
1505 East High Street Jefferson City, Missouri 65101 Telephone (573) 659-9078 Facsimile (573) 659-9079

GREDELL Engineering Resources, Inc.

Sikeston Power Station

2017 Annual Groundwater Monitoring and Corrective Action Report for Bottom Ash Pond For Compliance with USEPA 40 CFR 257.90(e)

Mr. Mark McGill Sikeston Power Station 1551 West Wakefield Avenue Sikeston, Missouri 63801

January 26, 2018

Sikeston Power Station

2017 Annual Groundwater Monitoring and Corrective Action Report for Bottom Ash Pond For Compliance with USEPA 40 CFR 257.90(e)

> Prepared for: Sikeston Board of Municipal Utilities 1551 West Wakefield Avenue Sikeston, Missouri 63801

> > January 2018

Prepared by: GREDELL Engineering Resources, Inc. 1505 East High Street Jefferson City, Missouri 65101 Phone: (573) 659-9078 www.ger-inc.biz

January 2018

Table of Contents

1.0	INTRODUCTION	1
2.0	GROUNDWATER MONITORING SYSTEM	2
3.0 3.1	FIELD SAMPLING SUMMARY Field Quality Assurance/Quality Control	
4.0	ANALYTICAL SUMMARY	
4.1 4.2	Laboratory Quality Control Precision and Accuracy	4
4.3 4.4	Representativeness Comparability	5
4.5	Completeness	5
5.0 5.1	STATISTICAL ANALYSIS Statistical Results	
6.0	SUMMARY	8
7.0	REFERENCES	9

List of Tables

- Table 1 Groundwater Monitoring Network Summary
- Table 2 Historical Groundwater Level Summary
- Table 3 Water Levels and Field Parameter Summary
- Table 4 Groundwater Monitoring Constituents
- Table 5 Relative Percent Difference Summary
- Table 6 Intra-Well Prediction Limit Summary

List of Figures

Figure 1 – Groundwater Contour Map

List of Appendices

- Appendix 1 Field Sampling Notes
- Appendix 2 Laboratory Analytical Results
- Appendix 3 Laboratory Quality Assurance/Quality Control Data
- Appendix 4 Statistical Power Curve
- Appendix 5 Time Series Plots
- Appendix 6 Data Base
- Appendix 7 Box and Whiskers Plots
- Appendix 8 Prediction Limit Charts

1.0 INTRODUCTION

The Sikeston Power Station (SPS), owned and operated by the Sikeston Board of Municipal Utilities (SBMU), is an electric power producer and distributor located within the western city limits of Sikeston, in southern Scott County, Missouri. The SBMU-SPS began operation in 1981 and produces approximately 235 megawatts. Coal combustion residuals (approximately 10,000 tons per annum) are currently sold or placed in the facility's two coal ash surface impoundments located immediately east of the power station. Both impoundments are on properties owned and controlled by SBMU. One coal ash impoundment measuring approximately 61 acres in size is actively used for bottom ash disposal. The second coal ash impoundment measuring approximately 30 acres in size was primarily used for fly ash disposal, but is currently inactive due to reuse and recycling efforts.

Pursuant to the United States Environmental Protection Agency (USEPA) 40 CFR Part 257 (§257) Federal Criteria for Classification of Solid Waste Disposal Facilities and Practices, Subpart D -Standards for Disposal of Coal Combustion Residuals (CCR) in Landfills and Surface Impoundments (ponds), the establishment of a groundwater monitoring system and routine detection sampling and reporting is required at all coal ash surface impoundments. The purpose of a monitoring well system is to accurately evaluate the quality of groundwater as it passes beneath the waste mass within an impoundment. Groundwater samples are collected and analyzed on a semi-annual basis in accordance with §257.93, or as otherwise detailed in a sitespecific Groundwater Monitoring and Sampling Plan (GMSAP) (Gredell Engineering, 2017b). Analytical data also are subjected to statistical analysis in accordance with §257.93(f), with the results included in an Annual Groundwater Monitoring and Corrective Action Report in accordance with §257.90(e). If results suggest that a statistically significant increase (SSI) in one or more constituents for detection monitoring listed in Appendix III of §257 has occurred, a written demonstration is required to determine if the SSI is attributable to an ash pond release or to other causative factors. If a successful demonstration is not made, an assessment monitoring program must be initiated as required under §257.95.

This report describes the results of the initial semi-annual detection groundwater sampling event conducted at the Sikeston Power Station in October 2017. It is specific to the active bottom ash pond. Included is a description of the sampling event, groundwater elevations, water table surface, summary of field activities, analytical results, and statistical analysis results. Field sampling and reporting activities were conducted in accordance with the site-specific GMSAP (Gredell Engineering, 2017b). Statistical analysis was performed in accordance with §257.93(f) using the appropriate statistical analysis method as filed in the SBMU-SPS operating record on October 17, 2017.

A similar report will be prepared for the fly ash pond, which is subject to the alternative compliance timeframes specified in §257.100(e)(5), and will be placed in the facility's operating record no later than August 1, 2019.

2.0 GROUNDWATER MONITORING SYSTEM

The SBMU-SPS bottom ash pond groundwater monitoring system consists of five monitoring wells that yield water from the uppermost aquifer. The five wells are designated MW-3, MW-4, MW-5, MW-6, and MW-8. MW-3 through MW-6 were installed during characterization of the site. MW-8 was installed in April 2017 to serve as an additional downgradient monitoring well as discussed in the Site Characterization Report (Gredell Engineering, 2017a). The Site Characterization Report also concluded that MW-4, MW-5 and MW-8 are hydraulically downgradient of the bottom ash pond. MW-3 and MW-6 are hydraulically upgradient of the bottom ash pond. The bottom ash pond monitoring system is described in more detail in the site-specific GMSAP for this facility (Gredell Engineering, 2017b).

Table 1 presents a construction summary of the wells comprising the bottom ash pond groundwater monitoring system. Figure 1 depicts well locations and a groundwater contour map of the uppermost aquifer. This map documents that water in the uppermost aquifer moves in a west-southwesterly direction, consistent with the conclusions of the Site Characterization Report (Gredell Engineering, 2017a). All groundwater wells are equipped with dedicated tubing for use with a peristaltic pump. This system has been used for chemical sampling since inception of groundwater sampling.

3.0 FIELD SAMPLING SUMMARY

SPS environmental staff performed groundwater sampling on October 31, 2017. Groundwater samples were collected from all five monitoring wells using low-flow sampling techniques and dedicated sampling equipment. Field tests of indicator parameters were performed using an In-Situ, Inc. SmarTROLL [™] MP flow cell unit and HF Scientific MicroTPI field portable turbidimeter. Each groundwater sample was subsequently analyzed for the constituents listed in §257 Appendix III. All five monitoring wells produced sufficient volumes of groundwater for full analysis.

The environmental staff inspected each monitoring well upon arrival. Wells appeared to be in satisfactory condition and had locks in place. Staff initially gauged water levels in the monitoring wells using a standard electronic water level meter graduated in increments of 0.01 feet. Static water levels were recorded on forms provided in the GMSAP. Each well was then purged and field measurement of pH was collected. Staff monitored water quality until indicator parameters (pH and specific conductance) stabilized in accordance with the criteria in the GMSAP. Additional indicator parameters (turbidity, temperature, dissolved oxygen, and oxidation/reduction potential) were monitored for general stability prior to groundwater sample collection. The pumping rate of the peristaltic pump during purging and sampling was limited to less than 500 mL/min.

Field notes documenting the sampling event and a copy of the chain-of-custody form are presented in Appendix 1. Field sampling notes are summarized in Table 3, including initial and final water level measurements, purge volumes, and pH. Raw analytical laboratory data sheets for each sample, including the field blank and sample replicate, are included in Appendix 2. Quality Assurance/Quality Control (QA/QC) documentation is presented in Appendix 3. A summary of background and detection monitoring analytical data and field parameters is presented in Appendix 6

3.1 Field Quality Assurance/Quality Control

Field QA/QC during the October 2017 sampling event included the collection of one field replicate sample from MW-3 (identified as DUP in Table 5) and a field blank. Rinsate blanks were not collected because dedicated sampling equipment was used. Samples were immediately shipped to PDC Laboratories' primary facility located in Peoria, Illinois using standard chain-of-custody documentation/ procedures. Samples were received by the primary facility on November 3, 2017 and subsequently analyzed for the six detection monitoring constituents listed in §257 Appendix III and required under §257.94(b) (Table 4). Preliminary results were received on November 14, 2017. Final hard copy analytical results were received from PDC Laboratories on November 29, 2017.

4.0 ANALYTICAL SUMMARY

Hard copy analytical data for each monitoring well sampled during the October 2017 detection monitoring event is provided as Appendix 2. The data pertains to water quality results from the uppermost aquifer in the area bordering the bottom ash pond, along with sample replicate, and field blank results.

4.1 Laboratory Quality Control

Laboratory analytical data for the October 2017 sampling event was completed by PDC Laboratories, Inc., of Peoria, Illinois, and were accompanied by appropriate QA/QC documentation. That documentation is presented in Appendix 3.

4.2 **Precision and Accuracy**

Precision is a measure of the reproducibility of analytical results, generally expressed as a *Relative Percent Difference*. Laboratory quality control procedures to measure precision consist of laboratory control sample (LCS) analysis and analysis of matrix spike/matrix spike duplicates (MS/MSD). These analyses are used to define analytical variability. Accuracy is defined as the degree of agreement between the measured amount of a species and the amount actually known to be present, expressed as a percentage. It is generally determined by calculating the percent recoveries for analyses of surrogate compounds, laboratory control samples, continuing calibration check standards and matrix spike samples. Acceptable percent recoveries are established for SW-846 and USEPA methods. Field and laboratory blank analyses are also used to address measurement bias.

The analyses were performed within appropriate hold times and both initial and continuing calibrations met acceptance criteria for all analyses. Similarly, method blanks and LCS analyses met acceptance criteria. The case narrative indicates that all quality controls met acceptance criteria except MS/MSD results for Sulfate, Boron, and Calcium for the batch quality control samples. These samples were derived from another project and their values exceeded four times the spike level.

Additional QA/QC comments include the following:

- Field Replicates: Analyses of replicate samples are used to define the total variability of the sampling/analytical system as a whole. One field replicate from MW-3 was collected during this sampling event. The Relative Percent Difference (RPD) was calculated for detected chemical parameters, which consisted of Boron, Calcium, Chloride, Fluoride, Sulfate, and TDS. A summary table showing the results of the RPD calculations is included as Table 5. Using a tolerance level of <u>+</u>20 percent, calculated RPDs were within acceptable ranges for each parameter.
- *Field Blank:* One field blank was incorporated into the data set for this sampling event. Results for the field blank showed that it contained a reportable concentration of Sulfate (4.2 mg/L). All other parameters were below detection limits.

 Laboratory Blanks: Method blanks, artificial, and matrix-less samples are analyzed to monitor the laboratory system for interferences and contamination from glassware, reagents, etc. Method blanks are taken throughout the entire sample preparation process. They are included with each batch of extractions or digestions prepared, or with each 20 samples, whichever was more frequent. Reference to Appendix 3 should be made for comments related to these and other laboratory control samples.

4.3 Representativeness

Representativeness expresses the degree to which sample data accurately and precisely reflect site conditions. Representativeness of the data is determined by comparing actual sampling procedures to those delineated in the field sampling plan, comparing results from field replicate samples and reviewing the results of field blanks.

Approved sampling procedures are described in the GMSAP (Gredell Engineering, 2017b). Procedures specified in that plan have been followed. Approved sampling procedures should be reviewed annually. Groundwater monitoring data is evaluated using an intrawell statistical analysis methodology and is conducted separately for each constituent in each monitoring well using prediction limits in accordance with §257.93(f)(3) and the performance standards in §257.93(g). The stated statistical approach, along with supporting documentation and engineering certification, are available in the SBMU-SPS On-Site Operating Record.

4.4 Comparability

Comparability expresses the confidence with which one data set can be compared to another data set measuring the same property. Comparability is ensured by using established and approved sample collection techniques and analytical methods, consistent basis of analysis, consistent reporting units, and analyzing standard reference materials

4.5 Completeness

Completeness is a measure of the amount of valid data obtained from a measurement system compared to the amount expected under controlled laboratory conditions. Completeness is defined as the valid data percentage of the total tests requested. Valid data are defined as those where the sample arrived at the laboratory intact, properly preserved, in sufficient quantity to perform the requested analyses, and accompanied by a completed chain-of-custody form (Appendix 3). Furthermore, the sample must have been analyzed within the specified holding time and in such a manner that analytical QC acceptance criteria are met.

5.0 STATISTICAL ANALYSIS

The statistical analysis approach used to evaluate groundwater within the uppermost aquifer for the bottom ash pond monitoring well network at SBMU-SPS consists of intra-well analysis using prediction limits. The analysis is conducted separately for each constituent in each of the five monitoring wells in accordance with §257.93(f)(3). This statistical method complies with the accepted performance standards listed in §257.93(g).

A complete background data set has been obtained for groundwater, representing the uppermost aquifer, moving below the bottom ash pond at the SPS. The background data used to evaluate current groundwater quality is based on eight rounds of groundwater sampling of MW-3, MW-4, MW-5, and MW-6 spanning November 2016 to July 2017 and MW-8 spanning May 2017 to September 2017. The background may be updated every two years but any SSIs will not be included in background unless they are unconfirmed in accordance with Unified Guidance (USEPA, 2009).

Statistical analysis was performed in accordance with §257.93 using Sanitas[™] for Ground Water (Version 9.5.32; 2017). Intra-well prediction intervals were compared at the 99 percent confidence level for each constituent. The groundwater results from the October 2017 detection monitoring event were then compared to the prediction limits (Table 6) to determine if statistically significant increases (SSIs) over background exist in the data set.

If the number of reportable concentrations of a given constituent in a given well is not sufficient to permit parametric analysis, non-parametric prediction interval analysis is conducted. Both parametric and non-parametric prediction limit analysis were performed for the bottom ash pond groundwater monitoring well network data. Prediction intervals are based on the background monitoring data sets (Appendix 6), including concentrations reported as below detection limits. Initially, outlier analysis was performed for the background data set using Exploratory Data Analysis (EDA) with Sanitas[™], time-series plots, and box and whiskers plots. However, because the background data span a collection period of less than one year, variance in the data set may be attributable to natural seasonal variation. Therefore, all background data have been retained as recommended by Unified Guidance (USEPA, 2009) when no basis for likely error or discrepancy can be identified. Following future updates to the background data set, the identification of potential outliers will be re-evaluated.

The results of the statistical analysis for the October 2017 sampling event are described below. A statistical power curve, based on the background data, is provided in Appendix 4. Trend analysis (time-series) plots for all detection monitoring constituents are presented in Appendix 5. A complete database summarizing the sample results, dates of sampling, and the purpose of sampling event, as per §257.90(e)(3), is provided in Appendix 6. Box and whiskers plots are presented in Appendix 7. Prediction limit charts are provided in Appendix 8.

5.1 Statistical Results

The results of the statistical analysis for the bottom ash pond groundwater monitoring system do not suggest the presence of apparent SSIs in the October 2017 data set. Therefore detection monitoring in accordance with §257.94 should continue on a semi-annual basis as specified in §257.94(b).

6.0 SUMMARY

The statistical analysis results for samples obtained during the initial groundwater detection monitoring event conducted October 2017 do not indicate the presence of apparent SSIs associated with the bottom ash pond groundwater monitoring system. Therefore it is recommended that detection monitoring of the bottom ash pond continue on a semi-annual basis in accordance with §257.94.

7.0 REFERENCES

GREDELL Engineering Resources, Inc., 2017a, Sikeston Power Station Site Characterization for Compliance with Missouri State Operating Permit #MO-0095575, dated May 2017.

GREDELL Engineering Resources, Inc., 2017b, Sikeston Power Station Groundwater Monitoring and Sampling Plan for Compliance with Missouri State Operating Permit #MO-0095575, dated September 2017.

Sanitas Statistical Software, © 1992-2017 SANITAS TECHNOLOGIES, Alamosa Colorado 81101-0012.

U.S. Environmental Protection Agency, March 2009, Statistical Analysis of Groundwater Monitoring *Data at RCRA Facilities Unified Guidance*: USEPA 530/R-09-007, Office of Resource Conservation and Recovery, Program Implementation and Information Division, Washington, D.C.

TABLES

Table 1 Groundwater Monitoring Network Summary - Bottom Ash Pond

Monitoring Well ID ^{1,2}	Northing Location ^{3,4}	Easting Location ^{3,4}	Ground Surface Elevation ^{3,4} (feet)	Top of Riser Elevation ^{3,4} (feet)	Well Depth ⁵ (feet)	Base of Well Elevation ⁶ (feet)	Screen Length ⁷ (feet)	Top of Screen Elevation (feet)
MW-3	381130.00	1079946.62	306.11	308.55	37.21	271.34	10	281.5
MW-4	380804.62	1077766.95	303.26	305.61	37.55	268.06	10	278.3
MW-5	379858.94	1078477.85	303.57	305.91	37.17	268.74	10	278.9
MW-6	379874.77	1079384.36	305.37	307.72	38.03	269.69	10	279.9
MW-8	380311.20	1077940.08	302.37	304.77	37.41	267.36	10	277.6

NOTES:

1. Refer to Figure 1 for monitoring well locations.

2. Refer to Sikeston Power Station On-Site Operating Record for well construction diagrams.

3. Monitoring well survey data provided by Bowen Engineering & Surveying, Inc.

4. Horizontal Datum: Missouri State Plane Coordinates - NAD 83 (Feet), Vertical Datum: NAVD 88 (Feet).

5. Depth measurements relative to surveyed point on top of well casing.

6. Sump installed at base of screen (0.2 feet length).

7. Actual screen length (9.7 feet) is the machine-slotted section of the 10-foot length of Schedule 40 PVC pipe.

Well ID	MW-3	MW-4	MW-5	MW-6	MW-8			
Date		Groundwater Elevation (feet MSL)						
05/12/16	298.13	296.01	296.68	297.41	NM			
06/28/16	297.58	294.75	295.51	296.57	NM			
07/15/16	297.37	294.77	295.53	296.44	NM			
08/08/16	297.05	294.66	294.87	295.77	NM			
09/08/16	296.76	294.40	294.96	295.84	NM			
10/05/16	296.40	294.02	294.70	295.57	NM			
11/01/16	296.10	293.99	294.49	295.24	NM			
11/30/16	296.03	294.26	294.80	295.37	NM			
01/24/17	296.35	294.73	295.19	295.77	NM			
01/26/17	296.35	294.73	295.19	295.77	NM			
02/22/17	296.00	294.40	294.81	295.41	NM			
02/24/17	296.00	294.40	294.81	295.41	NM			
03/20/17	296.45	295.10	295.46	295.97	NM			
04/19/17	296.35	294.73	295.19	295.81	NM			
04/27/17	296.72	295.41	295.78	296.20	NM			
05/17/17	297.81	295.76	296.31	297.11	NM			
05/18/17	NM	NM	NM	NM	295.67			
06/08/17	297.81	295.64	296.17	296.96	NM			
06/09/17	NM	NM	NM	NM	295.57			
07/13/17	296.98	294.60	295.22	296.06	294.70			
08/03/17	NM	NM	NM	NM	294.12			
08/15/17	NM	NM	NM	NM	294.02			
08/30/17	NM	NM	NM	NM	293.72			
09/14/17	NM	NM	NM	NM	293.57			
09/27/17	NM	NM	NM	NM	293.26			
10/31/17	295.22	293.11	293.65	294.41	293.20			

Table 2Historical Groundwater Level Summary

NOTES:

1. Refer to Figure 1 for monitoring well locations.

2. Refer to Sikeston Power Station On-Site Operating Record for well construction diagrams.

3. NM - Not Measured.

4. Maximum and minimum groundwater elevations are shaded.

Table 3Water Levels and Field Parameter Summary

Monitoring Well I.D.	Hydraulic Position	Initial Water Level (ft, BTOC ²)	Final Water Level (ft, BTOC ²)	Minimum ³ Purge Vol. (ml⁴)	Actual Purge Vol. (ml⁴)	рН (S.U.⁵)
MW-3	Upgradient	13.33	13.33	300	2460	6.64
MW-4	Downgradient	12.50	12.50	300	1960	7.31
MW-5	Downgradient	12.26	12.26	300	1420	6.89
MW-6	Upgradient	13.31	13.31	300	3400	6.72
MW-8	Downgradient	11.57	11.57	300	1700	7.09

NOTES:

1. Sequence of sampling is MW-3, MW-6, MW-5, MW-8, MW-4.

2. BTOC: Below Top of Casing

3. Purge calculations based on 1/4" ID tubing and complete evacuation of single tubing volume.

4. ml: milliliter

5. S.U.: Statdard Unit.

 Table 4

 Groundwater Monitoring Constituents

	U	SEPA 40 CFR 257				
Appendix III	-	Appendix IV -				
Constituents for Detection	n Monitoring	Monitoring Constituents for Assess	ment Monitoring			
Chemical Constituent	Method	Chemical Constituent	Method			
pH (S.U.)	Field	Antimony (µg/L)	SW 6020			
Boron (µg/L)	SW 6020	Arsenic (µg/L)	SW 6020			
Calcium (mg/L)	SW 6020	Barium (μg/L)	SW 6020			
Chloride (mg/L)	EPA 300.0	Beryllium (µg/L)	SW 6020			
Fluoride (mg/L)	EPA 300.0	Cadmium (µg/L)	SW 6020			
Sulfate (mg/L)	EPA 300.0	Chromium (µg/L)	SW 6020			
Total Dissolved Solids (mg/L)	SM 2540C	Cobalt (µg/L)	SW 6020			
		Fluoride (mg/L)	EPA 300			
		Lead (µg/L)	SW 6020			
		Lithium (µg/L)	SW 6020			
		Mercury (µg/L)	SW 6020			
		Molybdenum (µg/L)	SW 6020			
		Selenium (µg/L)	SW 6020			
		Thallium (µg/L)	SW 6020			
		Radium 226 and 228 combined (pCi/L)	EPA 903.1 & 904.0			

NOTES:

- 1. S.U. = Standard Unit.
- 2. μ g/L = micrograms per liter.
- 3. mg/L = milligrams per liter.
- 4. pCi/L = picocurie per liter.

Table 5Relative Percent Differences Summary -Detected Parameters in MW-3 and Replicate

Chemical Parameter	Units	MW-3	DUP	Relative Percent Difference
рН	S.U.	6.64	6.64	0.00
Boron	µg/L	27	24	11.76
Calcium	µg/L	19	19	0.00
Chloride	mg/L	2.0	1.9	5.13
Fluoride	mg/L	0.331	0.328	0.91
Sulfate	mg/L	20	20	0.00
Total Dissolved Solids	mg/L	140	120	15.38

NOTES:

1. S.U. = Statdard Unit.

2. μ g/L = micrograms per liter.

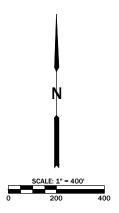
3. mg/L = milligrams per liter.

4. Relative Percent Difference tolerance = 20%.

Chemical Parameter	Units	MW-3	MW-4	MW-5	MW-6	MW-8
40 CFR 257 Appendix III Constituents for						
Detection Monitoring						
pH Upper	S.U.	7.189	7.529	7.078	7.075	7.285
pH Lower	S.U.	6.363	7.291	6.697	6.575	7.018
Boron	μg/L	57.21	1734	5700	60.62	596.7
Calcium	mg/L	25.46	95.25	240	49.29	101.7
Chloride	mg/L	2.565	18.69	17.45	3.083	58.72
Fluoride	mg/L	0.4819	0.259	0.255	0.331	0.25
Sulfate	mg/L	33.73	147.6	484.6	44.8	131.1
Total Dissolved Solids	mg/L	191.6	407.2	577.5	250.2	448

Table 6 Intra-Well Prediction Limit Summary

NOTES:


1. Prediction limits for MW-3 through MW-6 based on background data set spanning November 2016 to

July 2017. Prediction limits for MW-8 calculated using background data set spanning May 2017 to September 2017.

FIGURES

WELL ID MW-3 MW-4 MW-5 MW-6 MW-8

LEGEND	
PROPERTY LINE	PL
GROUNDWATER CONTOUR	
PROPOSED MONITORING WELL	MW
UP GRADIENT MONITORING LOCATION	UG
DOWN GRADIENT MONITORING LOCATION	DG
GENERAL FLOW DIRECTION	-

- NOTES:
 IMAGE PROVIDED BY BING MAPS.
 MONITORING WELL LOCATIONS, CASING ELEVATIONS & UNDERGROUND CULVERT ELEVATIONS SURVEYED BY BOWEN ENGINEERING & SURVEYING.
 GROUNDWATER ELEVATIONS MEASURED BY SIKESTON POWER STATION STAFF ON OCTOBER 31, 2017.
 MAP DEVELOPMENT BASED ON CONTOURS GENERATED BY SURFER® SOFTWARE.
 RANGE OF GROUNDWATER FLOW GRADIENT AS DETERMINED BY SURFER® SOFTWARE 0.0003 FT./FT. TO 0.001 FT./FT.

D	GROUNDWATER ELEVATION	CASING ELEVATION	NORTHING	EASTING
	295.22	308.55	381130.00	1079946.62
	293.11	305.61	380804.62	1077766.95
	293.65	305.91	379858.94	1078477.85
	294.41	307.72	379874.77	1079384.36
	293.20	304.77	380311.20	1077940.08

THE GEOLOGIST WHO REVIEWED AND APPROVED THIS REPORT ASSUMES RESPONSIBILITY ONLY FOR GEOLOGIC INTERPRETATIONS OF DATA APPEADING ON THE PAGE AND DISCLAIMS PURSUANT TO SECTION	256.456 RSMO ANY RESPONSIBILITY FOR ALL OTHER 2405. SPECIFICATIONS, ESTIMATES, REPORTS OR OTHER DOCUMENTS OR INSTRUMENTS NOT PREPARED UNDER THE SUPERVISION OF THE GEOLOGIST RELATING	TO OR INTENDED TO BE USED FOR ANY PART OR PARTS OF THE PROJECT TO WHICH THIS FIGURE REFERS.		
	μ	SHEET # 1 OF 1		
FIGURE 1	ирматек сомтоик м ОСТОВЕК 31, 2017	CHECKED APPROVED DATE SCALE PROJECT NAME FILENAME FILENAME APPROVED 11/2017 AS NOTED SIKESTON/GWMAP/BAP GWCONT BAP 10-2017 1 0F 1		
FIG	FIGURE 1 GROUNDWATER CONTOUR MAP OCTOBER 31, 2017			
		SCALE S NOTED		
LION	2017 ANNUAL GRUUNDWATER MONITORING & CORRECTIVE ACTION REPORT	CHECKED APPROVED DATE KE MCC 11/2017 AS		
SIKESTON POWER STATION BOTTOM ASH POND	U1 / ANNUAL GROUNDWALE MONITORING & CORRECTIVE ACTION REPORT	APPROVED MCC 1		
POWE	NNUAL GROUND ORING & CORRE ACTION REPORT			
BOTTC	ANNU IITORII ACTI			
SIKI	NOW	SURVEYED DESIGNED DRAWN NA NA AJK		
i	с	survey NA		
GREDELL Engineering Resources, Inc.	ENVIRONMENTAL ENGINEERING LAND - AIR - WATER 1505 East High Street Telephone: (573) 659-9078	Jerrenson Cirty, Missouri racsimile: (97.3) 003-307.9 Mo core engineering license no. E-2001001669-0		

Appendix 1 Field Sampling Notes

Monitoring Well ID:	R Groundwater Monitor MW3 I. Patel H. (_
Date: 10-31-17		
Access: Accessibility: Go	od _ 🖌 Fa	ir Poor
Well clear of weeds and/or of		
Well identification clearly vis		n
Remarks:		
<u>Concrete Pad</u> : Condition of Concrete Pad:	Go	ood Inadequate
Depressions or standing wa	ter around well?: Ye	es No
Remarks:		ä
Protective Outer Casing: Ma	terial = <u>4" x 4" Steel</u>	Hinged Casing with Hasp
Condition of Protective Casi	ng: Good 🛌	Damaged
Condition of Locking Cap:	Good 🔽	Damaged
Condition of Lock:	Good 🛌	Damaged
Condition of Weep Hole:	Good <u></u>	Damaged
Remarks:		
Well Riser: Material = 2" Diameter	r, Schedule 40 PVC, I	Flush Threaded
Condition of Riser:	Good	Damaged
Condition of Riser Cap:	Good	Damaged
Measurement Reference Po	int:Yes 🗾	No
Remarks:		
Dedicated Purging/Sampling Devi	<u>ce</u> : Type = <u>¼ " ID Sem</u> <u>Silicone Tu</u>	ni-Rigid Polyethylene & 0.170" ID Flexible bing
Condition: Good 🖌	Damaged	Missing
Remarks:		
Monitoring Well Locked/Secu	ured Post Sampling?:	Yes No
Remarks:		
d Certification	a he	1 tech 10-31-17
Signed	Title	

Monitoring Well Field Inspection

Prepared by: GREDELL Engineering Resources, Inc.

Field	Sam	pling	Log
-------	-----	-------	-----

Monito	ring Well ID:	Mw3	Fac	sility: SBML	J Sikeston P	ower Static	n - Groundw	ater Monitor	ing	
Initial Wate	er Level (fee	t btoc):	13.33'			Date:	10-31-1	1		
Initial Grou	indwater Ele	vation (NAVE)88):			Air Pressu	re in Well?	Y / 🛈		
PURGE IN	FORMATIO	N								
Date:	10-31-	17		a.						
Name (Sar	mple Collect	or):	7. Pat	el						
Method of	Well Purge:	Low Flow	Perstaltic	Pump	Dec	dicated Tub	oing? 🤇	Y) / N		
Time Purgi	ing Initiated:		0955		On	e (1) Well \	/olume (mL)	:	NA	
Beginning	Water Level	(feet btoc)	13	.33'	Tot	al Volume	Purged (mL)	:	2460	
						ell Purged T	o Dryness?		Y / 🚺	
						iter Level a	fter Sampling	g (feet btoc):	13.3	3'
10.00		2" Sch 4				(i.	e., pump is c	off)		
					Tin	ne Samplin	g Completed	1:	102:	5
PURGE S	TABILIZATI	ON DATA	1				Oxidation		1	
Time	Purge Rate (mL/min)	Cumulative Volume (mL)	Temp (°C)	Specific Conductance (µS/cm)	Dissolved Oxygen (mg/L)	рН (S.U.)	Reduction Potential (mV)	Turbidity (NTU)	Water Level (feet btoc)	Notes (e.g., opacity, color, odor)
0952		260	18.02	265.9	1.70	6.69	14.4	10.09	13,33	
0954	210	680	17.11	258.7	1.46	6.60	13.6	16.04	ų	-
0956	200	10 60	16.94	252.0	1.34	6.60	13.0	11.74	u	-
0958	220	1520	16.87	247.8	1.20	6.62	12.5	7.90	-11	
1000	240	2,000	16.77	244.4	1.16	6.64	12.2	8.46	ч	
1002	230	2460	16.74	246.2	0.65	6.64	12.4	7.47		-
									1	

			Field Sam	pling Log			
Facility:	SBMU Sikeston	Power Station -	CCR Groundwa	ter Monitoring	Monitoring We	ell ID: <u>Mw</u>	3
Sampling Informa	ation:						
Method of Samplin	ig: Low Flow -	Perstaltic Pump	& Tubing			Dedicated	(Y) / N
Water Level @ Sa	mpling (feet btoc)	15.33	·				
Monitoring Event:	Annual ()	Semi-Annua	Quarter	rly () Mo	onthly ()	Other()	
Final Purge Stabliz	ation Sampling D	ata:	1			Oxidation	11
<u>Date</u> Sample Time	Sample Rate (mL/min)	Temp (°C)	Specific Conductance (µS/cm)	Dissolved Oxygen (mg/L)	рН (S.U.)	Reduction Potential (mV)	Turbidity (NTU)
10-31-17	2.30	16.74	246.2	0.45	6.64	12.4	7.47
Instrument Calibr See instrument cal 1 - In-Situ SmarTr 2 - HF scientific, in	libration log of dai oll Multi-Probe Fi	eld Meter (Temp	perature, Specifi	ng instruments: c Conductance, Dissolv	ved Oxygen, pH	I, Oxidation Red	uction Potentia
General Informati	ion:						
Weather Condition	ns @ time of sam	oling: 🥂	Il, windy	, partly Cloudy			
		97 4 G S					
Sample Character		1.52	Iorless, odork	24			
Sample Collection	Order:	Per SAP	a.				
Comments and Ob	oservations:					20 ¹	
. P.	applicate tak	en					
				1			
I certify that sampl	ling procedures w	ere in accordan	ce with applicab	le EPA and State proto	ocols.		
Date: 10-31-17	Ву:	1/4-	\$U	Title:	Lab te	16	

Page 2 of 2

Monitoring Well Field Inspection

Ternarks.			
<u>Concrete Pad</u> : Condition of Concrete	Pad:	Good 🗹	nadequate
Depressions or stand	ng water around well?	Yes N	lo
Remarks:			
Protective Outer Casing:	Material = <u>4" x 4" St</u>	eel Hinged Casin	g with Hasp
Condition of Protectiv	e Casing: Good 👉	Damage	d
Condition of Locking	Cap: Good <u></u>	Damage	d
Condition of Lock:	Good 🗹	Damage	d
Condition of Weep Ho	ole: Good 🧹	Damage	
Remarks:			
<u>Well Riser</u> : Material = <u>2" D</u>	iameter, Schedule 40 P	VC, Flush Thread	ed
Condition of Riser:	Good 🗾	Damage	ed
Condition of Riser Ca	p: Good 🛌	Damage	d
Measurement Refere	nce Point: Yes 🔛	No	-
Remarks:			
Dedicated Purging/Samplin	<u>g Device</u> : Type = <u>¼ " ID</u> <u>Silicor</u>	Semi-Rigid Polye	thylene & 0.170" ID Flexible
Condition: Go	od Damaged	Missing	
Remarks:			
Monitoring Well Lock	ed/Secured Post Sampli	ing?: Yes 👱	No
Remarks:			
Field Certification	i-lil	had been	10-31-17
Signe	d	Title	Date

Prepared by: GREDELL Engineering Resources, Inc.

Field	Sam	pling	Log
-------	-----	-------	-----

Monitor	ring Well ID	MW	H Fac	sility; SBMU	J Sikeston P	ower Static	on - Groundw	ater Monitor	ing	
Initial Wate	er Level (fee	t btoc):	12.50)'		Date:	10-31-1	7		
Initial Grou	ndwater Ele	vation (NAVE				Air Pressu	re in Well?	Y / 🚺)	
PURGE IN	FORMATIC	N								
Date:	10	-31-17		s						
Name (Sar	mple Collect	or):	. Pate	1						
Method of	Well Purge:	Low Flow	/ Perstaltic	Pump	Dec	dicated Tul	ping?	Y) / N		
Time Purgi	ing Initiated	13	125		One	e (1) Well V	Volume (mL):		NA	
Beginning	Water Leve	l (feet btoc):	17	2,50	Tot	al Volume	Purged (mL)		1960	
						ell Purged	Fo Dryness?		Y / 🕥	
		btoc):				•			12.5	0
						(i.	.e., pump is c	off)		
Casing Dia	ameter (feet)): <u>2" Sch 40</u>	JPVC		Tim	ne Samplin	g Completed	:	/34	5
PURGE S	TABILIZATI	ON DATA								
Time	Purge Rate (mL/min)	Cumulative Volume (mL)	Temp (°C)	Specific Conductance (µS/cm)	Dissolved Oxygen (mg/L)	рН (S.U.)	Oxidation Reduction Potential (mV)	Turbidity (NTU)	Water Level (feet btoc)	Notes (e.g., opacity, color, odor)
1327	(360	19.40	520,4	1.54	7.31	-121.1	0.39	12.50'	-
1329	250	880	18.57	524.7	0.92	7.31	-115.4	0,17	98	-
1331	250	1380	18.40	525,2	0.81	- 11	-118.5	0.86	98	
1333	260	1902	18.35	525.8	0.63	1/	-118.1	1.07	1/	-
							-			
						1				

8

			Field Sam	pling Log			
Facility:	SBMU Sikeston I	ower Station -	CCR Groundwa	ter Monitoring	Monitoring We	ell ID:M	<u>vy</u>
Sampling Informa	ation:						
Method of Samplin	ig: Low Flow -	Perstaltic Pump	& Tubing			Dedicated:	(Y) / N
Water Level @ Sa	mpling (feet btoc)	12.5	ю [,]				
Monitoring Event:	Annual ()	Semi-Annua	I 🔗 🛛 Quarte	rly() Mo	onthly ()	Other ()	
Final Purge Stabliz	ation Sampling D	ata:	1			Oxidation	
<u>Date</u> Sample Time	Sample Rate (mL/min)	Temp (°C)	Specific Conductance (µS/cm)	Dissolved Oxygen (mg/L)	рН (S.U.)	Reduction Potential (mV)	Turbidity (NTU)
10-31-17	260	18.35	525.8	0.63	7,31	-118.1	1.07
Instrument Calibr See instrument ca 1 - In-Situ SmarTr 2 - HF scientific, in General Informat Weather Condition	libration log of dai roll Multi-Probe Fi nc. Micro TPI Fiel ion:	eld Meter (Temp d Portable Turbi	perature, Specifi idimeter	ng instruments: c Conductance, Dissolv	ved Oxygen, pH	I, Oxidation Red	uction Potentia
Sample Character	istics:	Lless,	colorless /	Dek or less			
Sample Collection	Order:	Per SAP	9				•
Comments and OI	oservations			ž	¢		
I certify that samp	ling procedures w	ere in accordan	ce with applicat	ole EPA and State proto	ocols.		
Date: 19-31-1-	1Ву;	-7/1	-se	Title:	6.6	tech	

Page 2 of 2

Monitoring Well Field Inspection

Facility: <u>SBMU SPS – CCR</u> Monitoring Well ID:	MISS		
	, Patel	H Marl	
Date: 19-31-17			
Access: Accessibility: Good	\mathbf{Y}	Fair	Poor
Well clear of weeds and/or deb	oris?: Yes	No	
Well identification clearly visibl	e?: Yes 👱	No	
Remarks:			
<u>Concrete Pad</u> : Condition of Concrete Pad:		Good 🗾 Inade	equate
Depressions or standing water	around well?:	Yes No _	
Remarks:			
Protective Outer Casing: Mate	rial = <u>4" x 4" Ste</u>	el Hinged Casing wi	th Hasp
Condition of Protective Casing	: Good 🧹	Damaged _	
Condition of Locking Cap:		Damaged _	
Condition of Lock:	Good	Damaged _	
Condition of Weep Hole:	Good 🧹	Damaged _	
Remarks:			
<u>Well Riser</u> : Material = <u>2" Diameter,</u>	Schedule 40 PV	C, Flush Threaded	
Condition of Riser:	Good	Damaged _	
Condition of Riser Cap:	Good 🗹	Damaged	
Measurement Reference Poin	t: Yes 🗾	No	
Remarks:			
Dedicated Purging/Sampling Device	: Type = <u>¼ * ID s</u> <u>Silicone</u>	Semi-Rigid Polyethy Tubing	lene & 0.170" ID Flexible
Condition: Good	Damaged	Missing	-
Remarks:			
Monitoring Well Locked/Secur	ed Post Samplin	g?: Yes 📶	No
Remarks:			
Field Certification		has tell	10-31-47
Signed		Title	Date

Prepared by: GREDELL Engineering Resources, Inc.

January 2017

Field Sampling Log	Fi	eld	Sam	pling	Log
--------------------	----	-----	-----	-------	-----

Monito	oring Well ID	MW:	5 Fac	cility: SBMI	J Sikeston P	ower Static	on - Groundw	ater Monitor	ing	
Initial Wat	ter Level (fee	et btoc):	12,26	,		Date:	10-31	1-17		
Initial Gro	undwater Ele	evation (NAVE)88):			Air Pressu	re in Well?	Y / 💽		
PURGE II	NFORMATIC	N								
Date:	10	-31-17								
Name (Sa	ample Collect	tor):A	Pat	e(
		Low Flow			Dee	dicated Tub	bing?	Y) / N		
Time Purg	ging Initiated		16		On	e (1) Well V	Volume (mL)		NA	
		l (feet btoc):		.26'	Tot	al Volume	Purged (mL)		1420	
					2		To Dryness?		Y / 🔊	
		20				•	•		12.2	۷.
		//				iter Levera (i.	e., pump is c	off)	1010	
Casing Di	ameter (feet)): 2" Sch 40	0 PVC		Tim	ne Samplin	g Completed	t	1140	
PURGE S		ON DATA								
Time	Purge Rate (mL/min)	Cumulative Volume (mL)	Temp (°C)	Specific Conductance (µS/cm)	Dissolved Oxygen (mg/L)	рН (S.U.)	Oxidation Reduction Potential (mV)	Turbidity (NTU)	Water Level (feet btoc)	Notes (e.g., opacity, color, odor)
1118		420	17.84	590.9	1.15	6.84	-80,9	3.81	12.26	
/120	240	900	17:47		0.95	6.88	-80.1	3.21	- 11	
1122	260	1420	17.45	591.8	0.85	6.89	-77.6	3.17	lı	
<u> </u>	<u> </u>			<u></u>						
	· · · · · · · · · · · · · · · · · · ·									

Prepared by: GREDELL Engineering Resources, Inc.

			Field Sam	ipling Log			
Facility:	SBMU Sikeston	Power Station - (CCR Groundwa	ter Monitoring	Monitoring We	IIID: <u>M</u> I	<i>w5</i>
Sampling Informa	ition:						
Method of Samplin	g: Low Flow -	Perstaltic Pump	& Tubing			Dedicated;	(Y) / N
Water Level @ Sa	mpling (feet btoc)	12.26					
Monitoring Event:	Annual ()	Semi-Annua	I 📢 🛛 Quarte	rly () Mo	onthly ()	Other ()	
Final Purge Stabliz	ation Sampling D	ata:				Oxidation	
<u>Date</u> Sample Time	Sample Rate (mL/min)	Temp (°C)	Specific Conductance (µS/cm)	Dissolved Oxygen (mg/L)	рН (S.U.)	Reduction Potential (mV)	Turbidity (NTU)
10-31-17 1122	260	17.45	591.8	0.85	6.89	-77.6	3.17
See instrument ca 1 - In-Situ SmarTr 2 - HF scientific, in General Informative Weather Condition	oll Multi-Probe Fi nc. Micro TPI Fiel ion:	eld Meter (Temp d Portable Turbi	erature, Specifi dimeter	ing instruments: ic Conductance, Dissolv	ved Oxygen, pH	I, Oxidation Red	uction Potentia
Sample Character	istics:	clehr, col	orless, odor	less	·		
Sample Collection		Per SAP			<u>N</u>		
Comments and Ol	oservations:	(8) (8)					
I certify that samp	ling procedures w	vere in accordan	ce with applicat	ble EPA and State proto	ocols		
Date: 10-31-1	1 Ву:	A	1 - 5 Pag	Title:	Lob to	<i>сц</i>	

Prepared by: GREDELL Engineering Resources, Inc.

Facility: <u>SBMU SPS – CCR G</u> Monitoring Well ID: <u>Mu</u> Name (Field Staff): <u>A</u>	AL 10	50°
Date: _/b-3/-17		
<u>Access</u> : Accessibility: Good _	Fair	Poor
Well clear of weeds and/or debri	is?: Yes 🗹	No
Well identification clearly visible	?: Yes 📈	No
Remarks:		
<u>Concrete Pad</u> : Condition of Concrete Pad:	Good _	Inadequate
Depressions or standing water a	around well?: Yes _	No
Remarks:		
Protective Outer Casing: Materia	$al = \frac{4" \times 4" \text{ Steel Hing}}{4" \times 4"}$	ed Casing with Hasp
Condition of Protective Casing:		Damaged
Condition of Locking Cap:	Good	Damaged
Condition of Lock:	Good	Damaged
Condition of Weep Hole:	Good	Damaged
Remarks:		
Well Riser: Material = <u>2" Diameter, S</u>	chedule 40 PVC, Flus	h Threaded
Condition of Riser:	Good	Damaged
Condition of Riser Cap:	Good	Damaged
Measurement Reference Point:	Yes	No
Remarks:		
Dedicated Purging/Sampling Device:	Type = <u>¼ " ID Semi-Ri</u> <u>Silicone Tubing</u>	igid Polyethylene & 0.170" ID Flexible
Condition: Good	Damaged	Missing
Remarks:		
Monitoring Well Locked/Secure	d Post Sampling?: Y	/es No
Remarks:		
Field Certification 74-\$	ill heb	tue 10-31-17
Signed	Title	Date

Monitoring Well Field Inspection

Prepared by: GREDELL Engineering Resources, Inc.

January 2017

Fiel	d Sa	mpli	ng Log
------	------	------	--------

Monito	ring Well ID:	MW	6 Fac	sility: SBMU	J Sikeston P	ower Static	on - Groundw	ater Monitor	ing			
Initial Water Level (feet btoc): 13.31 Date: 10-31-17												
Initial Groundwater Elevation (NAVD88): Air Pressure in Well? Y												
PURGE INFORMATION												
Date:												
Name (Sample Collector): A. Patel												
Method of Well Purge: Low Flow Perstaltic Pump Dedicated Tubing?												
Time Purging Initiated: 10 35 One (1) Well Volume (mL): NA												
Beginning Water Level (feet btoc): 13.31 Total Volume Purged (mL): 3400												
Beginning Groundwater Elevation (NAVD88): Well Purged To Dryness? Y / 🕥												
Well Total Depth (feet btoc): 37.11' Water Level after Sampling (feet btoc): 13.31'												
(i.e., pump is off)												
Time Sampling Completed:												
PURGE S	TABILIZATI	ON DATA	1	r		1	Oxidation					
Time	Purge Rate (mL/min)	Cumulative Volume (mL)	Temp (°C)	Specific Conductance (µS/cm)	Dissolved Oxygen (mg/L)	рН (S.U.)	Reduction Potential (mV)	Turbidity (NTU)	Water Level (feet btoc)	Notes (e.g., opacity color, odor)		
1037		420	17,50	446.0	1.40	6.83	-77.6	1.30	13.33			
1039	240	900	17.54	431.7	1.27	6.83	-73.9	075	30	-		
1041	250	1400	M.54	419.9	0,83	6.81	-71.7	1.23	11	-		
1043	255	1920	17.61	376.6	0.79	6.78	-68.2	1.60	1/			
1045	230	2380	17.56	359.9	0.78	6.76	-60.2	1.66	- 11	-		
1047	260	2900	17.58	359,0	0.77	6.73	-58.2	1.53	4	-		
1049	2.57	3400	17.57	359.6	0.71	6.72	-57.9	1.48	4			
								-				
				· · · · · · · · · · · · · · · · · · ·								
						_						

Field Sampling Log

Facility:	SBMU Sikeston	Power Station -	CCR Groundwa	ter Monitoring	Monitoring W	/ell ID: _Mw	<u> </u>
Sampling Informa	ation:	(e) (e)		- Sinne			
Method of Samplin	Dedicated:	(Y) / N					
Water Level @ Sa	8 or spel						
Monitoring Event:	Annual ()	Semi-Annua	I (🗙 Quarte	rly () N	1onthly ()	Other()	
Final Purge Stabliz	ation Sampling D)ata:		sgillin.			
<u>Date</u> Sample Time	Sample Rate (mL/min)	Temp (°C)	Specific Conductance (µS/cm)	Dissolved Oxygen (mg/Ŀ)	рН (S.U.)	Oxidation Reduction Potential (mV)	Turbidity (NTU)
10.31-17	250	17.54	359.6	0.71	6.72	- 57.9	1.48
2 - HF scientific, in General Informat	roll Multi-Probe Fi nc. Micro TPI Fiel ion:	eld Meter (Temp d Portable Turbi	perature, Specifi dimeter	ic Conductance, Disso		oH, Oxidation Red	uction Potentia
Weather Condition			colorless, or	y, Shight bread	18	1	
Sample Collection	Order:	Per SAP,			1 <u>5</u>		
Comments and Ol	oservations:	5	*				
					263	6	
,							
I certify that samp	ling procedures w	vere in accordan	ce with applicat	ble EPA and State pro	tocols		

Date: 10-31-17 By: 110-Sel Title: Lab ten

Page 2 of 2

Monitoring Well Field Inspection

Facility: <u>SBMU SPS – CCR Groundwater Monitoring</u> Monitoring Well ID: <u>Mw8</u>
Name (Field Staff): <u>A. Patel H. m. Gill</u>
Date: 10-31-17
Access: Accessibility: Good <u>Fair</u> Poor
Well clear of weeds and/or debris?: Yes No
Well identification clearly visible?: Yes No
Remarks:
Concrete Pad: Good Marcele Inadequate
Depressions or standing water around well?: Yes No
Remarks:
Protective Outer Casing: Material = $\frac{4" \times 4"}{5}$ Steel Hinged Casing with Hasp
Condition of Protective Casing: Good Damaged
Condition of Locking Cap: Good Damaged
Condition of Lock: Good Damaged
Condition of Weep Hole: Good Damaged
Remarks:
Well Riser: Material = 2" Diameter, Schedule 40 PVC, Flush Threaded
Condition of Riser: Good Damaged
Condition of Riser Cap: Good Damaged
Measurement Reference Point: Yes No
Remarks:
Dedicated Purging/Sampling Device: Type = <u>1/4</u> " ID Semi-Rigid Polyethylene & 0.170" ID Flexible Silicone Tubing
Condition: Good <u> </u> Damaged <u> </u> Missing <u> </u>
Remarks:
Monitoring Well Locked/Secured Post Sampling?: Yes No
Remarks:
Field Certification 7/11-1:16 Los teh 10-31-17 Signed Title Date

Prepared by: GREDELL Engineering Resources, Inc.

January 2017

Field	Sam	pling	Log
-------	-----	-------	-----

Monito	ring Well ID	MW	8 Fac	cility: SBM	J Sikeston P	ower Statio	on - Groundw	ater Monitor	ing	
Initial Wate	er Level (fee	et btoc)	11.57'			Date:	10-31-	17		
		evation (NAVI				Air Pressu	re in Well?	Y / 🛛		
PURGE IN	IFORMATIC	DN								
Date:	10-3	31-17								
Name (Sar	nple Collect	tor):A	1. Pate							
Method of	Well Purge:	Low Flow	Perstaltic	Pump	Dec	dicated Tub	oing?	Y/N		
Time Purgi	ing Initiated	:1	256		On	e (1) Well \	/olume (mL)	:	NA	
Beginning	Water Leve	I (feet btoc):		1.57'	Tot	al Volume I	Purged (mL)	:	1700	
						II Purged T	o Dryness?		Y /	
Well Total	Depth (feet	btoc):	37.0	5'	Wa	iter Level a	fter Sampling	g (feet btoc):	11.57	
): 2" Sch 40				(i.	e., pump is c	off)		
					Tim	ne Sampling	g Completed	:	1309	
PURGE S	TABILIZATI	ON DATA		1			Oxidation		i 1	
Time	Purge Rate (mL/min)	Cumulative Volume (mL)	Temp (°C)	Specific Conductance (µS/cm)	Dissolved Oxygen (mg/L)	рН (S.U.)	Reduction Potential (mV)	Turbidity (NTU)	Water Level (feet btoc)	Notes (e.g., opacity, color, odor)
1258		300	20.25	673.3	1.23	7.06	-104.9	1.43	11.57	
1300	230	760	18.46	687.9	0.56	7.07	-96.8	1.47	11	
1302	220	1200	18.08	702.6	0.45	7.07	-95.8	0,83	"	1
1304	250	1700	17.99	698.1	0.38	7.09	-96.3	0.94	11	
			1							
				-						

			Field Sam	pling Log			
Facility:	SBMU Sikeston I	Power Station - (CCR Groundwa	ter Monitoring	Monitoring We	ell ID:	-8
Sampling Informa	ation:						
Method of Samplin	g: Low Flow -	Perstaltic Pump	& Tubing			Dedicated:	(Y) / N
Water Level @ Sa	mpling (feet bloc)	11.57'					
Monitoring Event:	Annual ()	Semi-Annua	I (🖌 🛛 Quarte	rly () Mo	onthly ()	Other ()	
Final Purge Stabliz	ation Sampling D	ata:					
<u>Date</u> Sample Time	Sample Rate (m⊔/min)	Temp (°C)	Specific Conductance (µS/cm)	Dissolved Oxygen (mg/L)	рН (S.U.)	Oxidation Reduction Potential (mV)	Turbidity (NTU)
<u>10-31-17</u> 1304	250	17.99	698.1	0,38	7.09	-96.3	0.94
See instrument ca 1 - In-Situ SmarTr 2 - HF scientific, ii General Informat	roll Multi-Probe Fi nc. Micro TPI Fiel	eld Meter (Temp	perature, Specifi	ng instruments: c Conductance, Dissol ^y	ved Oxygen, pł	H, Oxidation Red	uction Potentia
			-				
Weather Condition	ns @ time of sam	pling:	Sunny,	pleasant, s	light br	227.2	
		- lo =	1 0	1 - 1-1 -			
Sample Character		Clear, cs Per SAP	21051853,0	COP HEND			
Sample Collection		1 61 0/1					
Comments and O		2.					
Field	blank	ta ken					
Looplify that as ma	ling procedures w	ore in accordan	ce with applicat	ble EPA and State prot	ocols.		
i certity that samp	ing procedures w						
Date: 10-31-	-17_ Ву:	1/2	A	Title	Lob	tech	

Page 2 of 2

Date: 10-31-17 By:

Field Instrumentation Calibration Log

Facility: SBMU SPS CCR Groundwater Sampling

In-Situ smarTROLŁ Field Meter

Field Instruments:

Calibrated by:

HF scientific, inc. Micro TPI Field Portable Turbidimeter

Standards meas		pH Measure- ments	Specific Conductance Standard	0	S/N Oxidation Red	S/N #: 20107366 Specific Conductance Measurement Standard (mV) Measure	Oxidation Oxidation Reduction Potential Measurement	Dissolved Oxygen (%)	xygen
			(hS/cm)	(JuS/cm)	Tomooraturo		(mV)	Temperature	
4.00 = 7.00	4.9				(°C) =	22.25			7.23 =
7.00 = 7.89	7.6		je					Tap Water Source	= She
10.00			1413 =	6.1141	Standard = (mV)	- 522	5322	Barometric Pressure (mm/Hg)	= /013.
	é	٥						Measurement =	110.0

Turbidity Measurements

Turbidity Standards (NTU)

(NTU)

0,02

11

0.02

22.42

00/

11

10.0

Silvesta

80/

11

1000

013.0

The Multi-Probe Field Meter measures Temperature, Specific Conductance, Dissolved Oxygen, pH, and Oxidation Reduction Potential.

995.4

11

1000

1009.3

11

(mm/Hg)

Measurement = /07.73

0.00

11

0.02

= 17.59

Temperature

20.21

.11

Temperature (°C)

110.070

20.01

μ

10.0

= Sikesh

(°C) Tap Water Source Barometric Pressure

205.9

n.

622

я

Standard (mV)

1526.8

н

1413

ン・ト

143

517

End of Day Check

10-31-

त्र ्रह Sec.

7,14

Û. U. 7.00 4.00

10.00 = 10.11

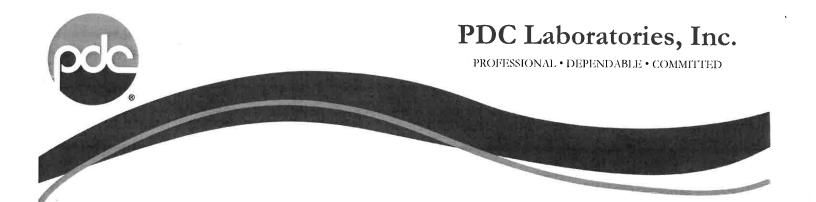
The HF scientific, inc. Micro TPI Field Portable Turbidimeter measures Turbidity.

Notes:

Dissolved oxygen is calibrated via % saturation method; however, field measurements are recorded as mg/L

I certify that the aforementioned meters were calibrated within the manufacturers sreatifical

)m


LI-K-81 Date:

January 2017

Prepared by: GREDELL Engineering Resources, Inc.

Appendix 2

Laboratory Analytical Results

November 29, 2017

Mark E. McGill Sikeston BMU, Sikeston Power Station 1551 W Wakefield Sikeston, MO 63801

Dear Mark E. McGill:

Please find enclosed the **revised** analytical results for the sample(s) the laboratory received on **11/3/17 9:50 am** and logged in under work order **7110582**. All testing is performed according to our current **TNI** certifications unless otherwise noted. This report cannot be reproduced, except in full, without the written permission of PDC Laboratories, Inc.

If you have any questions regarding your report, please contact your project manager. Quality and timely data is of the utmost importance to us.

PDC Laboratories, Inc. appreciates the opportunity to provide you with analytical expertise. We are always trying to improve our customer service and we welcome you to contact the Vice President, John LaPayne with any feedback you have about your experience with our laboratory.

Sincerely,

Senior Project Manager (309) 692-9688 x1719 kstepping@pdclab.com

PDC Laboratories, Inc. 2231 West Altorfer Drive Peoria, IL 61615 (800) 752-6651

REVISED ANALYTICAL RESULTS

Sample: 7110582-01 Sampled: 10/31/17 00:00 MW-3 Name: Received: 11/03/17 09:50 Matrix: Ground Water - Grab Parameter Result Unit Qualifier Prepared Analyzed Analyst Method Anions - PIA Chloride 2.0 mg/L 11/06/17 15:38 11/06/17 15:38 LAM EPA 300.0 Fluoride 0.331 mg/L 11/06/17 15:38 11/06/17 15:38 LAM EPA 300.0 Sulfate 11/06/17 15:57 11/06/17 15:57 EPA 300.0 20 mg/L LAM **General Chemistry - PIA** Solids - total dissolved solids (TDS) 140 11/06/17 14:55 CJP mg/L 11/06/17 15:33 SM 2540C Total Metals - PIA Boron 27 ug/L 11/10/17 12:32 11/14/17 10:05 JMW SW 6020 Calcium 19000 ug/L 11/10/17 12:32 11/14/17 10:05 JMW SW 6020 Sampled: 10/31/17 00:00 Sample: 7110582-02 MW-4 Name: Received: 11/03/17 09:50 Matrix: Ground Water - Grab

Result	Unit	Qualifier	Prepared	Analyzed	Analyst	Method
17	mg/L		11/06/17 17:10	11/06/17 17:10	LAM	EPA 300.0
< 0.250	mg/L		11/06/17 16:52	11/06/17 16:52	LAM	EPA 300.0
83	mg/L		11/06/17 17:10	11/06/17 17:10	LAM	EPA 300.0
290	mg/L		11/06/17 14:55	11/06/17 15:33	CJP	SM 2540C
1400	ug/L		11/10/17 12:32	11/14/17 10:08	JMW	SW 6020
67000	ug/L	-67	11/10/17 12:32	11/14/17 10:08	JMW	SW 6020
	17 < 0.250 83 290 1400	17 mg/L < 0.250 mg/L 83 mg/L 290 mg/L 1400 ug/L	17 mg/L < 0.250 mg/L 83 mg/L 290 mg/L 1400 ug/L	17 mg/L 11/06/17 17:10 < 0.250	17 mg/L 11/06/17 17:10 11/06/17 17:10 < 0.250	17 mg/L 11/06/17 17:10 11/06/17 17:10 LAM < 0.250

PDC Laboratories, Inc. 2231 West Altorfer Drive Peoria, IL 61615 (800) 752-6651

REVISED ANALYTICAL RESULTS

	110582-03 /IW-5 Ground Water - Grab					Sampled: Received:			
Parameter		Result	Unit	Qualifier	Prepared	Analyzed	Analyst	Method	
Anions - PIA									
Fluoride		< 0.250	mg/L		11/06/17 17:29	11/06/17 17:29	LAM	EPA 300.0	
Sulfate		88	mg/L		11/06/17 17:47	11/06/17 17:47	LAM	EPA 300.0	
General Chemistry	<u>- PIA</u>								
Solids - total dissolved	d solids (TDS)	310	mg/L		11/06/17 14:55	11/06/17 15:33	CJP	SM 2540C	
<u> Total Metals - PIA</u>									
Boron		280	ug/L		11/10/17 12:32	11/14/17 10:11	JMW	SW 6020	
Calcium	8	72000	ug/L		11/10/17 12:32	11/14/17 10:11	JMW	SW 6020	
Sample: 7	110582-03RE1					Sampled:	10/31/17 (00:00	
Name: N	/IW-5					Received:			
Matrix: 0	Ground Water - Grab								
Parameter		Result	Unit	Qualifier	Prepared	Analyzed	Analyst	Method	
Anions - PIA					24			1	
Chloride		13	mg/L		11/27/17 16:37	11/27/17 16:37	arl	EPA 300.0	
Sample: 7						Sampled:	10/31/17 (00:00	
	/IW-6					Received:			
Matrix: G	Ground Water - Grab								
Parameter		Result	Unit	Qualifier	Prepared	Analyzed	Analyst	Method	
Anions - PIA									
Chloride		1.7	mg/L		11/06/17 18:06	11/06/17 18:06	LAM	EPA 300.0	
Fluoride		0.303	mg/L		11/06/17 18:06	11/06/17 18:06	LAM	EPA 300.0	
Sulfate		29	mg/L		11/06/17 18:24	11/06/17 18:24	LAM	EPA 300.0	
General Chemistry	<u>- PIA</u>								
Solids - total dissolved	l solids (TDS)	170	mg/L		11/06/17 14:55	11/06/17 15:33	CJP	SM 2540C	
<u> Total Metais - PIA</u>									
Boron		41	ug/L		11/10/17 12:32	11/14/17 10:15	JMW	SW 6020	

REVISED ANALYTICAL RESULTS

Sample: 7110582-05					•	10/31/17		
Name: MW-8 Matrix: Ground Water - Grab					Received:	11/03/17 ()9:50	
Parameter	Result	Unit	Qualifier	Prepared	Analyzed	Analyst	Method	
Anions - PIA								
Chloride	45	mg/L		11/06/17 19:01	11/06/17 19:01	LAM	EPA 300.0	
Fluoride	< 0.250	mg/L		11/06/17 18:42	11/06/17 18:42	LAM	EPA 300.0	
Sulfate	110	mg/L		11/07/17 15:01	11/07/17 15:01	LAM	EPA 300.0	
General Chemistry - PIA								
Solids - total dissolved solids (TDS)	380	mg/L		11/06/17 14:55	11/06/17 15:33	CJP	SM 2540C	
Total Metals - PIA								
Boron	540	ug/L		11/10/17 12:32	11/14/17 10:18	JMW	SW 6020	
Calcium	86000	ug/L		11/10/17 12:32	11/14/17 10:18	JMW	SW 6020	
Sample: 7110582-06			-		Sampled:	10/31/17 (00:00	
Name: FIELD BLANK Matrix: Ground Water - Grab					Received:	11/03/17 (99:50	
Parameter	Result	Unit	Qualifier	Prepared	Analyzed	Analyst	Method	
Anions - PIA		6						
Chloride	< 1.0	mg/L		11/06/17 19:19	11/06/17 19:19	LAM	EPA 300.0	
Fluoride	< 0.250	mg/L		11/06/17 19:19	11/06/17 19:19	LAM	EPA 300.0	
Sulfate	4.2	mg/L		11/06/17 19:19	11/06/17 19:19	LAM	EPA 300.0	
ounate								
<u>General Chemistry - PIA</u>								

<u>Total Metals - PIA</u>			ii.				
Boron	< 10	ug/L		11/10/17 12:32	11/14/17 10:29	JMW	SW 6020
Calcium	< 100	ug/L		11/10/17 12:32	11/14/17 10:29	JMW	SW 6020

PDC Laboratories, Inc. 2231 West Altorfer Drive Peoria, IL 61615 (800) 752-6651

REVISED ANALYTICAL RESULTS

Sample: 7110582-07 Name: FIELD DUPLICATE Matrix: Ground Water - Grab	24				Sampled: Received:	10/31/17 (11/03/17 (
Parameter	Result	Unit	Qualifier	Prepared	Analyzed	Analyst	Method
Anions - PIA					(A)		
Chloride	1.9	mg/L		11/06/17 19:38	11/06/17 19:38	LAM	EPA 300.0
Fluoride	0.328	mg/L		11/06/17 19:38	11/06/17 19:38	LAM	EPA 300.0
Sulfate	20	mg/L		11/06/17 20:33	11/06/17 20:33	LAM	EPA 300.0
General Chemistry - PIA							
Solids - total dissolved solids (TDS)	120	mg/L		11/06/17 14:55	11/06/17 15:33	CJP	SM 2540C
<u>Total Metals - PIA</u>							
Boron	24	ug/L		11/10/17 12:32	11/14/17 10:32	JMW	SW 6020
Calcium	19000	ug/L		11/10/17 12:32	11/14/17 10:32	JMW	SW 6020

Appendix 3

Laboratory Quality Assurance/Quality Control Data

QC SAMPLE RESULTS

Deserved				Spike	Source		%REC		RPE
Parameter	Result	Unit	Qual	Level	Result	%REC	Limits	RPD	Lim
Batch B720246 - No Prep - SM 2540C									
Blank (B720246-BLK1)				Prepared &	Analyzed: 11	/06/17			
Solids - total dissolved solids (TDS)	< 17	mg/L							
Duplicate (B720246-DUP1)	Sample: 711051	4-02		Prepared &	Analyzed: 11	/06/17			
Solids - total dissolved solids (TDS)	615	mg/L			635			3	5
Duplicate (B720246-DUP2)	Sample: 711051	5-04		Prepared &	Analyzed: 11	/06/17			
Solids - total dissolved solids (TDS)	1080	mg/L		<u> </u>	1030			5	5
Batch B720270 - IC No Prep - EPA 300.0									
Calibration Blank (B720270-CCB1)				Prepared &	Analyzed: 11	/06/17			
Fluoride	0.00	mg/L							
Chloride	0.00	mg/L							
Sulfate	0.00	mg/L							
Calibration Check (B720270-CCV1)				Prepared &	Analyzed: 11	/06/17			
Chloride	5.06	mg/L		5.000		101	90-110		
Fluoride	5.23	mg/L		5.000		105	90-110		
Sulfate	5.11	-							
		mg/L		5.000		102	90-110		
Matrix Spike (B720270-MS1)	Sample: 711038				Analyzed: 11			<u>.</u>	
Chloride	1.8	mg/L		1.500	0.28	98	80-120		
Sulfate	1.71	mg/L		1.500	ND	114	80-120		
Matrix Spike (B720270-MS2)	Sample: 711038			•	Analyzed: 11				
Chloride	1.7	mg/L		1.500	ND	115	80-120		
Sulfate	1.60	mg/L		1.500	ND	107	80-120		
Matrix Spike (B720270-MS3)	Sample: 711038	3-04		Prepared &	Analyzed: 11	/06/17			
Chloride	1.8	mg/L		1.500	ND	117	80-120		
Sulfate	1.60	mg/L		1.500	ND	107	80-120		
Matrix Spike Dup (B720270-MSD1)	Sample: 711038	3-02		Prepared &	Analyzed: 11	/06/17			
Sulfate	1.66	mg/L		1.500	ND	111	80-120	3	20
Chloride	1.8	mg/L		1.500	0.28	103	80-120	4	20
Matrix Spike Dup (B720270-MSD2)	Sample: 711038			Prepared &	Analyzed: 11	/06/17			
	1.7	mg/L		1.500	ND	116	80-120	0.6	20
Sulfate	1.65	mg/L		1.500	ND	110	80-120	3	20
Matrix Spike Dup (B720270-MSD3)	Sample: 711038	-			Analyzed: 11		00 120	U	
Chloride	1.8	mg/L		1,500	ND	120	80-120	2	20
Sulfate	1.67	mg/L		1,500	ND	112	80-120	4	20
<u> Batch B720377 - IC No Prep - EPA 300.0</u>	Y								
Calibration Blank (B720377-CCB1)				Prepared &	Analyzed: 11	/07/17			
Sulfate	0.00	mg/L							
Calibration Check (B720377-CCV1)				Prepared &	Analyzed: 11	/07/17			
Sulfate	4.93	mg/L		5.000		99	90-110		
Matrix Spike (B720377-MS1)	Sample: 711008			Prepared &	Analyzed: 11	/07/17			
Sulfate	1.00E9	mg/L	Q4	1.500	42.6	NR	80-120		
Matrix Spike (B720377-MS2)	Sample: 711072	-			Analyzed: 11				
Sulfate	1.00E9	mg/L	Q4	1.500	356	NR	80-120		
		-	Q4				00-120		
Matrix Spike Dup (B720377-MSD1)	Sample: 711008	0-01		rrepared &	Analyzed: 11	/0//1/			

PDC Laboratories, Inc. 2231 West Altorfer Drive Peoria, IL 61615 (800) 752-6651

QC SAMPLE RESULTS

Parameter	Result	Unit	Qual	Spike Level	Source Result	%REC	%REC Limits	RPD	RPE Limi
Batch B720377 - IC No Prep - EPA 300.0					×			2	
Matrix Spike Dup (B720377-MSD2)	Sample: 711072	9-01		Prepared &	Analyzed: 11/	07/17			
Sulfate	1.00E9	mg/L	Q4	1.500	356	NR	80-120	0	20
Batch B720617 - SW 3015 - SW 6020									
Blank (B720617-BLK1)				Prepared: 1	1/10/17 Analy	/zed: 11/14/17	7		
Boron	< 10	ug/L							
Calcium	< 100	ug/L							
LCS (B720617-BS1)				Prepared: 1	1/10/17 Analy	/zed: 11/14/17	,		
Boron	593	ug/L		555.6		107	80-120		
Calcium	5870	ug/L		5556		106	80-120		
Matrix Spike (B720617-MS1)	Sample: 711051	3-01		Prepared: 1	1/10/17 Analy	/zed: 11/14/17			
Boron	7900	ug/L	Q4	555.6	7550	62	75-125		
Calcium	254000	ug/L	Q4	5556	258000	NR	75-125		
Matrix Spike Dup (B720617-MSD1)	Sample: 711051	3-01		Prepared: 1	1/10/17 Analy	zed: 11/14/17			
Boron	8190	ug/L	Q4	555.6	7550	115	75-125	4	20
Calcium	262000	ug/L	Q4	5556	258000	73	75-125	3	20
<u> Batch B721672 - IC No Prep - EPA 300.0</u>									
Calibration Blank (B721672-CCB1)				Prepared &	Analyzed: 11/	27/17			
Chloride	0.00	mg/L		e					
Calibration Check (B721672-CCV1)				Prepared &	Analyzed: 11/	27/17			
Chloride	4.55	mg/L		5.000		91	90-110	· · · · · ·	

NOTES

Specific method revisions used for analysis are available upon request.

Memos

Revised report, Chloride re-analyzed on -03 sample.

Certifications

CHI - McHenry, IL

TNI Accreditation for Drinking Water, Wastewater, Hazardous and Solid Wastes Fields of Testing through IL EPA Lab No. 100279 Illinois Department of Public Health Bacteriological Analysis in Drinking Water Approved Laboratory Registry No. 17556

PIA - Peoria, IL

TNI Accreditation for Drinking Water, Wastewater, Hazardous and Solid Wastes Fields of Testing through IL EPA Lab No. 100230 Illinois Department of Public Health Bacteriological Analysis in Drinking Water Approved Laboratory Registry No. 17553 Drinking Water Certifications: Iowa (240); Kansas (E-10338); Missouri (870) Wastewater Certifications: Arkansas (88-0677); Iowa (240); Kansas (E-10338) Hazardous/Solid Waste Certifications: Arkansas (88-0677); Iowa (240); Kansas (E-10338)

- SPMO Springfield, MO USEPA DMR-QA Program
- STL St. Louis, MO

TNI Accreditation for Wastewater, Hazardous and Solid Wastes Fields of Testing through KS Lab No. E-10389 Illinois Department of Public Health Bacteriological Analysis in Drinking Water Approved Laboratory Registry No. 171050 Drinking Water Certifications: Missouri (1050) Missouri Department of Natural Resources

* Not a TNI accredited analyte

Qualifiers

Q4 The matrix spike recovery result is unusable since the analyte concentration in the sample is greater than four times the spike level. The associated blank spike was acceptable.

Certified by: Kurt Stepping, Senior Project Manager

Page 8 of 11

PDC Laboratories, Inc. P.O. Box 9071 * Peoria, IL 51612-9071 (309) 692-9688 * (800) 752-6551 * FAX (309) 692-9689

DATA PACKAGE

CLIENT; Sikeston BMU PROJECT: Sikeston Power Station PDC LAB WORKORDER: 7110582 DATE ISSUED: November 14, 2017

CASE NARRATIVE –

PDC Work Order 7110582

PDC Laboratories, Inc. received 7 water samples on November 3, 2017 in good condition at our Peoria, IL facility. This sample set was designated as work order 7110582.

Sample	ID's	Date								
Field	Lab ID	Collected	Received							
SPS-TPZ-3	7110582-01	10/31/17	11/3/17							
SPS-TPZ-4	7110582-02	10/31/17	· 11/3/17							
SPS-TPZ-5	7110582-03	10/31/17	11/3/17							
SPS-TPZ-6	7110582-04	10/31/17	11/3/17							
SPS-MW-8	7110582-05	10/31/17	11/3/17							
SPS-Field Blank	7110582-06	10/31/17	11/3/17							
SPS-Duplicate	7110582-07	10/31/17	11/3/17							

QC Summary:

All items met acceptance criteria with the following noted exceptions:

MS/MSD for batch QC sample flagged Q4 for SO4, B, and Ca, sample concentration exceeded four times the spike amount.

Certification

Signature:

unt

Name: Kurt Stepping

Date:

November 14, 2017

Title: Senior Project Manager

CHAIN OF CUSTODY RECORD

PDC LABORATORIES, INC.							CHAIN OF	CHAIN OF CUSTODY RECORD	۵
2231 WEST ALTORFER DRIVE PHONE PEORIA, IL 61615 FAX		# 800-752-6651 # 309-692-9689	State whe	re samp	State where samples collected	ow 1			
	ALL	. HIGHLIGHTED A	REAS MUST BE C	OMPLETE	D BY CLIENT (PL	EASE PRINT)	(SAMPLE ACCEPTAN	ALL HIGHLIGHTED AREAS <u>MUST</u> BE COMPLETED BY CLIENT (PLEASE PRINT) - (SAMPLE ACCEPTANCE POLICY ON REVERSE)	
C S MG		PROJECT NUMBER	P.O. NUMBER	Σ	MEANS SHIPPED		MANASIS REQUESTED	(FOR LAB USE ONLY)	
15 5 Webst Waketwell	CH4	PHONE NUMBER	FAX NUMBER		DATE SHIPPED	দ্বা			
	-05-65			MAT DW-C GW-C GW-C CH3:	MATRIX TYPES: WW-WASTEWATER DW-DRINKING WATER DW-DRINKING WATER DW-DRINKING WATER WMS.SCUDGE LCHT-LEACHATE	ર કે જે કે		Lab Proj. # Template: Proj. Mgr.:	
2 ASYOU WANT ON REPORT	COLLECTED	E IME COLLECTED	SAMPLI SAMPLI	COMP TYPE	MATRIX BOTTLE TYPE COUNT	לש' כדי	-	REMARKS	
Mui 3	11-16-01	-17	×	614	2 7	×			1
M W 4	10-31-17	Ē	×	35)	2	X X			
MwS	10-31-17	Ľ,	X	PW)	2	ХX			
Mu 6	LI-12-0/	L +	×	6 m	2 .	XX		35. 35.	
MW 8	10-31-17	-17	×	βW	1 2	××			
Field blank	10-31-17		×	(N)	2	× ×		C.	
Duelicate	10-31-17	2	×	(LW)	2	×			Ī
3									1
							· ·		
TURNAROUND TIME REQUESTED FLEASE CIFICLE) (RUSH TAT IS SUBJECT TO POC LARS APPROAL AND SURCHARGE) RUSH RESULTS VIA (PLEASE CIFICLE) FAX FAX # PHONE # EMAIL ADDR	NORMAL PHONE DRESS	RUSH	DATE RESULTS NEEDED E-MAIL	<u>(</u>	The samp this area) the sampl this area) this area) sample te	The sample temperature w this area you request that the sample temperature is this area you allow the lab sample temperature.	vill be measured upon rec the lab notify you, before, outside of the range of 0. to proceed with analytica	The sample temperature will be measured upon receipt at the lab. By initialing this area you request that the lab notify you, bebre proceeding with analysis, if the sample temperature is outside of the range of 0.1-6.0°C. By not initialing this area you ellow the lab to proceed with analytical testing regardless of the sample temperature.	
	L	RECEIVED BY: (SIGNATURE)	ATURE)			DATE	COMMENT	COMMENTS: (FOR LAB USE ONLY)	
	2)	e	1
HELINGUISHED BY: (SIGNATUHE)	TIME	HECEIVEU BY: (SIGNALUHE)				TIME	CHILL TEMPERATUR CHILL PROCESS STAF	SAMPLE TEMPERATURE UPON RECEIPT CO OR N CHILL PROCESS STARTED PRIOR TO RECEIPT CO OR N SAMPLE(S) RECEIVED ON ICE	
RELINQUISHED BY: (SIGNATURE)		HECEIVED AT LAB BY: (SIGNATURE)	Y: (SIGNATURE)			UNES17	BOTTLES FILLED WITH SAMPLES RECEIVED		
-	TIME		ý	J) مع	(EXCLUDES TYPICAL I DATE AND TIME TAKEN	FIELD PARAMETERS) V FROM SAMPLE BOTTLE	_

Р

PAGE

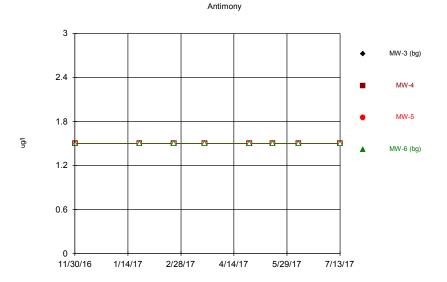
Yellow copy to be retained by the client.

Copies: white should accompany samples to PDC Labs.

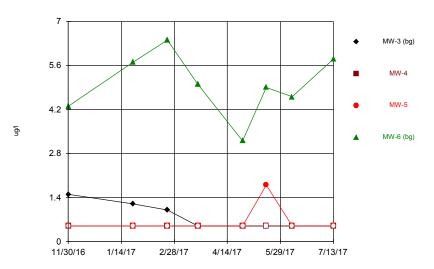
Appendix 4

Statistical Power Curve

100 **Intrawell Prediction** 75 Limit, n=8, '1of2' Power 50 EPA Reference Curve 25 0 2 3 4 5 0 Standard Deviations

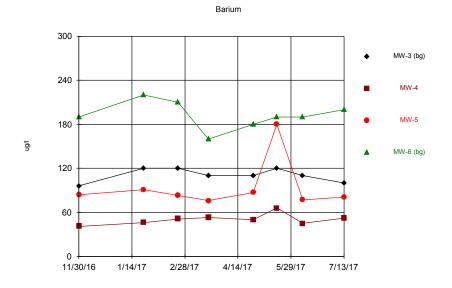

Power Curve MW-3 through MW-8

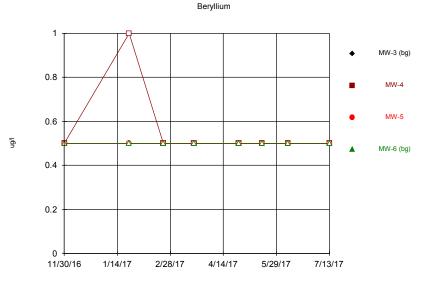
Kappa = 3.403, based on 3 compliance wells and 35 constituents, evaluated semi-annually (this report reflects annual total).


Appendix 5

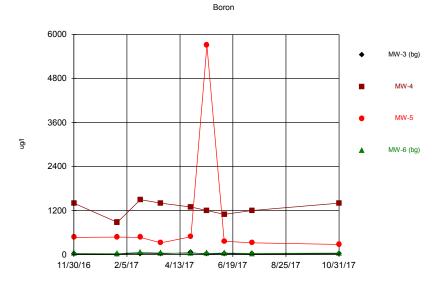
Time Series Plots

Sanitas¹¹ v.9.5.32 Sanitas software licensed to GREDELL Engineering only. UG Hollow symbols indicate censored values.

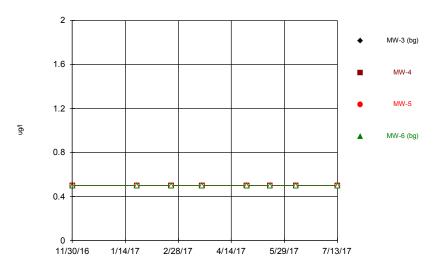

Time Series Analysis Run 11/29/2017 3:15 PM View: SBMU-SPS Appendix III SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SBMU-SPS EDD File 09-28-17 Sanitas[™] v.9.5.32 Sanitas software licensed to GREDELL Engineering only. UG Hollow symbols indicate censored values.


Arsenic

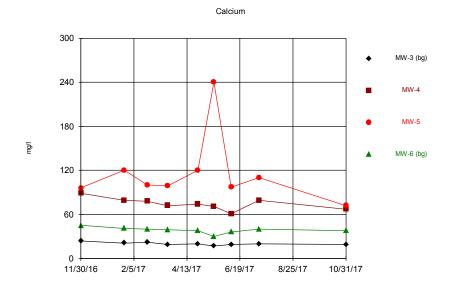
Time Series Analysis Run 11/29/2017 3:15 PM View: SBMU-SPS Appendix III SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SBMU-SPS EDD File 09-28-17

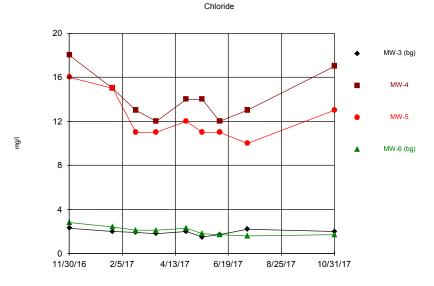

Sanitas™ v.9.5.32 Sanitas software licensed to GREDELL Engineering only. UG

Time Series Analysis Run 11/29/2017 3:15 PM View: SBMU-SPS Appendix III SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SBMU-SPS EDD File 09-28-17 Sanitas[™] v.9.5.32 Sanitas software licensed to GREDELL Engineering only. UG Hollow symbols indicate censored values.

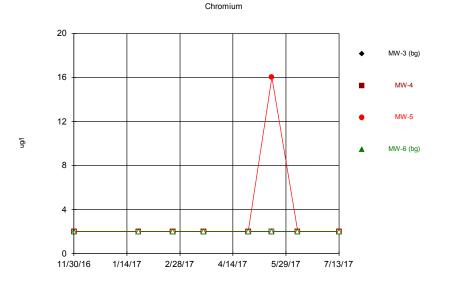

Sanitas™ v.9.5.32 Sanitas software licensed to GREDELL Engineering only. UG

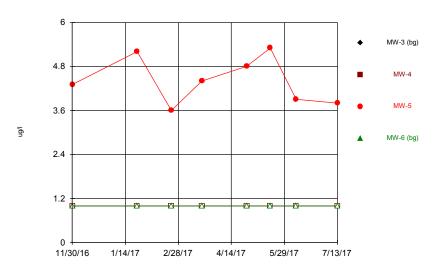
Time Series Analysis Run 11/29/2017 3:15 PM View: SBMU-SPS Appendix III SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SBMU-SPS EDD File 09-28-17


Sanitas $^{\rm w}$ v.9.5.32 Sanitas software licensed to GREDELL Engineering only. UG Hollow symbols indicate censored values.



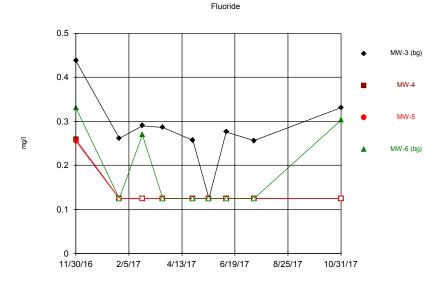
Time Series Analysis Run 11/29/2017 3:15 PM View: SBMU-SPS Appendix III SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SBMU-SPS EDD File 09-28-17


Sanitas™ v.9.5.32 Sanitas software licensed to GREDELL Engineering only. UG

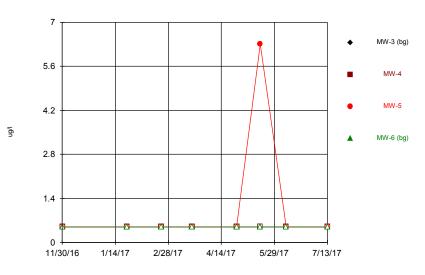

Time Series Analysis Run 11/29/2017 3:15 PM View: SBMU-SPS Appendix III SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SBMU-SPS EDD File 09-28-17 Sanitas™ v.9.5.32 Sanitas software licensed to GREDELL Engineering only. UG

Sanitas¹⁰ v.9.5.32 Sanitas software licensed to GREDELL Engineering only. UG Hollow symbols indicate censored values.

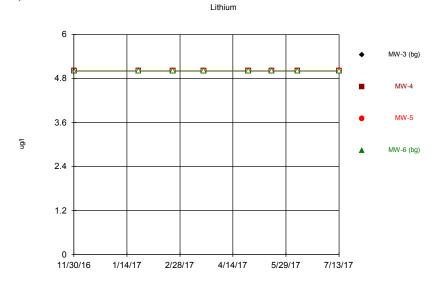
Time Series Analysis Run 11/29/2017 3:15 PM View: SBMU-SPS Appendix III SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SBMU-SPS EDD File 09-28-17 Sanitas $^{\rm vs}$ v.9.5.32 Sanitas software licensed to GREDELL Engineering only. UG Hollow symbols indicate censored values.



Cobalt

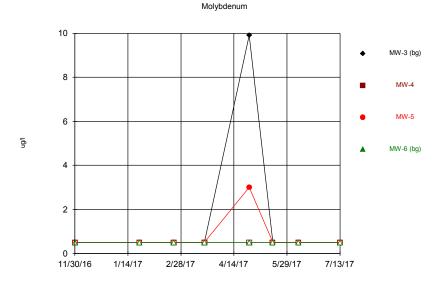

Time Series Analysis Run 11/29/2017 3:15 PM View: SBMU-SPS Appendix III SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SBMU-SPS EDD File 09-28-17

Lead

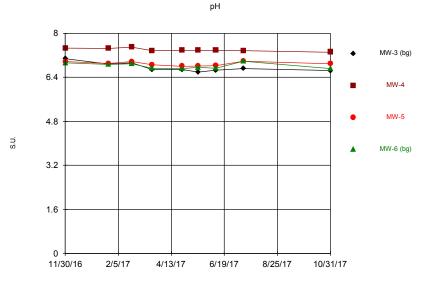

Sanitas[™] v.9.5.32 Sanitas software licensed to GREDELL Engineering only. UG Hollow symbols indicate censored values.

Time Series Analysis Run 11/29/2017 3:15 PM View: SBMU-SPS Appendix III SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SBMU-SPS EDD File 09-28-17 Sanitas™v.9.5.32 Sanitas software licensed to GREDELL Engineering only. UG Hollow symbols indicate censored values.

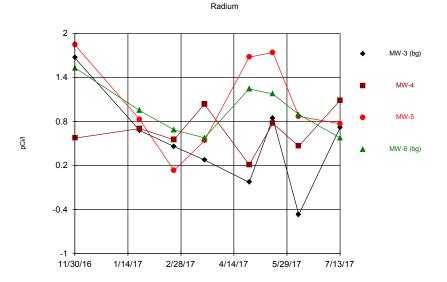
Sanitas¹⁰ v.9.5.32 Sanitas software licensed to GREDELL Engineering only. UG Hollow symbols indicate censored values.


Time Series Analysis Run 11/29/2017 3:15 PM View: SBMU-SPS Appendix III SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SBMU-SPS EDD File 09-28-17 Sanitas $^{\rm vw}$ v.9.5.32 Sanitas software licensed to GREDELL Engineering only. UG Hollow symbols indicate censored values.

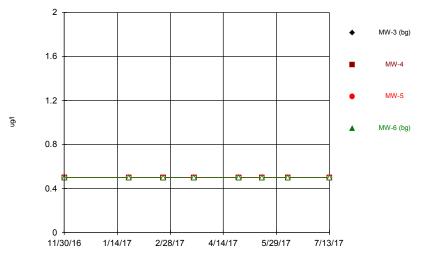
Mercury



Time Series Analysis Run 11/29/2017 3:15 PM View: SBMU-SPS Appendix III SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SBMU-SPS EDD File 09-28-17

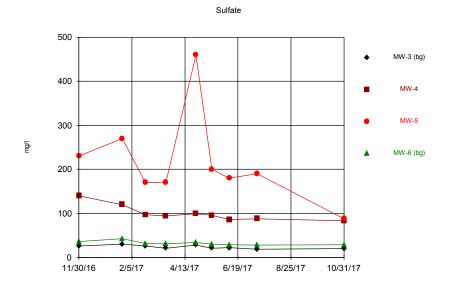

Sanitas[™] v.9.5.32 Sanitas software licensed to GREDELL Engineering only. UG Hollow symbols indicate censored values.

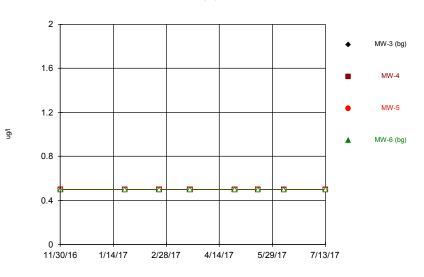
Time Series Analysis Run 11/29/2017 3:15 PM View: SBMU-SPS Appendix III SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SBMU-SPS EDD File 09-28-17 Sanitas™ v.9.5.32 Sanitas software licensed to GREDELL Engineering only. UG


Sanitas™ v.9.5.32 Sanitas software licensed to GREDELL Engineering only. UG

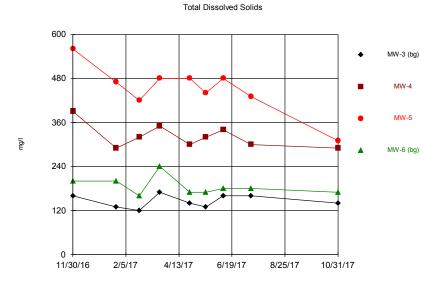
Time Series Analysis Run 11/29/2017 3:15 PM View: SBMU-SPS Appendix III SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SBMU-SPS EDD File 09-28-17

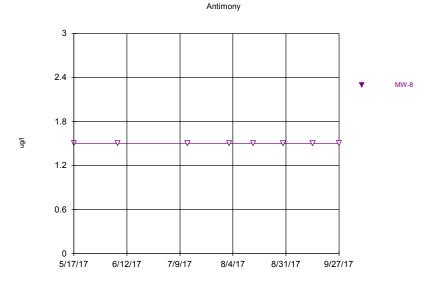
Sanitas $^{\rm w}$ v.9.5.32 Sanitas software licensed to GREDELL Engineering only. UG Hollow symbols indicate censored values.

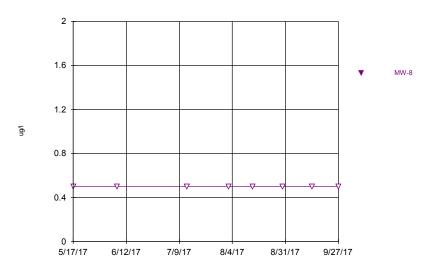

Selenium


Time Series Analysis Run 11/29/2017 3:15 PM View: SBMU-SPS Appendix III SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SBMU-SPS EDD File 09-28-17

Thallium

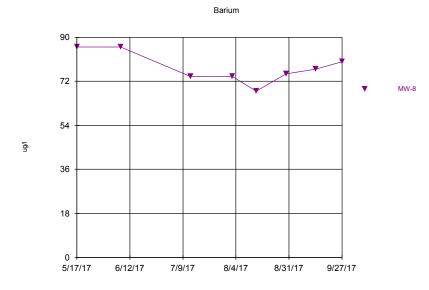

Sanitas™ v.9.5.32 Sanitas software licensed to GREDELL Engineering only. UG


Time Series Analysis Run 11/29/2017 3:15 PM View: SBMU-SPS Appendix III SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SBMU-SPS EDD File 09-28-17 Sanitas[™] v.9.5.32 Sanitas software licensed to GREDELL Engineering only. UG Hollow symbols indicate censored values.

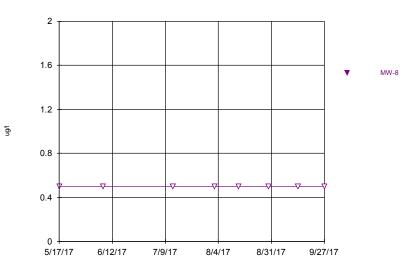

Sanitas™ v.9.5.32 Sanitas software licensed to GREDELL Engineering only. UG

Sanitas¹¹ v.9.5.32 Sanitas software licensed to GREDELL Engineering only. UG Hollow symbols indicate censored values.

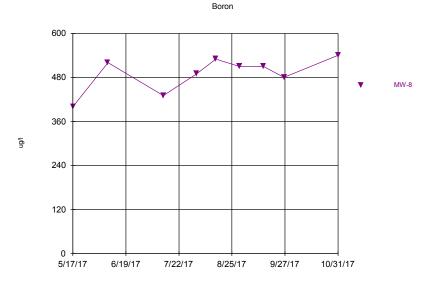
Time Series Analysis Run 11/29/2017 9:30 AM View: SBMU-SPS Appendix III SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SBMU-SPS EDD File 09-28-17 Sanitas $^{\rm vw}$ v.9.5.32 Sanitas software licensed to GREDELL Engineering only. UG Hollow symbols indicate censored values.


Arsenic

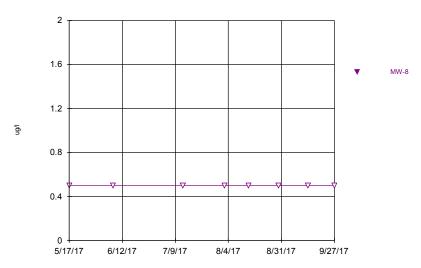
 Time Series
 Analysis Run 11/29/2017 9:30 AM
 View: SBMU-SPS Appendix III


 SBMU-Sikeston Power Station
 Client: GREDELL Engineering
 Data: SBMU-SPS EDD File 09-28-17

Beryllium

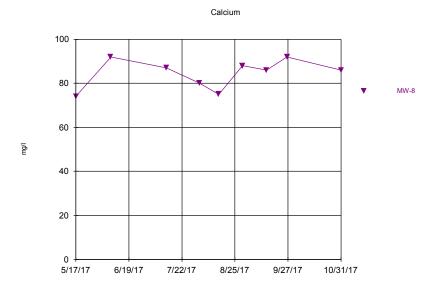

Sanitas™ v.9.5.32 Sanitas software licensed to GREDELL Engineering only. UG

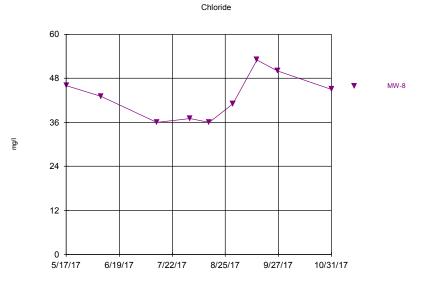
Time Series Analysis Run 11/29/2017 9:30 AM View: SBMU-SPS Appendix III SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SBMU-SPS EDD File 09-28-17 Sanitas[™] v.9.5.32 Sanitas software licensed to GREDELL Engineering only. UG Hollow symbols indicate censored values.



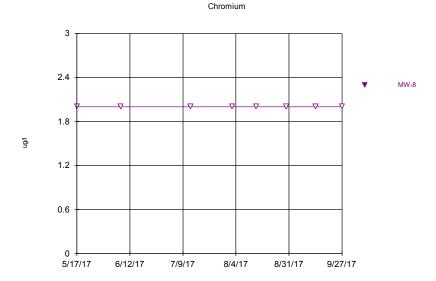
Sanitas™ v.9.5.32 Sanitas software licensed to GREDELL Engineering only. UG

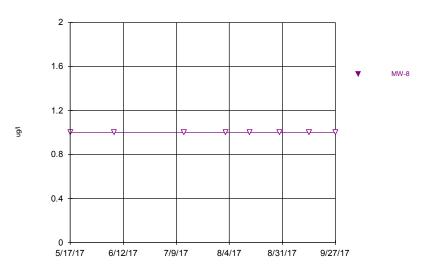
Time Series Analysis Run 11/29/2017 9:30 AM View: SBMU-SPS Appendix III SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SBMU-SPS EDD File 09-28-17 Sanitas $^{\rm vw}$ v.9.5.32 Sanitas software licensed to GREDELL Engineering only. UG Hollow symbols indicate censored values.


Cadmium


 Time Series
 Analysis Run 11/29/2017 9:30 AM
 View: SBMU-SPS Appendix III

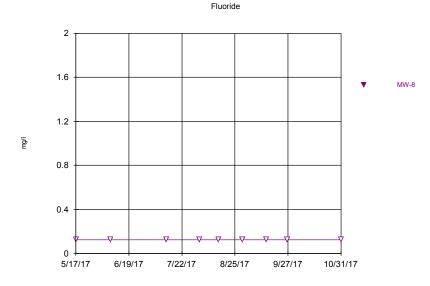
 SBMU-Sikeston Power Station
 Client: GREDELL Engineering
 Data: SBMU-SPS EDD File 09-28-17


Sanitas™ v.9.5.32 Sanitas software licensed to GREDELL Engineering only. UG

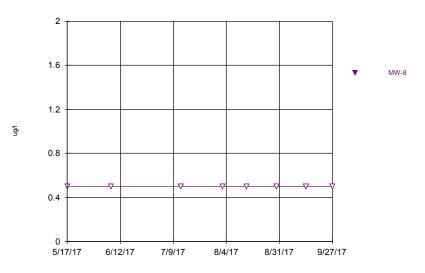

Time Series Analysis Run 11/29/2017 9:30 AM View: SBMU-SPS Appendix III SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SBMU-SPS EDD File 09-28-17 Sanitas™ v.9.5.32 Sanitas software licensed to GREDELL Engineering only. UG

Sanitas[™] v.9.5.32 Sanitas software licensed to GREDELL Engineering only. UG Hollow symbols indicate censored values.

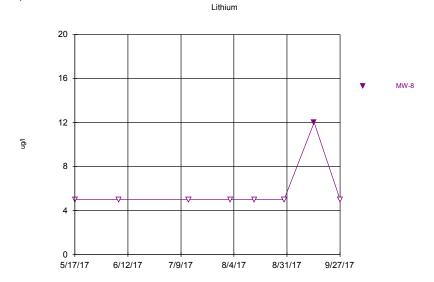
Time Series Analysis Run 11/29/2017 9:30 AM View: SBMU-SPS Appendix III SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SBMU-SPS EDD File 09-28-17 Sanitas $^{\rm w}$ v.9.5.32 Sanitas software licensed to GREDELL Engineering only. UG Hollow symbols indicate censored values.


Cobalt

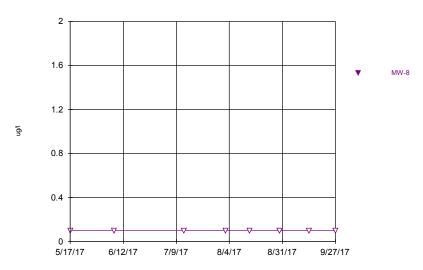
 Time Series
 Analysis Run 11/29/2017 9:30 AM
 View: SBMU-SPS Appendix III


 SBMU-Sikeston Power Station
 Client: GREDELL Engineering
 Data: SBMU-SPS EDD File 09-28-17

Lead

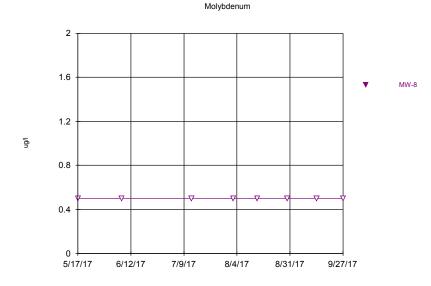

Sanitas¹¹ v.9.5.32 Sanitas software licensed to GREDELL Engineering only. UG Hollow symbols indicate censored values.

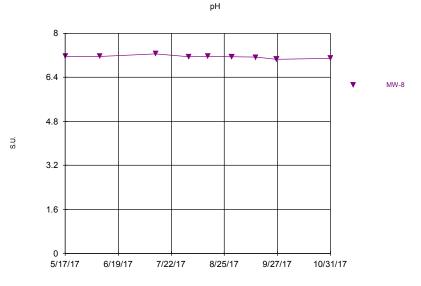
Time Series Analysis Run 11/29/2017 9:30 AM View: SBMU-SPS Appendix III SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SBMU-SPS EDD File 09-28-17 Sanitas[™] v.9.5.32 Sanitas software licensed to GREDELL Engineering only. UG Hollow symbols indicate censored values.



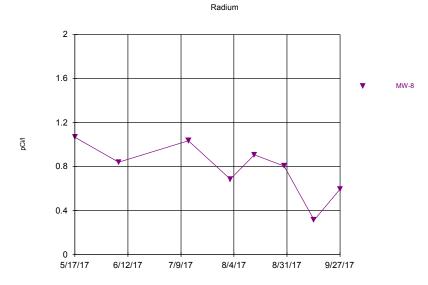
Sanitas¹⁰ v.9.5.32 Sanitas software licensed to GREDELL Engineering only. UG Hollow symbols indicate censored values.

Time Series Analysis Run 11/29/2017 9:30 AM View: SBMU-SPS Appendix III SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SBMU-SPS EDD File 09-28-17 Sanitas $^{\rm w}$ v.9.5.32 Sanitas software licensed to GREDELL Engineering only. UG Hollow symbols indicate censored values.

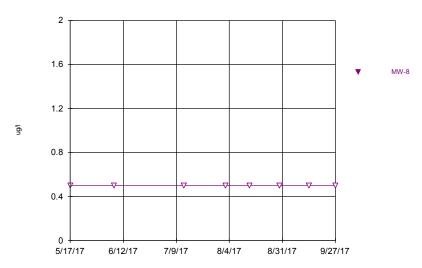

Mercury


 Time Series
 Analysis Run 11/29/2017 9:30 AM
 View: SBMU-SPS Appendix III

 SBMU-Sikeston Power Station
 Client: GREDELL Engineering
 Data: SBMU-SPS EDD File 09-28-17

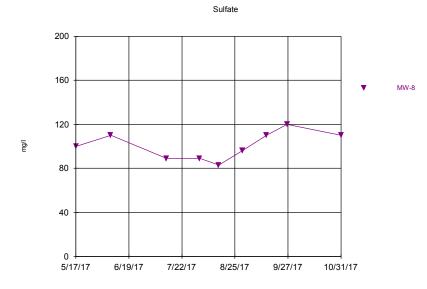

Sanitas¹¹ v.9.5.32 Sanitas software licensed to GREDELL Engineering only. UG Hollow symbols indicate censored values.

Time Series Analysis Run 11/29/2017 9:30 AM View: SBMU-SPS Appendix III SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SBMU-SPS EDD File 09-28-17 Sanitas™ v.9.5.32 Sanitas software licensed to GREDELL Engineering only. UG

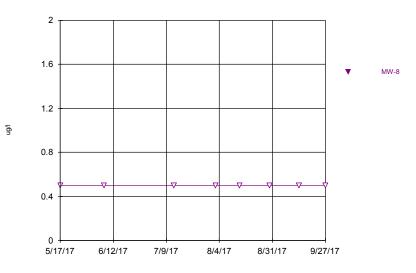


Sanitas™ v.9.5.32 Sanitas software licensed to GREDELL Engineering only. UG

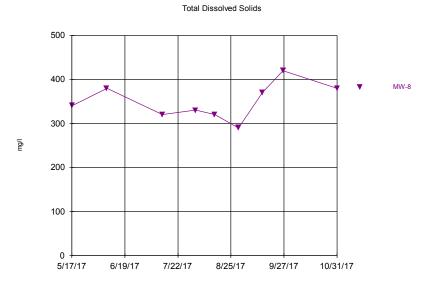
Time Series Analysis Run 11/29/2017 9:30 AM View: SBMU-SPS Appendix III SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SBMU-SPS EDD File 09-28-17 Sanitas $^{\rm vw}$ v.9.5.32 Sanitas software licensed to GREDELL Engineering only. UG Hollow symbols indicate censored values.


Selenium

 Time Series
 Analysis Run 11/29/2017 9:30 AM
 View: SBMU-SPS Appendix III


 SBMU-Sikeston Power Station
 Client: GREDELL Engineering
 Data: SBMU-SPS EDD File 09-28-17

Sanitas™ v.9.5.32 Sanitas software licensed to GREDELL Engineering only. UG



Time Series Analysis Run 11/29/2017 9:30 AM View: SBMU-SPS Appendix III SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SBMU-SPS EDD File 09-28-17 Sanitas[™] v.9.5.32 Sanitas software licensed to GREDELL Engineering only. UG Hollow symbols indicate censored values.

Sanitas[™] v.9.5.32 Sanitas software licensed to GREDELL Engineering only. UG

Appendix 6

Data Base

Sikeston Board of Municipal Utilities Sikeston Power Station Bottom Ash Pond Scott County, Missouri

Data Base

									Appendix III Monitoring Constituents (Detection)						Appendix IV Monitoring Constituents (Assessment)														
																									Í				Radium 226
Well	Date		Spec. Cond.	Temp.	. OF		D.O.	Turbidity	рH	Chloride	Fluoride	Sulfate	TDS	Boron	Calcium	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium III	Cobalt	Lead	Lithium	Mercury	Molybdenum	Selenium	Thallium	and 228 (Combined)
	Date	Monitoring Purpose	umhos/cm	°C	-		na/L	NTU	рн S.U.	mg/L	mg/L	mg/L	mg/L	ug/L	mg/L	ug/L	ug/L	ug/L	ug/L	ug/L	ua/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	pCi/L
MW-3 (UG)	11/30/2016	Background	254.0	15.75			0.41	37.28	7.08	2.3	0.438	26	160	18	24	<3.0	1.5	96	dg/L <1.0	<1.0	<4.0	<2.0	<1.0	<10	<0.20	<1.0	dg/L <1.0	<1.0	1.668
10100-3 (00)	1/24/2017	Background	226.4	16.52	_		0.39	4.46	6.88	2.0	0.261	30	130	10	24	<3.0	1.2	120	<1.0	<1.0	<4.0	<2.0	<1.0	<10	<0.20	<1.0	<1.0	<1.0	0.677(ND)
	2/22/2017	Background	226.6	16.47			0.36	3.56	6.93	1.9	0.290	26	120	33	22	<3.0	1.0	120	<1.0	<1.0	<4.0	<2.0	<1.0	<10	<0.20	<1.0	<1.0	<1.0	0.460(ND)
	3/20/2017	Background	212.1	17.07			0.43	6.61	6.68	1.8	0.286	20	120	22	19	<3.0	<1.0	120	<1.0	<1.0	<4.0	<2.0	<1.0	<10	<0.20	<1.0	<1.0	<1.0	0.277(ND)
	4/27/2017	Background	223.2	15.35			0.57	2.69	6.68	2.0	0.257	28 "Q4"	140	54	20	<3.0	<1.0	110	<1.0	<1.0	<4.0	<2.0	<1.0	<10	<0.20	9.9	<1.0	<1.0	-0.030(ND)
	5/17/2017	Background	224.9	17.68	-		0.45	12.59	6.59	1.5	<0.250	21	130	19	17	<3.0	<1.0	120	<1.0	<1.0	<4.0	<2.0	<1.0	<10	0.40	<1.0	<1.0	<1.0	0.844(ND)
	6/8/2017	Background	217.9	16.73	-		0.49	2.61	6.66	1.7	0.276	22	160	20	19	<3.0	<1.0	110	<1.0	<1.0	<4.0	<2.0	<1.0	<10	<0.20	<1.0	<1.0	<1.0	-0.469(ND)
	7/13/2017	Background	243.8	19.02	_		0.39	4.79	6.71	2.2	0.256	19	160	18	20	<3.0	<1.0	100	<1.0	<1.0	<4.0	<2.0	<1.0	<10	<0.20	<1.0	<1.0	<1.0	0.715(ND)
	10/31/2017	Detection	246.2	16.74	-		0.65	7.47	6.64	2.0	0.331	20	140	27	19	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)
																	· · · /	, í			, <i>, ,</i>								
MW-4 (DG)	11/30/2016	Background	575.6	17.51	-10	8.3 0	0.48	0.61	7.46	18	0.259	140	390	1400	89	<3.0	<1.0	41	<1.0	<1.0	<4.0	<2.0	<1.0	<10	<0.20	<1.0	<1.0	<1.0	0.572(ND)
	1/24/2017	Background	543.7	17.00) -10	5.2 0	0.50	0.48	7.45	15	<0.250	120	290	880	79	<3.0	<1.0	46	<2.0	<1.0	<4.0	<2.0	<1.0	<10	<0.20	<1.0	<1.0	<1.0	0.7031(ND)
	2/22/2017	Background	554.0	17.95	5 -11	5.3 0	0.51	1.19	7.49	13	<0.250	97	320	1500	78	<3.0	<1.0	51	<1.0	<1.0	<4.0	<2.0	<1.0	<10	<0.20	<1.0	<1.0	<1.0	0.550(ND)
	3/20/2017	Background	562.8	18.58	-10	8.8 0	0.69	1.70	7.37	12	<0.250	94	350	1400	72	<3.0	<1.0	53	<1.0	<1.0	<4.0	<2.0	<1.0	<10	1.3	<1.0	<1.0	<1.0	1.036
	4/27/2017	Background	536.9	17.25	i -12	9.6 0	0.91	2.38	7.38	14	<0.250	99	300	1300	74	<3.0	<1.0	50	<1.0	<1.0	<4.0	<2.0	<1.0	<10	<0.20	<1.0	<1.0	<1.0	0.210(ND)
	5/17/2017	Background	554.9	17.90) -11	5.5 0	0.63	3.02	7.38	14	<0.250	96	320	1200	71	<3.0	<1.0	66	<1.0	<1.0	<4.0	<2.0	<1.0	<10	<0.20	<1.0	<1.0	<1.0	0.774(ND)
	6/8/2017	Background	509.7	18.24	-12	2.9 0	0.86	0.84	7.38	12	<0.250	86	340	1100	61	<3.0	<1.0	45	<1.0	<1.0	<4.0	<2.0	<1.0	<10	<0.20	<1.0	<1.0	<1.0	0.464(ND)
	7/13/2017	Background	575.5	19.46	-11	5.2 0	0.52	1.43	7.37	13	<0.250	88	300	1200	79	<3.0	<1.0	52	<1.0	<1.0	<4.0	<2.0	<1.0	<10	<0.20	<1.0	<1.0	<1.0	1.086(ND)
	10/31/2017	Detection	525.8	18.35	-11	8.1 0	0.63	1.07	7.31	17	<0.250	83	290	1400	67	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)
MW-5 (DG)	11/30/2016	Background	808.3	16.20	-		0.50	1.24	6.97	16	0.255	230	560	470	96	<3.0	<1.0	84	<1.0	<1.0	<4.0	4.3	<1.0	<10	<0.20	<1.0	<1.0	<1.0	1.844
	1/24/2017	Background	745.3	16.24	-		0.58	0.72	6.90	15	<0.250	270	470	480	120	<3.0	<1.0	91	<1.0	<1.0	<4.0	5.2	<1.0	<10	<0.20	<1.0	<1.0	<1.0	0.827(ND)
	2/22/2017	Background	717.8	17.75			0.36	3.43	6.97	11	<0.250	170	420	470	100	<3.0	<1.0	83	<1.0	<1.0	<4.0	3.6	<1.0	<10	<0.20	<1.0	<1.0	<1.0	0.130(ND)
	3/20/2017	Background	737.9	17.78			0.72	2.16	6.85	11	<0.250	170	480	320	99	<3.0	<1.0	76	<1.0	<1.0	<4.0	4.4	<1.0	<10	<0.20	<1.0	<1.0	<1.0	0.538(ND)
	4/27/2017	Background	777.3	16.07			0.69	5.20	6.80	12	<0.250	460	480	490	120	<3.0	<1.0	87	<1.0	<1.0	<4.0	4.8	<1.0	<10	<0.20	3.0	<1.0	<1.0	1.676
	5/17/2017	Background	760.1	17.81	_		0.46	5.35	6.81	11	<0.250	200	440	5700	240	<3.0	1.8	180	<1.0	<1.0	16	5.3	6.3	<10	0.24	<1.0	<1.0	<1.0	1.739
	6/8/2017	Background	678.3	17.72			0.69	1.89	6.82	11	<0.250	180	480	360	97	<3.0	<1.0	77	<1.0	<1.0	<4.0	3.9	<1.0	<10	<0.20	<1.0	<1.0	<1.0	0.869(ND)
	7/13/2017	Background	799.0	19.19			1.08	17.49	6.98	10	<0.250	190	430	320	110	<3.0	<1.0	81	<1.0	<1.0	<4.0	3.8	<1.0	<10	<0.20	<1.0	<1.0	<1.0	0.767(ND)
	10/31/2017	Detection	591.8	17.45	-77	7.6 0	0.85	3.17	6.89	18	<0.250	88	310	280	72	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)
				16.39			0.85				0.004																		1 500
MW-6 (UG)	11/30/2016	Background	369.0					0.84	6.92	2.8	0.331	36	200	36	45	<3.0	4.3	190	<1.0	<1.0	<4.0	<2.0	<1.0	<10	<0.20	<1.0	<1.0	<1.0	1.532
	1/24/2017	Background	358.9 352.5	16.29 17.20	_		0.66 0.81	0.26 15.27	6.87	2.4	<0.250 0.269	43	200	27	41 40	<3.0	5.7 6.4	220 210	<1.0 <1.0	<1.0	<4.0	<2.0	<1.0	<10 <10	<0.20	<1.0	<1.0 <1.0	<1.0	0.948(ND) 0.685(ND)
	2/22/2017	Background	352.5	17.20			0.81	9,70	6.89 6.73	2.1 2.1		32	160 240	59 37	40 39	<3.0 <3.0	6.4 5	210 160	<1.0	<1.0 <1.0	<4.0 <4.0	<2.0 <2.0	<1.0 <1.0	<10	<0.20	<1.0 <1.0	<1.0	<1.0 <1.0	. ,
	3/20/2017 4/27/2017	Background Background	360.8	16.90	_		0.36	9.70 8.35	6.73	2.1	<0.250 <0.250	31 34	240 170	37	39	<3.0 <3.0	5 3.2	160 180	<1.0	<1.0	<4.0 <4.0	<2.0	<1.0 <1.0	<10 <10	<0.20 <0.20	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	0.577(ND) 1.243(ND)
	4/27/2017 5/17/2017	Background	331.5	15.71	-		0.39	8.35 7.13	6.72	2.3	<0.250	34 30	170	36	38	<3.0	3.2 4.9	180	<1.0	<1.0	<4.0	<2.0	<1.0	<10	<0.20	<1.0	<1.0	<1.0	1.243(ND) 1.173(ND)
	6/8/2017	Background	325.2	17.50	-		0.45	3.86	6.73	1.8	<0.250	29	180	38	36	<3.0	4.9	190	<1.0	<1.0	<4.0	<2.0	<1.0	<10	<0.20	<1.0	<1.0	<1.0	0.893(ND)
	7/13/2017	Background	396.8	19.68			0.72	2.17	6.98	1.7	<0.250	29	180	31	40	<3.0	5.8	200	<1.0	<1.0	<4.0	<2.0	<1.0	<10	<0.20	<1.0	<1.0	<1.0	0.575(ND)
	10/31/2017	Detection	359.6	17.57	_		0.72	1.48	6.72	1.0	0.303	20	170	41	38	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	<0.20 (NA)	(NA)	(NA)	(NA)	(NA)
		_ = = = = = = = = = = = = = = = = = = =														(. . ,	(. y		,,,,,,,		(\y	\y		,,,,,,				
MW-8 (DG)	5/18/2017	Background	662.5	17.58	-89	9.4 0	0.29	2.39	7.16	46	<0.250	100	340	400	74	<3.0	<1.0	86	<1.0	<1.0	<4.0	<2.0	<1.0	<10	<0.20	<1.0	<1.0	<1.0	1.067
	6/9/2017	Background	678.2	17.90	_		0.31	0.47	7.16	43	<0.250	110	380	520	92	<3.0	<1.0	86	<1.0	<1.0	<4.0	<2.0	<1.0	<10	<0.20	<1.0	<1.0	<1.0	0.839(ND)
	7/13/2017	Background	661.5	18.57	-10	7.1 0	0.23	1.20	7.25	36	<0.250	89	320	430	87	<3.0	<1.0	74	<1.0	<1.0	<4.0	<2.0	<1.0	<10	<0.20	<1.0	<1.0	<1.0	1.034(ND)
	8/3/2017	Background	665.7	19.06	-		0.24	0.98	7.15	37	<0.250	89	330	490	80	<3.0	<1.0	74	<1.0	<1.0	<4.0	<2.0	<1.0	<10	<0.20	<1.0	<1.0	<1.0	0.681(ND)
	8/15/2017	Background	594.9	18.56	i -88	3.7 0	0.38	0.99	7.16	36	<0.250	83	320	530	75	<3.0	<1.0	68	<1.0	<1.0	<4.0	<2.0	<1.0	<10	<0.20	<1.0	<1.0	<1.0	0.906(ND)
	8/30/2017	Background	644.2	18.62	91	1.3 0	0.29	1.18	7.15	41	<0.250	96	290	510	88	<3.0	<1.0	75	<1.0	<1.0	<4.0	<2.0	<1.0	<10	<0.20	<1.0	<1.0	<1.0	0.805(ND)
	9/14/2017	Background	707.9	18.52	90	0.1 0	0.48	0.67	7.13	53	<0.250 H	110	370	510	86	<3.0	<1.0	77	<1.0	<1.0	<4.0	<2.0	<1.0	12	<0.20	<1.0	<1.0	<1.0	0.314(ND)
	9/27/2017	Background	764.0	19.11	-89	9.6 0	0.30	0.58	7.05	50	<0.250	120	420	480	92	<3.0	<1.0	80	<1.0	<1.0	<4.0	<2.0	<1.0	<10	<0.20	<1.0	<1.0	<1.0	0.594(ND)
	10/31/2017	Detection	698.1	17.99	-96	6.3 0	0.38	0.94	7.09	45	<0.250	110	380	540	86	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)

Notes:

1. All data transcribed from analytical lab data sheets or field notes.

2. Less than (<) symbol denotes concentration not detected at or above reportable limits.

3. (ND) denotes Radium 226 and 228 (combined) concentration not detected above minimum detectable concentration.

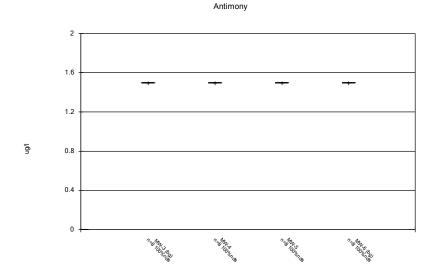
4. (NA) denotes analysis not conducted.

General analysis not conducted.
 Background monitoring per USEPA 40 CFR 257.93.
 Detection monitoring per USEPA 40 CFR 257.94.

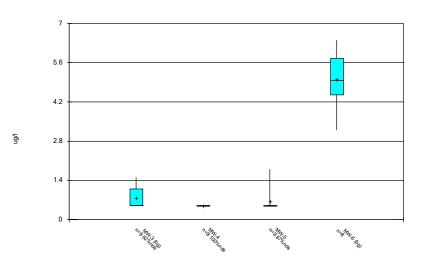
7. Assessment monitoring per USEPA 40 CFR 257.95.

Appendix 7

Box and Whiskers Plots

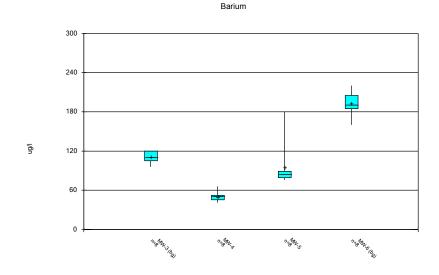

Box & Whiskers Plot MW-3 through MW-6

SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SBMU-SPS EDD File 09-28-17 Printed 11/29/2017, 3:18 PM Constituent Well N Median Upper Q. %NDs Mean Lower Q. <u>Min.</u> Max. MW-3 (bg) 8 1.5 1.5 1.5 1.5 1.5 1.5 100 Antimony (ug/l) MW-4 8 1.5 1.5 1.5 1.5 1.5 1.5 100 Antimony (ug/l) MW-5 8 Antimony (ug/l) 1.5 1.5 1.5 1.5 1.5 1.5 100 8 Antimony (ug/l) MW-6 (bg) 1.5 1.5 1.5 1.5 1.5 1.5 100 Arsenic (ug/l) MW-3 (bg) 8 0.775 0.5 0.5 1.1 0.5 1.5 62.5 Arsenic (ug/l) MW-4 8 0.5 0.5 0.5 0.5 0.5 0.5 100 Arsenic (ug/l) MW-5 8 0.6625 0.5 0.5 0.5 0.5 1.8 87.5 Arsenic (ug/I) MW-6 (bg) 8 4.988 4.95 4.45 5.75 6.4 0 3.2 Barium (ug/l) MW-3 (bg) 8 110.8 110 105 120 96 120 0 MW-4 8 52.5 41 66 Barium (ug/l) 50.5 50.5 45.5 0 Barium (ug/l) MW-5 8 94.88 83.5 79 89 76 180 0 8 205 220 Barium (ug/l) MW-6 (bg) 192.5 190 185 160 0 Beryllium (ug/l) MW-3 (bg) 8 0.5 0.5 0.5 0.5 0.5 0.5 100 MW-4 8 0.5625 0.5 0.5 100 Beryllium (ug/l) 0.5 0.5 1 Beryllium (ug/l) MW-5 8 0.5 0.5 0.5 0.5 0.5 0.5 100 0.5 8 0.5 Beryllium (ug/l) MW-6 (bg) 0.5 0.5 0.5 0.5 100 9 30 12 54 Boron (ug/l) MW-3 (bg) 24.78 20 18 0 Boron (ug/l) MW-4 9 1264 1300 1150 1400 880 1500 0 Boron (ug/l) MW-5 9 987.8 470 320 485 280 5700 0 Boron (ug/l) MW-6 (bg) 9 37.78 36 33 39.5 27 59 0 Cadmium (ug/l) MW-3 (bg) 8 0.5 0.5 0.5 0.5 100 0.5 0.5 Cadmium (ug/l) MW-4 8 0.5 0.5 0.5 0.5 0.5 0.5 100 MW-5 8 0.5 100 Cadmium (ug/l) 0.5 0.5 0.5 0.5 0.5 Cadmium (ug/l) MW-6 (bg) 8 0.5 0.5 0.5 0.5 0.5 0.5 100 9 19 17 24 0 Calcium (mg/l) MW-3 (bg) 20.11 20 21.5 Calcium (mg/l) MW-4 9 74.44 74 69 79 61 89 0 MW-5 9 117.1 100 96.5 120 72 240 Calcium (mg/l) 0 Calcium (mg/l) MW-6 (bg) 9 38.56 39 37 40.5 30 45 0 9 2 2.3 Chloride (mg/l) MW-3 (bg) 1.933 1.75 2.1 1.5 0 MW-4 9 14.22 14 12.5 12 18 Chloride (mg/l) 16 0 Chloride (mg/l) MW-5 9 12.22 11 11 14 10 16 0 Chloride (mg/l) MW-6 (bg) 9 2.056 2.1 1.7 2.35 1.6 2.8 0 MW-3 (bg) 8 2 2 2 2 2 2 100 Chromium (ug/l) 2 Chromium (ug/l) MW-4 8 2 2 2 2 2 100 2 2 2 Chromium (ug/l) MW-5 8 3.75 2 16 87.5 8 2 2 2 2 2 2 100 Chromium (ug/l) MW-6 (bg) Cobalt (ug/l) MW-3 (bg) 8 1 1 1 1 1 1 100 Cobalt (ug/l) MW-4 8 1 1 1 1 1 100 1 Cobalt (ug/l) MW-5 8 4.413 4.35 3.85 5 3.6 5.3 0 8 1 1 100 Cobalt (ug/l) MW-6 (bg) 1 1 1 1 0.2565 Fluoride (mg/l) MW-3 (bg) 9 0.28 0.276 0.3105 0.125 0.438 11.11 MW-4 9 0.1399 0.125 0.125 0.125 0.125 0.259 88.89 Fluoride (mg/l) Fluoride (mg/l) MW-5 9 0.1394 0.125 0.255 0.125 0.125 0.125 88.89 Fluoride (mg/l) MW-6 (bg) 9 0.1837 0.125 0.125 0.286 0.125 0.331 66.67 Lead (ug/l) MW-3 (bg) 8 0.5 0.5 0.5 0.5 0.5 0.5 100 MW-4 8 0.5 0.5 0.5 0.5 0.5 100 Lead (ug/l) 0.5 MW-5 8 1.225 0.5 0.5 6.3 Lead (ug/l) 0.5 0.5 87.5 MW-6 (bg) Lead (ug/l) 8 0.5 0.5 0.5 0.5 0.5 0.5 100 5 Lithium (ug/l) MW-3 (bg) 8 5 5 5 5 5 100 Lithium (ug/l) MW-4 8 5 5 5 5 5 5 100

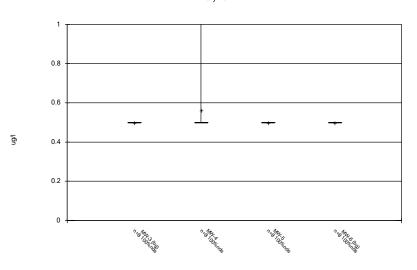

Box & Whiskers Plot MW-3 through MW-6

	SBMU-Sikeston Power Station	Client: GRED	ELL Engineering	Data: SBMU-SPS EDD File 09-28-17 Printed 11/29/2017, 3:18 PM						
Constituent	Well	<u>N</u>	Mean	Median	Lower Q.	Upper Q.	<u>Min.</u>	Max.	<u>%NDs</u>	
Lithium (ug/l)	MW-5	8	5	5	5	5	5	5	100	
Lithium (ug/l)	MW-6 (bg)	8	5	5	5	5	5	5	100	
Mercury (ug/I)	MW-3 (bg)	8	0.1375	0.1	0.1	0.1	0.1	0.4	87.5	
Mercury (ug/I)	MW-4	8	0.25	0.1	0.1	0.1	0.1	1.3	87.5	
Mercury (ug/I)	MW-5	8	0.1175	0.1	0.1	0.1	0.1	0.24	87.5	
Mercury (ug/I)	MW-6 (bg)	8	0.1	0.1	0.1	0.1	0.1	0.1	100	
Molybdenum (ug/l)	MW-3 (bg)	8	1.675	0.5	0.5	0.5	0.5	9.9	87.5	
Molybdenum (ug/l)	MW-4	8	0.5	0.5	0.5	0.5	0.5	0.5	100	
Molybdenum (ug/l)	MW-5	8	0.8125	0.5	0.5	0.5	0.5	3	87.5	
Molybdenum (ug/l)	MW-6 (bg)	8	0.5	0.5	0.5	0.5	0.5	0.5	100	
pH (S.U.)	MW-3 (bg)	9	6.761	6.68	6.65	6.905	6.59	7.08	0	
pH (S.U.)	MW-4	9	7.399	7.38	7.37	7.455	7.31	7.49	0	
pH (S.U.)	MW-5	9	6.888	6.89	6.815	6.97	6.8	6.98	0	
pH (S.U.)	MW-6 (bg)	9	6.813	6.76	6.725	6.905	6.72	6.98	0	
Radium (pCi/l)	MW-3 (bg)	8	0.5178	0.5685	0.1235	0.7795	-0.469	1.668	0	
Radium (pCi/l)	MW-4	8	0.6744	0.6375	0.507	0.905	0.21	1.086	0	
Radium (pCi/l)	MW-5	8	1.049	0.848	0.6525	1.708	0.13	1.844	0	
Radium (pCi/I)	MW-6 (bg)	8	0.9533	0.9205	0.631	1.208	0.575	1.532	0	
Selenium (ug/l)	MW-3 (bg)	8	0.5	0.5	0.5	0.5	0.5	0.5	100	
Selenium (ug/l)	MW-4	8	0.5	0.5	0.5	0.5	0.5	0.5	100	
Selenium (ug/l)	MW-5	8	0.5	0.5	0.5	0.5	0.5	0.5	100	
Selenium (ug/l)	MW-6 (bg)	8	0.5	0.5	0.5	0.5	0.5	0.5	100	
Sulfate (mg/l)	MW-3 (bg)	9	23.67	22	20.5	27	19	30	0	
Sulfate (mg/l)	MW-4	9	100.3	96	87	109.5	83	140	0	
Sulfate (mg/l)	MW-5	9	217.6	190	170	250	88	460	0	
Sulfate (mg/l)	MW-6 (bg)	9	32.44	31	29	35	28	43	0	
Thallium (ug/l)	MW-3 (bg)	8	0.5	0.5	0.5	0.5	0.5	0.5	100	
Thallium (ug/l)	MW-4	8	0.5	0.5	0.5	0.5	0.5	0.5	100	
Thallium (ug/l)	MW-5	8	0.5	0.5	0.5	0.5	0.5	0.5	100	
Thallium (ug/l)	MW-6 (bg)	8	0.5	0.5	0.5	0.5	0.5	0.5	100	
Total Dissolved Solids (mg/l)	MW-3 (bg)	9	145.6	140	130	160	120	170	0	
Total Dissolved Solids (mg/l)	MW-4	9	322.2	320	295	345	290	390	0	
Total Dissolved Solids (mg/l)	MW-5	9	452.2	470	425	480	310	560	0	
Total Dissolved Solids (mg/l)	MW-6 (bg)	9	185.6	180	170	200	160	240	0	

Sanitas™ v.9.5.32 Sanitas software licensed to GREDELL Engineering only. UG


Box & Whiskers Plot Analysis Run 11/29/2017 3:17 PM View: SBMU-SPS Appendix III SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SBMU-SPS EDD File 09-28-17

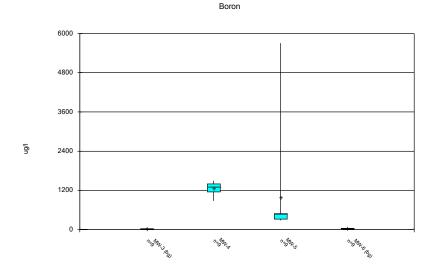
 Box & Whiskers Plot
 Analysis Run 11/29/2017 3:17 PM
 View: SBMU-SPS Appendix III


 SBMU-Sikeston Power Station
 Client: GREDELL Engineering
 Data: SBMU-SPS EDD File 09-28-17

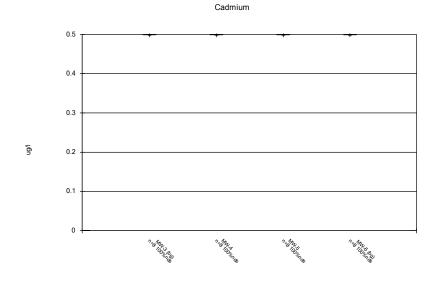
Sanitas™ v.9.5.32 Sanitas software licensed to GREDELL Engineering only. UG

Box & Whiskers Plot Analysis Run 11/29/2017 3:17 PM View: SBMU-SPS Appendix III SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SBMU-SPS EDD File 09-28-17 Sanitas™ v.9.5.32 Sanitas software licensed to GREDELL Engineering only. UG

Beryllium

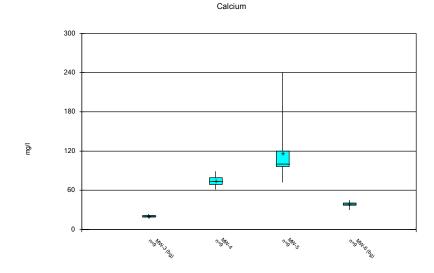


 Box & Whiskers Plot
 Analysis Run 11/29/2017 3:17 PM
 View: SBMU-SPS Appendix III

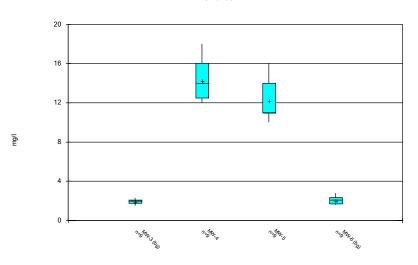

 SBMU-Sikeston Power Station
 Client: GREDELL Engineering
 Data: SBMU-SPS EDD File 09-28-17

Arsenic

Sanitas™ v.9.5.32 Sanitas software licensed to GREDELL Engineering only. UG


Box & Whiskers Plot Analysis Run 11/29/2017 3:17 PM View: SBMU-SPS Appendix III SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SBMU-SPS EDD File 09-28-17

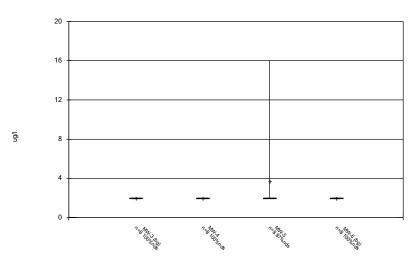
 Box & Whiskers Plot
 Analysis Run 11/29/2017 3:17 PM
 View: SBMU-SPS Appendix III


 SBMU-Sikeston Power Station
 Client: GREDELL Engineering
 Data: SBMU-SPS EDD File 09-28-17

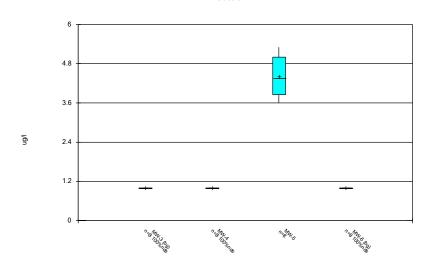
Sanitas™ v.9.5.32 Sanitas software licensed to GREDELL Engineering only. UG

Box & Whiskers Plot Analysis Run 11/29/2017 3:17 PM View: SBMU-SPS Appendix III SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SBMU-SPS EDD File 09-28-17 Sanitas™ v.9.5.32 Sanitas software licensed to GREDELL Engineering only. UG

Chloride

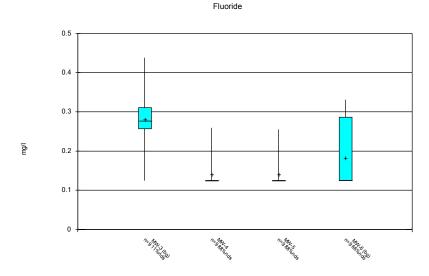


 Box & Whiskers Plot
 Analysis Run 11/29/2017 3:17 PM
 View: SBMU-SPS Appendix III


 SBMU-Sikeston Power Station
 Client: GREDELL Engineering
 Data: SBMU-SPS EDD File 09-28-17

Sanitas[™] v.9.5.32 Sanitas software licensed to GREDELL Engineering only. UG

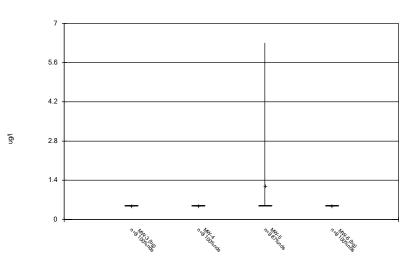
Chromium


Box & Whiskers Plot Analysis Run 11/29/2017 3:17 PM View: SBMU-SPS Appendix III SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SBMU-SPS EDD File 09-28-17

 Box & Whiskers Plot
 Analysis Run 11/29/2017 3:17 PM
 View: SBMU-SPS Appendix III

 SBMU-Sikeston Power Station
 Client: GREDELL Engineering
 Data: SBMU-SPS EDD File 09-28-17

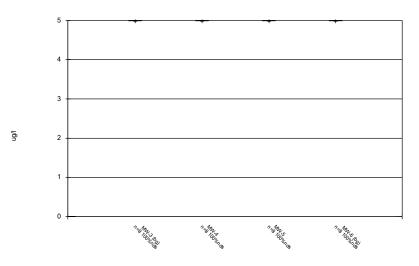
Sanitas™ v.9.5.32 Sanitas software licensed to GREDELL Engineering only. UG



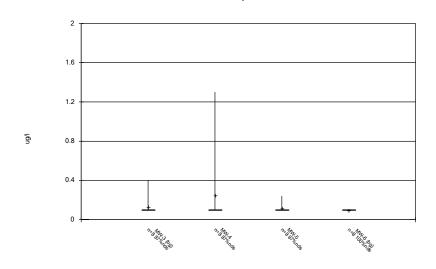
 Box & Whiskers Plot
 Analysis Run 11/29/2017 3:17 PM
 View: SBMU-SPS Appendix III

 SBMU-Sikeston Power Station
 Client: GREDELL Engineering
 Data: SBMU-SPS EDD File 09-28-17

Sanitas™ v.9.5.32 Sanitas software licensed to GREDELL Engineering only. UG


Lead

 Box & Whiskers Plot
 Analysis Run 11/29/2017 3:17 PM
 View: SBMU-SPS Appendix III

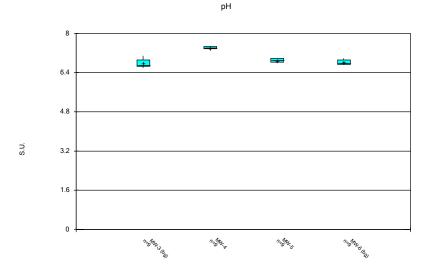

 SBMU-Sikeston Power Station
 Client: GREDELL Engineering
 Data: SBMU-SPS EDD File 09-28-17

Cobalt

Lithium

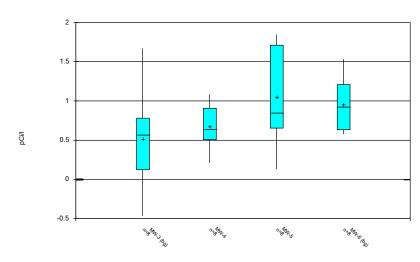
Box & Whiskers Plot Analysis Run 11/29/2017 3:17 PM View: SBMU-SPS Appendix III SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SBMU-SPS EDD File 09-28-17

 Box & Whiskers Plot
 Analysis Run 11/29/2017 3:17 PM
 View: SBMU-SPS Appendix III

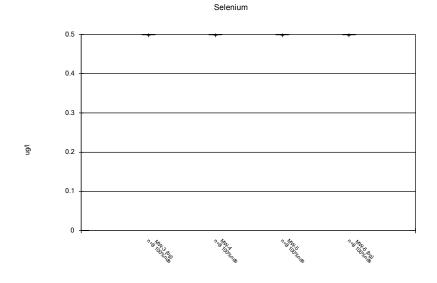

 SBMU-Sikeston Power Station
 Client: GREDELL Engineering
 Data: SBMU-SPS EDD File 09-28-17

Sanitas™ v.9.5.32 Sanitas software licensed to GREDELL Engineering only. UG

Box & Whiskers Plot Analysis Run 11/29/2017 3:17 PM View: SBMU-SPS Appendix III SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SBMU-SPS EDD File 09-28-17

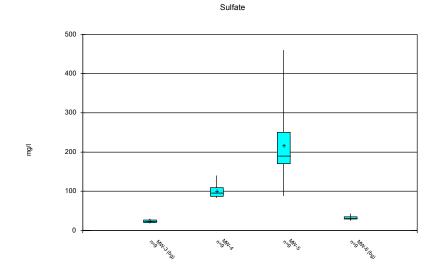

 Box & Whiskers Plot
 Analysis Run 11/29/2017 3:17 PM
 View: SBMU-SPS Appendix III

 SBMU-Sikeston Power Station
 Client: GREDELL Engineering
 Data: SBMU-SPS EDD File 09-28-17

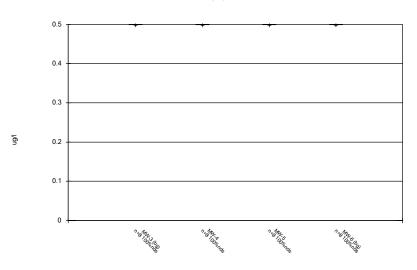

Mercury

Sanitas™ v.9.5.32 Sanitas software licensed to GREDELL Engineering only. UG

Radium

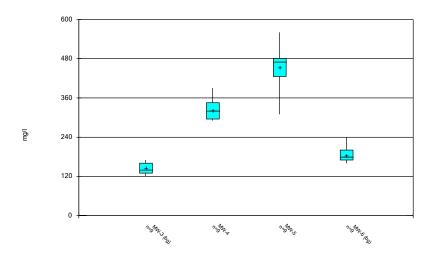

Box & Whiskers Plot Analysis Run 11/29/2017 3:17 PM View: SBMU-SPS Appendix III SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SBMU-SPS EDD File 09-28-17

 Box & Whiskers Plot
 Analysis Run 11/29/2017 3:17 PM
 View: SBMU-SPS Appendix III


 SBMU-Sikeston Power Station
 Client: GREDELL Engineering
 Data: SBMU-SPS EDD File 09-28-17

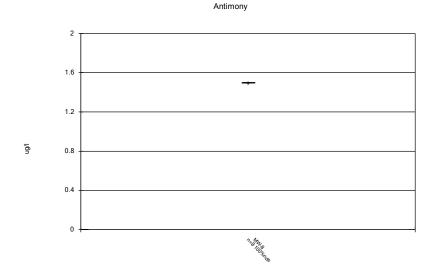
Sanitas™ v.9.5.32 Sanitas software licensed to GREDELL Engineering only. UG

Box & Whiskers Plot Analysis Run 11/29/2017 3:17 PM View: SBMU-SPS Appendix III SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SBMU-SPS EDD File 09-28-17 Sanitas™ v.9.5.32 Sanitas software licensed to GREDELL Engineering only. UG

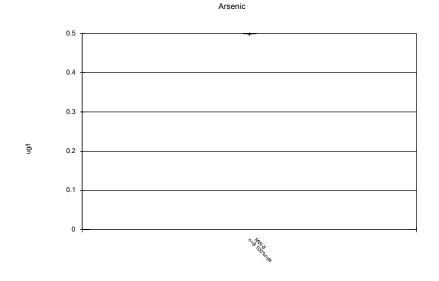

Thallium

 Box & Whiskers Plot
 Analysis Run 11/29/2017 3:17 PM
 View: SBMU-SPS Appendix III

 SBMU-Sikeston Power Station
 Client: GREDELL Engineering
 Data: SBMU-SPS EDD File 09-28-17

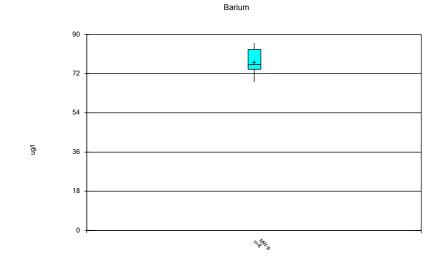


Box & Whiskers Plot Analysis Run 11/29/2017 3:17 PM View: SBMU-SPS Appendix III SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SBMU-SPS EDD File 09-28-17

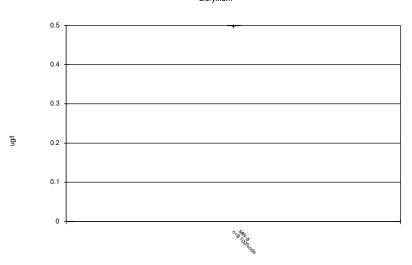

Box & Whiskers Plot MW-8

	SBMU-Sikeston Power Station	Client: GREDI	ELL Engineering	Data: SBMU-SPS EDD File 09-28-17 Printed 11/29/2017, 9:37 AM						
Constituent	Well	<u>N</u>	Mean	Median	Lower Q.	Upper Q.	Min.	Max.	<u>%NDs</u>	
Antimony (ug/I)	MW-8	8	1.5	1.5	1.5	1.5	1.5	1.5	100	
Arsenic (ug/I)	MW-8	8	0.5	0.5	0.5	0.5	0.5	0.5	100	
Barium (ug/l)	MVV-8	8	77.5	76	74	83	68	86	0	
Beryllium (ug/l)	MVV-8	8	0.5	0.5	0.5	0.5	0.5	0.5	100	
Boron (ug/l)	MW-8	9	490	510	455	525	400	540	0	
Cadmium (ug/l)	MW-8	8	0.5	0.5	0.5	0.5	0.5	0.5	100	
Calcium (mg/l)	MW-8	9	84.44	86	77.5	90	74	92	0	
Chloride (mg/l)	MW-8	9	43	43	36.5	48	36	53	0	
Chromium (ug/I)	MW-8	8	2	2	2	2	2	2	100	
Cobalt (ug/l)	MW-8	8	1	1	1	1	1	1	100	
Fluoride (mg/l)	MW-8	9	0.125	0.125	0.125	0.125	0.125	0.125	100	
Lead (ug/l)	MW-8	8	0.5	0.5	0.5	0.5	0.5	0.5	100	
Lithium (ug/l)	MW-8	8	5.875	5	5	5	5	12	87.5	
Mercury (ug/I)	MW-8	8	0.1	0.1	0.1	0.1	0.1	0.1	100	
Molybdenum (ug/l)	MW-8	8	0.5	0.5	0.5	0.5	0.5	0.5	100	
pH (S.U.)	MW-8	9	7.144	7.15	7.11	7.16	7.05	7.25	0	
Radium (pCi/l)	MW-8	8	0.7804	0.822	0.639	0.97	0.314	1.067	0	
Selenium (ug/I)	MW-8	8	0.5	0.5	0.5	0.5	0.5	0.5	100	
Sulfate (mg/l)	MW-8	9	100.8	100	89	110	83	120	0	
Thallium (ug/l)	MW-8	8	0.5	0.5	0.5	0.5	0.5	0.5	100	
Total Dissolved Solids (mg/l)	MW-8	9	350	340	320	380	290	420	0	

Sanitas[™] v.9.5.32 Sanitas software licensed to GREDELL Engineering only. UG


Box & Whiskers Plot Analysis Run 11/29/2017 9:36 AM View: SBMU-SPS Appendix III SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SBMU-SPS EDD File 09-28-17

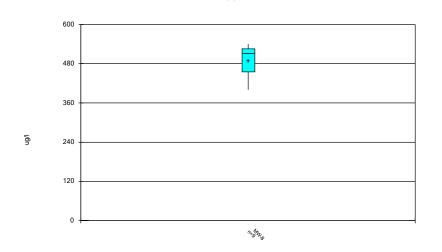
 Box & Whiskers Plot
 Analysis Run 11/29/2017 9:36 AM
 View: SBMU-SPS Appendix III


 SBMU-Sikeston Power Station
 Client: GREDELL Engineering
 Data: SBMU-SPS EDD File 09-28-17

Sanitas™ v.9.5.32 Sanitas software licensed to GREDELL Engineering only. UG

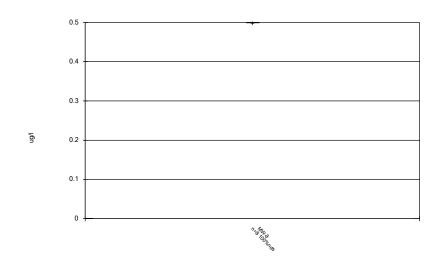
Sanitas™ v.9.5.32 Sanitas software licensed to GREDELL Engineering only. UG

Beryllium


 Box & Whiskers Plot
 Analysis Run 11/29/2017 9:36 AM
 View: SBMU-SPS Appendix III

 SBMU-Sikeston Power Station
 Client: GREDELL Engineering
 Data: SBMU-SPS EDD File 09-28-17

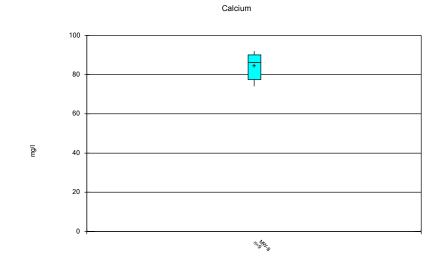
 Box & Whiskers Plot
 Analysis Run 11/29/2017 9:36 AM
 View: SBMU-SPS Appendix III


 SBMU-Sikeston Power Station
 Client: GREDELL Engineering
 Data: SBMU-SPS EDD File 09-28-17

Sanitas[™] v.9.5.32 Sanitas software licensed to GREDELL Engineering only. UG

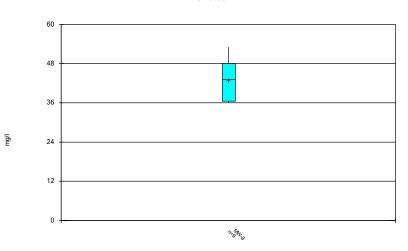
Boron

Box & Whiskers Plot Analysis Run 11/29/2017 9:36 AM View: SBMU-SPS Appendix III SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SBMU-SPS EDD File 09-28-17



Cadmium

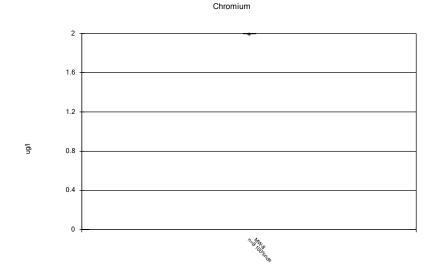
 Box & Whiskers Plot
 Analysis Run 11/29/2017 9:36 AM
 View: SBMU-SPS Appendix III


 SBMU-Sikeston Power Station
 Client: GREDELL Engineering
 Data: SBMU-SPS EDD File 09-28-17

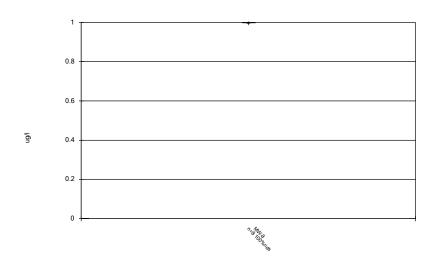
Sanitas™ v.9.5.32 Sanitas software licensed to GREDELL Engineering only. UG

Sanitas™ v.9.5.32 Sanitas software licensed to GREDELL Engineering only. UG

Chloride

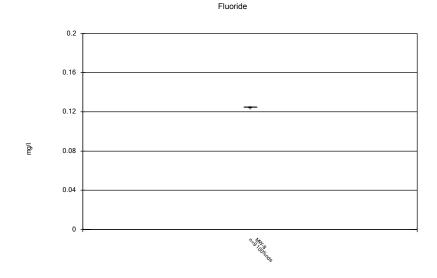



Box & Whiskers Plot Analysis Run 11/29/2017 9:36 AM View: SBMU-SPS Appendix III SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SBMU-SPS EDD File 09-28-17


 Box & Whiskers Plot
 Analysis Run 11/29/2017 9:36 AM
 View: SBMU-SPS Appendix III

 SBMU-Sikeston Power Station
 Client: GREDELL Engineering
 Data: SBMU-SPS EDD File 09-28-17

Sanitas™ v.9.5.32 Sanitas software licensed to GREDELL Engineering only. UG

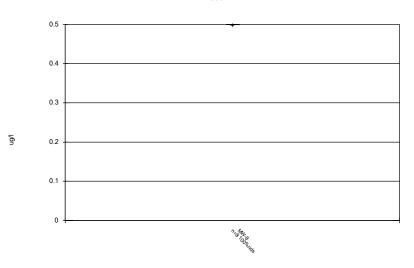


Cobalt

 Box & Whiskers Plot
 Analysis Run 11/29/2017 9:36 AM
 View: SBMU-SPS Appendix III

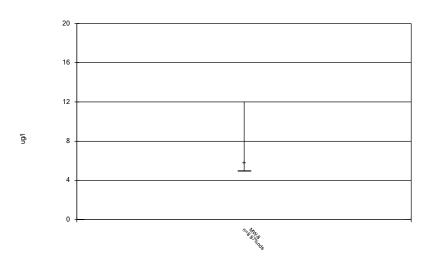
 SBMU-Sikeston Power Station
 Client: GREDELL Engineering
 Data: SBMU-SPS EDD File 09-28-17

Sanitas™ v.9.5.32 Sanitas software licensed to GREDELL Engineering only. UG

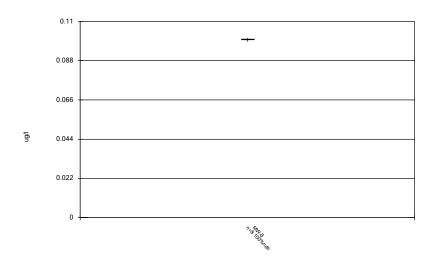


 Box & Whiskers Plot
 Analysis Run 11/29/2017 9:36 AM
 View: SBMU-SPS Appendix III

 SBMU-Sikeston Power Station
 Client: GREDELL Engineering
 Data: SBMU-SPS EDD File 09-28-17


Sanitas™ v.9.5.32 Sanitas software licensed to GREDELL Engineering only. UG

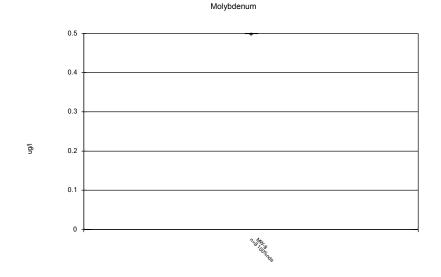
Lead


Box & Whiskers Plot Analysis Run 11/29/2017 9:36 AM View: SBMU-SPS Appendix III SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SBMU-SPS EDD File 09-28-17

Sanitas™ v.9.5.32 Sanitas software licensed to GREDELL Engineering only. UG

Lithium

Box & Whiskers Plot Analysis Run 11/29/2017 9:36 AM View: SBMU-SPS Appendix III SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SBMU-SPS EDD File 09-28-17



Mercury

 Box & Whiskers Plot
 Analysis Run 11/29/2017 9:36 AM
 View: SBMU-SPS Appendix III

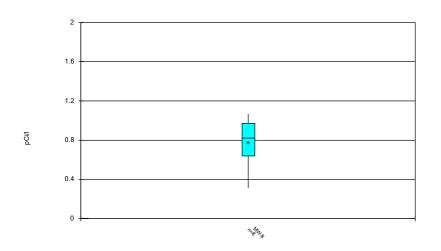
 SBMU-Sikeston Power Station
 Client: GREDELL Engineering
 Data: SBMU-SPS EDD File 09-28-17

Sanitas™ v.9.5.32 Sanitas software licensed to GREDELL Engineering only. UG

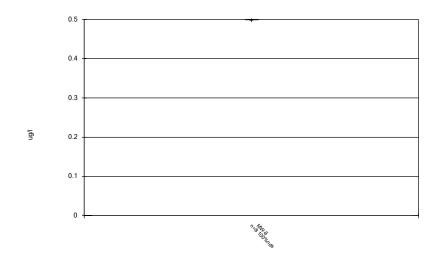
 Box & Whiskers Plot
 Analysis Run 11/29/2017 9:36 AM
 View: SBMU-SPS Appendix III

 SBMU-Sikeston Power Station
 Client: GREDELL Engineering
 Data: SBMU-SPS EDD File 09-28-17

Sanitas™ v.9.5.32 Sanitas software licensed to GREDELL Engineering only. UG


pН

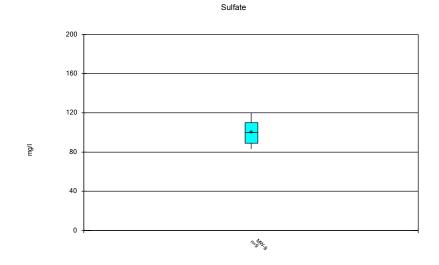
 Box & Whiskers Plot
 Analysis Run 11/29/2017 9:36 AM
 View: SBMU-SPS Appendix III


 SBMU-Sikeston Power Station
 Client: GREDELL Engineering
 Data: SBMU-SPS EDD File 09-28-17

Sanitas™ v.9.5.32 Sanitas software licensed to GREDELL Engineering only. UG

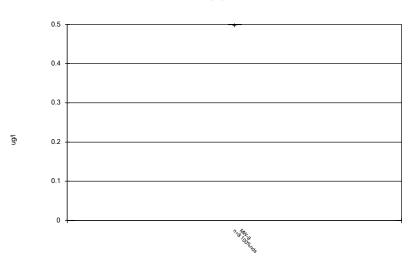
Radium

Box & Whiskers Plot Analysis Run 11/29/2017 9:36 AM View: SBMU-SPS Appendix III SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SBMU-SPS EDD File 09-28-17



Selenium

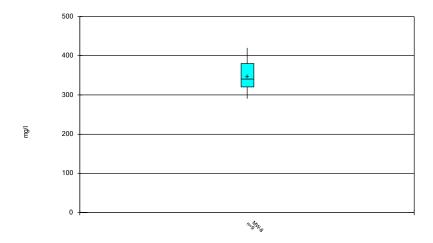
 Box & Whiskers Plot
 Analysis Run 11/29/2017 9:36 AM
 View: SBMU-SPS Appendix III


 SBMU-Sikeston Power Station
 Client: GREDELL Engineering
 Data: SBMU-SPS EDD File 09-28-17

Sanitas™ v.9.5.32 Sanitas software licensed to GREDELL Engineering only. UG

Sanitas™ v.9.5.32 Sanitas software licensed to GREDELL Engineering only. UG

Thallium

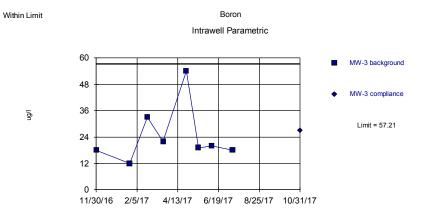


 Box & Whiskers Plot
 Analysis Run 11/29/2017 9:36 AM
 View: SBMU-SPS Appendix III

 SBMU-Sikeston Power Station
 Client: GREDELL Engineering
 Data: SBMU-SPS EDD File 09-28-17

Box & Whiskers Plot Analysis Run 11/29/2017 9:36 AM View: SBMU-SPS Appendix III SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SBMU-SPS EDD File 09-28-17

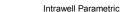
Box & Whiskers Plot Analysis Run 11/29/2017 9:36 AM View: SBMU-SPS Appendix III SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SBMU-SPS EDD File 09-28-17

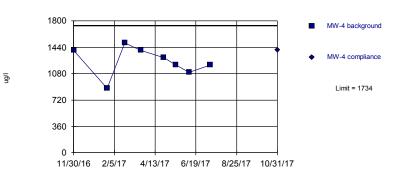

Appendix 8

Prediction Limit Charts

Prediction Limit MW-3 through MW-6

	SBMU-Sikes	ton Power Station	Client: GREDE	ELL Engineering	g Data: SB	MU-SPS	S EDD F	File 09-28-1	7 Printed 12/5/20	17, 2:08 PM	
Constituent	Well	Upper Lim.	Lower Lim.	Date	Observ.	<u>Sig.</u>	<u>Bg N</u>	<u>%NDs</u>	Transform	<u>Alpha</u>	Method
Boron (ug/l)	MW-3	57.21	n/a	10/31/2017	27	No	8	0	No	0.002505	Param Intra 1 of 2
Boron (ug/l)	MW-4	1734	n/a	10/31/2017	1400	No	8	0	No	0.002505	Param Intra 1 of 2
Boron (ug/l)	MW-5	626.5	n/a	10/31/2017	280	No	7	0	No	0.002505	Param Intra 1 of 2
Boron (ug/l)	MW-6	44.77	n/a	10/31/2017	41	No	7	0	No	0.002505	Param Intra 1 of 2
Calcium (mg/l)	MW-3	25.46	n/a	10/31/2017	19	No	8	0	No	0.002505	Param Intra 1 of 2
Calcium (mg/l)	MW-4	95.25	n/a	10/31/2017	67	No	8	0	No	0.002505	Param Intra 1 of 2
Calcium (mg/l)	MW-5	134.5	n/a	10/31/2017	72	No	7	0	No	0.002505	Param Intra 1 of 2
Calcium (mg/l)	MW-6	49.29	n/a	10/31/2017	38	No	8	0	No	0.002505	Param Intra 1 of 2
Chloride (mg/l)	MW-3	2.565	n/a	10/31/2017	2	No	8	0	No	0.002505	Param Intra 1 of 2
Chloride (mg/l)	MW-4	18.69	n/a	10/31/2017	17	No	8	0	No	0.002505	Param Intra 1 of 2
Chloride (mg/l)	MW-5	17.45	n/a	10/31/2017	13	No	8	0	No	0.002505	Param Intra 1 of 2
Chloride (mg/l)	MW-6	3.083	n/a	10/31/2017	1.7	No	8	0	No	0.002505	Param Intra 1 of 2
Fluoride (mg/l)	MW-3	0.4819	n/a	10/31/2017	0.331	No	8	12.5	No	0.002505	Param Intra 1 of 2
Fluoride (mg/l)	MW-4	0.259	n/a	10/31/2017	0.125ND	No	8	87.5	n/a	0.02144	NP Intra (NDs) 1 of 2
Fluoride (mg/l)	MW-5	0.255	n/a	10/31/2017	0.125ND	No	8	87.5	n/a	0.02144	NP Intra (NDs) 1 of 2
Fluoride (mg/l)	MW-6	0.331	n/a	10/31/2017	0.303	No	8	75	n/a	0.02144	NP Intra (NDs) 1 of 2
pH (S.U.)	MW-3	7.189	6.363	10/31/2017	6.64	No	8	0	No	0.001253	Param Intra 1 of 2
pH (S.U.)	MW-4	7.529	7.291	10/31/2017	7.31	No	8	0	No	0.001253	Param Intra 1 of 2
pH (S.U.)	MW-5	7.078	6.697	10/31/2017	6.89	No	8	0	No	0.001253	Param Intra 1 of 2
pH (S.U.)	MW-6	7.075	6.575	10/31/2017	6.72	No	8	0	No	0.001253	Param Intra 1 of 2
Sulfate (mg/l)	MW-3	33.73	n/a	10/31/2017	20	No	8	0	No	0.002505	Param Intra 1 of 2
Sulfate (mg/l)	MW-4	147.6	n/a	10/31/2017	83	No	8	0	No	0.002505	Param Intra 1 of 2
Sulfate (mg/l)	MW-5	300	n/a	10/31/2017	88	No	7	0	No	0.002505	Param Intra 1 of 2
Sulfate (mg/l)	MW-6	44.8	n/a	10/31/2017	29	No	8	0	No	0.002505	Param Intra 1 of 2
Total Dissolved Solids (mg/l)	MW-3	191.6	n/a	10/31/2017	140	No	8	0	No	0.002505	Param Intra 1 of 2
Total Dissolved Solids (mg/l)	MW-4	407.2	n/a	10/31/2017	290	No	8	0	No	0.002505	Param Intra 1 of 2
Total Dissolved Solids (mg/l)	MW-5	577.5	n/a	10/31/2017	310	No	8	0	No	0.002505	Param Intra 1 of 2
Total Dissolved Solids (mg/l)	MW-6	250.2	n/a	10/31/2017	170	No	8	0	No	0.002505	Param Intra 1 of 2

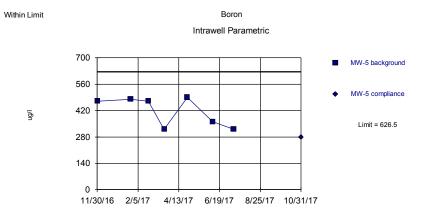

Sanitas™ v.9.5.32 Sanitas software licensed to GREDELL Engineering only. UG



Background Data Summary: Mean=24.5, Std. Dev.=13.31, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.7709, critical = 0.749. Kappa = 2.458 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505.

Within Limit

Boron

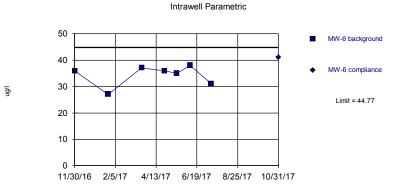


Background Data Summary: Mean=1248, Std. Dev.=198, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9503, critical = 0.749. Kappa = 2.458 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505.

Prediction Limit Analysis Run 12/5/2017 2:07 PM View: SBMU-SPS Appendix III SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SBMU-SPS EDD File 09-28-17

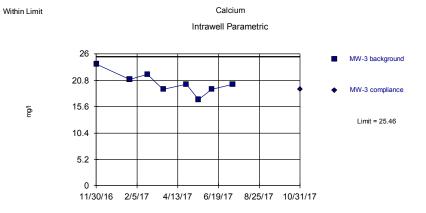
Prediction Limit Analysis Run 12/5/2017 2:07 PM View: SBMU-SPS Appendix III SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SBMU-SPS EDD File 09-28-17

Sanitas™ v.9.5.32 Sanitas software licensed to GREDELL Engineering only. UG



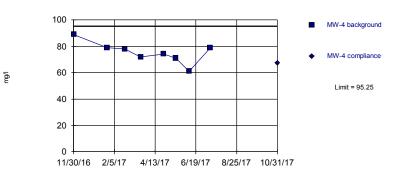
Background Data Summary: Mean=415.7, Std. Dev.=78.5, n=7. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.7805, critical = 0.73. Kappa = 2.685 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505.

Sanitas™ v.9.5.32 Sanitas software licensed to GREDELL Engineering only. UG


Within Limit

Boron

Background Data Summary: Mean=34.29, Std. Dev.=3.904, n=7. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8499, critical = 0.73. Kappa = 2.685 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505.


Sanitas™ v.9.5.32 Sanitas software licensed to GREDELL Engineering only. UG

Background Data Summary: Mean=20.25, Std. Dev.=2.121, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9723, critical = 0.749. Kappa = 2.458 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505.

Within Limit

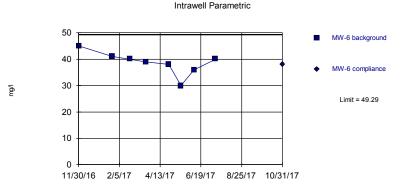
Calcium Intrawell Parametric



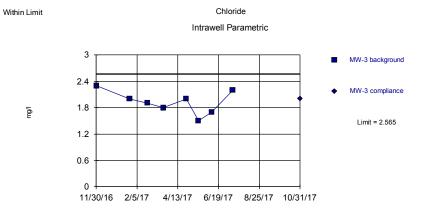
Background Data Summary: Mean=75.38, Std. Dev.=8.088, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9559, critical = 0.749. Kappa = 2.458 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505.

Prediction Limit Analysis Run 12/5/2017 2:07 PM View: SBMU-SPS Appendix III SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SBMU-SPS EDD File 09-28-17 Prediction Limit Analysis Run 12/5/2017 2:07 PM View: SBMU-SPS Appendix III SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SBMU-SPS EDD File 09-28-17

Calcium


Sanitas™ v.9.5.32 Sanitas software licensed to GREDELL Engineering only. UG

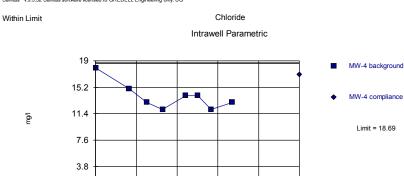
Background Data Summary: Mean=106, Std. Dev.=10.6, n=7. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8174, critical = 0.73. Kappa = 2.685 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505.


Sanitas™ v.9.5.32 Sanitas software licensed to GREDELL Engineering only. UG

Within Limit

Background Data Summary: Mean=38.63, Std. Dev.=4.34, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9284, critical = 0.749. Kappa = 2.458 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505.

Sanitas™ v.9.5.32 Sanitas software licensed to GREDELL Engineering only. UG

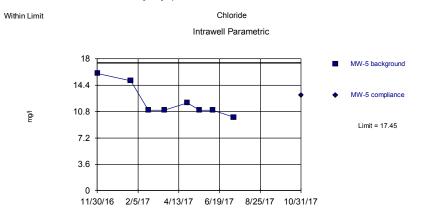


Background Data Summary: Mean=1.925, Std. Dev.=0.2605, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9816, critical = 0.749. Kappa = 2.458 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505.

Prediction Limit Analysis Run 12/5/2017 2:07 PM View: SBMU-SPS Appendix III

SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SBMU-SPS EDD File 09-28-17

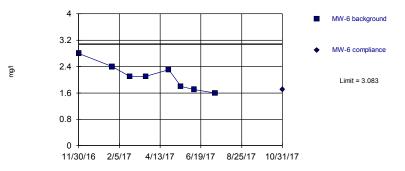
Sanitas™ v.9.5.32 Sanitas software licensed to GREDELL Engineering only. UG


Background Data Summary: Mean=13.88, Std. Dev=1.959, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.0612, critical = 0.749. Kappa = 2.458 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.00505.

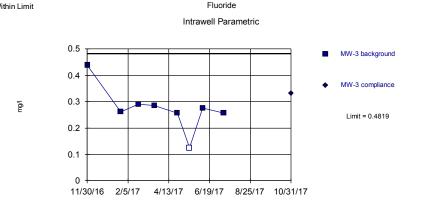
11/30/16 2/5/17 4/13/17 6/19/17 8/25/17 10/31/17

Prediction Limit Analysis Run 12/5/2017 2:07 PM View: SBMU-SPS Appendix III SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SBMU-SPS EDD File 09-28-17

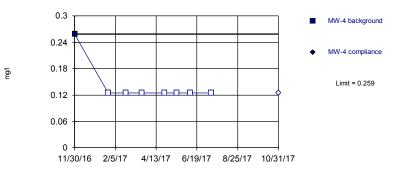
0


Sanitas™ v.9.5.32 Sanitas software licensed to GREDELL Engineering only. UG

Background Data Summary: Mean=12.13, Std. Dev=2.167, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.7822, critical = 0.749. Kappa = 2.458 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.00505. Sanitas™ v.9.5.32 Sanitas software licensed to GREDELL Engineering only. UG


Within Limit

Chloride Intrawell Parametric


Background Data Summary: Mean=2.1, Std. Dev=0.4, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9562, critical = 0.749. Kappa = 2.458 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505.

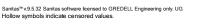
Sanitas[™] v.9.5.32 Sanitas software licensed to GREDELL Engineering only. UG Hollow symbols indicate censored values. Within Limit

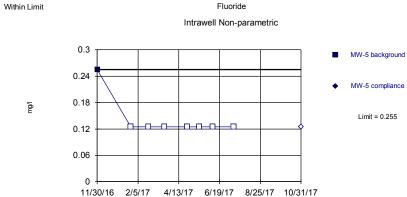
Background Data Summary: Mean=0.2736, Std. Dev.=0.08475, n=8, 12.5% NDs. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8446, critical = 0.749. Kappa = 2.458 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.02505. Sanitas[™] v.95.32 Sanitas software licensed to GREDELL Engineering only. UG Hollow symbols indicate censored values. Within Limit Fluoride

Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 8 background values. 87.5% NDs. Well-constituent pair annual alpha = 0.04242. Individual comparison alpha = 0.02144 (1 of 2). Insufficient data to test for seasonality: data were not deseasonalized.

Prediction Limit Analysis Run 12/5/2017 2:07 PM View: SBMU-SPS Appendix III SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SBMU-SPS EDD File 09-28-17 Prediction Limit Analysis Run 12/5/2017 2:07 PM View: SBMU-SPS Appendix III SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SBMU-SPS EDD File 09-28-17


Fluoride


Intrawell Non-parametric

MW-6 background

MW-6 compliance

Limit = 0.331

l/gr

Sanitas™ v.9.5.32 Sanitas software licensed to GREDELL Engineering only. UG

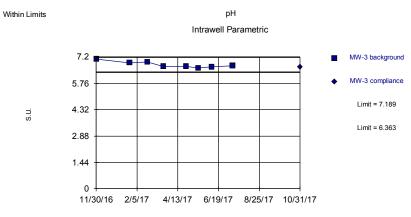
0.4

0.32

0.24

0.16

0.08


Hollow symbols indicate censored values.

Within Limit

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 8 background values. 75% NDs. Well-constituent pair annual alpha = 0.04242. Individual comparison alpha = 0.02144 (1 of 2). Insufficient data to test for seasonality: data were not deseasonalized.

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 8 background values. 87.5% NDs. Well-constituent pair annual alpha = 0.04242. Individual comparison alpha = 0.02144 (1 of 2). Insufficient data to test for seasonality: data were not deseasonalized.

Sanitas™ v.9.5.32 Sanitas software licensed to GREDELL Engineering only. UG

Background Data Summary: Mean=6.776, Std. Dev.=0.1681, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8856, critical = 0.749. Kappa = 2.458 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505.

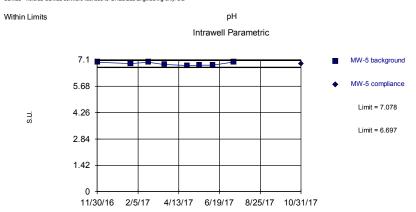
Prediction Limit Analysis Run 12/5/2017 2:07 PM View: SBMU-SPS Appendix III

SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SBMU-SPS EDD File 09-28-17

Sanitas™ v.9.5.32 Sanitas software licensed to GREDELL Engineering only. UG

Within Limits

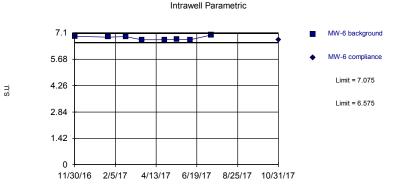
S.U


Within Limits

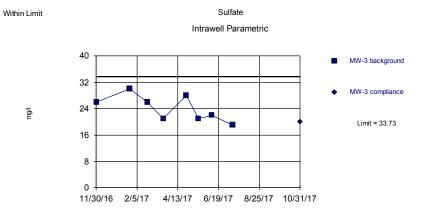
pН Intrawell Parametric 7.6 MW-4 background MW-4 compliance 6.08 Limit = 7.529 4.56 l imit = 7 291 3.04 1.52 0 11/30/16 2/5/17 4/13/17 6/19/17 8/25/17 10/31/17

Background Data Summary: Mean=7.41, Std. Dev.=0.0484, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.7828, critical = 0.749. Kappa = 2.458 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505.

Prediction Limit Analysis Run 12/5/2017 2:07 PM View: SBMU-SPS Appendix III SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SBMU-SPS EDD File 09-28-17

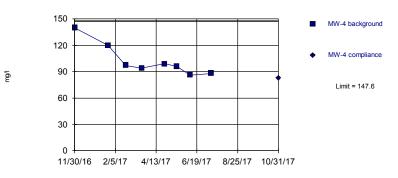

Sanitas™ v.9.5.32 Sanitas software licensed to GREDELL Engineering only. UG

Background Data Summary: Mean=6.888, Std. Dev.=0.07741, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8471, critical = 0.749. Kappa = 2.458 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505.


Sanitas™ v.9.5.32 Sanitas software licensed to GREDELL Engineering only. UG

Background Data Summary: Mean=6.825, Std. Dev.=0.1018, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8714, critical = 0.749. Kappa = 2.458 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505.

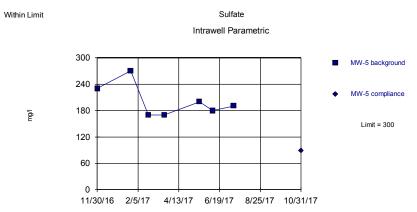
Sanitas™ v.9.5.32 Sanitas software licensed to GREDELL Engineering only. UG



Background Data Summary: Mean=24.13, Std. Dev.=3.907, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.09297, critical = 0.749. Kappa = 2.458 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.00505.

Within Limit

Sulfate



Background Data Summary: Mean=102.5, Std. Dev=18.33, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.0132, critical = 0.749. Kappa = 2.458 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.00505.

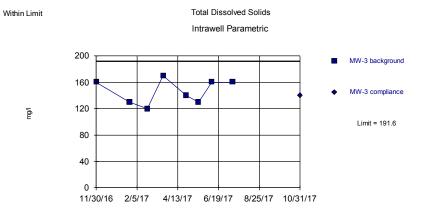
Prediction Limit Analysis Run 12/5/2017 2:07 PM View: SBMU-SPS Appendix III SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SBMU-SPS EDD File 09-28-17 Prediction Limit Analysis Run 12/5/2017 2:07 PM View: SBMU-SPS Appendix III SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SBMU-SPS EDD File 09-28-17

Sanitas™ v.9.5.32 Sanitas software licensed to GREDELL Engineering only. UG

Background Data Summary: Mean=2014, Std. Dev=36.71, n=7. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.08585, critical = 0.73. Kappa = 2.685 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505. Sanitas™ v.9.5.32 Sanitas software licensed to GREDELL Engineering only. UG

l/gr

V.S.S.SZ Galillas soltware ilcensed to GIVEDELE Engineering only. OG



MW-6 background

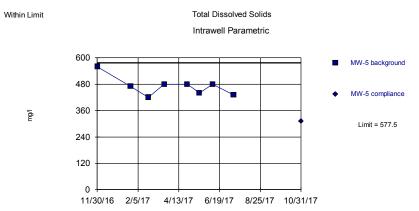
Background Data Summary: Mean=32.88, Std. Dev.=4.853, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8801, critical = 0.749. Kappa = 2.458 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.00505.

Sanitas™ v.9.5.32 Sanitas software licensed to GREDELL Engineering only. UG

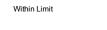
Background Data Summary: Mean=146.3, Std. Dev.=18.47, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8903, critical = 0.749. Kappa = 2.458 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505.

Within Limit

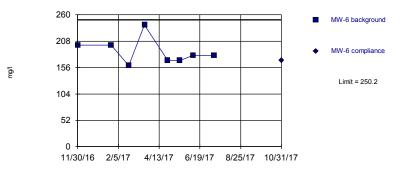
l/gr



Background Data Summary: Mean=326.3, Std. Dev=32.92, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9148, critical = 0.749. Kappa = 2.458 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.00505.


Prediction Limit Analysis Run 12/5/2017 2:07 PM View: SBMU-SPS Appendix III SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SBMU-SPS EDD File 09-28-17 Prediction Limit Analysis Run 12/5/2017 2:07 PM View: SBMU-SPS Appendix III SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SBMU-SPS EDD File 09-28-17

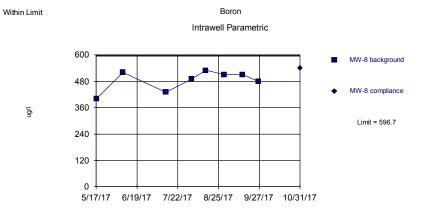
Sanitas™ v.9.5.32 Sanitas software licensed to GREDELL Engineering only. UG



Background Data Summary: Mean=470, Std. Dev.=43.75, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8718, critical = 0.749. Kappa = 2.458 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.0002505.

Sanitas[™] v.9.5.32 Sanitas software licensed to GREDELL Engineering only. UG

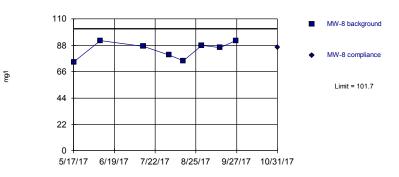
Total Dissolved Solids Intrawell Parametric



Background Data Summary: Mean=187.5, Std. Dev=25.5, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8761, critical = 0.749. Kappa = 2.458 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505.

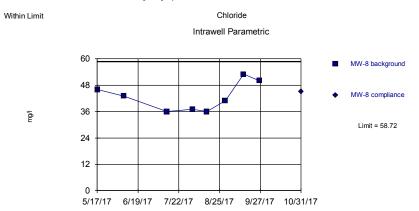
Prediction Limits MW-8

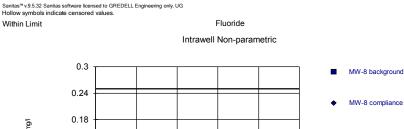
	SBMU-Sik	SBMU-Sikeston Power Station		ELL Engineerin	g Data: SBMU-SPS EDD File 09-28-17				7 Printed 12/5/2	017, 2:05 PM	
Constituent	Well	Upper Lim.	Lower Lim.	Date	Observ.	<u>Sig.</u>	<u>Bg N</u>	<u>%NDs</u>	Transform	<u>Alpha</u>	Method
Boron (ug/l)	MW-8	596.7	n/a	10/31/2017	540	No	8	0	No	0.002505	Param Intra 1 of 2
Calcium (mg/l)	MW-8	101.7	n/a	10/31/2017	86	No	8	0	No	0.002505	Param Intra 1 of 2
Chloride (mg/l)	MW-8	58.72	n/a	10/31/2017	45	No	8	0	No	0.002505	Param Intra 1 of 2
Fluoride (mg/l)	MW-8	0.25	n/a	10/31/2017	0.125ND	No	8	100	n/a	0.02144	NP Intra (NDs) 1 of 2
pH (S.U.)	MW-8	7.285	7.018	10/31/2017	7.09	No	8	0	No	0.001253	Param Intra 1 of 2
Sulfate (mg/l)	MW-8	131.1	n/a	10/31/2017	110	No	8	0	No	0.002505	Param Intra 1 of 2
Total Dissolved Solids (mg/l)	MW-8	448	n/a	10/31/2017	380	No	8	0	No	0.002505	Param Intra 1 of 2


Sanitas™ v.9.5.32 Sanitas software licensed to GREDELL Engineering only. UG

Background Data Summary: Mean=483.8, Std. Dev=45.96, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wik @alpha = 0.01, calculated = 0.8712, critical = 0.749. Kappa = 2.458 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.00505.

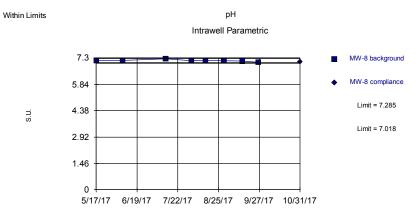
Within Limit


Calcium Intrawell Parametric


Background Data Summary: Mean=84.25, Std. Dev=7.106, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.08865, critical = 0.749. Kappa = 2.458 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.00505.

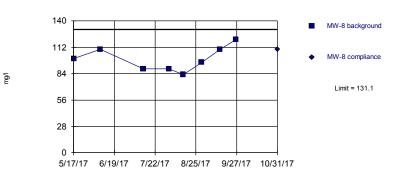
Prediction Limit Analysis Run 12/5/2017 2:04 PM View: SBMU-SPS Appendix III SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SBMU-SPS EDD File 09-28-17 Prediction Limit Analysis Run 12/5/2017 2:04 PM View: SBMU-SPS Appendix III SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SBMU-SPS EDD File 09-28-17

Sanitas™ v.9.5.32 Sanitas software licensed to GREDELL Engineering only. UG


Background Data Summary: Mean=42.75, Std. Dev=6.497, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9101, critical = 0.749. Kappa = 2.458 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.00505.

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 8) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.04242. Individual comparison alpha = 0.02144 (1 of 2). Insufficient data to test for seasonality: data were not deseasonalized.

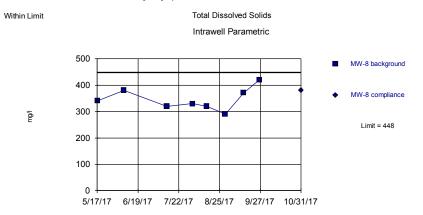
Sanitas™ v.9.5.32 Sanitas software licensed to GREDELL Engineering only. UG


Background Data Summary: Mean=7.151, Std. Dev.=0.05436, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8529, critical = 0.749. Kappa = 2.458 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505.

Sanitas™ v.9.5.32 Sanitas software licensed to GREDELL Engineering only. UG

Within Limit

Sulfate Intrawell Parametric



Background Data Summary: Mean=99.63, Std. Dev.=12.79, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9458, critical = 0.749. Kappa = 2.458 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505.

Prediction Limit Analysis Run 12/5/2017 2:04 PM View: SBMU-SPS Appendix III SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SBMU-SPS EDD File 09-28-17 Prediction Limit Analysis Run 12/5/2017 2:04 PM View: SBMU-SPS Appendix III SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SBMU-SPS EDD File 09-28-17

Sanitas™ v.9.5.32 Sanitas software licensed to GREDELL Engineering only. UG

Background Data Summary: Mean-346.3, Std. Dev.=41.38, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9539, critical = 0.749. Kappa = 2.458 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.00505.