check (B129058-CCV2) Fluoride                                                            | 0.0170                     | mg/L<br>mg/L   |      | Prepared & A Prepared & A Prepared & A 0.7000                            | Analyzed: 04/<br>Analyzed: 04/<br>Analyzed: 04/ | 27/21<br>101<br>29/21<br>29/21<br>29/21<br>103 |             |               |      |
| Chloride Calibration Check (B128934-CCV1) Chloride Batch B129058 - No Prep - SM 4500F C 1997 Calibration Blank (B129058-CCB1) Fluoride Calibration Blank (B129058-CCB2) Fluoride Calibration Check (B129058-CCV2) Fluoride Batch B130177 - No Prep - SM 2540C                         | 0.0170                     | mg/L<br>mg/L   |      | Prepared & A Prepared & A Prepared & A 0.7000                            | Analyzed: 04/<br>Analyzed: 04/<br>Analyzed: 04/ | 27/21<br>101<br>29/21<br>29/21<br>29/21<br>103 |             |               |      |
| Chloride Calibration Check (B128934-CCV1) Chloride  Batch B129058 - No Prep - SM 4500F C 1997  Calibration Blank (B129058-CCB1) Fluoride Calibration Blank (B129058-CCB2) Fluoride Calibration Check (B129058-CCV2) Fluoride Batch B130177 - No Prep - SM 2540C  Blank (B130177-BLK1) | 0.0170<br>0.00800<br>0.720 | mg/L mg/L mg/L |      | Prepared & A Prepared & A O.7000  Prepared & A Prepared & A Prepared & A | Analyzed: 04/<br>Analyzed: 04/<br>Analyzed: 04/ | 27/21<br>101<br>29/21<br>29/21<br>103          |             |               |      |



#### **NOTES**

Specifications regarding method revisions and method modifications used for analysis are available upon request. Please contact your project manager.

\* Not a TNI accredited analyte

#### Memos

Revised report - included reanalysis results

#### **Certifications**

CHI - McHenry, IL - 4314-A W. Crystal Lake Road, McHenry, IL 60050

TNI Accreditation for Drinking Water and Wastewater Fields of Testing through IL EPA Accreditation No. 100279 Illinois Department of Public Health Bacterial Analysis in Drinking Water Approved Laboratory Registry No. 17556

PIA - Peoria, IL - 2231 W. Altorfer Drive, Peoria, IL 61615

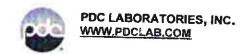
TNI Accreditation for Drinking Water, Wastewater, Solid and Hazardous Material Fields of Testing through IL EPA Accreditation No. 100230

Illinois Department of Public Health Bacterial Analysis in Drinking Water Approved Laboratory Registry No. 17553 Drinking Water Certifications/Accreditations: Iowa (240); Kansas (E-10338); Missouri (870) Wastewater Certifications/Accreditations: Arkansas (88-0677); Iowa (240); Kansas (E-10338) Solid and Hazardous Material Certifications/Accreditations: Arkansas (88-0677); lowa (240); Kansas (E-10338)

SPMO - Springfield, MO - 1805 W Sunset Street, Springfield, MO 65807 USEPA DMR-QA Program

STL - Hazelwood, MO - 944 Anglum Rd, Hazelwood, MO 63042

TNI Accreditation for Wastewater, Solid and Hazardous Material Fields of Testing through KS KDHE Certification No. E-10389 TNI Accreditation for Wastewater, Solid and Hazardous Material Fields of Testing through IL EPA Accreditation No. - 200080 Itlinois Department of Public Health Bacterial Analysis in Drinking Water Approved Laboratory, Registry No. 171050 Missouri Department of Natural Resources - Certificate of Approval for Microbiological Laboratory Service - No. 1050


#### Qualifiers

- Test performed after the expiration of the appropriate regulatory/advisory maximum allowable hold time.
- The matrix spike recovery result is unusable since the analyte concentration in the sample is greater than four times the spike level. The associated blank spike was acceptable.

Paul g Schindler

Certified by: Gail Schindler, Project Manager





| REGULATORY PROGRAM (CIRCLE): | NPDES                 |
|------------------------------|-----------------------|
| MORBCA                       | RCRA                  |
| CCDD                         | TACO: RES OR IND/COMM |

## **CHAIN OF CUSTODY RECORD**

STATE WHERE SAMPLE COLLECTED IL

| CLIENT                                                                                                                                      | ~                     | ALL HIG                                | HLIGHTED ARE      | AS MUS           | TBE COM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | PLETED BY      | LIENT (PLEA                                                                                                     | SE PRINT)             |                 |          |                            |                                  |                             |                                                                                |
|---------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|----------------------------------------|-------------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----------------------------------------------------------------------------------------------------------------|-----------------------|-----------------|----------|----------------------------|----------------------------------|-----------------------------|--------------------------------------------------------------------------------|
| SIKESTON BMU POWER STAT                                                                                                                     | ION                   | PROJEC                                 | THUMBER           | P                | ROJECT LO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | OCATION        |                                                                                                                 | E ORDER               | (3              | 7        | ii wele n                  | EQUESTE                          |                             | (FOR LAB USE ONLY)                                                             |
| ADDRESS 1551 W WAKEFIELD                                                                                                                    |                       |                                        | NUMBER<br>75-3131 | BOT              | F-MA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SH APP III     | DATE:                                                                                                           | SHIPPED               |                 | ノ ~~<br> | CTSIS R                    | EQUESTE                          |                             | LOGIN EDE 3870                                                                 |
| STAT SIKESTON, MO 63801                                                                                                                     | (P                    | AMPLER<br>LEASE PRIN                   | π <sub>1</sub>    | <u> </u><br> /:, | 2660                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | . M            | WWW. WASTERN                                                                                                    | TYPES:                |                 |          |                            |                                  |                             | CLIENT: SIKESTON BMU, SIKESTON<br>POWER STATION                                |
| ONTACT PERSON MR LUKE ST MARY                                                                                                               | 5/                    | Danniel Dill<br>SAMPLER'S<br>SIGNATURE |                   | a. Willinghows   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | OW - DEMANDS WATER OW - SOUND HATER WATER - SLUDGE HAM - NOR ACHEOUS GOLD LENY LECOMATE OL-OR 30-508. OCL-SOLIO |                       | SO4, TDS        | , , ,    |                            |                                  |                             | PROJECT: SIKESTON BOTTOM ASH<br>APP III<br>PROJ. MGR.: GJ SCHINDLER            |
| SAMPLE DESCRIPTION  2 (UNIQUE DESCRIPTION AS IT WILL APPEAR ON THE ANALYTICAL REPORT)                                                       | Ç                     | DATE<br>OLLECTED                       | TIME              | -                | COMP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | MATRIX<br>TYPE | BOTTLE<br>COUNT                                                                                                 | PRES<br>CODE<br>CUENT | <u>ان</u><br>۳. | B, CA    |                            |                                  |                             | REMARKS                                                                        |
| NW-3                                                                                                                                        |                       | -16-21                                 |                   | x                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | GW             | 2                                                                                                               | 3.6                   | x               | X        |                            | ++                               |                             |                                                                                |
| W-4                                                                                                                                         | -                     | -16-21                                 |                   | Х                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | GW             | 2                                                                                                               | 3,6                   | x               | X        |                            | +                                |                             |                                                                                |
| IW-5                                                                                                                                        |                       |                                        | 1100              | X                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | GW             | 2                                                                                                               | 3,6                   | x               | X        | +                          |                                  |                             |                                                                                |
| W-6                                                                                                                                         |                       | -16-21                                 |                   | X                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | GW             | 2                                                                                                               | 3,6                   | x               | X        |                            |                                  |                             |                                                                                |
| W-8                                                                                                                                         |                       | 16-21                                  | 1253              | _ x              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | GW             | 2                                                                                                               | 3,6                   | х               | x        |                            |                                  |                             |                                                                                |
| UPLICATE                                                                                                                                    | Marian Inc.           | -16-21                                 |                   | X                | مسلمان                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | GW             | 2                                                                                                               | 3,6                   | х               | x        |                            |                                  |                             |                                                                                |
| ELD BLANK                                                                                                                                   | 4-                    | ·/(-21                                 | 1422              | _X               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DI             | 2                                                                                                               | 3,6                   | х               | X        |                            |                                  |                             |                                                                                |
| EMICAL PRESERVATION CODES:   1-HCL   2-H2SQ4                                                                                                | 3 – HNO3              | 4 - NAO                                |                   |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                                                                                                 |                       |                 | -        |                            |                                  | +                           |                                                                                |
| TURNAROUND TIME REQUESTED (PLEASE CIRCLE) (RUSH TAT IS SUBJECT TO POC LABS APPROVAL AND SURCHAI RUSH RESULTS VIA (PLEASE CIRCLE) EMAIL PHON | NORMAL F              | RUSH                                   |                   | ATE RES          | ULTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | RESERVED 6     | 7 – OTHER  i understand i not meet all a                                                                        | that by initial       | ling this       | ber I gi | re the lat                 | permissio                        | on to proce                 | red with analysis, even though it may<br>ing facility's Sample Acceptance      |
| RELINQUISHED BY: (SIGNATURE)                                                                                                                | Trave man             | The second                             | nu - <del></del>  | ·                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •              | Policy and the<br>PROCEED W                                                                                     |                       | 4               |          |                            | may <u>muzi</u> o                | не вссерыи                  | ing facility's Sample Acceptance<br>ble to report to all regulatory authoritie |
| 4sh.32 Paser                                                                                                                                | ATE 19 - 2<br>ME 0730 |                                        | RECEIVED          | BY: (SIC         | NATURE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                |                                                                                                                 | DATE                  | .,              |          | <u></u>                    | соми                             | VENTS: (F                   | OR LAB USE ONLY)                                                               |
| 7                                                                                                                                           | ATE ME                |                                        | RECEIVED          | BY: (SIG         | NATURE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                |                                                                                                                 | DATE                  |                 |          |                            |                                  |                             | ON RECEIPT                                                                     |
|                                                                                                                                             | NE NE                 |                                        | RECEIVED          | BY: (SIGI        | The same of the sa | 7/2            |                                                                                                                 | DATE                  | 20/             | 21       | SAMPLE<br>SAMPLE<br>REPORT | (S) RECEI<br>ACCEPTA<br>IS NEEDS | VED ON IC<br>ANCE NON<br>ED | PRIOR TO RECEIPT SE CONFORMANT YOR N YOR N W SAMPLE BOTTLE                     |

# **Appendix 3**

Laboratory QA/QC Data – April 17, 2021 (MW-3 TDS Re-sample)



### **QC SAMPLE RESULTS**

| B                                              |               |       |      | Spike        | Source         |              | %REC     |     | RPD  |
|------------------------------------------------|---------------|-------|------|--------------|----------------|--------------|----------|-----|------|
| Parameter                                      | Result        | Unit  | Qual | Level        | Result         | %REC         | Limits   | RPD | Limi |
| Batch B128301 - No Prep - SM 2540C             |               |       |      |              |                |              |          |     |      |
| Blank (B128301-BLK1)                           |               |       |      | Prepared &   | Analyzed: 04/  | 21/21        |          |     |      |
| Solids - total dissolved solids (TDS)          | < 17          | mg/L  |      |              |                |              |          |     |      |
| LCS (B128301-BS1)                              |               |       |      | Prepared &   | Analyzed: 04/2 | 21/21        |          |     |      |
| Solids - total dissolved solids (TDS)          | 967           | mg/L  |      | 1000         |                | 97           | 84.9-109 |     |      |
| Batch B128302 - No Prep - SM 2540C             |               |       |      |              |                |              |          |     |      |
| Blank (B128302-BLK1)                           |               |       |      | Prepared &   | Analyzed: 04/2 | 21/21        |          |     |      |
| Solids - total dissolved solids (TDS)          | < 17          | mg/L  |      |              |                |              | <u> </u> |     |      |
| LCS (B128302-BS1)                              |               |       |      | Prepared &   | Analyzed: 04/2 | 21/21        |          |     |      |
| Solids - total dissolved solids (TDS)          | 933           | mg/L  |      | 1000         |                | 93           | 84.9-109 | · · |      |
| <u>Batch B128517 - No Prep - SM 2540C</u>      |               |       |      |              |                |              |          |     |      |
| Blank (B128517-BLK1)                           |               |       |      | Prepared &   | Analyzed: 04/2 | 23/21        |          |     |      |
| Solids - total dissolved solids (TDS)          | < 17          | mg/L  |      |              |                |              |          |     |      |
| LCS (B128517-BS1)                              |               |       |      | Prepared &   | Analyzed: 04/2 | 23/21        |          |     |      |
| Solids - total dissolved solids (TDS)          | 1040          | mg/L  |      | 1000         |                | 104          | 84.9-109 |     |      |
| Duplicate (B128517-DUP1)                       | Sample: ED038 | 24-02 |      | Prepared &   | Analyzed: 04/2 | 23/21        |          |     |      |
| Solids - total dissolved solids (TDS)          | 240           | mg/L  | М    |              | 200            |              |          | 18  | 5    |
| Batch B128694 - SW 3015 - EPA 6020A            |               |       |      |              |                |              |          |     |      |
| Blank (B128694-BLK1)                           |               |       |      | Prepared: 0  | 4/26/21 Analy: | zed: 04/29/2 | 1        |     |      |
| Boron                                          | < 10          | ug/L  |      |              |                |              |          |     |      |
| Catcium                                        | < 200         | ug/L  |      |              |                |              |          |     |      |
| LCS (B128694-BS1)                              |               |       |      | Prepared: 0  | 4/26/21 Analy: | zed: 04/29/2 | I        |     |      |
| Boron                                          | 486           | ug/L  |      | 555,6        | _              | 88           | 80-120   |     |      |
| Calcium                                        | 5720          | ug/L  |      | 5556         |                | 103          | 80-120   |     |      |
| Batch B128758 - IC No Prep - EPA 300.0 REV 2.1 |               |       |      |              |                |              |          |     |      |
| Calibration Blank (B128758-CCB1)               |               |       |      | Prepared &   | Analyzed: 04/2 | 3/21         |          |     |      |
| Suifate                                        | 0.00          | mg/L  |      |              |                |              | <u> </u> |     |      |
| Fluoride                                       | 0,00          | mg/L  |      |              |                |              |          |     |      |
| Chloride                                       | 0,698         | mg/L  |      |              |                |              |          |     |      |
| Calibration Check (B128758-CCV1)               |               |       |      | Prepared &   | Analyzed: 04/2 | 3/21         |          |     |      |
| Chloride                                       | 5,14          | mg/L  |      | 5.000        |                | 103          | 90-110   |     |      |
| Fluoride                                       | 4.97          | mg/L  |      | 5.000        |                | 99           | 90-110   |     |      |
| Sulfate                                        | 4.99          | mg/L  |      | 5,000        |                | 100          | 90-110   |     |      |
| Batch B128788 - IC No Prep - EPA 300.0 REV 2.1 |               |       |      |              |                |              |          |     |      |
| Calibration Blank (B128788-CCB1)               |               |       |      | Prepared &   | Analyzed: 04/2 | 6/21         |          |     |      |
| Chloride                                       | 0.00          | mg/L  |      |              |                |              |          |     |      |
| Fluoride                                       | 0.00          | mg/L  |      |              |                |              |          |     |      |
| Sulfate                                        | 0.00          | mg/L  |      |              |                |              |          |     |      |
| Calibration Check (B128788-CCV1)               |               |       |      | Prepared & / | Analyzed: 04/2 | 6/21         |          |     |      |

Customer #: 264748 www.pdclab.com Page 7 of 11



#### **QC SAMPLE RESULTS**

|                                                        |               |       |      | Spike        | Source         |       | %REC   |     | RPD  |
|--------------------------------------------------------|---------------|-------|------|--------------|----------------|-------|--------|-----|------|
| Parameter                                              | Result        | Unit  | Qual | Level        | Result         | %REC  | Limits | RPD | Limi |
| Batch B128788 - IC No Prep - EPA 300.0 REV 2.1         |               |       |      | <del>_</del> |                |       |        |     |      |
| Calibration Check (B128788-CCV1)                       |               |       |      | Prepared &   | Analyzed: 04/  | 26/21 |        |     |      |
| Fluoride                                               | 4.87          | mg/L  |      | 5.000        |                | 97    | 90-110 |     |      |
| Chloride                                               | 4.72          | mg/L  |      | 5.000        |                | 94    | 90-110 |     |      |
| Sulfate                                                | 4.88          | mg/L  |      | 5.000        |                | 98    | 90-110 |     |      |
| Matrix Spike (B128788-MS1)                             | Sample: ED038 | 24-01 |      | Prepared &   | Analyzed: 04/  | 26/21 |        |     |      |
| Fluoride                                               | 1.74          | mg/L  |      | 1.500        | 0.167          | 105   | 80-120 |     |      |
| Sulfate                                                | 1.00E9        | mg/L  | Q4   | 1.500        | 37,5           | NR    | 80-120 |     |      |
| Chloride                                               | 5.4           | mg/L  | Q1   | 1.500        | 3.5            | 130   | 80-120 |     |      |
| Matrix Spike (B128788-MS2)                             | Sample: ED038 | 24-03 |      | Prepared &   | Analyzed: 04/  | 26/21 |        |     |      |
| Sulfate                                                | 1.00E9        | mg/L  | Q4   | 1.500        | 15.4           | NR    | 80-120 |     |      |
| Chloride                                               | 2.4           | mg/L  | Q1   | 1.500        | ND             | 158   | 80-120 |     |      |
| Fluoride                                               | 1.79          | mg/L  |      | 1.500        | 0.219          | 105   | 80-120 |     |      |
| Matrix Spike Dup (B128788-MSD1)                        | Sample: ED038 | 24-01 |      | Prepared &   | Analyzed: 04/  | 26/21 |        |     |      |
| Fluoride                                               | 1.75          | mg/L  |      | 1,500        | 0.167          | 105   | 80-120 | 0,1 | 20   |
| Sulfate                                                | 1.00E9        | mg/L  | Q4   | 1.500        | 37,5           | NR    | 80-120 | 0   | 20   |
| Chloride                                               | 5.4           | mg/L  | Q2   | 1.500        | 3.5            | 128   | 80-120 | 0.6 | 20   |
| Matrix Spike Dup (B128788-MSD2)                        | Sample: ED038 | 24-03 |      | Prepared &   | Analyzed: 04/  | 26/21 |        |     |      |
| Fluoride                                               | 1.77          | mg/L  | •    | 1.500        | 0,219          | 103   | 80-120 | 1   | 20   |
| Sulfate                                                | 1.00E9        | mg/L  | Q4   | 1.500        | 15.4           | NR    | 80-120 | 0   | 20   |
| Chloride                                               | 2.3           | mg/L  | Q2   | 1.500        | ND             | 157   | 80-120 | 1   | 20   |
| Batch B128930 - IC No Prep - EPA 300.0 REV 2.1         |               |       |      |              |                |       |        |     |      |
| Calibration Blank (B128930-CCB1)                       |               |       |      | Prepared &   | Analyzed: 04/  | 27/21 |        |     |      |
| Chloride                                               | 0.207         | mg/L  |      |              |                |       |        |     |      |
| Sulfate                                                | 0.0604        | mg/L  |      |              |                |       |        |     |      |
| Fluoride                                               | 0.00          | mg/L  |      |              |                |       |        |     |      |
| Calibration Check (B128930-CCV1)                       |               |       |      | Prepared &   | Analyzed: 04/2 | 27/21 |        |     |      |
| Sulfate                                                | 5.05          | mg/L  |      | 5.000        |                | 101   | 90-110 |     |      |
| Chloride                                               | 5.00          | mg/L  |      | 5.000        |                | 100   | 90-110 |     |      |
| Fluoride                                               | 4.66          | mg/L  |      | 5.000        |                | 93    | 90-110 |     |      |
| Batch B128934 - IC No Prep - EPA 300.0 REV 2.1         |               |       |      |              |                |       |        |     |      |
| Calibration Blank (B128934-CCB1)                       |               |       |      | Prepared &   | Analyzed: 04/2 | 27/21 |        |     |      |
| Fluoride                                               | 0.00          | mg/L  |      |              |                |       |        |     |      |
| Chloride                                               | 0.943         | mg/L  |      |              |                |       |        |     |      |
| Calibration Check (B128934-CCV1)                       |               |       |      | Prepared & / | Analyzed: 04/2 | 27/21 |        |     |      |
| luoride                                                | 5.07          | mg/L  |      | 5.000        |                | 101   | 90-110 |     |      |
| Chloride                                               | 5.05          | mg/L  |      | 5.000        |                | 101   | 90-110 |     |      |
| <u> Batch B129075 - IC No Prep - EPA 300.0 REV 2.1</u> |               |       |      |              |                |       |        |     |      |
| Calibration Blank (B129075-CCB1)                       |               |       |      | Prepared & A | Analyzed: 04/2 | 8/21  |        |     |      |
| Sulfate                                                | 0.00          | mg/L  |      |              |                |       |        |     |      |
| Calibration Check (B129075-CCV1)                       |               |       |      | Prepared & A | Analyzed: 04/2 | 8/21  |        |     |      |
| Sulfate                                                | 5.01          | mg/L  |      | 5.000        | <del></del>    | 100   | 90-110 |     |      |

Batch B130177 - No Prep - SM 2540C

Customer #: 264748 www.pdclab.com Page 8 of 11



#### **QC SAMPLE RESULTS**

| Parameter                                      | Result | Unit | Qual | Spike<br>Level | Source<br>Result | %REC  | %REC<br>Limits | RPD | RPD<br>Limit |
|------------------------------------------------|--------|------|------|----------------|------------------|-------|----------------|-----|--------------|
| Batch B130177 - No Prep - SM 2540C             |        | _    |      |                |                  |       |                |     |              |
| Blank (B130177-BLK1)                           |        |      |      | Prepared &     | Analyzed: 05/    | 11/21 |                |     |              |
| Solids - total dissolved solids (TDS)          | < 17   | mg/L |      |                |                  |       |                |     |              |
| LCS (B130177-BS1)                              |        |      |      | Prepared &     | Analyzed: 05/    | 11/21 |                |     |              |
| Solids - total dissolved solids (TDS)          | 960    | mg/L |      | 1000           |                  | 96    | 84.9-109       |     |              |
| Batch B130353 - IC No Prep - EPA 300.0 REV 2.1 |        |      |      |                |                  |       |                |     |              |
| Calibration Blank (B130353-CCB1)               |        |      |      | Prepared &     | Analyzed: 05/    | 11/21 |                |     |              |
| Fluoride                                       | 0.00   | mg/L |      |                |                  |       |                |     |              |
| Calibration Check (B130353-CCV1)               |        |      |      | Prepared &     | Analyzed: 05/    | 11/21 |                |     |              |
| Fluoride                                       | 4.95   | mg/L |      | 5.000          |                  | 99    | 90-110         |     |              |

Customer #: 264748 www.pdclab.com Page 9 of 11



#### NOTES

Specifications regarding method revisions and method modifications used for analysis are available upon request. Please contact your project manager.

\* Not a TNI accredited analyte

#### <u>Memos</u>

Revised report - included reanalysis results

#### Certifications

CHI - McHenry, IL - 4314-A W. Crystal Lake Road, McHenry, IL 60050 TNI Accreditation for Drinking Water and Wastewater Fields of Testing through IL EPA Accreditation No. 100279 Illinois Department of Public Health Bacterial Analysis in Drinking Water Approved Laboratory Registry No. 17556

PIA - Peoria, IL - 2231 W. Altorfer Drive, Peoria, IL 61615

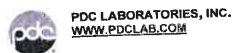
TNI Accreditation for Drinking Water, Wastewater, Solid and Hazardous Material Fields of Testing through IL EPA Accreditation No. 100230

Illinois Department of Public Health Bacterial Analysis in Drinking Water Approved Laboratory Registry No. 17553 Drinking Water Certifications/Accreditations: Iowa (240); Kansas (E-10338); Missouri (870) Wastewater Certifications/Accreditations: Arkansas (88-0677); Iowa (240); Kansas (E-10338) Solid and Hazardous Material Certifications/Accreditations: Arkansas (88-0677); Iowa (240); Kansas (E-10338)

SPMO - Springfield, MO - 1805 W Sunset Street, Springfield, MO 65807 USEPA DMR-QA Program

STL - Hazelwood, MO - 944 Anglum Rd, Hazelwood, MO 63042

Dail of Schindler


TNI Accreditation for Wastewater, Solid and Hazardous Material Fields of Testing through KS KDHE Certification No. E-10389 TNI Accreditation for Wastewater, Solid and Hazardous Material Fields of Testing through IL EPA Accreditation No. - 200080 Illinois Department of Public Health Bacterial Analysis in Drinking Water Approved Laboratory, Registry No. 171050 Missouri Department of Natural Resources - Certificate of Approval for Microbiological Laboratory Service - No. 1050

#### Qualifiers

- H Test performed after the expiration of the appropriate regulatory/advisory maximum allowable hold time.
- M Analyte failed to meet the required acceptance criteria for duplicate analysis.
- Q1 Matrix Spike failed % recovery acceptance limits. The associated blank spike recovery was acceptable.
- Q2 Matrix Spike Duplicate failed % recovery acceptance limits. The associated blank spike recovery was acceptable.
- Q3 Matrix Spike/Matrix Spike Duplicate both failed % recovery acceptance limits. The associated blank spike recovery was acceptable.
- Q4 The matrix spike recovery result is unusable since the analyte concentration in the sample is greater than four times the spike level. The associated blank spike was acceptable.

Certified by: Gail Schindler, Project Manager

LE ACCREDITO



| REGULATORY PROGRAM (CIRCLE): | NPDES                 |
|------------------------------|-----------------------|
| MORBCA                       | RCRA                  |
| CCDD                         | TACO: RES OR IND/COMM |

#### CHAIN OF CUSTODY RECORD

#### STATE WHERE SAMPLE COLLECTED IL

|                                                                                       | ALL HIGH                 | IGHTED AREAS      | MUŞT BE         | E COMPLE  | ED BY CL       | PURCHASE                                                                               | E PRINT)                           | r=                  |                      |               |                |                | (FOR LAB USE ONLY)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|---------------------------------------------------------------------------------------|--------------------------|-------------------|-----------------|-----------|----------------|----------------------------------------------------------------------------------------|------------------------------------|---------------------|----------------------|---------------|----------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SIKESTON BMU POWER STATION                                                            | PROJECT                  |                   |                 | ASH AP    |                | DATES                                                                                  |                                    | 0                   | ANAL                 | YSIS REQ      | UESTE          | )<br>          | LOGIN # CD0337-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1551 W WAKEFIELD                                                                      | PHONE N<br>573-475       |                   |                 | E-MAIL    |                |                                                                                        |                                    |                     |                      |               |                |                | LOGGED BY:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| SIKESTON, MO 63801                                                                    | SAMPLER<br>(PLEASE PRINT | i pin             | iny             | hum       |                | MATRIX  WWW-WASTEWAY  DWI- DEWNRING W  GWI- SERGEND WI  WOREL SELVISEE  LICHT-LEACHATE | ER<br>ATER                         | , TDS               |                      |               |                |                | POWER STATION  PROJECT: SIKESTON FLY ASH APP IN  PROJ. MGR.: GJ SCHINDLER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| MR LUKE ST MARY                                                                       | SAMPLER'S<br>SIGNATURE   | a. u              | الماء 5         | lugh      | - 2            | OR-OR<br>SO-SOR<br>BOL-EVALID                                                          |                                    | F, SO4,             | ξ.                   |               |                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SAMPLE DESCRIPTION  2 PUNIQUE DESCRIPTION AS IT WILL APPEAR ON THE ANALYTICAL REPORT) | COLLECTED                | TIME<br>COLLECTED | SAMPL<br>GRAB   | COMP      | MATRIX<br>TYPE | COUNT                                                                                  | PRES<br>CODE<br>LLIENT<br>PROVIDED | ᄓ                   | œ'                   |               |                |                | REMARKS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                       | 4-17-21                  | 1048              | X               |           | GW             | 2                                                                                      | 3,6                                | X                   | X                    |               |                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| IW-1                                                                                  | 4-17-21                  | 2842              | х               |           | GW             | 2                                                                                      | 3,6                                | X                   | х                    |               |                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| W-2                                                                                   | 4-17-21                  | 0737              | Х               |           | GW             | 2                                                                                      | 3,6                                | X                   | X                    |               |                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <u>IW-3</u>                                                                           | 4-17-21                  | 1228              | Х               | 125       | GW             | 2                                                                                      | 3,6                                | X                   | х                    |               | _              |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <u>IW-7</u>                                                                           | 4-17-21                  | 1326              | Х               |           | GW             | 2                                                                                      | 3,6                                | X                   | X                    |               |                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| IW-9                                                                                  | 4-17-21                  |                   | _X_             |           | GW             | 22                                                                                     | 3,6                                | X                   | X                    |               | 12-            |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| OUPLICATE  FIELD BLANK                                                                | 4-17-21                  | 1228              | Х               |           | DI             | <u>2</u>                                                                               | 3,6                                | X                   | X                    |               |                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| I go to to                                                                            |                          | F1 15 1 5 -       |                 |           |                |                                                                                        |                                    | +-                  |                      |               |                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| CHEMICAL PRESERVATION CODES: 1-HGL 2-H2SO4                                            | 3-HNO3 4-NA              | KOH 5-NA          | \$203           | 6-UNP     | RESERVED       | 7 - OTHE                                                                               | 1                                  |                     |                      |               |                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                       | RMAL RUSH                |                   | DATE RE<br>NEED |           | 0              | not meet a<br>Policy and                                                               | li sample co<br>the data will      | ntorman<br>be quali | ce requi<br>fied. Qu | illied dat    | n may <u>N</u> | OT be ac       | proceed with analysis, even though it may<br>occiving facility's Sample Acceptance<br>captable to report to all regulatory authoritic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| EMAIL IF DIFFERENT FROM ABOVE: PHONE I IF DIFFERENT FROM A                            | SOVE:                    |                   |                 |           |                | PROCEED                                                                                | WITH ANAI                          | LYSIS AI            | AUD QUA              | JFY RESU      |                |                | TS: (FOR LAB USE ONLY)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 7) 1 1 1 1                                                                            | 0730                     | RECEIV            | ED BY: (SI      | ignature) |                |                                                                                        |                                    | VE.                 |                      | 10            | ) _            |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| RELINQUISHED BY: (SIGNATURE)                                                          |                          | RECEIV            | ED BY: (S       | IGNATURE) | A              |                                                                                        |                                    | TE                  |                      | SAME          | ALE TEN        | <b>APERATU</b> | IRE UPON RECEIPT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| TIME                                                                                  |                          | peren             | EU BA- 16       | IGNATURE) |                |                                                                                        |                                    | NIE<br>ATE/A        | 27 .                 | SANI          | PLE(S) F       | RECEIVE        | RTED PRIOR TO RECEIPT YOR N ON ICE ON |
| RELINQUISHED BY: (SIGNATURE)  TIM                                                     |                          | KEGEN             | (3)<br>استعماد  |           | 1              |                                                                                        | TI                                 | <i>4/}€</i><br>ME   |                      | REPO          | )ŘŤ IS P       | VEEDED         | EN FROM SAMPLE BOTTLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 13000                                                                                 | •                        |                   |                 |           | - Sellen       |                                                                                        | 6                                  | 14                  | 0                    | \ \frac{1}{2} | - ruder )      |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

### **Appendix 4**

Groundwater Quality Data Base

|           |            |                     |             | Field | Parame | ters  |           |      | Appe     | ndix III Monito | ring Const | tuents (Detection | n)    |         |          |         |        |           | Ap      | pendix IV I | Monitorii | ng Cons | tituents | (Assessm | ent)       |          |          | -                                   |
|-----------|------------|---------------------|-------------|-------|--------|-------|-----------|------|----------|-----------------|------------|-------------------|-------|---------|----------|---------|--------|-----------|---------|-------------|-----------|---------|----------|----------|------------|----------|----------|-------------------------------------|
| Well      | Date       | Monitoring Purpose  | Spec. Cond. | Temp. | ORP    | D.O.  | Turbidity | pН   | Chloride | Fluoride        | Sulfate    | TDS               | Boron | Calcium | Antimony | Arsenic | Barium | Beryllium | Cadmium | Chromium    | Cobalt    | Lead    | Lithium  | Mercury  | Molybdenum | Selenium | Thallium | Radium 226<br>and 228<br>(Combined) |
| ID        |            | Monitoring Fairpood | µmhos/cm    | °C    | mV     | mg/L  | NTU       | S.U. | mg/L     | mg/L            | mg/L       | mg/L              | ug/L  | mg/L    | ug/L     | ug/L    | ug/L   | ug/L      | ug/L    | ug/L        | ug/L      | ug/L    | ug/L     | ug/L     | ug/L       | ug/L     | ug/L     | pCi/L                               |
|           |            |                     |             |       |        |       |           |      | None     | 4.0             | None       | None              | None  | None    | 6        | 10      | 2000   | 4         | 5       | 100         | 6         | 15      | 40       | 2        | 100        | 50       | 2        | 5                                   |
| MW-3 (UG) | 11/30/2016 | Background          | 254.0       | 15.75 | -27.1  | 0.41  | 37.28     | 7.1  | 2.3      | 0.438           | 26         | 160               | 18    | 24      | <3.0     | 1.5     | 96     | <1.0      | <1.0    | <4.0        | <2.0      | <1.0    | <10      | <0.20    | <1.0       | <1.0     | <1.0     | 1.668                               |
|           | 1/24/2017  | Background          | 226.4       | 16.52 | -8.4   | 0.39  | 4.46      | 6.9  | 2.0      | 0.261           | 30         | 130               | 12    | 21      | <3.0     | 1.2     | 120    | <1.0      | <1.0    | <4.0        | <2.0      | <1.0    | <10      | <0.20    | <1.0       | <1.0     | <1.0     | 0.677(ND)                           |
|           | 2/22/2017  | Background          | 226.6       | 16.47 | 9.7    | 0.36  | 3.56      | 6.9  | 1.9      | 0.290           | 26         | 120               | 33    | 22      | <3.0     | 1.0     | 120    | <1.0      | <1.0    | <4.0        | <2.0      | <1.0    | <10      | <0.20    | <1.0       | <1.0     | <1.0     | 0.460(ND)                           |
|           | 3/20/2017  | Background          | 212.1       | 17.07 | 33.7   | 0.43  | 6.61      | 6.7  | 1.8      | 0.286           | 21         | 170               | 22    | 19      | <3.0     | <1.0    | 110    | <1.0      | <1.0    | <4.0        | <2.0      | <1.0    | <10      | <0.20    | <1.0       | <1.0     | <1.0     | 0.277(ND)                           |
|           | 4/27/2017  | Background          | 223.2       | 15.35 | 9.2    | 0.57  | 2.69      | 6.7  | 2.0      | 0.257           | 28         | 140               | 54    | 20      | <3.0     | <1.0    | 110    | <1.0      | <1.0    | <4.0        | <2.0      | <1.0    | <10      | <0.20    | 9.9        | <1.0     | <1.0     | -0.030(ND)                          |
|           | 5/17/2017  | Background          | 224.9       | 17.68 | 26.8   | 0.45  | 12.59     | 6.6  | 1.5      | <0.250          | 21         | 130               | 19    | 17      | <3.0     | <1.0    | 120    | <1.0      | <1.0    | <4.0        | <2.0      | <1.0    | <10      | 0.40     | <1.0       | <1.0     | <1.0     | 0.844(ND)                           |
|           | 6/8/2017   | Background          | 217.9       | 16.73 | 18.2   | 0.49  | 2.61      | 6.7  | 1.7      | 0.276           | 22         | 160               | 20    | 19      | <3.0     | <1.0    | 110    | <1.0      | <1.0    | <4.0        | <2.0      | <1.0    | <10      | <0.20    | <1.0       | <1.0     | <1.0     | -0.469(ND)                          |
|           | 7/13/2017  | Background          | 243.8       | 19.02 | 5.5    | 0.39  | 4.79      | 6.7  | 2.2      | 0.256           | 19         | 160               | 18    | 20      | <3.0     | <1.0    | 100    | <1.0      | <1.0    | <4.0        | <2.0      | <1.0    | <10      | <0.20    | <1.0       | <1.0     | <1.0     | 0.715(ND)                           |
|           | 10/31/2017 | Background / D1     | 246.2       | 16.74 | 12.4   | 0.65  | 7.47      | 6.6  | 2.0      | 0.331           | 20         | 140               | 27    | 19      | (NA)     | (NA)    | (NA)   | (NA)      | (NA)    | (NA)        | (NA)      | (NA)    | (NA)     | (NA)     | (NA)       | (NA)     | (NA)     | (NA)                                |
|           | 6/13/2018  | Background / D2     | 194.2       | 17.19 | 42.3   | 0.42  | 7.57      | 6.6  | 1.3      | 0.291           | 17         | 130               | 23    | 20      | (NA)     | (NA)    | (NA)   | (NA)      | (NA)    | (NA)        | (NA)      | (NA)    | (NA)     | (NA)     | (NA)       | (NA)     | (NA)     | (NA)                                |
|           | 11/26/2018 | Background / D3     | 194.9       | 15.05 | 49.8   | 0.47  | 2.23      | 6.5  | 1.5      | 0.301           | 18         | 100               | 23    | 17      | Note 8   | Note 8  | Note 8 | Note 8    | Note 8  | Note 8      | Note 8    | Note 8  | Note 8   | Note 8   | Note 8     | Note 8   | Note 8   | Note 8                              |
|           | 2/5/2019   | Background          | 205.0       | 14.49 | 46.9   | 0.49  | 1.92      | 6.5  | 1.5      | 0.342           | 20         | 160               | 22    | 17      | Note 8   | Note 8  | Note 8 | Note 8    | Note 8  | Note 8      | Note 8    | Note 8  | Note 8   | Note 8   | Note 8     | Note 8   | Note 8   | Note 8                              |
|           | 5/28/2019  | Background / D4     | 218.4       | 16.42 | 32.2   | 0.82  | 9.69      | 6.4  | 1.3      | <0.250          | 20         | (NA)              | 51    | 17      | Note 8   | Note 8  | Note 8 | Note 8    | Note 8  | Note 8      | Note 8    | Note 8  | Note 8   | Note 8   | Note 8     | Note 8   | Note 8   | Note 8                              |
|           | 7/23/2019  | Background / B 1    | 203.0       | 16.58 | 71.0   | 0.88  | 4.96      | (NA) | (NA)     | (NA)            | (NA)       | 140               | (NA)  | (NA)    | (NA)     | (NA)    | (NA)   | (NA)      | (NA)    | (NA)        | (NA)      | (NA)    | (NA)     | (NA)     | (NA)       | (NA)     | (NA)     | (NA)                                |
|           | 8/28/2019  | Background / D5     | 207.4       | 16.97 | 75.6   | 0.89  | 4.02      | 6.4  | 1.1      | <0.250          | 18         | 140               | 35    | 15      | Note 8   | Note 8  | Note 8 | Note 8    | Note 8  | Note 8      | Note 8    | Note 8  | Note 8   | Note 8   | Note 8     | Note 8   | Note 8   | Note 8                              |
|           | 11/4/2019  | Background          | 202.3       | 16.60 | 63.2   | 0.70  | 4.22      | 6.4  | 1.4      | <0.250          | 18         | 130               | 37    | 15      | Note 8   | Note 8  | Note 8 | Note 8    | Note 8  | Note 8      | Note 8    | Note 8  | Note 8   | Note 8   | Note 8     | Note 8   | Note 8   | Note 8                              |
|           | 2/18/2020  | Background / D6     | 207.6       | 14.17 | 58.6   | 1.22  | 6.34      | 6.4  | 1.3      | <0.250          | 21         | (NA)              | 27    | 16      | Note 8   | Note 8  | Note 8 | Note 8    | Note 8  | Note 8      | Note 8    | Note 8  | Note 8   | Note 8   | Note 8     | Note 8   | Note 8   | Note 8                              |
|           | 3/30/2020  | zaengreama / ze     | 199.3       | 14.87 | 61.2   | 1.20  | 6.01      | (NA) | (NA)     | (NA)            | (NA)       | 180               | (NA)  | (NA)    | (NA)     | (NA)    | (NA)   | (NA)      | (NA)    | (NA)        | (NA)      | (NA)    | (NA)     | (NA)     | (NA)       | (NA)     | (NA)     | (NA)                                |
|           | 7/21/2020  | Background / D7     | 197.8       | 16.87 | -40.4  | 8.42  | 3.43      | 6.5  | 1.0      | <0.250          | 15         | 140               | 21    | 18      | Note 8   | Note 8  | Note 8 | Note 8    | Note 8  | Note 8      | Note 8    | Note 8  | Note 8   | Note 8   | Note 8     | Note 8   | Note 8   | Note 8                              |
|           | 10/20/2020 | Background          | 206.2       | 16.22 | -15.1  | 8.73  | 2.88      | 6.5  | 1.2      | <0.250          | 15         | 130               | 21    | 17      | Note 8   | Note 8  | Note 8 | Note 8    | Note 8  | Note 8      | Note 8    | Note 8  | Note 8   | Note 8   | Note 8     | Note 8   | Note 8   | Note 8                              |
|           | 4/16/2021  | Detection 8         | 189.2       | 14.10 | 41.3   | 12.69 | 4.03      | 6.5  | 1.2      | <0.250          | 16         | (NA)              | 25    | 17      | (NA)     | (NA)    | (NA)   | (NA)      | (NA)    | (NA)        | (NA)      | (NA)    | (NA)     | (NA)     | (NA)       | (NA)     | (NA)     | (NA)                                |
|           | 4/17/2021  | 20.00               | 196.8       | 14.04 | 34.3   | 12.04 | 3.47      | (NA) | (NA)     | (NA)            | (NA)       | 150               | (NA)  | (NA)    | (NA)     | (NA)    | (NA)   | (NA)      | (NA)    | (NA)        | (NA)      | (NA)    | (NA)     | (NA)     | (NA)       | (NA)     | (NA)     | (NA)                                |
|           |            |                     |             |       |        |       |           |      |          |                 |            |                   |       |         |          |         |        |           |         |             |           |         |          |          |            |          |          | 1                                   |

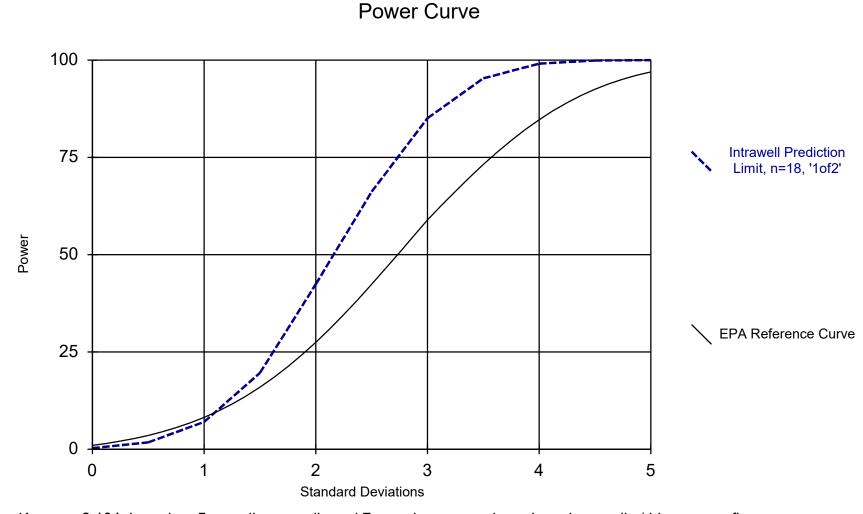
|           |            |                     | Field Parameters Appendix III Monitoring Constituents (Detection) |       |        |      |           |      |          | 1)       |         |      |       |         |          | Ap      | pendix IV | Monitorii | ng Cons | tituents | (Assessm | ent)   |         |         |            |          |          |                                     |
|-----------|------------|---------------------|-------------------------------------------------------------------|-------|--------|------|-----------|------|----------|----------|---------|------|-------|---------|----------|---------|-----------|-----------|---------|----------|----------|--------|---------|---------|------------|----------|----------|-------------------------------------|
| Well      | Date       | Monitoring Purpose  | Spec. Cond.                                                       | Temp. | ORP    | D.O. | Turbidity | pН   | Chloride | Fluoride | Sulfate | TDS  | Boron | Calcium | Antimony | Arsenic | Barium    | Beryllium | Cadmium | Chromium | Cobalt   | Lead   | Lithium | Mercury | Molybdenum | Selenium | Thallium | Radium 226<br>and 228<br>(Combined) |
| ID        |            | Worldoning Fullpose | µmhos/cm                                                          | °C    | mV     | mg/L | NTU       | S.U. | mg/L     | mg/L     | mg/L    | mg/L | ug/L  | mg/L    | ug/L     | ug/L    | ug/L      | ug/L      | ug/L    | ug/L     | ug/L     | ug/L   | ug/L    | ug/L    | ug/L       | ug/L     | ug/L     | pCi/L                               |
|           |            |                     |                                                                   |       |        |      |           |      | None     | 4.0      | None    | None | None  | None    | 6        | 10      | 2000      | 4         | 5       | 100      | 6        | 15     | 40      | 2       | 100        | 50       | 2        | 5                                   |
| MW-4 (DG) | 11/30/2016 | Background          | 575.6                                                             | 17.51 | -108.3 | 0.48 | 0.61      | 7.5  | 18       | 0.259    | 140     | 390  | 1400  | 89      | <3.0     | <1.0    | 41        | <1.0      | <1.0    | <4.0     | <2.0     | <1.0   | <10     | <0.20   | <1.0       | <1.0     | <1.0     | 0.572(ND)                           |
|           | 1/24/2017  | Background          | 543.7                                                             | 17.00 | -105.2 | 0.50 | 0.48      | 7.5  | 15       | <0.250   | 120     | 290  | 880   | 79      | <3.0     | <1.0    | 46        | <2.0      | <1.0    | <4.0     | <2.0     | <1.0   | <10     | <0.20   | <1.0       | <1.0     | <1.0     | 0.7031(ND)                          |
|           | 2/22/2017  | Background          | 554.0                                                             | 17.95 | -115.3 | 0.51 | 1.19      | 7.5  | 13       | <0.250   | 97      | 320  | 1500  | 78      | <3.0     | <1.0    | 51        | <1.0      | <1.0    | <4.0     | <2.0     | <1.0   | <10     | <0.20   | <1.0       | <1.0     | <1.0     | 0.550(ND)                           |
|           | 3/20/2017  | Background          | 562.8                                                             | 18.58 | -108.8 | 0.69 | 1.70      | 7.4  | 12       | <0.250   | 94      | 350  | 1400  | 72      | <3.0     | <1.0    | 53        | <1.0      | <1.0    | <4.0     | <2.0     | <1.0   | <10     | 1.3     | <1.0       | <1.0     | <1.0     | 1.036                               |
|           | 4/27/2017  | Background          | 536.9                                                             | 17.25 | -129.6 | 0.91 | 2.38      | 7.4  | 14       | <0.250   | 99      | 300  | 1300  | 74      | <3.0     | <1.0    | 50        | <1.0      | <1.0    | <4.0     | <2.0     | <1.0   | <10     | <0.20   | <1.0       | <1.0     | <1.0     | 0.210(ND)                           |
|           | 5/17/2017  | Background          | 554.9                                                             | 17.90 | -115.5 | 0.63 | 3.02      | 7.4  | 14       | <0.250   | 96      | 320  | 1200  | 71      | <3.0     | <1.0    | 66        | <1.0      | <1.0    | <4.0     | <2.0     | <1.0   | <10     | <0.20   | <1.0       | <1.0     | <1.0     | 0.774(ND)                           |
|           | 6/8/2017   | Background          | 509.7                                                             | 18.24 | -122.9 | 0.86 | 0.84      | 7.4  | 12       | <0.250   | 86      | 340  | 1100  | 61      | <3.0     | <1.0    | 45        | <1.0      | <1.0    | <4.0     | <2.0     | <1.0   | <10     | <0.20   | <1.0       | <1.0     | <1.0     | 0.464(ND)                           |
|           | 7/13/2017  | Background          | 575.5                                                             | 19.46 | -115.2 | 0.52 | 1.43      | 7.4  | 13       | <0.250   | 88      | 300  | 1200  | 79      | <3.0     | <1.0    | 52        | <1.0      | <1.0    | <4.0     | <2.0     | <1.0   | <10     | <0.20   | <1.0       | <1.0     | <1.0     | 1.086(ND)                           |
|           | 10/31/2017 | Background / D1     | 525.8                                                             | 18.35 | -118.1 | 0.63 | 1.07      | 7.3  | 17       | <0.250   | 83      | 290  | 1400  | 67      | (NA)     | (NA)    | (NA)      | (NA)      | (NA)    | (NA)     | (NA)     | (NA)   | (NA)    | (NA)    | (NA)       | (NA)     | (NA)     | (NA)                                |
|           | 6/13/2018  | Background / D2     | 511.5                                                             | 18.92 | -120.7 | 0.44 | 18.50     | 7.3  | 14       | <0.250   | 86      | 290  | 1200  | 80      | (NA)     | (NA)    | (NA)      | (NA)      | (NA)    | (NA)     | (NA)     | (NA)   | (NA)    | (NA)    | (NA)       | (NA)     | (NA)     | (NA)                                |
|           | 11/26/2018 | Background / D3     | 468.0                                                             | 16.07 | -101.8 | 0.53 | 1.01      | 7.4  | 8.8      | <0.250   | 54      | 260  | 1100  | 64      | Note 8   | Note 8  | Note 8    | Note 8    | Note 8  | Note 8   | Note 8   | Note 8 | Note 8  | Note 8  | Note 8     | Note 8   | Note 8   | Note 8                              |
|           | 2/5/2019   | Background          | 761.0                                                             | 15.62 | -97.5  | 0.52 | 2.58      | 7.3  | 33       | <0.250   | 140     | 420  | 1100  | 100     | Note 8   | Note 8  | Note 8    | Note 8    | Note 8  | Note 8   | Note 8   | Note 8 | Note 8  | Note 8  | Note 8     | Note 8   | Note 8   | Note 8                              |
|           | 5/28/2019  | Background / D4     | 581.7                                                             | 18.65 | -108.5 | 0.37 | 3.30      | 7.3  | 11       | <0.250   | 75      | (NA) | 980   | 70      | Note 8   | Note 8  | Note 8    | Note 8    | Note 8  | Note 8   | Note 8   | Note 8 | Note 8  | Note 8  | Note 8     | Note 8   | Note 8   | Note 8                              |
|           | 7/23/2019  | Background / B4     | 615.2                                                             | 18.88 | -105.2 | 0.43 | 0.36      | (NA) | (NA)     | (NA)     | (NA)    | 340  | (NA)  | (NA)    | (NA)     | (NA)    | (NA)      | (NA)      | (NA)    | (NA)     | (NA)     | (NA)   | (NA)    | (NA)    | (NA)       | (NA)     | (NA)     | (NA)                                |
|           | 8/28/2019  | Background / D5     | 645.4                                                             | 19.60 | -101.7 | 0.40 | 2.31      | (NA) | 18       | <0.250   | 110     | 300  | 1100  | 83      | Note 8   | Note 8  | Note 8    | Note 8    | Note 8  | Note 8   | Note 8   | Note 8 | Note 8  | Note 8  | Note 8     | Note 8   | Note 8   | Note 8                              |
|           | 10/23/2019 | Buokground / Bo     | 620.0                                                             | 18.90 | -110.6 | 0.55 | 1.93      | 7.3  | (NA)     | (NA)     | (NA)    | (NA) | (NA)  | (NA)    | (NA)     | (NA)    | (NA)      | (NA)      | (NA)    | (NA)     | (NA)     | (NA)   | (NA)    | (NA)    | (NA)       | (NA)     | (NA)     | (NA)                                |
|           | 11/4/2019  | Background          | 657.7                                                             | 18.52 | -104.2 | 0.50 | 0.96      | 7.2  | 2.1      | <0.250   | 120     | 400  | 1200  | 89      | Note 8   | Note 8  | Note 8    | Note 8    | Note 8  | Note 8   | Note 8   | Note 8 | Note 8  | Note 8  | Note 8     | Note 8   | Note 8   | Note 8                              |
|           | 2/18/2020  | Background / D6     | 526.9                                                             | 14.49 | -87.6  | 0.63 | 1.60      | 7.4  | 11       | <0.250   | 66      | 290H | 930   | 67      | Note 8   | Note 8  | Note 8    | Note 8    | Note 8  | Note 8   | Note 8   | Note 8 | Note 8  | Note 8  | Note 8     | Note 8   | Note 8   | Note 8                              |
|           | 3/30/2020  | Zaonground / Do     | 520.6                                                             | 16.45 | -91.1  | 0.35 | 19.51     | (NA) | (NA)     | (NA)     | (NA)    | 300  | (NA)  | (NA)    | (NA)     | (NA)    | (NA)      | (NA)      | (NA)    | (NA)     | (NA)     | (NA)   | (NA)    | (NA)    | (NA)       | (NA)     | (NA)     | (NA)                                |
|           | 7/21/2020  | Background / D7     | 550.7                                                             | 19.75 | -145.6 | 5.06 | 6.49      | (NA) | 14       | <0.250   | 86      | 290  | 920   | 76      | Note 8   | Note 8  | Note 8    | Note 8    | Note 8  | Note 8   | Note 8   | Note 8 | Note 8  | Note 8  | Note 8     | Note 8   | Note 8   | Note 8                              |
|           | 8/3/2020   | Baokground / BT     | 567.8                                                             | 18.81 | -117.8 | 4.87 | 7.19      | 7.4  | (NA)     | (NA)     | (NA)    | (NA) | (NA)  | (NA)    | (NA)     | (NA)    | (NA)      | (NA)      | (NA)    | (NA)     | (NA)     | (NA)   | (NA)    | (NA)    | (NA)       | (NA)     | (NA)     | (NA)                                |
|           | 10/20/2020 | Background          | 596.6                                                             | 17.94 | -92.1  | 6.36 | 1.80      | 7.4  | 17       | <0.250   | 96      | 330  | 1000  | 80      | Note 8   | Note 8  | Note 8    | Note 8    | Note 8  | Note 8   | Note 8   | Note 8 | Note 8  | Note 8  | Note 8     | Note 8   | Note 8   | Note 8                              |
|           | 4/16/2021  | Detection 8         | 591.2                                                             | 15.99 | -58.4  | 4.85 | 12.85     | 7.4  | 19       | <0.250   | 100     | 340  | 920   | 85      | (NA)     | (NA)    | (NA)      | (NA)      | (NA)    | (NA)     | (NA)     | (NA)   | (NA)    | (NA)    | (NA)       | (NA)     | (NA)     | (NA)                                |

|           |            |                    |             | Field | Parame | ters |           |      | Appe     | ndix III Monito | ring Const | ituents (Detection | 1)   |      |        |        |        |        | Ap        | pendix IV | Monitori | ng Cons | stituents | (Assessm | ent)       |        |        |                                     |
|-----------|------------|--------------------|-------------|-------|--------|------|-----------|------|----------|-----------------|------------|--------------------|------|------|--------|--------|--------|--------|-----------|-----------|----------|---------|-----------|----------|------------|--------|--------|-------------------------------------|
| Well      | Date       | Monitoring Purpose | Spec. Cond. | Temp. | ORP    | D.O. | Turbidity | рН   | Chloride | Fluoride        | Sulfate    | TDS                | t    |      |        | 1      |        |        | Cadmium   |           |          | 1       |           | + ·      | Molybdenum | 1      |        | Radium 226<br>and 228<br>(Combined) |
| ID        |            |                    | µmhos/cm    | C     | mV     | mg/L | NTU       | S.U. | mg/L     | mg/L            | mg/L       | mg/L               | ug/L | mg/L | ug/L   | ug/L   | ug/L   | ug/L   | ug/L<br>- | ug/L      | ug/L     | ug/L    | ug/L      | ug/L     | ug/L       | ug/L   | ug/L   | pCi/L                               |
|           |            |                    |             |       |        |      |           |      | None     | 4.0             | None       | None               | None | None | 6      | 10     | 2000   | 4      | 5         | 100       | 6        | 15      | 40        | 2        | 100        | 50     | 2      | 5                                   |
| MW-5 (DG) | 11/30/2016 | Background         | 808.3       | 16.20 | -48.7  | 0.50 | 1.24      | 7.0  | 16       | 0.255           | 230        | 560                | 470  | 96   | <3.0   | <1.0   | 84     | <1.0   | <1.0      | <4.0      | 4.3      | <1.0    | <10       | <0.20    | <1.0       | <1.0   | <1.0   | 1.844                               |
|           | 1/24/2017  | Background         | 745.3       | 16.24 | -37.6  | 0.58 | 0.72      | 6.9  | 15       | <0.250          | 270        | 470                | 480  | 120  | <3.0   | <1.0   | 91     | <1.0   | <1.0      | <4.0      | 5.2      | <1.0    | <10       | <0.20    | <1.0       | <1.0   | <1.0   | 0.827(ND)                           |
|           | 2/22/2017  | Background         | 717.8       | 17.75 | -50.5  | 0.36 | 3.43      | 7.0  | 11       | <0.250          | 170        | 420                | 470  | 100  | <3.0   | <1.0   | 83     | <1.0   | <1.0      | <4.0      | 3.6      | <1.0    | <10       | <0.20    | <1.0       | <1.0   | <1.0   | 0.130(ND)                           |
|           | 3/20/2017  | Background         | 737.9       | 17.78 | -36.5  | 0.72 | 2.16      | 6.9  | 11       | <0.250          | 170        | 480                | 320  | 99   | <3.0   | <1.0   | 76     | <1.0   | <1.0      | <4.0      | 4.4      | <1.0    | <10       | <0.20    | <1.0       | <1.0   | <1.0   | 0.538(ND)                           |
|           | 4/27/2017  | Background         | 777.3       | 16.07 | -58.8  | 0.69 | 5.20      | 6.8  | 12       | <0.250          | 460        | 480                | 490  | 120  | <3.0   | <1.0   | 87     | <1.0   | <1.0      | <4.0      | 4.8      | <1.0    | <10       | <0.20    | 3.0        | <1.0   | <1.0   | 1.676                               |
|           | 5/17/2017  | Background         | 760.1       | 17.81 | -56.0  | 0.46 | 5.35      | 6.8  | 11       | <0.250          | 200        | 440                | 5700 | 240  | <3.0   | 1.8    | 180    | <1.0   | <1.0      | 16        | 5.3      | 6.3     | <10       | 0.24     | <1.0       | <1.0   | <1.0   | 1.739                               |
|           | 6/8/2017   | Background         | 678.3       | 17.72 | -58.6  | 0.69 | 1.89      | 6.8  | 11       | <0.250          | 180        | 480                | 360  | 97   | <3.0   | <1.0   | 77     | <1.0   | <1.0      | <4.0      | 3.9      | <1.0    | <10       | <0.20    | <1.0       | <1.0   | <1.0   | 0.869(ND)                           |
|           | 7/13/2017  | Background         | 799.0       | 19.19 | -82.0  | 1.08 | 17.49     | 7.0  | 10       | <0.250          | 190        | 430                | 320  | 110  | <3.0   | <1.0   | 81     | <1.0   | <1.0      | <4.0      | 3.8      | <1.0    | <10       | <0.20    | <1.0       | <1.0   | <1.0   | 0.767(ND)                           |
|           | 10/31/2017 | Background / D1    | 591.8       | 17.45 | -77.6  | 0.85 | 3.17      | 6.9  | 13       | <0.250          | 88         | 310                | 280  | 72   | (NA)   | (NA)   | (NA)   | (NA)   | (NA)      | (NA)      | (NA)     | (NA)    | (NA)      | (NA)     | (NA)       | (NA)   | (NA)   | (NA)                                |
|           | 6/13/2018  | Background / D2    | 756.4       | 18.28 | -55.6  | 0.84 | 1.91      | 6.8  | 11       | <0.250          | 240        | 480                | 370  | 130  | (NA)   | (NA)   | (NA)   | (NA)   | (NA)      | (NA)      | (NA)     | (NA)    | (NA)      | (NA)     | (NA)       | (NA)   | (NA)   | (NA)                                |
|           | 11/26/2018 | Background / D3    | 836.4       | 14.90 | -27.0  | 0.51 | 0.38      | 6.7  | 17       | <0.250          | 230        | 520                | 420  | 120  | Note 8    | Note 8    | Note 8   | Note 8  | Note 8    | Note 8   | Note 8     | Note 8 | Note 8 | Note 8                              |
|           | 2/5/2019   | Background         | 845.6       | 15.22 | -23.7  | 0.41 | 0.71      | 6.7  | 15       | 0.272           | 200        | 480                | 450  | 120  | Note 8    | Note 8    | Note 8   | Note 8  | Note 8    | Note 8   | Note 8     | Note 8 | Note 8 | Note 8                              |
|           | 5/28/2019  | Background / D4    | 861.1       | 18.31 | -59.1  | 0.60 | 3.71      | 6.9  | 10       | <0.250          | 190        | (NA)               | 280  | 110  | Note 8    | Note 8    | Note 8   | Note 8  | Note 8    | Note 8   | Note 8     | Note 8 | Note 8 | Note 8                              |
|           | 7/23/2019  | Buonground / B 1   | 806.9       | 18.66 | -44.9  | 0.81 | 1.34      | (NA) | (NA)     | (NA)            | (NA)       | 480                | (NA) | (NA) | (NA)   | (NA)   | (NA)   | (NA)   | (NA)      | (NA)      | (NA)     | (NA)    | (NA)      | (NA)     | (NA)       | (NA)   | (NA)   | (NA)                                |
|           | 8/28/2019  | Background / D5    | 848.4       | 18.49 | -42.2  | 0.64 | 0.82      | 6.8  | 16       | <0.250          | 190        | 480                | 410  | 110  | Note 8    | Note 8    | Note 8   | Note 8  | Note 8    | Note 8   | Note 8     | Note 8 | Note 8 | Note 8                              |
|           | 11/4/2019  | Background         | 729.9       | 18.03 | -55.8  | 0.77 | 2.65      | 6.8  | 3.2      | <0.250          | 15         | 440                | 420  | 99   | Note 8    | Note 8    | Note 8   | Note 8  | Note 8    | Note 8   | Note 8     | Note 8 | Note 8 | Note 8                              |
|           | 2/18/2020  | Background / D6    | 871.7       | 14.05 | -45.2  | 0.81 | 0.88      | 6.8  | 15       | <0.250          | 210        | (NA)               | 400  | 110  | Note 8    | Note 8    | Note 8   | Note 8  | Note 8    | Note 8   | Note 8     | Note 8 | Note 8 | Note 8                              |
|           | 3/30/2020  |                    | 750.4       | 15.84 | -49.7  | 0.62 | 2.90      | (NA) | (NA)     | (NA)            | (NA)       | 450                | (NA) | (NA) | (NA)   | (NA)   | (NA)   | (NA)   | (NA)      | (NA)      | (NA)     | (NA)    | (NA)      | (NA)     | (NA)       | (NA)   | (NA)   | (NA)                                |
|           | 7/21/2020  | Background / D7    | 816.5       | 18.35 | -102.9 | 4.37 | 5.36      | 6.8  | 14       | <0.250          | 210        | 470                | 330  | 110  | Note 8    | Note 8    | Note 8   | Note 8  | Note 8    | Note 8   | Note 8     | Note 8 | Note 8 | Note 8                              |
|           | 10/20/2020 | Background         | 886.3       | 16.27 | -70.2  | 8.15 | 3.72      | 6.9  | 15       | <0.250          | 220        | 590                | 360  | 120  | Note 8    | Note 8    | Note 8   | Note 8  | Note 8    | Note 8   | Note 8     | Note 8 | Note 8 | Note 8                              |
|           | 4/16/2021  | Detection 8        | 837.4       | 15.79 | -11.1  | 7.27 | 2.84      | 6.9  | 10       | <0.250          | 240        | 510                | 370  | 120  | (NA)   | (NA)   | (NA)   | (NA)   | (NA)      | (NA)      | (NA)     | (NA)    | (NA)      | (NA)     | (NA)       | (NA)   | (NA)   | (NA)                                |
|           |            |                    |             |       |        |      |           |      |          |                 |            |                    |      |      |        |        |        |        |           |           |          |         |           |          |            |        |        | 1                                   |

|           | Field Parameters |                    |             |       |        |      |           |      | Appe     | ndix III Monito | ring Const | ituents (Detection | 1)    |         |          |         |        |           | Ap      | pendix IV I | Monitorii | ng Cons | tituents | (Assessm | ent)       |          |          | · 1                                 |
|-----------|------------------|--------------------|-------------|-------|--------|------|-----------|------|----------|-----------------|------------|--------------------|-------|---------|----------|---------|--------|-----------|---------|-------------|-----------|---------|----------|----------|------------|----------|----------|-------------------------------------|
| Well      | Date             | Monitoring Purpose | Spec. Cond. | Temp. | ORP    | D.O. | Turbidity | рН   | Chloride | Fluoride        | Sulfate    | TDS                | Boron | Calcium | Antimony | Arsenic | Barium | Beryllium | Cadmium | Chromium    | Cobalt    | Lead    | Lithium  | Mercury  | Molybdenum | Selenium | Thallium | Radium 226<br>and 228<br>(Combined) |
| ID        |                  | Workering Furpose  | µmhos/cm    | °C    | mV     | mg/L | NTU       | S.U. | mg/L     | mg/L            | mg/L       | mg/L               | ug/L  | mg/L    | ug/L     | ug/L    | ug/L   | ug/L      | ug/L    | ug/L        | ug/L      | ug/L    | ug/L     | ug/L     | ug/L       | ug/L     | ug/L     | pCi/L                               |
|           |                  |                    |             |       |        |      |           |      | None     | 4.0             | None       | None               | None  | None    | 6        | 10      | 2000   | 4         | 5       | 100         | 6         | 15      | 40       | 2        | 100        | 50       | 2        | 5                                   |
| MW-6 (UG) | 11/30/2016       | Background         | 369.0       | 16.39 | -49.4  | 0.85 | 0.84      | 6.9  | 2.8      | 0.331           | 36         | 200                | 36    | 45      | <3.0     | 4.3     | 190    | <1.0      | <1.0    | <4.0        | <2.0      | <1.0    | <10      | <0.20    | <1.0       | <1.0     | <1.0     | 1.532                               |
|           | 1/24/2017        | Background         | 358.9       | 16.29 | -44.8  | 0.66 | 0.26      | 6.9  | 2.4      | <0.250          | 43         | 200                | 27    | 41      | <3.0     | 5.7     | 220    | <1.0      | <1.0    | <4.0        | <2.0      | <1.0    | <10      | <0.20    | <1.0       | <1.0     | <1.0     | 0.948(ND)                           |
|           | 2/22/2017        | Background         | 352.5       | 17.20 | -42.2  | 0.81 | 15.27     | 6.9  | 2.1      | 0.269           | 32         | 160                | 59    | 40      | <3.0     | 6.4     | 210    | <1.0      | <1.0    | <4.0        | <2.0      | <1.0    | <10      | <0.20    | <1.0       | <1.0     | <1.0     | 0.685(ND)                           |
|           | 3/20/2017        | Background         | 360.8       | 16.90 | 24.9   | 0.36 | 9.70      | 6.7  | 2.1      | <0.250          | 31         | 240                | 37    | 39      | <3.0     | 5       | 160    | <1.0      | <1.0    | <4.0        | <2.0      | <1.0    | <10      | <0.20    | <1.0       | <1.0     | <1.0     | 0.577(ND)                           |
|           | 4/27/2017        | Background         | 331.5       | 15.71 | -50.9  | 0.39 | 8.35      | 6.7  | 2.3      | <0.250          | 34         | 170                | 36    | 38      | <3.0     | 3.2     | 180    | <1.0      | <1.0    | <4.0        | <2.0      | <1.0    | <10      | <0.20    | <1.0       | <1.0     | <1.0     | 1.243(ND)                           |
|           | 5/17/2017        | Background         | 323.2       | 17.65 | -71.5  | 0.45 | 7.13      | 6.8  | 1.8      | <0.250          | 30         | 170                | 35    | 30      | <3.0     | 4.9     | 190    | <1.0      | <1.0    | <4.0        | <2.0      | <1.0    | <10      | <0.20    | <1.0       | <1.0     | <1.0     | 1.173(ND)                           |
|           | 6/8/2017         | Background         | 326.7       | 17.50 | -53.0  | 0.33 | 3.86      | 6.7  | 1.7      | <0.250          | 29         | 180                | 38    | 36      | <3.0     | 4.6     | 190    | <1.0      | <1.0    | <4.0        | <2.0      | <1.0    | <10      | <0.20    | <1.0       | <1.0     | <1.0     | 0.893(ND)                           |
|           | 7/13/2017        | Background         | 396.8       | 19.68 | -84.0  | 0.72 | 2.17      | 7.0  | 1.6      | <0.250          | 28         | 180                | 31    | 40      | <3.0     | 5.8     | 200    | <1.0      | <1.0    | <4.0        | <2.0      | <1.0    | <10      | <0.20    | <1.0       | <1.0     | <1.0     | 0.575(ND)                           |
|           | 10/31/2017       | Background / D1    | 359.6       | 17.57 | -57.9  | 0.71 | 1.48      | 6.7  | 1.7      | 0.303           | 29         | 170                | 41    | 38      | (NA)     | (NA)    | (NA)   | (NA)      | (NA)    | (NA)        | (NA)      | (NA)    | (NA)     | (NA)     | (NA)       | (NA)     | (NA)     | (NA)                                |
|           | 6/13/2018        | Background / D2    | 345.4       | 17.59 | -44.0  | 0.40 | 13.24     | 6.7  | 2.3      | <0.250          | 32         | 160                | 43    | 41      | (NA)     | (NA)    | (NA)   | (NA)      | (NA)    | (NA)        | (NA)      | (NA)    | (NA)     | (NA)     | (NA)       | (NA)     | (NA)     | (NA)                                |
|           | 11/26/2018       | Background / D3    | 375.3       | 15.04 | -37.6  | 1.07 | 1.66      | 6.7  | 1.5      | 0.313           | 29         | 180                | 46    | 36      | Note 8   | Note 8  | Note 8 | Note 8    | Note 8  | Note 8      | Note 8    | Note 8  | Note 8   | Note 8   | Note 8     | Note 8   | Note 8   | Note 8                              |
|           | 2/5/2019         | Background         | 384.7       | 14.86 | -33.9  | 0.56 | 2.68      | 6.7  | 1.6      | 0.338           | 27         | 160                | 44    | 40      | Note 8   | Note 8  | Note 8 | Note 8    | Note 8  | Note 8      | Note 8    | Note 8  | Note 8   | Note 8   | Note 8     | Note 8   | Note 8   | Note 8                              |
|           | 5/28/2019        | Background / D4    | 418.2       | 16.93 | -48.2  | 0.34 | 7.15      | 6.7  | 2.5      | <0.250          | 30         | (NA)               | 52    | 40      | Note 8   | Note 8  | Note 8 | Note 8    | Note 8  | Note 8      | Note 8    | Note 8  | Note 8   | Note 8   | Note 8     | Note 8   | Note 8   | Note 8                              |
|           | 7/23/2019        |                    | 419.3       | 17.64 | -59.8  | 0.51 | 2.03      | (NA) | (NA)     | (NA)            | (NA)       | 180                | (NA)  | (NA)    | (NA)     | (NA)    | (NA)   | (NA)      | (NA)    | (NA)        | (NA)      | (NA)    | (NA)     | (NA)     | (NA)       | (NA)     | (NA)     | (NA)                                |
|           | 8/28/2019        | Background / D5    | 442.2       | 17.67 | -65.4  | 0.66 | 1.15      | 6.7  | 1.0      | <0.250          | 24         | 200                | 54    | 44      | Note 8   | Note 8  | Note 8 | Note 8    | Note 8  | Note 8      | Note 8    | Note 8  | Note 8   | Note 8   | Note 8     | Note 8   | Note 8   | Note 8                              |
|           | 11/4/2019        | Background         | 388.3       | 17.62 | -48.1  | 0.38 | 1.68      | 6.7  | 1.4      | 0.319           | 22         | 210                | 47    | 43      | Note 8   | Note 8  | Note 8 | Note 8    | Note 8  | Note 8      | Note 8    | Note 8  | Note 8   | Note 8   | Note 8     | Note 8   | Note 8   | Note 8                              |
|           | 2/18/2020        | Background / D6    | 390.3       | 14.54 | -54.5  | 0.81 | 5.79      | 6.7  | 1.7      | <0.250          | 24         | (NA)               | 40    | 41      | Note 8   | Note 8  | Note 8 | Note 8    | Note 8  | Note 8      | Note 8    | Note 8  | Note 8   | Note 8   | Note 8     | Note 8   | Note 8   | Note 8                              |
|           | 3/30/2020        |                    | 391.0       | 15.17 | -53.6  | 0.67 | 3.99      | (NA) | (NA)     | (NA)            | (NA)       | 230                | (NA)  | (NA)    | (NA)     | (NA)    | (NA)   | (NA)      | (NA)    | (NA)        | (NA)      | (NA)    | (NA)     | (NA)     | (NA)       | (NA)     | (NA)     | (NA)                                |
|           | 7/21/2020        | Background / D7    | 415.1       | 17.64 | -100.2 | 4.54 | 3.48      | 6.7  | <1.0     | <0.250          | 22         | 220                | 46    | 43      | Note 8   | Note 8  | Note 8 | Note 8    | Note 8  | Note 8      | Note 8    | Note 8  | Note 8   | Note 8   | Note 8     | Note 8   | Note 8   | Note 8                              |
|           | 10/20/2020       | Background         | 455.5       | 16.43 | -60.5  | 6.31 | 0.57      | 7.0  | 2.4      | <0.250          | 24         | 250                | 47    | 49      | Note 8   | Note 8  | Note 8 | Note 8    | Note 8  | Note 8      | Note 8    | Note 8  | Note 8   | Note 8   | Note 8     | Note 8   | Note 8   | Note 8                              |
|           | 4/16/2021        | Detection 8        | 399.3       | 14.69 | -7.1   | 6.88 | 16.55     | 6.8  | 2.0      | <0.250          | 24         | 200                | 52    | 44      | (NA)     | (NA)    | (NA)   | (NA)      | (NA)    | (NA)        | (NA)      | (NA)    | (NA)     | (NA)     | (NA)       | (NA)     | (NA)     | (NA)                                |
|           |                  |                    |             |       |        |      |           |      |          |                 |            |                    |       |         |          |         |        |           |         |             |           |         |          |          |            |          |          | 1                                   |

|           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | Field Parameters Appendix III Monitoring Constituer |        |      |           |      |          |          | tuents (Detection | 1)   |       |         |          |         |        | Ap        | pendix IV N | Monitorii | ng Const | ituents | (Assessm | ent)    |            |          |          |                                     |
|-----------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----------------------------------------------------|--------|------|-----------|------|----------|----------|-------------------|------|-------|---------|----------|---------|--------|-----------|-------------|-----------|----------|---------|----------|---------|------------|----------|----------|-------------------------------------|
| Well      | Date       | Monitorina Purpose                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Spec. Cond. | Temp.                                               | ORP    | D.O. | Turbidity | рН   | Chloride | Fluoride | Sulfate           | TDS  | Boron | Calcium | Antimony | Arsenic | Barium | Beryllium | Cadmium     | Chromium  | Cobalt   | Lead    | Lithium  | Mercury | Molybdenum | Selenium | Thallium | Radium 226<br>and 228<br>(Combined) |
| ID        |            | gp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | µmhos/cm    | °C                                                  | mV     | mg/L | NTU       | S.U. | mg/L     | mg/L     | mg/L              | mg/L | ug/L  | mg/L    | ug/L     | ug/L    | ug/L   | ug/L      | ug/L        | ug/L      | ug/L     | ug/L    | ug/L     | ug/L    | ug/L       | ug/L     | ug/L     | pCi/L                               |
|           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                                     |        |      |           |      | None     | 4.0      | None              | None | None  | None    | 6        | 10      | 2000   | 4         | 5           | 100       | 6        | 15      | 40       | 2       | 100        | 50       | 2        | 5                                   |
| MW-8 (DG) | 5/18/2017  | Background                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 662.5       | 17.58                                               | -89.4  | 0.29 | 2.39      | 7.2  | 46       | <0.250   | 100               | 340  | 400   | 74      | <3.0     | <1.0    | 86     | <1.0      | <1.0        | <4.0      | <2.0     | <1.0    | <10      | <0.20   | <1.0       | <1.0     | <1.0     | 1.067                               |
|           | 6/9/2017   | Background                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 678.2       | 17.90                                               | -108.5 | 0.31 | 0.47      | 7.2  | 43       | <0.250   | 110               | 380  | 520   | 92      | <3.0     | <1.0    | 86     | <1.0      | <1.0        | <4.0      | <2.0     | <1.0    | <10      | <0.20   | <1.0       | <1.0     | <1.0     | 0.839(ND)                           |
|           | 7/13/2017  | Background                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 661.5       | 18.57                                               | -107.1 | 0.23 | 1.20      | 7.3  | 36       | <0.250   | 89                | 320  | 430   | 87      | <3.0     | <1.0    | 74     | <1.0      | <1.0        | <4.0      | <2.0     | <1.0    | <10      | <0.20   | <1.0       | <1.0     | <1.0     | 1.034(ND)                           |
|           | 8/3/2017   | Background                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 665.7       | 19.06                                               | -108.4 | 0.24 | 0.98      | 7.2  | 37       | <0.250   | 89                | 330  | 490   | 80      | <3.0     | <1.0    | 74     | <1.0      | <1.0        | <4.0      | <2.0     | <1.0    | <10      | <0.20   | <1.0       | <1.0     | <1.0     | 0.681(ND)                           |
|           | 8/15/2017  | Background                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 594.9       | 18.56                                               | -88.7  | 0.38 | 0.99      | 7.2  | 36       | <0.250   | 83                | 320  | 530   | 75      | <3.0     | <1.0    | 68     | <1.0      | <1.0        | <4.0      | <2.0     | <1.0    | <10      | <0.20   | <1.0       | <1.0     | <1.0     | 0.906(ND)                           |
|           | 8/30/2017  | Background                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 644.2       | 18.62                                               | -91.3  | 0.29 | 1.18      | 7.2  | 41       | <0.250   | 96                | 290  | 510   | 88      | <3.0     | <1.0    | 75     | <1.0      | <1.0        | <4.0      | <2.0     | <1.0    | <10      | <0.20   | <1.0       | <1.0     | <1.0     | 0.805(ND)                           |
|           | 9/14/2017  | Background                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 707.9       | 18.52                                               | -90.1  | 0.48 | 0.67      | 7.1  | 53       | <0.250 H | 110               | 370  | 510   | 86      | <3.0     | <1.0    | 77     | <1.0      | <1.0        | <4.0      | <2.0     | <1.0    | 12       | <0.20   | <1.0       | <1.0     | <1.0     | 0.314(ND)                           |
|           | 9/27/2017  | Background                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 764.0       | 19.11                                               | -89.6  | 0.30 | 0.58      | 7.1  | 50       | <0.250   | 120               | 420  | 480   | 92      | <3.0     | <1.0    | 80     | <1.0      | <1.0        | <4.0      | <2.0     | <1.0    | <10      | <0.20   | <1.0       | <1.0     | <1.0     | 0.594(ND)                           |
|           | 10/31/2017 | Background / D1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 698.1       | 17.99                                               | -96.3  | 0.38 | 0.94      | 7.1  | 45       | <0.250   | 110               | 380  | 540   | 86      | (NA)     | (NA)    | (NA)   | (NA)      | (NA)        | (NA)      | (NA)     | (NA)    | (NA)     | (NA)    | (NA)       | (NA)     | (NA)     | (NA)                                |
|           | 6/13/2018  | Background / D2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 788.8       | 18.34                                               | -99.1  | 0.23 | 4.80      | 7.1  | 65       | <0.250   | (NA)              | 430  | 520   | (NA)    | (NA)     | (NA)    | (NA)   | (NA)      | (NA)        | (NA)      | (NA)     | (NA)    | (NA)     | (NA)    | (NA)       | (NA)     | (NA)     | (NA)                                |
|           | 7/10/2018  | , and the second | 899.4       | 18.52                                               | -94.2  | 0.35 | 2.69      | (NA) | (NA)     | (NA)     | 150               | (NA) | (NA)  | 120     | (NA)     | (NA)    | (NA)   | (NA)      | (NA)        | (NA)      | (NA)     | (NA)    | (NA)     | (NA)    | (NA)       | (NA)     | (NA)     | (NA)                                |
|           | 11/26/2018 | Background / D3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 662.1       | 15.08                                               | -77.6  | 0.35 | 2.88      | 7.2  | 45       | <0.250   | 100               | 320  | 500   | 94      | Note 8   | Note 8  | Note 8 | Note 8    | Note 8      | Note 8    | Note 8   | Note 8  | Note 8   | Note 8  | Note 8     | Note 8   | Note 8   | Note 8                              |
|           | 2/5/2019   | Background                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 839.7       | 14.72                                               | -76.0  | 0.30 | 2.66      | 7.1  | 71       | 0.26     | 140               | 390  | 550   | 110     | Note 8   | Note 8  | Note 8 | Note 8    | Note 8      | Note 8    | Note 8   | Note 8  | Note 8   | Note 8  | Note 8     | Note 8   | Note 8   | Note 8                              |
|           | 5/28/2019  | Background / D4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 836.6       | 18.25                                               | -90.6  | 0.29 | 4.89      | 7.1  | 53       | <0.250   | 130               | (NA) | 540   | 100     | Note 8   | Note 8  | Note 8 | Note 8    | Note 8      | Note 8    | Note 8   | Note 8  | Note 8   | Note 8  | Note 8     | Note 8   | Note 8   | Note 8                              |
|           | 7/23/2019  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 819.5       | 19.34                                               | -90.7  | 0.30 | 1.39      | (NA) | (NA)     | (NA)     | (NA)              | 420  | (NA)  | (NA)    | (NA)     | (NA)    | (NA)   | (NA)      | (NA)        | (NA)      | (NA)     | (NA)    | (NA)     | (NA)    | (NA)       | (NA)     | (NA)     | (NA)                                |
|           | 8/28/2019  | Background / D5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 769.1       | 19.38                                               | -90.0  | 0.25 | 1.25      | 7.1  | 55       | <0.250   | 110               | 360  | 460   | 93      | Note 8   | Note 8  | Note 8 | Note 8    | Note 8      | Note 8    |          | 1 -     | Note 8   | Note 8  | Note 8     | Note 8   | Note 8   | Note 8                              |
|           | 11/4/2019  | Background                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 729.8       | 18.39                                               | -80.0  | 0.29 | 0.86      | 7.1  | 2.0      | <0.250   | 4.5               | 400  | 480   | 98      | Note 8   | Note 8  | Note 8 | Note 8    | Note 8      | Note 8    |          | 1 -     | Note 8   | Note 8  | Note 8     | Note 8   | Note 8   | Note 8                              |
|           | 2/18/2020  | Background / D6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 747.9       | 13.49                                               | -75.7  | 0.29 | 0.69      | 7.2  | 53       | <0.250   | 110               | (NA) | 480   | 93      | Note 8   | Note 8  | Note 8 | Note 8    | Note 8      | Note 8    | 1        | 1 -     | Note 8   | Note 8  | Note 8     | Note 8   | Note 8   | Note 8                              |
|           | 3/30/2020  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 840.0       | 15.71                                               | -82.4  | 0.20 | 7.48      | (NA) | (NA)     | (NA)     | (NA)              | 480  | (NA)  | (NA)    | (NA)     | (NA)    | (NA)   | (NA)      | (NA)        | (NA)      | (NA)     | (NA)    | (NA)     | (NA)    | (NA)       | (NA)     | (NA)     | (NA)                                |
|           | 7/21/2020  | Background / D7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 673.7       | 19.33                                               | -130.8 | 2.91 | 3.56      | 7.1  | 50       | <0.250   | 100               | 420  | 470   | 89      | Note 8   | Note 8  | Note 8 | Note 8    | Note 8      | Note 8    |          | 1       | Note 8   | Note 8  | Note 8     | Note 8   | Note 8   | Note 8                              |
|           | 10/20/2020 | Background                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 794.1       | 17.14                                               | -83.8  | 3.59 | 0.88      | 7.2  | 56       | <0.250   | 130               | 460  | 510   | 110     | Note 8   | Note 8  | Note 8 | Note 8    | Note 8      | Note 8    | 1        | Note 8  |          | Note 8  | Note 8     | Note 8   | Note 8   | Note 8                              |
|           | 4/16/2021  | Detection 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 758.6       | 15.85                                               | -44.7  | 3.47 | 5.16      | 7.2  | 51       | <0.250   | 130               | 400  | 460   | 100     | (NA)     | (NA)    | (NA)   | (NA)      | (NA)        | (NA)      | (NA)     | (NA)    | (NA)     | (NA)    | (NA)       | (NA)     | (NA)     | (NA)                                |
|           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                                     |        |      |           |      |          |          |                   |      | I     |         |          | 1       |        | ĺ         |             |           |          |         |          | 1       |            | 1        | ĺ        |                                     |

#### Notes:

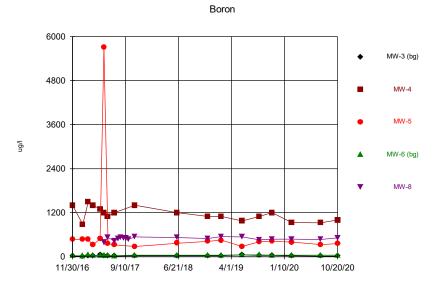

- 1. All data transcribed from analytical lab data sheets or field notes.
- 2. Less than (<) symbol denotes concentration not detected at or above reportable limits.
- 3. (ND) denotes Radium 226 and 228 (combined) concentration not detected above minimum detectable concentration.
- 4. (NA) denotes analysis not conducted, or not available at time of report.
- 5. Background monitoring per USEPA 40 CFR 257.93.
- 6. Detection monitoring per USEPA 40 CFR 257.94.
- 7. Assessment monitoring per USEPA 40 CFR 257.95.
- 8. Additional background sampling based on recommendations in Alternate Source Demonstration dated September 26, 2018 (see Gredell Engineering, 2019).
- 9. Background updated March 2021 to include previous background, additional background (see note 8), and detection monitoring data through October 2021 except as noted in note 10.
- 10. Censored data for outlier removal or trend elimination indicated as shown below:

4.5 - Value identified by Sanitas for Groundwater as an outlier.

- Value censored from data set to eliminate significant trend.

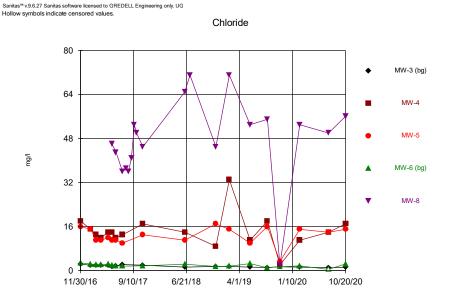
## **Appendix 5**

**Statistical Power Curve** 



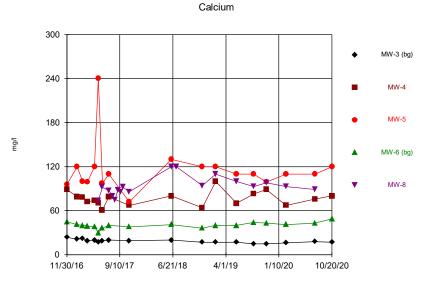

Kappa = 2.104, based on 5 compliance wells and 7 constituents, evaluated semi-annually (this report reflects annual total).

Analysis Run 12/22/2021 9:05 AM View: Everything Minus Detrended Data SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SBMU-SPS EDD File 09-28-17


## **Appendix 6**

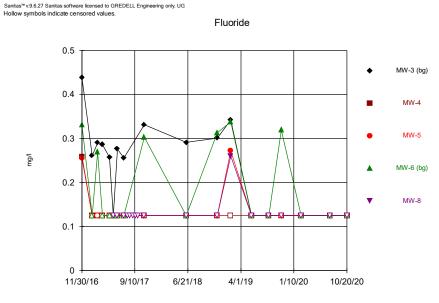
Time Series Plots




Time Series Analysis Run 1/19/2021 11:06 AM View: No Outliers flagged

SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SBMU-SPS EDD File 09-28-17




Time Series Analysis Run 1/19/2021 11:06 AM View: No Outliers flagged

SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SBMU-SPS EDD File 09-28-17



Time Series Analysis Run 1/19/2021 11:06 AM View: No Outliers flagged

SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SBMU-SPS EDD File 09-28-17

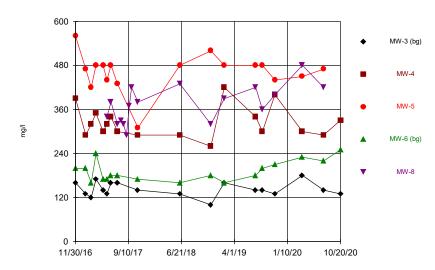


Time Series Analysis Run 1/19/2021 11:06 AM View: No Outliers flagged

SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SBMU-SPS EDD File 09-28-17

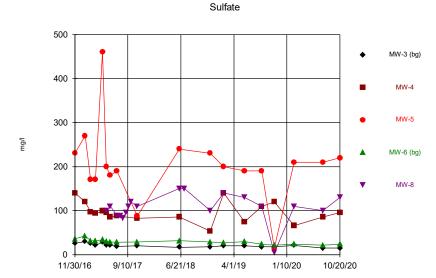
Sanitas™ v.9.6.27 Sanitas software licensed to GREDELL Engineering only. UG






Time Series Analysis Run 1/19/2021 11:06 AM View: No Outliers flagged

SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SBMU-SPS EDD File 09-28-17


#### Sanitas™ v.9.6.27 Sanitas software licensed to GREDELL Engineering only. UG

#### Total Dissolved Solids

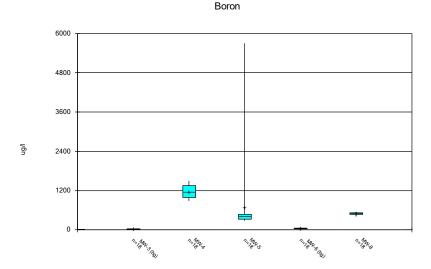


Time Series Analysis Run 1/19/2021 11:06 AM View: No Outliers flagged

SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SBMU-SPS EDD File 09-28-17



Time Series Analysis Run 1/19/2021 11:06 AM View: No Outliers flagged


SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SBMU-SPS EDD File 09-28-17

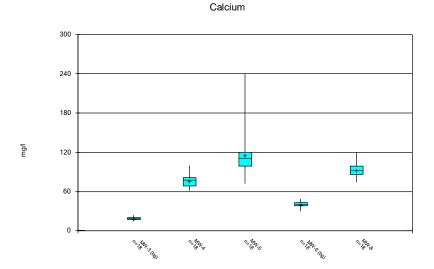
## **Appendix 7**

Box and Whiskers Plots

|                               | SBMU-Sikeston Power Station | Client: GREDE | ELL Engineering | Data: SBMU-SP | S EDD File 09-28-17 | Printed 2/1   | /2021, 2:16 PM |       |       |
|-------------------------------|-----------------------------|---------------|-----------------|---------------|---------------------|---------------|----------------|-------|-------|
| Constituent                   | Well                        | <u>N</u>      | <u>Mean</u>     | Std. Dev.     | Std. Err.           | <u>Median</u> | Min.           | Max.  | %NDs  |
| Boron (ug/l)                  | MW-3 (bg)                   | 18            | 26.83           | 11.27         | 2.656               | 22.5          | 12             | 54    | 0     |
| Boron (ug/l)                  | MW-4                        | 18            | 1162            | 184           | 43.37               | 1150          | 880            | 1500  | 0     |
| Boron (ug/l)                  | MW-5                        | 18            | 685             | 1253          | 295.4               | 405           | 280            | 5700  | 0     |
| Boron (ug/l)                  | MW-6 (bg)                   | 18            | 42.17           | 8.162         | 1.924               | 42            | 27             | 59    | 0     |
| Boron (ug/l)                  | MW-8                        | 18            | 495.6           | 39.14         | 9.226               | 505           | 400            | 550   | 0     |
| Calcium (mg/l)                | MW-3 (bg)                   | 18            | 18.5            | 2.407         | 0.5674              | 18.5          | 15             | 24    | 0     |
| Calcium (mg/l)                | MW-4                        | 18            | 76.61           | 9.769         | 2.303               | 77            | 61             | 100   | 0     |
| Calcium (mg/l)                | MW-5                        | 18            | 115.7           | 33.75         | 7.954               | 110           | 72             | 240   | 0     |
| Calcium (mg/l)                | MW-6 (bg)                   | 18            | 40.22           | 4.081         | 0.9619              | 40            | 30             | 49    | 0     |
| Calcium (mg/l)                | MW-8                        | 18            | 92.61           | 11.91         | 2.807               | 92            | 74             | 120   | 0     |
| Chloride (mg/l)               | MW-3 (bg)                   | 18            | 1.611           | 0.3894        | 0.09178             | 1.5           | 1              | 2.3   | 0     |
| Chloride (mg/l)               | MW-4                        | 18            | 14.27           | 5.977         | 1.409               | 14            | 2.1            | 33    | 0     |
| Chloride (mg/l)               | MW-5                        | 18            | 12.57           | 3.278         | 0.7726              | 12.5          | 3.2            | 17    | 0     |
| Chloride (mg/l)               | MW-6 (bg)                   | 18            | 1.856           | 0.5701        | 0.1344              | 1.75          | 0.5            | 2.8   | 5.556 |
| Chloride (mg/l)               | MW-8                        | 18            | 46.5            | 14.54         | 3.427               | 48            | 2              | 71    | 0     |
| Fluoride (mg/l)               | MW-3 (bg)                   | 18            | 0.2336          | 0.0979        | 0.02308             | 0.259         | 0.125          | 0.438 | 38.89 |
| Fluoride (mg/l)               | MW-4                        | 18            | 0.1324          | 0.03158       | 0.007444            | 0.125         | 0.125          | 0.259 | 94.44 |
| Fluoride (mg/l)               | MW-5                        | 18            | 0.1404          | 0.04488       | 0.01058             | 0.125         | 0.125          | 0.272 | 88.89 |
| Fluoride (mg/l)               | MW-6 (bg)                   | 18            | 0.1874          | 0.09176       | 0.02163             | 0.125         | 0.125          | 0.338 | 66.67 |
| Fluoride (mg/l)               | MW-8                        | 18            | 0.1325          | 0.03182       | 0.0075              | 0.125         | 0.125          | 0.26  | 94.44 |
| pH (S.U.)                     | MW-3 (bg)                   | 18            | 6.611           | 0.1963        | 0.04628             | 6.59          | 6.4            | 7.08  | 0     |
| pH (S.U.)                     | MW-4                        | 18            | 7.365           | 0.06913       | 0.01629             | 7.375         | 7.2            | 7.49  | 0     |
| pH (S.U.)                     | MW-5                        | 18            | 6.846           | 0.07853       | 0.01851             | 6.815         | 6.72           | 6.98  | 0     |
| pH (S.U.)                     | MW-6 (bg)                   | 18            | 6.774           | 0.1061        | 0.02501             | 6.72          | 6.67           | 7     | 0     |
| pH (S.U.)                     | MW-8                        | 18            | 7.14            | 0.04826       | 0.01138             | 7.145         | 7.05           | 7.25  | 0     |
| Sulfate (mg/l)                | MW-3 (bg)                   | 18            | 20.83           | 4.218         | 0.9943              | 20            | 15             | 30    | 0     |
| Sulfate (mg/l)                | MW-4                        | 18            | 96.44           | 22.84         | 5.383               | 95            | 54             | 140   | 0     |
| Sulfate (mg/l)                | MW-5                        | 18            | 203.5           | 85.94         | 20.26               | 200           | 15             | 460   | 0     |
| Sulfate (mg/l)                | MW-6 (bg)                   | 18            | 29.22           | 5.264         | 1.241               | 29            | 22             | 43    | 0     |
| Sulfate (mg/l)                | MW-8                        | 18            | 104.5           | 30.77         | 7.253               | 110           | 4.5            | 150   | 0     |
| Total Dissolved Solids (mg/l) | MW-3 (bg)                   | 18            | 142.2           | 19.57         | 4.613               | 140           | 100            | 180   | 0     |
| Total Dissolved Solids (mg/l) | MW-4                        | 18            | 323.9           | 43.13         | 10.17               | 310           | 260            | 420   | 0     |
| Total Dissolved Solids (mg/l) | MW-5                        | 18            | 470             | 58.21         | 13.72               | 480           | 310            | 590   | 0     |
| Total Dissolved Solids (mg/l) | MW-6 (bg)                   | 18            | 192.2           | 28.19         | 6.645               | 180           | 160            | 250   | 0     |
| Total Dissolved Solids (mg/l) | MW-8                        | 18            | 379.4           | 52.97         | 12.48               | 380           | 290            | 480   | 0     |

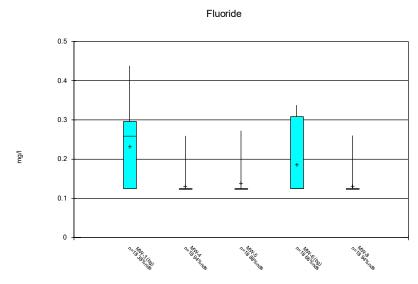
Sanitas™ v.9.6.27 Sanitas software licensed to GREDELL Engineering only. UG




Box & Whiskers Plot Analysis Run 2/1/2021 2:16 PM View: n=18 no outliers removed SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SBMU-SPS EDD File 09-28-17

Chloride

## 80 64 48 32


Box & Whiskers Plot Analysis Run 2/1/2021 2:16 PM View: n=18 no outliers removed SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SBMU-SPS EDD File 09-28-17

2. M.



Box & Whiskers Plot Analysis Run 2/1/2021 2:16 PM View: n=18 no outliers removed SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SBMU-SPS EDD File 09-28-17





Box & Whiskers Plot Analysis Run 2/1/2021 2:16 PM View: n=18 no outliers removed SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SBMU-SPS EDD File 09-28-17

Constituent: Boron (ug/l) Analysis Run 2/1/2021 2:16 PM View: n=18 no outliers removed

SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SBMU-SPS EDD File 09-28-17

|            | MW-3 (bg) | MW-4 | MW-5 | MW-6 (bg) | MW-8  |
|------------|-----------|------|------|-----------|-------|
| 11/30/2016 | 18        | 1400 | 470  | 36        |       |
| 1/24/2017  | 12        | 880  | 480  | 27        |       |
| 2/22/2017  | 33        | 1500 | 470  | 59        |       |
| 3/20/2017  | 22        | 1400 | 320  | 37        |       |
| 4/27/2017  | 54        | 1300 | 490  | 36        |       |
| 5/17/2017  | 19        | 1200 | 5700 | 35        | 400   |
| 6/8/2017   | 20        | 1100 | 360  | 38        | 520   |
| 7/13/2017  | 18        | 1200 | 320  | 31        | 430   |
| 8/3/2017   |           |      |      |           | 490   |
| 8/15/2017  |           |      |      |           | 530   |
| 8/30/2017  |           |      |      |           | 510   |
| 9/14/2017  |           |      |      |           | 510   |
| 9/27/2017  |           |      |      |           | 480   |
| 10/31/2017 | 27        | 1400 | 280  | 41        | 540   |
| 6/13/2018  | 23        | 1200 | 370  | 43        | 520   |
| 11/26/2018 | 23        | 1100 | 420  | 46        | 500   |
| 2/5/2019   | 22        | 1100 | 450  | 44        | 550   |
| 5/28/2019  | 51        | 980  | 280  | 52        | 540   |
| 8/28/2019  | 35        | 1100 | 410  | 54        | 460   |
| 11/4/2019  | 37        | 1200 | 420  | 47        | 480   |
| 2/18/2020  | 27        | 930  | 400  | 40        | 480   |
| 7/21/2020  | 21        | 920  | 330  | 46        | 470   |
| 10/20/2020 | 21        | 1000 | 360  | 47        | 510   |
| Median     | 22.5      | 1150 | 405  | 42        | 505   |
| LowerQ.    | 19.5      | 990  | 325  | 36        | 475   |
| UpperQ.    | 34        | 1350 | 470  | 47        | 525   |
| Min        | 12        | 880  | 280  | 27        | 400   |
| Max        | 54        | 1500 | 5700 | 59        | 550   |
| Mean       | 26.83     | 1162 | 685  | 42.17     | 495.6 |

Constituent: Calcium (mg/l) Analysis Run 2/1/2021 2:16 PM View: n=18 no outliers removed

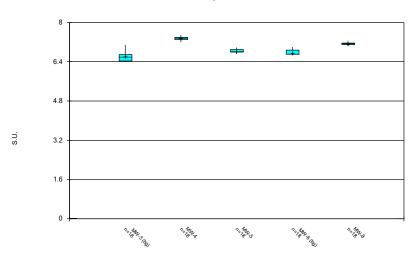
SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SBMU-SPS EDD File 09-28-17

|            | MW-3 (bg) | MW-4  | MW-5  | MW-6 (bg) | MW-8  |
|------------|-----------|-------|-------|-----------|-------|
| 11/30/2016 | 24        | 89    | 96    | 45        |       |
| 1/24/2017  | 21        | 79    | 120   | 41        |       |
| 2/22/2017  | 22        | 78    | 100   | 40        |       |
| 3/20/2017  | 19        | 72    | 99    | 39        |       |
| 4/27/2017  | 20        | 74    | 120   | 38        |       |
| 5/17/2017  | 17        | 71    | 240   | 30        | 74    |
| 6/8/2017   | 19        | 61    | 97    | 36        | 92    |
| 7/13/2017  | 20        | 79    | 110   | 40        | 87    |
| 8/3/2017   |           |       |       |           | 80    |
| 8/15/2017  |           |       |       |           | 75    |
| 8/30/2017  |           |       |       |           | 88    |
| 9/14/2017  |           |       |       |           | 86    |
| 9/27/2017  |           |       |       |           | 92    |
| 10/31/2017 | 19        | 67    | 72    | 38        | 86    |
| 6/13/2018  | 20        | 80    | 130   | 41        |       |
| 7/10/2018  |           |       |       |           | 120   |
| 11/26/2018 | 17        | 64    | 120   | 36        | 94    |
| 2/5/2019   | 17        | 100   | 120   | 40        | 110   |
| 5/28/2019  | 17        | 70    | 110   | 40        | 100   |
| 8/28/2019  | 15        | 83    | 110   | 44        | 93    |
| 11/4/2019  | 15        | 89    | 99    | 43        | 98    |
| 2/18/2020  | 16        | 67    | 110   | 41        | 93    |
| 7/21/2020  | 18        | 76    | 110   | 43        | 89    |
| 10/20/2020 | 17        | 80    | 120   | 49        | 110   |
| Median     | 18.5      | 77    | 110   | 40        | 92    |
| LowerQ.    | 17        | 68.5  | 99    | 38        | 86    |
| UpperQ.    | 20        | 81.5  | 120   | 43        | 99    |
| Min        | 15        | 61    | 72    | 30        | 74    |
| Max        | 24        | 100   | 240   | 49        | 120   |
| Mean       | 18.5      | 76.61 | 115.7 | 40.22     | 92.61 |
|            |           |       |       |           |       |

Constituent: Chloride (mg/l) Analysis Run 2/1/2021 2:16 PM View: n=18 no outliers removed

SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SBMU-SPS EDD File 09-28-17

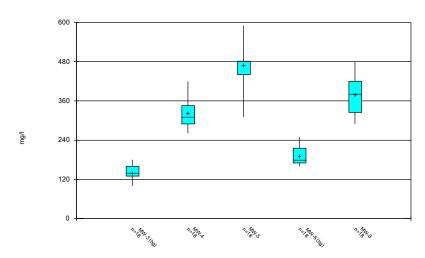
|            | MW-3 (bg) | MW-4  | MW-5  | MW-6 (bg) | MW-8 |
|------------|-----------|-------|-------|-----------|------|
| 11/30/2016 | 2.3       | 18    | 16    | 2.8       |      |
| 1/24/2017  | 2         | 15    | 15    | 2.4       |      |
| 2/22/2017  | 1.9       | 13    | 11    | 2.1       |      |
| 3/20/2017  | 1.8       | 12    | 11    | 2.1       |      |
| 4/27/2017  | 2         | 14    | 12    | 2.3       |      |
| 5/17/2017  | 1.5       | 14    | 11    | 1.8       | 46   |
| 6/8/2017   | 1.7       | 12    | 11    | 1.7       | 43   |
| 7/13/2017  | 2.2       | 13    | 10    | 1.6       | 36   |
| 8/3/2017   |           |       |       |           | 37   |
| 8/15/2017  |           |       |       |           | 36   |
| 8/30/2017  |           |       |       |           | 41   |
| 9/14/2017  |           |       |       |           | 53   |
| 9/27/2017  |           |       |       |           | 50   |
| 10/31/2017 | 2         | 17    | 13    | 1.7       | 45   |
| 6/13/2018  | 1.3       | 14    | 11    | 2.3       | 65   |
| 11/26/2018 | 1.5       | 8.8   | 17    | 1.5       | 45   |
| 2/5/2019   | 1.5       | 33    | 15    | 1.6       | 71   |
| 5/28/2019  | 1.3       | 11    | 10    | 2.5       | 53   |
| 8/28/2019  | 1.1       | 18    | 16    | 1         | 55   |
| 11/4/2019  | 1.4       | 2.1   | 3.2   | 1.4       | 2    |
| 2/18/2020  | 1.3       | 11    | 15    | 1.7       | 53   |
| 7/21/2020  | 1         | 14    | 14    | <1        | 50   |
| 10/20/2020 | 1.2       | 17    | 15    | 2.4       | 56   |
| Median     | 1.5       | 14    | 12.5  | 1.75      | 48   |
| LowerQ.    | 1.3       | 11.5  | 11    | 1.55      | 39   |
| UpperQ.    | 2         | 17    | 15    | 2.35      | 54   |
| Min        | 1         | 2.1   | 3.2   | 0.5       | 2    |
| Max        | 2.3       | 33    | 17    | 2.8       | 71   |
| Mean       | 1.611     | 14.27 | 12.57 | 1.856     | 46.5 |
|            |           |       |       |           |      |


Constituent: Fluoride (mg/l) Analysis Run 2/1/2021 2:16 PM View: n=18 no outliers removed

SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SBMU-SPS EDD File 09-28-17

|            | MW-3 (bg) | MW-4   | MW-5   | MW-6 (bg) | MW-8   |
|------------|-----------|--------|--------|-----------|--------|
| 11/30/2016 | 0.438     | 0.259  | 0.255  | 0.331     |        |
| 1/24/2017  | 0.261     | <0.25  | <0.25  | <0.25     |        |
| 2/22/2017  | 0.29      | <0.25  | <0.25  | 0.269     |        |
| 3/20/2017  | 0.286     | <0.25  | <0.25  | <0.25     |        |
| 4/27/2017  | 0.257     | <0.25  | <0.25  | <0.25     |        |
| 5/17/2017  | <0.25     | <0.25  | <0.25  | <0.25     | <0.25  |
| 6/8/2017   | 0.276     | <0.25  | <0.25  | <0.25     | <0.25  |
| 7/13/2017  | 0.256     | <0.25  | <0.25  | <0.25     | <0.25  |
| 8/3/2017   |           |        |        |           | <0.25  |
| 8/15/2017  |           |        |        |           | <0.25  |
| 8/30/2017  |           |        |        |           | <0.25  |
| 9/14/2017  |           |        |        |           | <0.25  |
| 9/27/2017  |           |        |        |           | <0.25  |
| 10/31/2017 | 0.331     | <0.25  | <0.25  | 0.303     | <0.25  |
| 6/13/2018  | 0.291     | <0.25  | <0.25  | <0.25     | <0.25  |
| 11/26/2018 | 0.301     | <0.25  | <0.25  | 0.313     | <0.25  |
| 2/5/2019   | 0.342     | <0.25  | 0.272  | 0.338     | 0.26   |
| 5/28/2019  | <0.25     | <0.25  | <0.25  | <0.25     | <0.25  |
| 8/28/2019  | <0.25     | <0.25  | <0.25  | <0.25     | <0.25  |
| 11/4/2019  | <0.25     | <0.25  | <0.25  | 0.319     | <0.25  |
| 2/18/2020  | <0.25     | <0.25  | <0.25  | <0.25     | <0.25  |
| 7/21/2020  | <0.25     | <0.25  | <0.25  | <0.25     | <0.25  |
| 10/20/2020 | <0.25     | <0.25  | <0.25  | <0.25     | <0.25  |
| Median     | 0.259     | 0.125  | 0.125  | 0.125     | 0.125  |
| LowerQ.    | 0.125     | 0.125  | 0.125  | 0.125     | 0.125  |
| UpperQ.    | 0.296     | 0.125  | 0.125  | 0.308     | 0.125  |
| Min        | 0.125     | 0.125  | 0.125  | 0.125     | 0.125  |
| Max        | 0.438     | 0.259  | 0.272  | 0.338     | 0.26   |
| Mean       | 0.2336    | 0.1324 | 0.1404 | 0.1874    | 0.1325 |

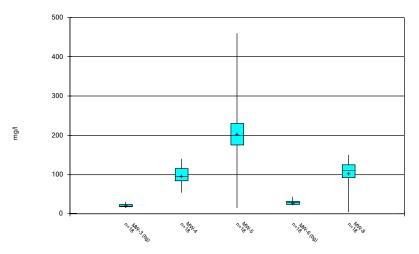
Sanitas™ v.9.6.27 Sanitas software licensed to GREDELL Engineering only. UG






Box & Whiskers Plot Analysis Run 2/1/2021 2:16 PM View: n=18 no outliers removed SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SBMU-SPS EDD File 09-28-17

#### Sanitas™ v.9.6.27 Sanitas software licensed to GREDELL Engineering only. UG


#### Total Dissolved Solids



Box & Whiskers Plot Analysis Run 2/1/2021 2:16 PM View: n=18 no outliers removed SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SBMU-SPS EDD File 09-28-17

#### Sanitas™ v.9.6.27 Sanitas software licensed to GREDELL Engineering only. UG





Box & Whiskers Plot Analysis Run 2/1/2021 2:16 PM View: n=18 no outliers removed SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SBMU-SPS EDD File 09-28-17

Constituent: pH (S.U.) Analysis Run 2/1/2021 2:16 PM View: n=18 no outliers removed

SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SBMU-SPS EDD File 09-28-17

|            | MW-3 (bg) | MW-4    | MW-5  | MW-6 (bg) | MW-8  |
|------------|-----------|---------|-------|-----------|-------|
| 11/30/2016 | 7.08      | 7.46    | 6.97  | 6.92      |       |
| 1/24/2017  | 6.88      | 7.45    | 6.9   | 6.87      |       |
| 2/22/2017  | 6.93      | 7.49    | 6.97  | 6.89      |       |
| 3/20/2017  | 6.68      | 7.37    | 6.85  | 6.73      |       |
| 4/27/2017  | 6.68      | 7.38    | 6.8   | 6.72      |       |
| 5/17/2017  | 6.59      | 7.38    | 6.81  | 6.76      | 7.16  |
| 6/8/2017   | 6.66      | 7.38    | 6.82  | 6.73      | 7.16  |
| 7/13/2017  | 6.71      | 7.37    | 6.98  | 6.98      | 7.25  |
| 8/3/2017   |           |         |       |           | 7.15  |
| 8/15/2017  |           |         |       |           | 7.16  |
| 8/30/2017  |           |         |       |           | 7.15  |
| 9/14/2017  |           |         |       |           | 7.13  |
| 9/27/2017  |           |         |       |           | 7.05  |
| 10/31/2017 | 6.64      | 7.31    | 6.89  | 6.72      | 7.09  |
| 6/13/2018  | 6.59      | 7.32    | 6.77  | 6.67      | 7.11  |
| 11/26/2018 | 6.5       | 7.36    | 6.74  | 6.72      | 7.17  |
| 2/5/2019   | 6.46      | 7.3     | 6.72  | 6.72      | 7.14  |
| 5/28/2019  | 6.4       | 7.3     | 6.9   | 6.7       | 7.1   |
| 8/28/2019  | 6.4       |         | 6.8   | 6.7       | 7.1   |
| 10/23/2019 |           | 7.3 (R) |       |           |       |
| 11/4/2019  | 6.4       | 7.2     | 6.8   | 6.7       | 7.1   |
| 2/18/2020  | 6.4       | 7.4     | 6.8   | 6.7       | 7.2   |
| 7/21/2020  | 6.5       |         | 6.8   | 6.7       | 7.1   |
| 8/4/2020   |           | 7.4     |       |           |       |
| 10/20/2020 | 6.5       | 7.4     | 6.9   | 7         | 7.2   |
| Median     | 6.59      | 7.375   | 6.815 | 6.72      | 7.145 |
| LowerQ.    | 6.43      | 7.305   | 6.8   | 6.7       | 7.1   |
| UpperQ.    | 6.695     | 7.4     | 6.9   | 6.88      | 7.165 |
| Min        | 6.4       | 7.2     | 6.72  | 6.67      | 7.05  |
| Max        | 7.08      | 7.49    | 6.98  | 7         | 7.25  |
| Mean       | 6.611     | 7.365   | 6.846 | 6.774     | 7.14  |

Constituent: Sulfate (mg/l) Analysis Run 2/1/2021 2:16 PM View: n=18 no outliers removed

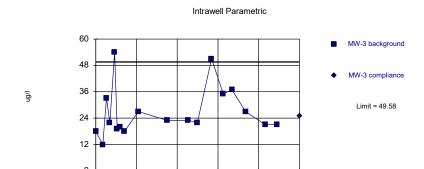
SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SBMU-SPS EDD File 09-28-17

|            | MW-3 (bg) | MW-4  | MW-5  | MW-6 (bg) | MW-8  |
|------------|-----------|-------|-------|-----------|-------|
| 11/30/2016 | 26        | 140   | 230   | 36        |       |
| 1/24/2017  | 30        | 120   | 270   | 43        |       |
| 2/22/2017  | 26        | 97    | 170   | 32        |       |
| 3/20/2017  | 21        | 94    | 170   | 31        |       |
| 4/27/2017  | 28        | 99    | 460   | 34        |       |
| 5/17/2017  | 21        | 96    | 200   | 30        | 100   |
| 6/8/2017   | 22        | 86    | 180   | 29        | 110   |
| 7/13/2017  | 19        | 88    | 190   | 28        | 89    |
| 8/3/2017   |           |       |       |           | 89    |
| 8/15/2017  |           |       |       |           | 83    |
| 8/30/2017  |           |       |       |           | 96    |
| 9/14/2017  |           |       |       |           | 110   |
| 9/27/2017  |           |       |       |           | 120   |
| 10/31/2017 | 20        | 83    | 88    | 29        | 110   |
| 6/13/2018  | 17        | 86    | 240   | 32        |       |
| 7/10/2018  |           |       |       |           | 150   |
| 11/26/2018 | 18        | 54    | 230   | 29        | 100   |
| 2/5/2019   | 20        | 140   | 200   | 27        | 140   |
| 5/28/2019  | 20        | 75    | 190   | 30        | 130   |
| 8/28/2019  | 18        | 110   | 190   | 24        | 110   |
| 11/4/2019  | 18        | 120   | 15    | 22        | 4.5   |
| 2/18/2020  | 21        | 66    | 210   | 24        | 110   |
| 7/21/2020  | 15        | 86    | 210   | 22        | 100   |
| 10/20/2020 | 15        | 96    | 220   | 24        | 130   |
| Median     | 20        | 95    | 200   | 29        | 110   |
| LowerQ.    | 18        | 84.5  | 175   | 24        | 92.5  |
| UpperQ.    | 24        | 115   | 230   | 32        | 125   |
| Min        | 15        | 54    | 15    | 22        | 4.5   |
| Max        | 30        | 140   | 460   | 43        | 150   |
| Mean       | 20.83     | 96.44 | 203.5 | 29.22     | 104.5 |
|            |           |       |       |           |       |

Constituent: Total Dissolved Solids (mg/l) Analysis Run 2/1/2021 2:16 PM View: n=18 no outliers removed SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SBMU-SPS EDD File 09-28-17

|            | MW-3 (bg) | MW-4  | MW-5 | MW-6 (bg) | MW-8  |
|------------|-----------|-------|------|-----------|-------|
| 11/30/2016 | 160       | 390   | 560  | 200       |       |
| 1/24/2017  | 130       | 290   | 470  | 200       |       |
| 2/22/2017  | 120       | 320   | 420  | 160       |       |
| 3/20/2017  | 170       | 350   | 480  | 240       |       |
| 4/27/2017  | 140       | 300   | 480  | 170       |       |
| 5/17/2017  | 130       | 320   | 440  | 170       | 340   |
| 6/8/2017   | 160       | 340   | 480  | 180       | 380   |
| 7/13/2017  | 160       | 300   | 430  | 180       | 320   |
| 8/3/2017   |           |       |      |           | 330   |
| 8/15/2017  |           |       |      |           | 320   |
| 8/30/2017  |           |       |      |           | 290   |
| 9/14/2017  |           |       |      |           | 370   |
| 9/27/2017  |           |       |      |           | 420   |
| 10/31/2017 | 140       | 290   | 310  | 170       | 380   |
| 6/13/2018  | 130       | 290   | 480  | 160       | 430   |
| 11/26/2018 | 100       | 260   | 520  | 180       | 320   |
| 2/5/2019   | 160       | 420   | 480  | 160       | 390   |
| 7/23/2019  | 140       | 340   | 480  | 180       | 420   |
| 8/28/2019  | 140       | 300   | 480  | 200       | 360   |
| 11/4/2019  | 130       | 400   | 440  | 210       | 400   |
| 3/30/2020  | 180       | 300   | 450  | 230       | 480   |
| 7/21/2020  | 140       | 290   | 470  | 220       | 420   |
| 10/20/2020 | 130       | 330   | 590  | 250       | 460   |
| Median     | 140       | 310   | 480  | 180       | 380   |
| LowerQ.    | 130       | 290   | 440  | 170       | 325   |
| UpperQ.    | 160       | 345   | 480  | 215       | 420   |
| Min        | 100       | 260   | 310  | 160       | 290   |
| Max        | 180       | 420   | 590  | 250       | 480   |
| Mean       | 142.2     | 323.9 | 470  | 192.2     | 379.4 |
|            |           |       |      |           |       |

## **Appendix 8**


**Prediction Limit Charts** 

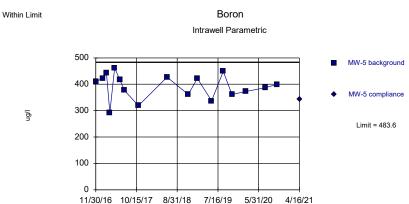
#### Intrawell Prediction Limit - Detrended Data Sets

| SBMU-Sikeston Power Station   |      | Client: GREDELL Engineering Data: SBMU-SPS EDD File 09-28-17 |            |             |         |      | Printed 12/22/2021, 9:48 AM |       |                  |              |                       |
|-------------------------------|------|--------------------------------------------------------------|------------|-------------|---------|------|-----------------------------|-------|------------------|--------------|-----------------------|
| Constituent                   | Well | Upper Lim.                                                   | Lower Lim. | <u>Date</u> | Observ. | Sig. | Bg N                        | %NDs  | <u>Transform</u> | <u>Alpha</u> | Method                |
| Boron (ug/l)                  | MW-3 | 49.58                                                        | n/a        | 4/16/2021   | 25      | No   | 18                          | 0     | sqrt(x)          | 0.002505     | Param 1 of 2          |
| Boron (ug/l)                  | MW-4 | 1517                                                         | n/a        | 4/16/2021   | 920     | No   | 18                          | 0     | No               | 0.002505     | Param 1 of 2          |
| Boron (ug/l)                  | MW-5 | 483.6                                                        | n/a        | 4/16/2021   | 342.2   | No   | 17                          | 0     | No               | 0.002505     | Param 1 of 2 Deseas   |
| Boron (ug/l)                  | MW-8 | 571.1                                                        | n/a        | 4/16/2021   | 460     | No   | 18                          | 0     | No               | 0.002505     | Param 1 of 2          |
| Calcium (mg/l)                | MW-3 | 23.15                                                        | n/a        | 4/16/2021   | 17      | No   | 18                          | 0     | No               | 0.002505     | Param 1 of 2          |
| Calcium (mg/l)                | MW-4 | 95.47                                                        | n/a        | 4/16/2021   | 85      | No   | 18                          | 0     | No               | 0.002505     | Param 1 of 2          |
| Calcium (mg/l)                | MW-5 | 131                                                          | n/a        | 4/16/2021   | 120     | No   | 16                          | 0     | No               | 0.002505     | Param 1 of 2          |
| Calcium (mg/l)                | MW-6 | 48.1                                                         | n/a        | 4/16/2021   | 44      | No   | 18                          | 0     | No               | 0.002505     | Param 1 of 2          |
| Chloride (mg/l)               | MW-3 | 2.363                                                        | n/a        | 4/16/2021   | 1.2     | No   | 18                          | 0     | No               | 0.002505     | Param 1 of 2          |
| Chloride (mg/l)               | MW-4 | 19.09                                                        | n/a        | 4/16/2021   | 19      | No   | 16                          | 0     | No               | 0.002505     | Param 1 of 2          |
| Chloride (mg/l)               | MW-5 | 18.9                                                         | n/a        | 4/16/2021   | 10      | No   | 18                          | 0     | No               | 0.002505     | Param 1 of 2          |
| Chloride (mg/l)               | MW-6 | 2.956                                                        | n/a        | 4/16/2021   | 0.5ND   | No   | 18                          | 5.556 | No               | 0.002505     | Param 1 of 2          |
| Fluoride (mg/l)               | MW-3 | 0.438                                                        | n/a        | 4/16/2021   | 0.125ND | No   | 18                          | 38.89 | n/a              | 0.005373     | NP (normality) 1 of 2 |
| Fluoride (mg/l)               | MW-4 | 0.259                                                        | n/a        | 4/16/2021   | 0.125ND | No   | 18                          | 94.44 | n/a              | 0.005373     | NP (NDs) 1 of 2       |
| Fluoride (mg/l)               | MW-5 | 0.272                                                        | n/a        | 4/16/2021   | 0.125ND | No   | 18                          | 88.89 | n/a              | 0.005373     | NP (NDs) 1 of 2       |
| Fluoride (mg/l)               | MW-6 | 0.338                                                        | n/a        | 4/16/2021   | 0.125ND | No   | 18                          | 66.67 | n/a              | 0.005373     | NP (NDs) 1 of 2       |
| Fluoride (mg/l)               | MW-8 | 0.26                                                         | n/a        | 4/16/2021   | 0.125ND | No   | 18                          | 94.44 | n/a              | 0.005373     | NP (NDs) 1 of 2       |
| pH (S.U.)                     | MW-4 | 7.498                                                        | 7.232      | 4/16/2021   | 7.4     | No   | 18                          | 0     | No               | 0.001253     | Param 1 of 2          |
| pH (S.U.)                     | MW-5 | 6.997                                                        | 6.694      | 4/16/2021   | 6.9     | No   | 18                          | 0     | No               | 0.001253     | Param 1 of 2          |
| pH (S.U.)                     | MW-8 | 7.233                                                        | 7.047      | 4/16/2021   | 7.2     | No   | 18                          | 0     | No               | 0.001253     | Param 1 of 2          |
| Sulfate (mg/l)                | MW-3 | 28.98                                                        | n/a        | 4/16/2021   | 16      | No   | 18                          | 0     | No               | 0.002505     | Param 1 of 2          |
| Sulfate (mg/l)                | MW-4 | 140.5                                                        | n/a        | 4/16/2021   | 100     | No   | 18                          | 0     | No               | 0.002505     | Param 1 of 2          |
| Sulfate (mg/l)                | MW-5 | 262.2                                                        | n/a        | 4/16/2021   | 240     | No   | 15                          | 0     | No               | 0.002505     | Param 1 of 2          |
| Sulfate (mg/l)                | MW-6 | 39.39                                                        | n/a        | 4/16/2021   | 24      | No   | 18                          | 0     | No               | 0.002505     | Param 1 of 2          |
| Sulfate (mg/l)                | MW-8 | 146.6                                                        | n/a        | 4/16/2021   | 130     | No   | 17                          | 0     | No               | 0.002505     | Param 1 of 2          |
| Total Dissolved Solids (mg/l) | MW-3 | 180                                                          | n/a        | 4/16/2021   | 150     | No   | 18                          | 0     | No               | 0.002505     | Param 1 of 2          |
| Total Dissolved Solids (mg/l) | MW-4 | 407.2                                                        | n/a        | 4/16/2021   | 340     | No   | 18                          | 0     | No               | 0.002505     | Param 1 of 2          |
| Total Dissolved Solids (mg/l) | MW-5 | 539.8                                                        | n/a        | 4/16/2021   | 510     | No   | 16                          | 0     | No               | 0.002505     | Param 1 of 2          |
| Total Dissolved Solids (mg/l) | MW-6 | 246.7                                                        | n/a        | 4/16/2021   | 200     | No   | 18                          | 0     | No               | 0.002505     | Param 1 of 2          |
| Boron (ug/l)                  | MW-6 | 57.75                                                        | n/a        | 4/16/2021   | 52      | No   | 8                           | 0     | No               | 0.002505     | Param 1 of 2          |
| Calcium (mg/l)                | MW-8 | 117.8                                                        | n/a        | 4/16/2021   | 100     | No   | 8                           | 0     | No               | 0.002505     | Param 1 of 2          |
| Chloride (mg/l)               | MW-8 | 76.4                                                         | n/a        | 4/16/2021   | 51      | No   | 8                           | 0     | No               | 0.002505     | Param 1 of 2          |
| pH (S.U.)                     | MW-3 | 6.749                                                        | 6.278      | 4/16/2021   | 6.6     | No   | 12                          | 0     | No               | 0.001253     | Param 1 of 2          |
| pH (S.U.)                     | MW-6 | 7                                                            | 6.67       | 4/16/2021   | 6.8     | No   | 17                          | 0     | n/a              | 0.01183      | NP (normality) 1 of 2 |
| Total Dissolved Solids (mg/l) | MW-8 | 532.9                                                        | n/a        | 4/16/2021   | 400     | No   | 8                           | 0     | No               | 0.002505     | Param 1 of 2          |

Within Limit

Sanitas™ v.9.6.32 Software licensed to GREDELL Engineering. UG




Boron

Background Data Summary (based on square root transformation): Mean=5.086, Std. Dev.=1.013, n=18. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8996, critical = 0.858. Kappa = 1.931 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505.

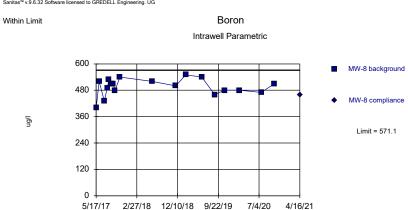
11/30/16 10/15/17 8/31/18 7/16/19 5/31/20 4/16/21

Prediction Limit Analysis Run 12/22/2021 9:40 AM View: Everything Minus Detrended Data SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SBMU-SPS EDD File 09-28-17

Sanitas™ v.9.6.32 Software licensed to GREDELL Engineering. UG



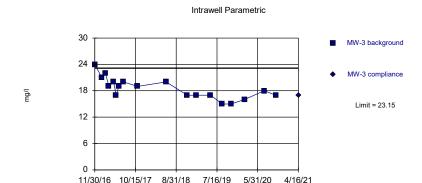
Background Data Summary: Mean=391.6, Std. Dev.=47.16, n=17. Seasonality was detected with 95% confidence and data were deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9648, critical = 0.851. Kappa = 1.951 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505.


Boron Within Limit Intrawell Parametric



Background Data Summary: Mean=1162, Std. Dev.=184, n=18. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.948, critical = 0.858. Kappa = 1.931 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505.

Prediction Limit Analysis Run 12/22/2021 9:40 AM View: Everything Minus Detrended Data SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SBMU-SPS EDD File 09-28-17

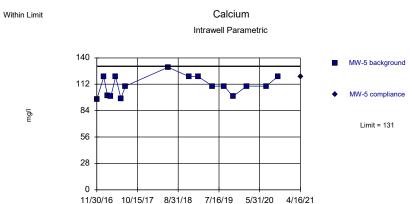

Sanitas™ v.9.6.32 Software licensed to GREDELL Engineering. UG



Background Data Summary: Mean=495.6, Std. Dev.=39.14, n=18. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9399, critical = 0.858. Kappa = 1.931 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505.

Within Limit

Sanitas™ v.9.6.32 Software licensed to GREDELL Engineering. UG




Calcium

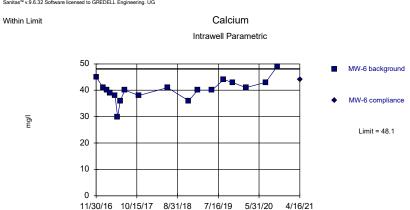
Background Data Summary: Mean=18.5, Std. Dev.=2.407, n=18. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9507, critical = 0.858. Kappa = 1.931 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505.

Prediction Limit Analysis Run 12/22/2021 9:40 AM View: Everything Minus Detrended Data SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SBMU-SPS EDD File 09-28-17

Sanitas™ v.9.6.32 Software licensed to GREDELL Engineering. UG



Background Data Summary: Mean=110.7, Std. Dev.=10.33, n=16. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9039, critical = 0.844. Kappa = 1.97 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505.


Calcium Within Limit Intrawell Parametric 100 MW-4 background 80



Background Data Summary: Mean=76.61, Std. Dev.=9.769, n=18. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9656, critical = 0.858. Kappa = 1.931 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505.

Prediction Limit Analysis Run 12/22/2021 9:40 AM View: Everything Minus Detrended Data SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SBMU-SPS EDD File 09-28-17

Sanitas™ v.9.6.32 Software licensed to GREDELL Engineering. UG



Background Data Summary: Mean=40.22, Std. Dev.=4.081, n=18. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9539, critical = 0.858. Kappa = 1.931 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505.

Within Limit Chloride





Background Data Summary: Mean=1.611, Std. Dev.=0.3894, n=18. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9507, critical = 0.858. Kappa = 1.931 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505.

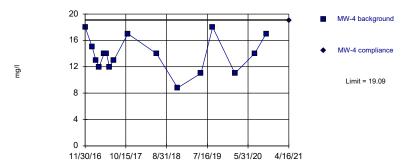
Prediction Limit Analysis Run 12/22/2021 9:40 AM View: Everything Minus Detrended Data SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SBMU-SPS EDD File 09-28-17

Sanitas™ v.9.6.32 Software licensed to GREDELL Engineering. UG

Within Limit

Chloride
Intrawell Parametric

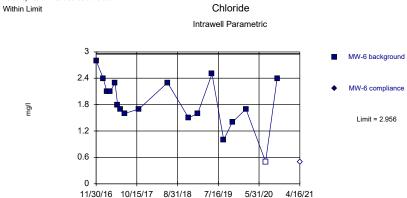
MW-5 background


MW-5 compliance

Limit = 18.9

11/30/16 10/15/17 8/31/18 7/16/19 5/31/20 4/16/21

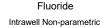
Background Data Summary: Mean=12.57, Std. Dev.=3.278, n=18. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8761, critical = 0.858. Kappa = 1.931 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505.

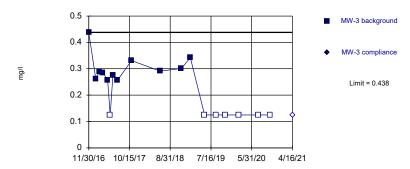

Within Limit Chloride
Intrawell Parametric



Background Data Summary: Mean=13.86, Std. Dev.=2.655, n=16. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9515, critical = 0.844. Kappa = 1.97 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505.

Prediction Limit Analysis Run 12/22/2021 9:40 AM View: Everything Minus Detrended Data SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SBMU-SPS EDD File 09-28-17

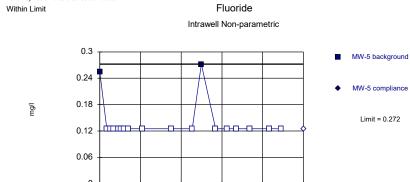

Sanitas™ v.9.6.32 Software licensed to GREDELL Engineering. UG Hollow symbols indicate censored values.




Background Data Summary: Mean=1.856, Std. Dev.=0.5701, n=18, 5.556% NDs. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.957, critical = 0.858. Kappa = 1.931 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505.

Sanitas™ v.9.6.32 Software licensed to GREDELL Engineering. UG Hollow symbols indicate censored values.

Within Limit

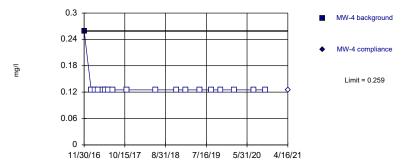





Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 18 background values. 38.89% NDs. Well-constituent pair annual alpha = 0.01072. Individual comparison alpha = 0.005373 (1 of 2). Seasonality was not detected with 95% confidence.

Prediction Limit Analysis Run 12/22/2021 9:40 AM View: Everything Minus Detrended Data SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SBMU-SPS EDD File 09-28-17

Sanitas™ v.9.6.32 Software licensed to GREDELL Engineering. UG Hollow symbols indicate censored values.

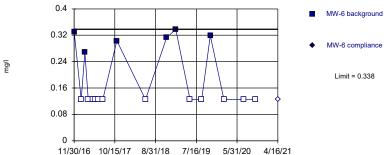



11/30/16 10/15/17 8/31/18 7/16/19 5/31/20 4/16/21

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 18 background values. 88.89% NDs. Well-constituent pair annual alpha = 0.01072. Individual comparison alpha = 0.005373 (1 of 2). Seasonality was not detected with 95% confidence.

Sanitas™ v.9.6.32 Software licensed to GREDELL Engineering. UG Hollow symbols indicate censored values.

in Limit Fluoride
Intrawell Non-parametric

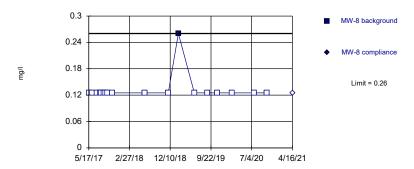



Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of background values. 94.44% NDs. Well-constituent pair annual alpha = 0.01072. Individual comparison alpha = 0.005373 (1 of 2). Seasonality was not detected with 95% confidence.

Prediction Limit Analysis Run 12/22/2021 9:40 AM View: Everything Minus Detrended Data SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SBMU-SPS EDD File 09-28-17

 $\label{eq:Sanitas} \textbf{Sanitas} \, \mathbf{^{N}} \, v.9.6.32 \, \, \textbf{Software licensed to GREDELL Engineering. UG} \\ \textbf{Hollow symbols indicate censored values}.$ 

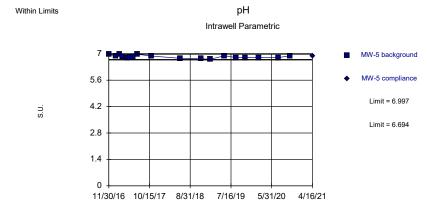





Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 18 background values. 66.67% NDs. Well-constituent pair annual alpha = 0.01072. Individual comparison alpha = 0.005373 (1 of 2). Seasonality was not detected with 95% confidence.

Hollow symbols indicate censored values.

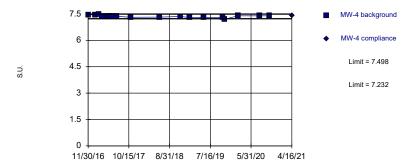
Within Limit






Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 18 background values. 94.44% NDs. Well-constituent pair annual alpha = 0.01072. Individual comparison alpha = 0.005373 (1 of 2). Insufficient data to test for seasonality: data were not deseasonalized.

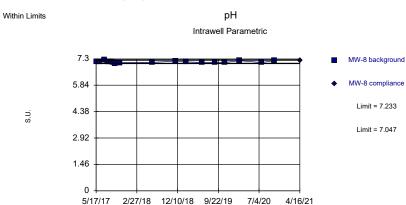
Prediction Limit Analysis Run 12/22/2021 9:40 AM View: Everything Minus Detrended Data SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SBMU-SPS EDD File 09-28-17


Sanitas™ v.9.6.32 Software licensed to GREDELL Engineering. UG



Background Data Summary: Mean=6.846, Std. Dev.=0.07853, n=18. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9237, critical = 0.858. Kappa = 1.931 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505.

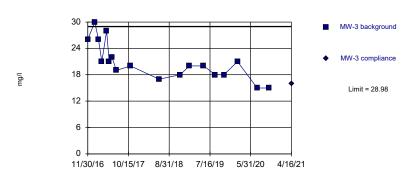
Prediction Limit Analysis Run 12/22/2021 9:40 AM View: Everything Minus Detrended Data SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SBMU-SPS EDD File 09-28-17 Sanitas™ v.9.6.32 Software licensed to GREDELL Engineering. UG


pН Within Limits Intrawell Parametric



Background Data Summary: Mean=7.365, Std. Dev.=0.06913, n=18. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9546, critical = 0.858. Kappa = 1.931 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505.

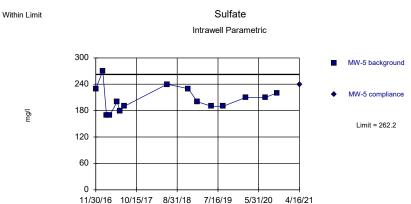
Prediction Limit Analysis Run 12/22/2021 9:40 AM View: Everything Minus Detrended Data SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SBMU-SPS EDD File 09-28-17


Sanitas™ v.9.6.32 Software licensed to GREDELL Engineering. UG



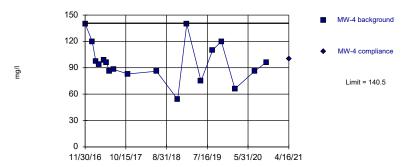
Background Data Summary: Mean=7.14, Std. Dev.=0.04826, n=18. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9628, critical = 0.858. Kappa = 1.931 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505.

Sanitas™ v.9.6.32 Software licensed to GREDELL Engineering. UG





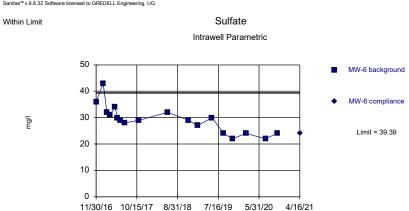

Background Data Summary: Mean=20.83, Std. Dev.=4.218, n=18. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9206, critical = 0.858. Kappa = 1.931 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505.


Prediction Limit Analysis Run 12/22/2021 9:40 AM View: Everything Minus Detrended Data SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SBMU-SPS EDD File 09-28-17

#### Sanitas™ v.9.6.32 Software licensed to GREDELL Engineering. UG



Background Data Summary: Mean=206.7, Std. Dev.=27.69, n=15. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9482, critical = 0.835. Kappa = 2.006 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505.


Sulfate Within Limit Intrawell Parametric



Background Data Summary: Mean=96.44, Std. Dev.=22.84, n=18. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9502, critical = 0.858. Kappa = 1.931 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505.

Prediction Limit Analysis Run 12/22/2021 9:40 AM View: Everything Minus Detrended Data SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SBMU-SPS EDD File 09-28-17

#### Sanitas™ v.9.6.32 Software licensed to GREDELL Engineering. UG



Background Data Summary: Mean=29.22, Std. Dev.=5.264, n=18. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9321, critical = 0.858. Kappa = 1.931 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505.

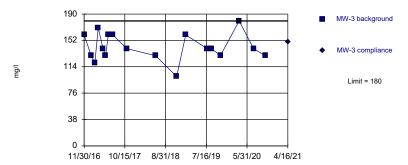
Sanitas™ v.9.6.32 Software licensed to GREDELL Engineering. UG







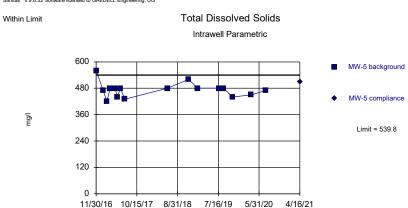
Background Data Summary: Mean=110.4, Std. Dev.=18.55, n=17. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9427, critical = 0.851. Kappa = 1.951 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505.


Prediction Limit Analysis Run 12/22/2021 9:40 AM View: Everything Minus Detrended Data SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SBMU-SPS EDD File 09-28-17

#### Sanitas™ v.9.6.32 Software licensed to GREDELL Engineering. UG

# Within Limit Total Dissolved Solids Intrawell Parametric MW-4 background MW-4 compliance Limit = 407.2

Background Data Summary: Mean=323.9, Std. Dev.=43.13, n=18. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8945, critical = 0.858. Kappa = 1.931 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.0051032.

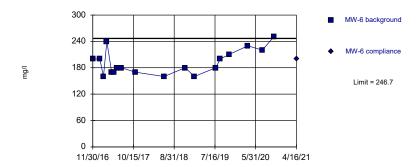

Within Limit Total Dissolved Solids
Intrawell Parametric



Background Data Summary: Mean=142.2, Std. Dev.=19.57, n=18. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9412, critical = 0.858. Kappa = 1.931 (c=7, w=3, 1 of 2, event alpha = 0.09132). Report alpha = 0.0052505.

Prediction Limit Analysis Run 12/22/2021 9:40 AM View: Everything Minus Detrended Data SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SBMU-SPS EDD File 09-28-17

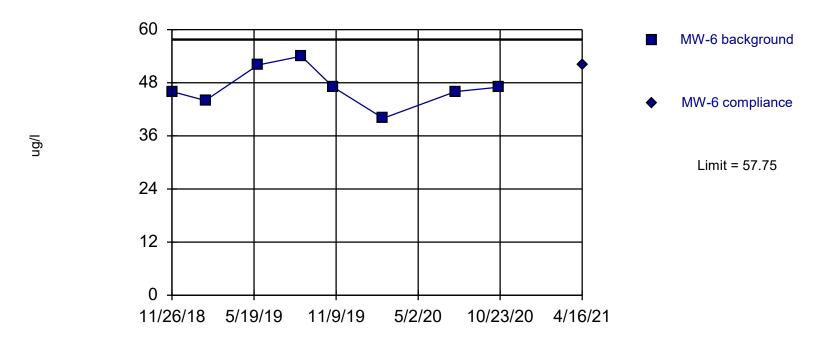
Sanitas™ v.9.6.32 Software licensed to GREDELL Engineering. UG




Background Data Summary: Mean=472.5, Std. Dev.=34.16, n=16. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8811, critical = 0.844. Kappa = 1.97 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505.

Sanitas™ v.9.6.32 Software licensed to GREDELL Engineering. UG

Within Limit

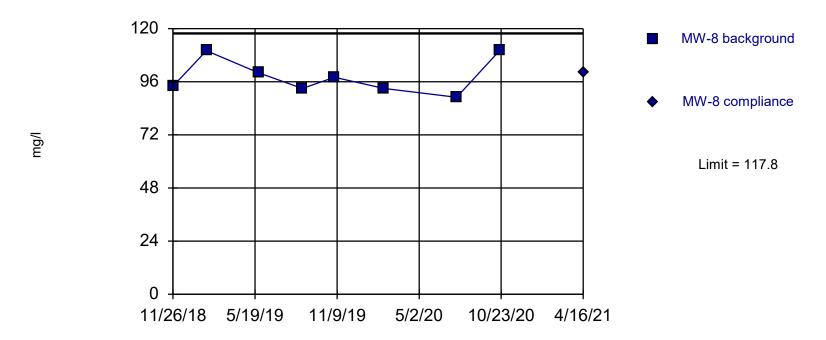

#### Total Dissolved Solids Intrawell Parametric



Background Data Summary: Mean=192.2, Std. Dev.=28.19, n=18. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9055, critical = 0.858. Kappa = 1.931 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505.

Prediction Limit Analysis Run 12/22/2021 9:40 AM View: Everything Minus Detrended Data SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SBMU-SPS EDD File 09-28-17

Within Limit Boron
Intrawell Parametric

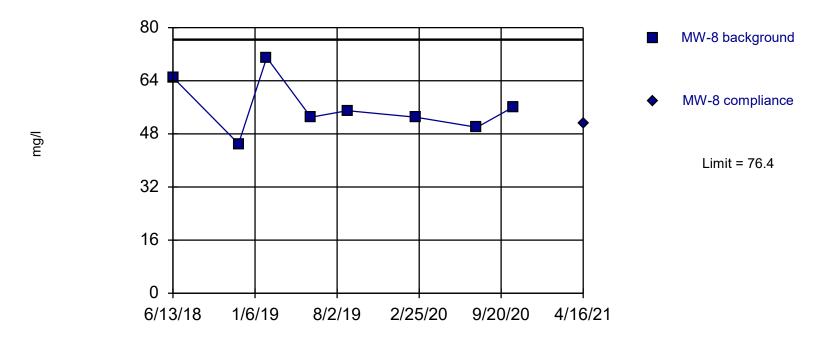



Background Data Summary: Mean=47, Std. Dev.=4.375, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9419, critical = 0.749. Kappa = 2.458 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505.

Prediction Limit Analysis Run 12/22/2021 9:54 AM View: Detrended Boron MW-6 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SBMU-SPS EDD File 09-28-17

Within Limit Calcium

Intrawell Parametric

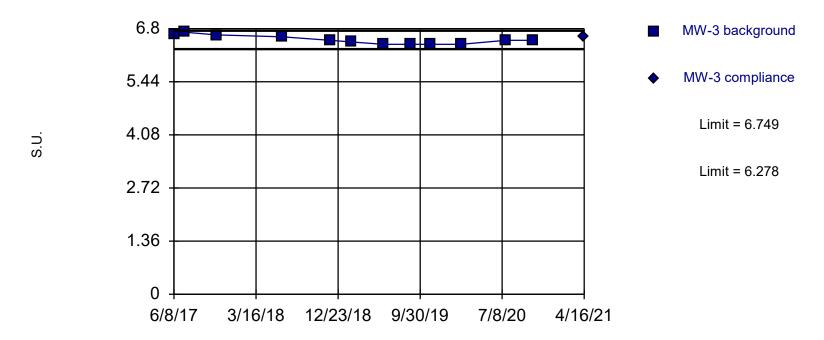



Background Data Summary: Mean=98.38, Std. Dev.=7.909, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8713, critical = 0.749. Kappa = 2.458 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505.

Prediction Limit Analysis Run 12/22/2021 9:53 AM View: Detrended Calcium MW-8 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SBMU-SPS EDD File 09-28-17

Within Limit Chloride

#### Intrawell Parametric

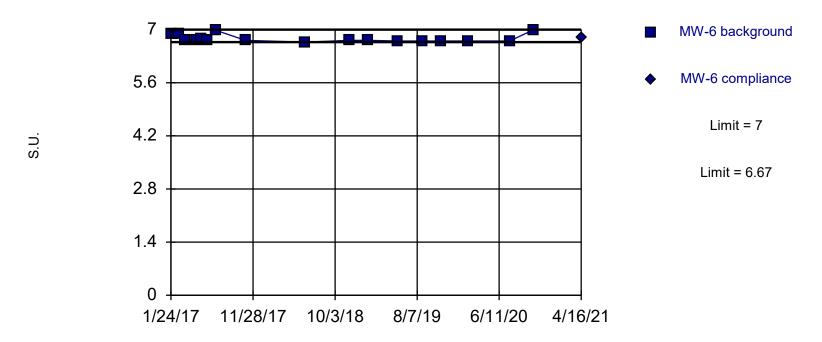



Background Data Summary: Mean=56, Std. Dev.=8.298, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9251, critical = 0.749. Kappa = 2.458 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505.

Prediction Limit Analysis Run 12/22/2021 9:53 AM View: Detrended Chloride MW-8 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SBMU-SPS EDD File 09-28-17

Within Limits pH

Intrawell Parametric



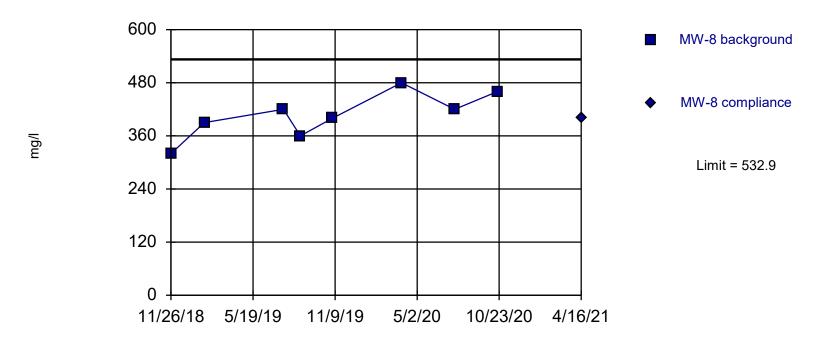

Background Data Summary: Mean=6.513, Std. Dev.=0.1115, n=12. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8763, critical = 0.805. Kappa = 2.112 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505.

Prediction Limit Analysis Run 12/22/2021 9:52 AM View: Detrended pH MW-3 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SBMU-SPS EDD File 09-28-17

Within Limits pH

Intrawell Non-parametric




Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limits are highest and lowest of 17 background values. Well-constituent pair annual alpha = 0.02359. Individual comparison alpha = 0.01183 (1 of 2). Seasonality was not detected with 95% confidence.

Prediction Limit Analysis Run 12/22/2021 9:52 AM View: Detrended pH MW-6 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SBMU-SPS EDD File 09-28-17

Within Limit

#### **Total Dissolved Solids**

#### Intrawell Parametric



Background Data Summary: Mean=406.3, Std. Dev.=51.53, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9779, critical = 0.749. Kappa = 2.458 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505.

Prediction Limit Analysis Run 12/22/2021 9:51 AM View: Detrended TDS MW-8 SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SBMU-SPS EDD File 09-28-17