1505 East High Street Jefferson City, Missouri 65101 Telephone (573) 659-9078 www.ger-inc.biz

GREDELL Engineering Resources, Inc.

Sikeston Power Station 2019 Annual Groundwater Monitoring Report for Fly Ash Pond For Compliance with USEPA 40 CFR 257.90(e)

Sikeston Power Station 1551 West Wakefield Avenue Sikeston, Missouri 63801

August 1, 2019

Sikeston Power Station 2019 Annual Groundwater Monitoring Report for Fly Ash Pond Compliance with USEPA 40 CFR 257.90(e)

<u>Prepared for:</u> Sikeston Board of Municipal Utilities 1551 West Wakefield Avenue Sikeston, Missouri 63801

August 2019

Prepared by: GREDELL Engineering Resources, Inc. 1505 East High Street Jefferson City, Missouri 65101 Phone: (573) 659-9078 www.ger-inc.biz

Sikeston Power Station 2019 Annual Groundwater Monitoring Report for Fly Ash Pond Compliance with USEPA 40 CFR 257.90(e)

August 2019

Table of Contents

1.0	INTRODUCTION	.1
2.0	GROUNDWATER MONITORING SYSTEM	.2
3.0 3.1	FIELD SAMPLING SUMMARY Field Quality Assurance/Quality Control	
4.0	ANALYTICAL SUMMARY	.4
4.1	Laboratory Quality Control	.4
4.2	Precision and Accuracy	.4
4.3	Representativeness	. 5
4.4	Comparability	
4.5	Completeness	
5.0	STATISTICAL ANALYSIS	.6
5.1	Statistical Results	.7
6.0	SUMMARY	.8
7.0	LIMITATIONS	.9
8.0	REFERENCES	10

List of Figures

Figure 1 – Groundwater Contour Map – March 27, 2019

List of Tables

- Table 1 Groundwater Monitoring Well Summary Fly Ash Pond
- Table 2 Historical Groundwater Level Summary
- Table 3 Water Levels and Field Parameter Summary
- Table 4 Groundwater Monitoring Constituents
- Table 5 Relative Percent Difference Summary
- Table 6 Intra-Well Prediction Limit Summary

List of Appendices

- Appendix 1 Field Sampling Notes
- Appendix 2 Laboratory Analytical Results
- Appendix 3 Laboratory Quality Assurance/Quality Control Data
- Appendix 4 Fly Ash Pond Groundwater Quality Data Base
- Appendix 5 Statistical Power Curve
- Appendix 6 Time Series Plots
- Appendix 7 Box and Whiskers Plots
- Appendix 8 Prediction Limit Charts

1.0 INTRODUCTION

The Sikeston Power Station (SPS), owned and operated by the Sikeston Board of Municipal Utilities (SBMU), is an electric power producer and distributor located within the western city limits of Sikeston, in southern Scott County, Missouri. The SBMU-SPS began operation in 1981 and produces approximately 235 megawatts of electricity. Coal combustion residuals (approximately 10,000 tons per annum) are currently sold or placed in the facility's two coal ash surface impoundments located immediately east of the power station. Both impoundments are on properties owned and controlled by SBMU. One coal ash impoundment measuring approximately 61 acres in size is actively used for bottom ash disposal. The second coal ash impoundment measuring approximately 30 acres in size is primarily used for fly ash disposal. It is subject to the alternate compliance schedule specified by the United States Environmental Protection Agency (USEPA) under 40 CFR Part 257.100(e)(5)(ii) due to its initial inactive status and the Response to Partial Vacatur (the Direct Final Rule). This report pertains specifically to the Fly Ash Pond.

Pursuant to USEPA's 40 CFR Part 257 (§257) Federal Criteria for Classification of Solid Waste Disposal Facilities and Practices, Subpart D – Standards for Disposal of Coal Combustion Residuals (CCR) in Landfills and Surface Impoundments (ponds), the establishment of a groundwater monitoring system and routine detection sampling and reporting is required at all coal ash surface impoundments. The purpose of a monitoring well system is to evaluate the quality of groundwater as it passes beneath the waste mass within an impoundment. Groundwater samples are collected and analyzed on a semi-annual basis in accordance with §257.93, or as otherwise detailed in a site-specific Groundwater Monitoring and Sampling Plan (GMSAP). Analytical data also are subjected to statistical analysis in accordance with §257.90(e). If results suggest that a statistically significant increase (SSI) in one or more constituents for detection monitoring listed in Appendix III of §257 has occurred, a written demonstration is required to determine if the SSI is attributable to alternate causative factors. If a successful demonstration is not made, an assessment monitoring program must be initiated as required under §257.95.

This report describes the results of the first semi-annual detection groundwater sampling event conducted at the SPS Fly Ash Pond on March 27, 2019. Included is a description of the sampling event, groundwater elevations, water table surface, field activities summary, analytical results, and statistical analysis results. Field sampling and reporting activities were conducted in accordance with the site-specific GMSAP (Gredell Engineering, 2018). Statistical analysis was performed in accordance with §257.93(f) using the statistical analysis method as filed in the SBMU-SPS operating record on April 15, 2019.

2.0 GROUNDWATER MONITORING SYSTEM

The groundwater monitoring system for the Fly Ash Pond consists of five wells. Well locations are depicted on Figure 1. The wells are identified as MW-1, MW-2, MW-3, MW-7, and MW-9. MW-2 and MW-3 are located hydraulically upgradient of the Fly Ash Pond, whereas MW-1, MW-7, and MW-9 are hydraulically downgradient of the Fly Ash Pond. Monitoring wells MW-1, MW-2, and MW-3 were installed on April 26 and 27, 2016 by Smith & Company of Poplar Bluff, Missouri during characterization of the site (Gredell Engineering, 2017). Monitoring wells MW-7 and MW-9 were installed on April 18, 2017 and November 13, 2017, respectively, by Bulldog Drilling, Inc. of Dupo, Illinois to serve as an additional downgradient monitoring wells. Well construction activities were performed under the direction of a Registered Geologist in the State of Missouri. Well design and installation techniques were completed in accordance with 10 CSR 23-4, which is consistent with the standards summarized in 40 CFR 257.91(e). Well depths are between 30 and 35.5 feet below ground surface. All five wells monitor uppermost groundwater, which is within the alluvial aquifer at the Fly Ash Pond site. Each well yields sufficient quantities of water for the purposes of sampling and analysis.

Table 1 presents a construction summary of the wells comprising the Fly Ash Pond groundwater monitoring system. Figure 1 depicts well locations and a groundwater contour map of the uppermost aquifer for the March 2019 semi-annual sampling event. This map confirms that water in the uppermost aquifer continues to move in a west-southwesterly direction, consistent with the conclusions of the Site Characterization Report (Gredell Engineering, 2017). All groundwater wells are equipped with dedicated tubing for use with a peristaltic pump. This system has been used for chemical sampling since inception of groundwater sampling for the Fly Ash Pond. The Fly Ash Pond groundwater monitoring system is described in more detail in the site-specific GMSAP for this facility (Gredell Engineering, 2018).

3.0 FIELD SAMPLING SUMMARY

SPS environmental staff performed groundwater sampling on March 27, 2019. This sampling event was the first semi-annual detection groundwater sampling events conducted at the SPS Fly Ash Pond, and was conducted in the manner described in the following paragraphs and the GMSAP for this facility (Gredell Engineering, 2018).

Groundwater samples were collected from all five monitoring wells using low-flow sampling techniques and dedicated sampling equipment. Field tests of indicator parameters were performed using an In-Situ, Inc. SmarTROLL TM MP flow cell unit and HF Scientific MicroTPI field portable turbidimeter. Each groundwater sample was subsequently analyzed for the constituents listed in §257 Appendix III. All five monitoring wells produced sufficient volume of groundwater for full analysis.

During the sampling event, the environmental staff inspected each monitoring well upon arrival. Wells appeared to be in satisfactory condition and had locks in place. Staff initially gauged water levels in the monitoring wells using a standard electronic water level meter graduated in increments of 0.01 feet. Static water levels were recorded on forms provided in the GMSAP. Each well was then purged, and the field measurement of pH was recorded. Staff monitored water quality until indicator parameters (pH and specific conductance) stabilized in accordance with the criteria in the GMSAP. Additional indicator parameters (turbidity, temperature, dissolved oxygen, and oxidation/reduction potential) were monitored for stability prior to groundwater sample collection.

Field notes documenting the sampling events and a copy of the chain-of-custody forms are presented in Appendix 1. Field sampling notes are summarized in Table 3, including initial and final water level measurements, purge volumes, and pH. Raw analytical laboratory data sheets for each sample, including the field blank and sample replicate, are included in Appendix 2. Quality Assurance/Quality Control (QA/QC) documentation is presented in Appendix 3. A summary of background and detection monitoring analytical data and field parameters is presented in Appendix 4.

3.1 Field Quality Assurance/Quality Control

Field QA/QC during the sampling event included the collection of one field blank and one field replicate sample. The replicate was collected from MW-2 (identified as DUP in Table 5). Rinsate blanks were not collected because dedicated sampling equipment was used. Samples were immediately shipped to PDC Laboratories' primary facility located in Peoria, Illinois using standard chain-of-custody documentation/procedures.

Samples were received by the primary facility on March 29, 2019 and subsequently analyzed for the six detection monitoring constituents listed in §257 Appendix III and required under §257.94(b) (Table 4). Final hard copy analytical results were received from PDC Laboratories on April 9, 2019.

4.0 ANALYTICAL SUMMARY

Hard copy analytical data for each monitoring well sampled during the March 2019 detection monitoring event is provided in Appendix 2. The data pertain to water quality results from the uppermost aquifer in the area bordering the Fly Ash Pond, along with sample replicate and field blank results.

4.1 Laboratory Quality Control

Laboratory analysis of the March 2019 groundwater samples was completed by PDC Laboratories, Inc., of Peoria, Illinois. The results were accompanied by appropriate QA/QC documentation. That documentation is presented in Appendix 3.

4.2 **Precision and Accuracy**

Precision is a measure of the reproducibility of analytical results, generally expressed as a Relative Percent Difference (RPD). Laboratory quality control procedures to measure precision consist of laboratory control sample (LCS) analysis and analysis of matrix spike/matrix spike duplicates (MS/MSD). These analyses are used to define analytical variability. Accuracy is defined as the degree of agreement between the measured amount of a species and the amount actually known to be present, expressed as a percentage. It is generally determined by calculating the percent recoveries for analyses of surrogate compounds, laboratory control samples, continuing calibration check standards and matrix spike samples. Acceptable percent recoveries are established for SW-846 and USEPA methods. Field and laboratory blank analyses are also used to address measurement bias.

The analyses for detection monitoring samples were performed within appropriate hold times and both initial and continuing calibrations met acceptance criteria for all analyses. Similarly, method blanks and LCS analyses met acceptance criteria. The case narrative indicates that all quality controls met acceptance criteria.

Additional QA/QC comments include the following:

- Field Replicates: Analyses of replicate samples are used to define the total variability of the sampling/analytical system as a whole. One field replicate from MW-2 was collected during the detection monitoring event. The RPD was calculated for all detected chemical parameters. Accordingly, RPDs were calculated for all parameters during the detection sampling event except Fluoride, which was not reported in a concentration above the detection limit. A summary table showing the results of the RPD calculations is included as Table 5. Using a tolerance level of <u>+</u>20 percent, all calculated RPDs were within acceptable ranges for each parameter except Boron.
- *Field Blank:* One field blank was incorporated into the data set for the detection sampling event. Results for the field blank showed that it contained no reportable concentrations of any Appendix III constituent.

 Laboratory Blanks: Method blanks, artificial, and matrix-less samples are analyzed to monitor the laboratory system for interferences and contamination from glassware, reagents, etc. Method blanks are taken throughout the entire sample preparation process. They are included with each batch of extractions or digestions prepared, or with each 20 samples, whichever was more frequent. Reference to Appendix 3 should be made for comments related to these and other laboratory control samples.

4.3 Representativeness

Representativeness expresses the degree to which sample data accurately and precisely reflect site conditions. Representativeness of the data is determined by comparing actual sampling procedures to those delineated in the field sampling plan, comparing results from field replicate samples and reviewing the results of field blanks.

Approved sampling procedures are described in the GMSAP (Gredell Engineering, 2018). Procedures specified in that plan have been followed. Approved sampling procedures should be reviewed annually. Groundwater monitoring data are evaluated using an intrawell statistical analysis methodology and is conducted separately for each constituent in each monitoring well using prediction limits in accordance with §257.93(f)(3) and the performance standards in §257.93(g). The stated statistical approach, along with supporting documentation and engineering certification, are available in the SBMU-SPS On-Site Operating Record.

4.4 Comparability

Comparability expresses the confidence with which one data set can be compared to another data set measuring the same property. Comparability is ensured by using established and approved sample collection techniques and analytical methods, consistent basis of analysis, consistent reporting units, and analyzing standard reference materials.

4.5 Completeness

Completeness is a measure of the amount of valid data obtained from a measurement system compared to the amount expected under controlled laboratory conditions. Completeness is defined as the valid data percentage of the total tests requested. Valid data are defined as those where the sample arrived at the laboratory intact, properly preserved, in sufficient quantity to perform the requested analyses, and accompanied by a completed chain-of-custody form (Appendix 3). Furthermore, the sample must have been analyzed within the specified holding time and in such a manner that analytical QC acceptance criteria are met.

5.0 STATISTICAL ANALYSIS

The statistical analysis method used to evaluate groundwater within the uppermost aquifer for the Fly Ash Pond groundwater monitoring system at SBMU-SPS consists of intra-well analysis using prediction limits. The analysis is conducted separately for each constituent in each of the five monitoring wells for each sampling event in accordance with §257.93(f)(3). This statistical method complies with the accepted performance standards listed in §257.93(g).

A complete background data set has been obtained for groundwater, representing the uppermost aquifer, moving below the Fly Ash Pond at the SPS. The background data used to evaluate current groundwater quality is based on eight rounds of groundwater sampling of the five wells spanning March 2018 to December 2018. The background data set may be updated every two years but SSIs will not be included in background unless they are unconfirmed in accordance with Unified Guidance (USEPA, 2009).

Statistical analysis was performed in accordance with §257.93 using SanitasTM for Ground Water (Version 9.6.14; 2019). Intra-well prediction intervals were compared at the 99 percent confidence level for each Appendix III constituent. The groundwater analytical results from the March 2019 detection monitoring event were compared to the prediction limits (Table 6) to determine SSIs if over background exist in the data set.

If the number of reportable concentrations of a given constituent in a background data set for a given well is not sufficient to permit parametric analysis, non-parametric prediction interval analysis is conducted. Both parametric and non-parametric prediction limit analysis were performed for the Fly Ash Pond groundwater monitoring system data. Prediction intervals are based on the background monitoring data sets (Appendix 4), including results reported as less than detection limits. Initially, outlier analysis was performed for the background data set using Exploratory Data Analysis (EDA) with SanitasTM, time-series plots, and box and whiskers plots. However, because the background data span a collection period of less than one year, variance in the data set may be attributable to natural seasonal variation. Therefore, all background data have been retained as recommended by Unified Guidance (USEPA, 2009) when no basis for likely error or discrepancy can be identified. Following future updates to the background data set, the identification of potential outliers will be re-evaluated.

The results of the statistical analysis for the March 2019 sampling event are described below. A complete database summarizing the sample results, dates of sampling, and the purpose of sampling event, as per §257.90(e)(3), is provided in Appendix 4. A statistical power curve, based on the background data, is provided in Appendix 5. Trend analysis (time-series) plots of background data for all detection monitoring constituents are presented in Appendix 6. Box and whiskers plots of background data are presented in Appendix 7. Prediction limit charts are provided in Appendix 8.

5.1 Statistical Results

The statistical analysis for the Fly Ash Pond groundwater monitoring system do not identify SSIs in the March 27, 2019 data set. Therefore, detection monitoring in accordance with §257.94 should continue on a semi-annual basis as specified in §257.94(b).

6.0 SUMMARY

The statistical analysis results for samples obtained during the first semi-annual groundwater detection monitoring event conducted on March 27, 2019, do not identify SSIs associated with the Fly Ash Pond groundwater monitoring system. Therefore, it is recommended that detection monitoring of the Fly Ash Pond continue on a semi-annual basis in accordance with §257.94(b).

7.0 LIMITATIONS

This report has been prepared for the exclusive use of the client and GREDELL Engineering Resources, Inc. for the specific project discussed in accordance with generally accepted environmental practices common to this locale at this time. No other warranties, expressed or implied, are provided.

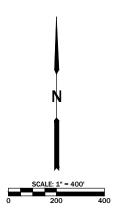
Interpretations of data and recommendations made in this report are based on observations of data that were available and referred to in this report unless otherwise noted. The report is applicable only to this specific project and known site conditions as they existed at the time of report preparation.

This report is not a guarantee of subsurface conditions. Variations in subsurface conditions may be present that were not identified during this or previous investigations. The use of this report and interpretations of data or conclusions developed by others are the sole responsibility of those firms or individuals.

8.0 **REFERENCES**

GREDELL Engineering Resources, Inc., 2017, *Sikeston Power Station Site Characterization for Compliance with Missouri State Operating Permit #MO-0095575*, dated May 2017.

GREDELL Engineering Resources, Inc., 2018, *Sikeston Power Station Groundwater Monitoring and Sampling Plan for Compliance with Missouri State Operating Permit #MO-0095575*, dated September 2018.


Sanitas Statistical Software, © 1992-2019 SANITAS TECHNOLOGIES, Alamosa Colorado 81101-0012.

U.S. Environmental Protection Agency, March 2009, Statistical Analysis of Groundwater Monitoring *Data at RCRA Facilities Unified Guidance*: USEPA 530/R-09-007, Office of Resource Conservation and Recovery, Program Implementation and Information Division, Washington, D.C.

FIGURES

Σ

LEGEND	
PROPERTY LINE	PL
GROUNDWATER CONTOUR	
MONITORING WELL	(MW)
UP GRADIENT MONITORING LOCATION	UG
DOWN GRADIENT MONITORING LOCATION	DG
GENERAL FLOW DIRECTION	-

- NOTES:

 1.
 IMAGE PROVIDED BY BING MAPS.

 2.
 MONITORING WELL LOCATIONS, CASING ELEVATIONS & UNDERGROUND CULVERT ELEVATIONS SURVEYED BY BOWEN ENGINEERING & SURVEYING.

 3.
 GROUNDWATER ELEVATIONS MEASURED BY SIKESTON POWER STATION STAFF ON MARCH 27, 2019.

 4.
 MAP DEVELOPMENT BASED ON CONTOURS GENERATED BY SURFER® SOFTWARE.

 5.
 RANGE oF GROUNDWATER FLOW GRADIENT AS DETERMINED BY SURFER® SOFTWARE 0.0001 FT./FT. TO 0.001 FT./FT.

WELL	GROUNDWATER ELEVATION (FEET)	CASING ELEVATION (FEET)	NORTHING	EASTING
	297.69	312.77	383119.51	1078467.90
	298.93	308.01	383207.42	1079751.30
	298.51	308.55	381130.00	1079946.62
	297.58	315.03	381584.50	1078847.00
	297.93	314.68	382429.94	1078825.60

THE GEOLOGIST WHO REVIEWED AND APPROVED THIS REPORT ASSUMES RESPONSIBILITY ONLY FOR GEOLOGIC INTERPRETATIONS OF DATA APPEARING ON THE PAGE AND DISCLAIMS PURSUANT TO SECTION 256.456 RSM0 ANY RESPONSIBILITY FOR ALL OTHER PLANS, SPECIFICATIONS, ESTIMATES, REPORTS OR OTHER DOCUMENTS ON INSTRUMENTS NOT PEARED UNDER THE SUPERVISION OF THE GEOLOGIST RELATING	TO OR INTENDED TO BE USED FOR ANY PART OR PARTS OF THE PROJECT TO WHICH THIS FIGURE REFERS.
ИАР	SHEET # 1 OF 1
FIGURE 1 GROUNDWATER CONTOUR MAP MARCH 27, 2019	FILE NAME GWCONT FAP 2019
FIG GROUNDWATI MARCH	HECKED APPROVED DATE SCALE PROJECT NAME RENAME KE MCC 8/2019 AS NOTED SIKESTON/GWMAP/FAP GWCONT FAP 2019
	SCALE AS NOTED
TION WATER DRT	DATE 8/2019
SIKESTON POWER STATION FLY ASH POND 2019 ANNUAL GROUNDWATER MONITORING & REPORT	CHECKED APPROVED DATE SCALE KE MCC 8/2019 AS NOTED SIK
N POWER ST ASH POND UAL GROUNE DRING & REP	9
(ESTON FLY ANNU IONITO	ed drawn FL
SIM 2019 V	URVEYED DESIGNED DRAWN NA NA FL
	41
GREDELL Engineering Resources, Inc. ENVIRONMENTAL ENGINEERING LAND - AIR - WATER 1505 East High Street Telephone: (573) 659-9078	eering license

TABLES

 Table 1

 Groundwater Monitoring Well Summary - Fly Ash Pond

Monitoring Well ID ^{1,2}	Northing Location ^{3,4}	Easting Location ^{3,4}	Ground Surface Elevation ^{3,4} (feet)	Top of Riser Elevation ^{3,4} (feet)	Well Depth ⁵ (feet)	Base of Well Elevation ⁶ (feet)	Screen Length ⁷ (feet)	Top of Screen Elevation (feet)
MW-1	383119.51	1078467.90	310.41	312.77	37.84	274.93	10	285.1
MW-2	383207.42	1079751.30	305.53	308.01	37.42	270.59	10	280.8
MW-3	381130.00	1079946.62	306.11	308.55	37.21	271.34	10	281.5
MW-7	381584.50	1078847.00	312.70	315.03	37.37	277.66	10	287.9
MW-9	382429.94	1078825.60	311.85	314.68	37.28	277.40	10	287.6

NOTES:

1. Refer to Figure 1 for monitoring well locations.

2. Refer to Sikeston Power Station On-Site Operating Record for well construction diagrams.

3. Monitoring well survey data provided by Bowen Engineering & Surveying, Inc.

4. Horizontal Datum: Missouri State Plane Coordinates - NAD 83 (Feet), Vertical Datum: NAVD 88 (Feet).

5. Depth measurements relative to surveyed point on top of well casing.

6. Sump installed at base of screen (0.2 feet length).

7. Actual screen length (9.7 feet) is the machine-slotted section of the 10-foot length of Schedule 40 PVC pipe.

Well ID	MW-1	MW-2	MW-3	MW-7	MW-9			
Date	Groundwater Elevation (feet MSL)							
05/12/16	297.50	298.66	298.13	NM	NM			
06/28/16	296.60	298.01	297.58	NM	NM			
07/15/16	296.57	297.86	297.37	NM	NM			
08/08/16	295.62	297.06	297.05	NM	NM			
09/08/16	296.06	297.27	296.76	NM	NM			
10/05/16	295.86	296.96	296.40	NM	NM			
11/01/16	295.47	296.66	296.10	NM	NM			
11/30/16	295.45	296.60	296.03	NM	NM			
01/24/17	NM	NM	296.35	NM	NM			
01/26/17	295.77	296.76	296.35	NM	NM			
02/22/17	NM	NM	296.00	NM	NM			
02/24/17	295.47	296.40	296.00	NM	NM			
03/20/17	296.11	296.96	296.45	NM	NM			
04/19/17	296.04	296.86	296.35	NM	NM			
04/27/17	NM	NM	296.72	NM	NM			
05/17/17	NM	NM	297.81	NM	NM			
06/08/17	NM	NM	297.81	NM	NM			
07/13/17	NM	NM	296.98	NM	NM			
10/31/17	NM	NM	295.22	NM	NM			
03/21/18	295.92	296.96	296.65	295.83	296.13			
04/15/18	297.07	297.86	297.60	296.95	297.18			
05/23/18	296.78	298.01	297.62	296.66	296.98			
06/13/18	NM	NM	297.33	NM	NM			
06/27/18	296.37	297.61	297.21	296.26	296.56			
08/01/18	295.22	296.60	296.15	295.08	295.48			
09/05/18	294.79	296.11	295.68	294.71	295.01			
11/06/18	295.01	296.21	295.74	294.85	295.17			
11/26/18	NM	NM	295.63	NM	NM			
12/12/18	295.12	296.21	295.79	295.06	295.36			
01/08/19	295.66	296.72	296.38	295.53	295.80			
02/05/19	NM	NM	296.73	NM	NM			
03/27/19	297.69	298.93	298.51	297.58	297.93			

Table 2Historical Groundwater Level Summary

NOTES:

1. Refer to Figure 1 for monitoring well locations.

2. Refer to Sikeston Power Station On-Site Operating Record for well construction diagrams.

3. NM - Not Measured.

4. Maximum and minimum groundwater elevations are shaded.

Table 3Water Levels and Field Parameter SummaryMarch 27, 2019

Monitoring Well I.D.	Hydraulic Position	Initial Water Level (ft, BTOC ²)	Final Water Level (ft, BTOC ²)	Minimum ³ Purge Vol. (ml ⁴)	Actual Purge Vol. (ml ⁴)	pH (S.U.⁵)
MW-1	Downgradient	15.08	15.08	300	4,760	7.1
MW-2	Upgradient	9.08	9.08	300	2,440	6.3
MW-3	Upgradient	10.04	10.04	300	6,400	6.4
MW-7	Downgradient	17.45	17.45	300	4,420	7.3
MW-9	Downgradient	16.75	16.75	300	1,880	7.4

NOTES:

1. Sequence of sampling is MW-3, MW-2, MW-1, MW-7, then MW-9.

2. BTOC: Below Top of Casing

3. Purge calculations based on 1/4" ID tubing and complete evacuation of single tubing volume.

4. ml: milliliter

5. S.U.: Standard Unit.

Table 4 Groundwater Monitoring Constituents

USEPA 40 CFR 257						
Appendix III	-	Appendix IV -				
Constituents for Detectio	n Monitoring	Constituents for Assessment Mo	onitoring			
Chemical Constituent	Method	Chemical Constituent	Method			
pH (S.U.)	Field	Antimony (μg/L)	SW 6020			
Boron (µg/L)	SW 6020	Arsenic (µg/L)	SW 6020			
Calcium (mg/L)	SW 6020	Barium (μg/L)	SW 6020			
Chloride (mg/L)	EPA 300.0	Beryllium (μg/L)	SW 6020			
Fluoride (mg/L)	EPA 300.0	Cadmium (µg/L) SW 60				
Sulfate (mg/L)	EPA 300.0	Chromium (µg/L)	SW 6020			
Total Dissolved Solids (mg/L)	SM 2540C	Cobalt (µg/L)	SW 6020			
		Fluoride (mg/L)	EPA 300			
		Lead (µg/L)	SW 6020			
		Lithium (µg/L)	SW 6020			
		Mercury (µg/L)	SW 6020			
		Molybdenum (µg/L)	SW 6020			
		Selenium (µg/L)	SW 6020			
		Thallium (μg/L)	SW 6020			
		Radium 226 and 228 combined (pCi/L)	EPA 903.1 & 904.0			

NOTES:

1. S.U. = Standard Unit.

2. μ g/L = micrograms per liter.

3. mg/L = milligrams per liter.

4. pCi/L = picocurie per liter.

Table 5
Relative Percent Differences Summary -
March 27, 2019

Chemical Parameter	Units	MW-2	DUP	Relative Percent Difference
рН	S.U.	6.3	6.3	0.00
Boron	µg/L	31	49	45.00
Calcium	mg/L	17	16	6.06
Chloride	mg/L	3.3	3.4	2.99
Fluoride	mg/L	<0.250	<0.250	N/A
Sulfate	mg/L	20	19	5.13
Total Dissolved Solids	mg/L	130	120	8.00

NOTES:

1. S.U. = Standard Unit.

2. μ g/L = micrograms per liter.

3. mg/L = milligrams per liter.

4. Relative Percent Difference tolerance = 20%.

5. N/A = Not applicable - parameter concentration below reporting limit.

Chemical Parameter	Units	MW-1	MW-2	MW-3	MW-7	MW-9
40 CFR 257 Appendix III Constituents for						
Detection Monitoring						
pH Upper	S.U.	7.5	6.5	6.6	7.4	7.4
pH Lower	S.U.	6.9	5.9	6.4	7.2	7.3
Boron	µg/L	544.6	60.53	32.7	2385	6236
Calcium	mg/L	45.18	25.29	19.49	152.9	95.09
Chloride	mg/L	12.2	8.15	1.598	15.22	23.28
Fluoride	mg/L	0.313	0.335	0.4083	0.8677	1.14
Sulfate	mg/L	31.57	22.33	21.97	259.2	301.1
Total Dissolved Solids	mg/L	223.2	169.4	177.8	617.2	630.8
NOTEO						

Table 6 Intra-Well Prediction Limit Summary

NOTES:

1. Prediction limits based on eight rounds of background data spanning March 2018 to December 2018.

Appendix 1 Field Sampling Notes

Monitoring Well Field Inspection

Facility: <u>SBMU SPS - CCR Groundwater Monitoring</u> Monitoring Well ID: <u>MVVI</u> Name (Field Staff): <u>A Parte</u> D Dilling h.gm	-
Date: 3-27-19	
Access: Accessibility: Good Fair Poor Poor	
Well clear of weeds and/or debris?: Yes 🗠 No	
Well identification clearly visible?: Yes No	
Remarks:	
Concrete Pad: Good Inadequate	
Depressions or standing water around well?: Yes No	
Remarks:	
<u>Protective Outer Casing</u> : Material = $4^{\circ} \times 4^{\circ}$ Steel Hinged Casing with Hasp	
Condition of Protective Casing: Good Damaged	
Condition of Locking Cap: Good <u>Damaged</u>	
Condition of Lock: Good L Damaged	
Condition of Weep Hole: Good Damaged	
Remarks:	
Well Riser: Material = <u>2" Diameter, Schedule 40 PVC, Flush Threaded</u>	
Condition of Riser: Good Damaged	
Condition of Riser Cap: Good L Damaged	
Measurement Reference Point: Yes No	
Remarks:	
Dedicated Purging/Sampling Device: Type = 1/4 " ID Semi-Rigid Polyethylene & 0.170" ID Fle Silicone Tubing	<u>xible</u>
Condition: Good LDamaged Missing	
Remarks:	
Monitoring Well Locked/Secured Post Sampling?: Yes No	
Remarks:	
Field Certification AST. S. 1 (42) Jub Toch 3-27- Signed Title Date	19

Prepared by: GREDELL Engineering Resources, Inc.

Monito	oring Well ID	MV	✔	ility SBMU	J Sikeston P	ower Statio	n - Groundw	ater Monitor	ing		
Initial Wat	er Level (fee	t btoc):	15.0	18		Date:	3-27	-19			
		vation (NAVE				Air Pressur		YID			
	FORMATIO										
Date:	3-2	7-19									
Name (Sa	mple Collect	or):	mili	nyho	m						
	Well Purge:		/ Perstaltic F	Pump	Dec	dicated Tub	oing?	Y) / N			
Time Purc	ing Initiated:		1058		On	e (1) Well V	/olume (mL):		NA		
	Water Level			08			Purged (mL)		L176	5	
							o Dryness?		YIN		
				2		-			10) N	
Nell Tota	Depth (feet	btoc):	57.6	2	Wa		fter Sampling e., pump is c		().	00	
Casing Di	ameter (feet)	2" Sch 4	D PVC		Tin		g Completed		112	5	
					101	ie oamping	g oompleted				
PURGES	TABILIZATI			0	Dissolved		Oxidation		Water		lotes
Time	Purge Rate	Cumulative Volume	Temp (°C)	Specific Conductance	Oxygen	рН (S.U.)	Reduction Potential	Turbidity (NTU)	Level	(e.g.,	opacity,
	(mL/min)	(mL)		(µS/cm)	(mg/L)		(mV)		(feet btoc)		or, odor)
1100		540	16.75	3626	0.74	6.74	-102.9	99.09	1	YENON	Flake,
1102	240	1020	16.53	362.1	3.71	6.88	-103.8	79.28	15.08	IL	
1104		1500		361.1	0.62	6.98	-136.5	127.23	15.08	11	1,
1106		1480	16.56		3.48	7.04	-105.5		15.00		V
1108	220	2420	16.56	36.5.4	0.43 0.43	7.11	-105.7	101.10		11	U
1110	250	2923	16.24		J. UJ	7.13	- 91.7	65.12	15.08	M	1
1112	230			359.8		7.14			15.08	**	
1116	220	11200	16.57	354.8	234	7.14	-121.)		15.08		1
118				361.2		7.13			15.02		1
110	235	-1700	/	51.14							
						Ī					
						1	1				

btoc - below top of casing

ø

			Field Sam	pling Log						
Facility:	SBMU Sikeston	Power Station - (CCR Groundwa	ter Monitoring	Monitoring Wel	IID: M	w/			
Sampling Informa	ation:									
Method of Sampling: Low Flow - Perstaltic Pump & Tubing Dedicated:										
Water Level @ Sa	mpling (feet btoc)	15.0	8							
Monitoring Event:	Annual ()	Semi-Annual	Quarte	rly () Mo	onthly ()	Other ()				
Final Purge Stabliz	ation Sampling D	ata:								
<u>Date</u> Sample Time	Sample Rate (m⊡min)	Temp (°C)	Specific Conductance (µS/cm)	Dissolved Oxygen (mg/L)	рН (S.U.)	Oxidation Reduction Potential (mV)	Turbidity (NTU)			
3-27-19 118	230	16.60	361.2	0.36	7.13	-131.9	53.41			
2 - HF scientific, in General Information Weather Condition <u>53 ° F</u> Sample Character	oll Multi-Probe Finc. Micro TPI Fiel	eld Meter (Temp d Portable Turbi pling: <u>St</u>	dimeter	ic Conductance, Dissolv		, Oxidation Red	uction Potentiz			
Sample Collection		Per SAP		\$. 5						
		6. 								
· · ·					* 31					
×										
		in coorden	as with applica	hie EPA and State profe	ocols					

I certify that sampling procedures were in accordance with applicable EPA and State protocols,

Date: 3-27-19 By: Angr 1 Title: Las Tech

Page 2 of 2

Monitoring Well Field Inspection

Facility: SBMU SPS – CCR Groundwater Monitoring
Monitoring Well ID: Name (Field Staff): A Parel D Dillinghum
Date: 3-27-19
Access:
Accessibility: Good L Fair Poor
Well clear of weeds and/or debris?: Yes No
Well identification clearly visible?: Yes No
Remarks:
Concrete Pad: Good Left Inadequate
Depressions or standing water around well?: Yes No
Remarks:
Protective Outer Casing: Material = $4" \times 4"$ Steel Hinged Casing with Hasp
Condition of Protective Casing: Good Damaged
Condition of Locking Cap: Good L Damaged
Condition of Lock: Good Damaged
Condition of Weep Hole: Good Damaged
Remarks:
Well Riser: Material = 2" Diameter, Schedule 40 PVC, Flush Threaded
Condition of Riser: Good 🔐 Damaged
Condition of Riser Cap: Good L Damaged
Measurement Reference Point: Yes <u>No</u>
Remarks:
Dedicated Purging/Sampling Device: Type = 1/4 " ID Semi-Rigid Polyethylene & 0.170" ID Flexible Silicone Tubing
Condition: Good <u>Condition</u> Damaged Missing
Remarks:
Monitoring Well Locked/Secured Post Sampling?: Yes L
Remarks:
Field Certification this field las Tech 3-27-19
Field Certification Abst 1440 Cas Tech 5-27-19 Signed Title Date

Prepared by: GREDELL Engineering Resources, Inc.

January 2017

Monitor	ing Well ID:	Mw	2 Faci	lity: SBML	J Sikeston Pc	ower Station	n - Groundwa	ater Monitor	ing		
Initial Wate	r Level (feet	: btoc):	9.00	3		Date:	3-27	-19			
		vation (NAVD			/	Air Pressure	e in Well?	Y /(N)			
PURGE IN	FORMATIO	N									
Date:	3-2	7-19			200						
Name (San	nple Collecto	or):	Dil	ling	han						
Method of \	Nell Purge:	Low Flow	Perstaltic P	oump	Ded	licated Tubi	ing?	Y) / N			
Time Purgi	ng Initiated:	(0949	7	One	e (1) Well V	olume (mL):	3	NA		-
Beginning	Water Level	(feet btoc):	વ	. 38	Tota	al Volume F	Purged (mL):	D	2440		
		r Elevation (N	IAVD88):		We	Il Purged To	o Dryness?		Y /		
	Depth (feet		37.16				ter Sampling a., pump is c		9.	08	-
Casing Dia	meter (feet)	2" Sch 40) PVC		Tim		g Completed		100	9	
PURGE S	TABILIZATIO						Oxidation		Water	No	tes
Time	Purge Rate (mL/min)	Cumulative Volume (mL)	Temp (°C)	Specific Conductance (µS/cm)	Dissolved Oxygen (mg/L)	рН (S.U.)	Reduction Potential (mV)	Turbidity (NTU)	Level (feet btoc)	(e.g., c color,	opacity, odor)
0951		380	15.57	1642	1.01	6.42		२,५५		Clear,	
	250	885	15.62	164.4	1.36	6.32	69.1	3.81	9.08	"	11 11
0955	260	1430	15.75		3.89	6.27		2.12	9.08	15	
	273	1945	15.80	165.4	3.85	6.26	69.9	2.42	9.01	11	1
0959	250	2445	19.87	165.9	3.72	6.25	13.4	4.00	400		
										l	

Field Sampling Log

btoc - below top of casing

			Field Sam	ipling Log			
Facility:	SBMU Sikeston I	Power Station -	CCR Groundwa	ter Monitoring	Monitoring We		W R
Sampling Informa	tion;						
Method of Samplin	g: Low Flow -	Perstaltic Pump	& Tubing			Dedicated:	(Y) / N
Water Level @ Sa	mpling (feet btoc)	9.00	2				
Monitoring Event:	Annual ()	Semi-Annua	I () Quarte	rly () Mi	onthly ()	Other ()	
Final Purge Stabliz	ation Sampling D	ata:		-			
<u>Date</u> Sample Time	Sample Rate (mL/min)	Temp (°C)	Specific Conductance (µS/cm)	Dissolved Oxygen (mg/L)	рН (S.U.)	Oxidation Reduction Potential (mV)	Turbidity (NTU)
3-27-19 0959	250	15.87	165.9	J.12	6.25	7.3.4	2.60
Instrument Calibr See instrument cal 1 - In-Situ SmarTr 2 - HF scientific, ir	ibration log of dai oll Multi-Probe Fi	eld Meter (Temp	perature, Specifi	ing instruments: ic Conductance, Dissol	ved Oxygen, pH	, Oxidation Rec	luction Potentia
General Informati	ion:	-					
Weather Condition	is @ time of sam	oling: <u>St</u>	INNY				
44°F	cla	ch cl	Mass of	Lovess			(a (a))
Sample Character	istics: UR	202		evr u sj			
Sample Collection	Order:	Per SAP					21
Comments and Ob		26					
Collec	F DU	plicat	e				
Y							
I certify that samp	ling procedures w	vere in accordar	nce with applica	ble EPA and State prot	tocols.		
Date: 3 - 27 -	-19 ву:	A1.32	66-	Jel Title	: Las	TROM	ļ

Page 2 of 2

Monitoring Well Field Inspection

Facility: <u>SBMU SPS - CCR Groundwater Monitoring</u> Monitoring Well ID: <u>MW/3</u> Name (Field Staff): <u>A Patel 0 0illinghgm</u> Date: <u>03 · 27 - 19</u>
Access: Accessibility: Good <u>/</u> Fair Poor
Well clear of weeds and/or debris?: Yes 📈 No
Well identification clearly visible?: Yes 🗠 No
Remarks:
Concrete Pad: Condition of Concrete Pad: Good I Inadequate
Depressions or standing water around well?: Yes No
Remarks:
<u>Protective Outer Casing</u> : Material = $4^{\circ} \times 4^{\circ}$ Steel Hinged Casing with Hasp
Condition of Protective Casing: Good
Condition of Locking Cap: Good 🔛 Damaged
Condition of Lock: Good <u>Condition</u> Damaged
Condition of Weep Hole: Good 🖌 Damaged
Remarks:
Well Riser: Material = <u>2" Diameter, Schedule 40 PVC, Flush Threaded</u>
Condition of Riser: . Good Damaged
Condition of Riser Cap: Good Damaged
Measurement Reference Point: Yes No
Remarks:
Dedicated Purging/Sampling Device: Type = <u>1/4</u> " ID Semi-Rigid Polyethylene & 0.170" ID Flexible Silicone Tubing
Condition: Good 📈 Damaged Missing
Remarks:
Monitoring Well Locked/Secured Post Sampling?: Yes K No
Remarks:
Field Certification John from Lab Tech 3-27-19 Signed Title Date

Prepared by: GREDELL Engineering Resources, Inc.

January 2017

Field Sampling Log

Monito	ring Well ID:	MW	<u>3</u> Fac	ility: SBMU	J Sikeston P	ower Statio	n - Groundw	ater Monitori	ing		
Initial Wate	er Level (feel	t btoc):	10.0	4		Date:	3-2	7-19			
Initial Grou	indwater Ele	vation (NAVE				Air Pressur	e in Well?	Y/O			
PURGE IN	FORMATIO	N									
Date:	3-27	-19									
Name (Sar	mple Collect	or):) Dil	lingh	CIM	3					
Method of	Well Purge	Low Flow	Perstaltic f	oump	Dec	dicated Tub	ing? 🤇	Y) / N			
Time Purgi	ing Initiated:	07	ISI		One	e (1) Well V	/olume (mL)	-	NA		
Beginning	Water Level	(feet btoc):	10.	04	Tot	al Volume I	Purged (mL)		6400		
Beginning	Groundwate	r Elevation (N	AVD88):		We	Il Purged T	o Dryness?		YI		
Well Total	Depth (feet	btoc):	36.99		Wa		fter Sampling ə., pump is c	g (feet btoc):	10.	04	
Casing Dia	ameter (feet)	2" Sch 40) PVC		Tim		g Completed		0923	3	4
DUDOF 0					1.11	le damping	goompieted				
PURGES	TABILIZATIO Purge	Cumulative		Specific	Dissolved		Oxidation	-	Water		Notes
Time	Rate (mL/min)	Volume (mL)	Temp (°C)	Conductance (µS/cm)	Oxygen (mg/L)	рН (S.U.)	Reduction Potential (mV)	Turbidity (NTU)	Level (feet btoc)		g., opacity, plor, odor)
0853		340	15.70	191.3	1.90	6.55		41.51	10.04	Red	FIGKE, OLUY
0855	245	820	14.67	196.1	1.67	6.40	79.6	44.64	10.04	10	11
0857	240	1300	14.40	197.2	1.53	6.32	73.7	37.54	10.04	h	V
0854	260	1820	14.31	147.1	1.42	6.30	70.7	36.27	10,04	14	10
0901	260	2340	14.35	148.1	1.31	6.30	66.2	35.05	10.04	14	11
0903	250	2860	14.36	196.2	1.21	6.30	61.6	31.31	10.04	11	4
0905	260	3360	14.45	196.7	1.14	6.31	61.0	16.17	12,04	11	1
0107	280	3860	14.58	196.4	1.07	6.34	56.0	14.25	10.04	"	47
0909	250	4360		145.1	0.96	6.37	55.0	16.14	10.04	1	V
0911	257	4860		194.9	0.95		53.8	21.39	10.04	11	V
	260			195.6	0.41	6.37			N.OH	11	V
0915		5900	15.04		0.89	6.38		11.98	10,04		1
0917	250	6400	15.07	196.0	0.84	6-36	52.2	12.50	10,04	1.	W
							-				
				10							
				1						1	

			Field Sam	pling Log			
Facility:	SBMU Sikeston I	Power Station - (CCR Groundwa	ter Monitoring	Monitoring Wel	I ID:	w3
Sampling Informa	ation:						
Method of Samplin	ig: Low Flow -	Perstaltic Pump	& Tubing			Dedicated:	(Y) / N
Water Level @ Sa	mpling (feet btoc)	10.0	<u>у</u>				
Monitoring Event:	· Annual()	Semi-Annua	Quarte	rly () Mo	onthly()	Other ()	
Final Purge Stabliz	ation Sampling D	ata:		18			<u></u>
<u>Date</u> Sample Time	Sample Rate (mL/min)	Temp (°C)	Specific Conductance (µS/cm)	Dissolved Oxygen (mg/L)	рН (S.U.)	Oxidation Reduction Potential (mV)	Turbidity (NTU)
03-27-14	250	15.07	196.0	3.84	6.36	52,2	12,55
2 - HF scientific, in General Informat Weather Condition <u>41° F</u> Sample Character	ion: ns @ time of sam	pling: Sv	0 M Y	Mess, (31	Mess	2. IX.	
Sample Collection	Order:	Per SAP					
Comments and Ol	bservations:	্র গ্রহা		89. 5 x			
5 - 5 K					ie.		
E .					•		
S.		40 				ж.	
	3	3	ē.	1	9 x	2	
3						<i>c</i>	
		1					
	1						

I certify that sampling procedures were in accordance with applicable EPA and State protocols.

Date: 3-27-K1 By: 1884.32 Parton Title: Lab Tech

Page 2 of 2

Monitoring Well Field Inspection

Facility: <u>SBMU SPS – CCR Groundwater Monito</u> Monitoring Well ID: <u>MW</u> Name (Field Staff): <u>A</u>	
Date: 3-27-14	
Access: Accessibility: Good Fa	ir Poor
Well clear of weeds and/or debris?: Yes	
Well identification clearly visible?: Yes 上	No
Remarks:	
	ood Inadequate
Depressions or standing water around well?; Ye	es No
Remarks:	
<u>Protective Outer Casing</u> : Material = $4^{\circ} \times 4^{\circ}$ Steel I	Hinged Casing with Hasp
Condition of Protective Casing: Good	Damaged
Condition of Locking Cap: Good <u></u>	Damaged
Condition of Lock: Good 🗠	Damaged
Condition of Weep Hole: Good	Damaged
Remarks:	
Well Riser: Material = <u>2" Diameter, Schedule 40 PVC,</u>	Flush Threaded
Condition of Riser: Good	Damaged
Condition of Riser Cap: Good 崖	Damaged
Measurement Reference Point: Yes	No
Remarks:	
Dedicated Purging/Sampling Device: Type = ½ " ID Ser Silicone Tu	mi-Rigid Polyethylene & 0.170" ID Flexible ubing
Condition: Good 🖉 Damaged	Missing
Remarks:	
Monitoring Well Locked/Secured Post Sampling?	: Yes 🔛 No
Remarks:	
Field Certification Ash. 52 Percel 10	1 Tech 3-27-19
Field Certification	16 3-27-19 Date

Prepared by: GREDELL Engineering Resources, Inc.

January 2017

itiai vvate	r Level (feet	: btoc):	17.1	15		Date:	3-2	7-19			
itial Grou	ndwater Elev	vation (NAVD				Air Pressur	e in Well?	Y / 🕅			
URGE IN	FORMATIO	N									
ate:	3 -2	10									
ame (San	nple Collecto	or):	0.1	lingh	uM					0	
ethod of \	Vell Purge:	Low Flow	Perstaltic F	oump	Dec	dicated Tub	ing?	Y) / N			
me Purai	ng Initiated		144		On	e (1) Well V	/olume (mL):		NA		
-	-			1.45			Purged (mL)		442	0	
		(feet btoc):				1	8		<u> 442</u> Y/00		
		r Elevation (N		,		-	o Dryness?		17	45	
/ell Total	Depth (feet l	btoc):	Blid	· (Wa		fter Sampling e., pump is c		17		
asing Dia	meter (feet)	2" Sch 40	PVC		Tin		g Completed		120	9	
						ie oamping	goompiotoa	•		<i>.</i>	
URGE ST	ABILIZATIO			Specific	Dissolved		Oxidation		Water	Notes	
Time	Purge Rate	Cumulative Volume	Temp (°C)	Conductance	Oxygen	pH (S.U.)	Reduction Potential	Turbidity (NTU)	Level	(e.g., opac color, od	
	(mL/min)	(mL)	(0)	(µS/cm)	(mg/L)		(mV)		(feet btoc)	Red FIGK	
1146		360	16.96	786.8		7.10	45.0	21.78	17.45	Nee Flore	202
1148	243	840	16.16	745.4	0.58	7.18		27.82	17.45	11	4
1150	250	1340	1603	797.3	0.42	7.21	50.8	5.67 3.42	17.45	1	17
1152	250	1843	16.02			7.23	52,3	1	17.45	4	4
1154		2340	16.07	800.7	0,32 0.35	7.24	52.2		17.45	11	y
1156	1	2840		802.5		7.25	51.9	7.80	17,45	(1	11
1138	260	3360	16.11	2.7/ 1	2.36	7.20		2.91		11	V
1207	27.2	4420	16 24	801.3	0.11	7.25	52.6	2.37	17.45	10	η
a va		-1-1-0	10.74	(1119	54						
		-									
											_

Field Sampling Log

btoc - below top of casing

Field	Sampling	Log
-------	----------	-----

Facility:	SBMU Sikeston	Power Station - (CCR Groundwa	ter Monitoring	Monitoring We	IIID:M	w7
		Perstaltic Pump	& Tubing			Dedicated	(Y) / N
		17.4	5				
-				rlv() Mo	onthly ()	Other ()	
_			Quarte		, ()		
Final Purge Stabliz	ation Sampling L		Encoific			Oxidation	
<u>Date</u> Sample Time	Sample Rate (mL/min)	Temp (°C)	Conductance (µS/cm)	Dissolved Oxygen (mg/L)	рН (S.U.)	Reduction Potential (mV)	Turbidity (NTU)
3-27-14 1202	270	16.39	797.4	0.32	1.25	52.6	2.31
2 - HF scientific, in General Informat Weather Condition	Date Sample TimeSample Rate (mL/min)Temp (°C)Specific Conductance (μ S/cm)Dissolved Oxygen (mg/L)pH (S.U.)Oxidation Reduction PH (S.U.)Turbidity (NTU) (mV)						
	istics: Re	2 FILKE	, (010	ress, odorly	ess		
17 OC		10.72 E	· ·		28 M 18	r.	
25	2	(1 4)	ай:				
		110	010010	4			
_Colle		leie 1	STURIN	, S	22	2	
<u></u>							2
<u> </u>	V (5)		x 1	2		×	

I certify that sampling procedures were in accordance with applicable EPA and State protocols.

Date: 3-27.19 By: AShish Perel Title: Les 7201

Page 2 of 2

Monitoring Well Field Inspection

Facility: <u>SBMU SPS - CCR Groundwater Monitoring</u> Monitoring Well ID: <u>MW 9</u> Name (Field Staff): <u>A PGHI D Dilling hGm</u>
Date: 3 - 27-19
Access: Accessibility: Good Fair Poor Poor
Well clear of weeds and/or debris?: Yes 🦳 No
Well identification clearly visible?: Yes 🗠 No
Remarks:
Concrete Pad: Condition of Concrete Pad: Good L Inadequate
Depressions or standing water around well?: Yes No
Remarks:
<u>Protective Outer Casing</u> : Material = $4^{\circ} \times 4^{\circ}$ Steel Hinged Casing with Hasp
Condition of Protective Casing: Good Damaged
Condition of Locking Cap: Good Damaged
Condition of Lock: Good 🔛 Damaged
Condition of Weep Hole: Good L Damaged
Remarks:
Well Riser: Material = <u>2" Diameter, Schedule 40 PVC, Flush Threaded</u>
Condition of Riser: Good 🖉 Damaged
Condition of Riser Cap: Good 🗠 Damaged
Measurement Reference Point: Yes No
Remarks:
<u>Dedicated Purging/Sampling Device</u> : Type = <u>1/4</u> " ID Semi-Rigid Polyethylene & 0.170" ID Flexible Silicone Tubing
Condition: Good 🖵 Damaged Missing
Remarks:
Monitoring Well Locked/Secured Post Sampling?: Yes 🖉 No
Remarks:
Field Certification Astist Patel Cas Tech 3-27-19 Signed Title Date

Prepared by: GREDELL Engineering Resources, Inc.

January 2017

5.22

				Fiel	ld Sampli	ing Log				
Monito	ring Well ID:	MM	19 Fac	sility: SBM	U Sikeston P	ower Static	on - Groundv	vater Monitor	ring	
Initial Wate	er Level (fee	t btoc):	16.	75		Date:	3-27	-19		8
Initial Grou	Indwater Ele	vation (NAVE)88):			Air Pressu	re in Well?	Y / (N)		
		the second se						_		
Date:	3-	27-19				- A				
Name (Sar	mple Collect	or):	DD	illing	ham	•				
Method of	Well Purge:	Low Flow	/ Perstaltic I	Pump	Dee	dicated Tub	ping? (Y) / N		
Time Purgi	ing Initiated	[256		On	e (1) Well \	/olume (mL)	:	NA	
Beginning	Water Level	(feet btoc):	16	. 75	Tot	al Volume	Purged (mL)):	188	D
						Il Purged T	o Dryness?	a	Y / 🕅	
Well Total	Depth (feet	btoc):	37.0	9	Wa	iter Level a	fter Samplin	g (feet btoc)	16	75
						,			121-	
					Tin	ne Samplin	g Completed	d:	150	
PURGE S	TABILIZATI	ON DATA			r		Oxidation		Í.	
Time	Beginning Water Level (feet btoc): 16.75 Beginning Groundwater Elevation (NAVD88): Total Volume Purged (mL): 18.35 Well Purged To Dryness? Y / N Well Purged To Dryness? Y / N Water Level after Sampling (feet btoc): 16.75 Casing Diameter (feet): 2" Sch 40 PVC PURGE STABILIZATION DATA Specific Dissolved Purge Cumulative Specific Dissolved									
1/258		360	18.44	644.1	0.93	7.54		2.35	16.75	
1300	250		17.05							
1302	250									
1304	260	1880	16.74	673.2	0.51	7.15	22.1	0,96	16.75	x
-										

Field	Sam	pling	Log
-------	-----	-------	-----

						1	1.0
Facility:	SBMU Sikeston	Power Station -	CCR Groundwa	ter Monitoring	Monitoring We	11 ID; //	1 10 9_
Sampling Informa	ation:						
Method of Samplin	g: Low Flow -	Perstaltic Pump	& Tubing			Dedicated:	(Y) / N
Water Level @ Sa	mpling (feet btoc)	16.7	15				
Monitoring Event:	Annual ()	Semi-Annua	Quarte	rly() Mo	onthly ()	Other ()	
Final Purge Stabliz	ation Sampling D)ata:			1		,ji
<u>Date</u> Sample Time	Sample Rate (mL/min)	Temp (°C)	Specific Conductance (µS/cm)	Dissolved Oxygen (mg/L)	рН (S.U.)	Oxidation Reduction Potential (mV)	Turbidity (NTU)
3-27-19 1304	$\frac{16.79}{16.79}$ toring Event: Annual () Semi-Annual () Quarterly () Monthly () Other () Purge Stablization Sampling Data: $\frac{Date}{(mL/min)} Semi-Annual () Semi-Annual () Quarterly () Monthly () Other () Purge Stablization Sample Rate Temp (°C) Conductance (µS/cm) (mg/L) (S.U.) Potential (NTU) $						
See instrument ca 1 - In-Situ SmarTr	libration log of da oll Multi-Probe Fi	ield Meter (Temp	perature, Specif	ing instruments: ic Conductance, Dissolv	ved Oxygen, p⊢	I, Oxidation Red	uction Potentia
General Informat	ion:	-					
Weather Condition	ns @ time of sam	pling: $\underline{50}$	nny				
Sample Character	istics:	ear, od	NOSS,	Colorless			
Sample Collection	Order:	Per SAP		•.			
Comments and OI	oservations:		4			ţ.	

I certify that sampling procedures were in accordance with applicable EPA and State protocols.

Date: 3-2719 By: AShSh Parel Title: Layb Tech

Page 2 of 2

Field Instrumentation Calibration Log

Calibrated by: Ashish Perel

Facility: SBMU SPS CCR Groundwater Sampling

	Field Instru	oments:	In-Situ sm	arTROLL Fie	ld Meter			. 6		HF scientif	ic, i	nc. Micro TPI Fi	eld Portable Turt	bid	imeter			
		S/N #:	470	424	7	ej.		s	/N 1	201	60	0736-6						
	Date	Time	pH Standards	pH Measure- ments	Specific Conductand Standard (µS/cm)	e	Specific Conductance Measurement (µS/cm)	Oxidation Re Stan		ction Potent d (mV)	tial	Oxidation Reduction Potential Measurement (mV)	Dissolved (%)		ygen	Turbidity Standards (NTU)	1	Turbidity Measurements (NTU)
>			4.00 =	4.00				Temperature (°C)	=	22.31			Temperature (°C)		21.64	0.02	н	0.02
of Da ion	03-27		7.00 =	7.00									Tap Water Source	5	city	10_0		12.2
Beginning of Day Calibration	2014	0752	10.00 =	10.00	1413		1412.4	Standard (mV)		229	=	229.2	Barometric Pressure (mm/Hg)		1015	1000		<u>, cool</u>
B				1									Measurement	=	99.1			10 .
*			4.00 =	4.10				Temperature (°C)	=	्र्य. ५२			Temperature (°C)		14. (S		=	0.01
Check	03-27-		7.00 =	7.05								2	Tap Water Source	=	ikesty city	10,0	=	10.05
ay	2019	145(10.00 =	9.93	1413	-	1533.1	Standard (mV)	=	वेरव	=	223.9	Barometric Pressure (mm/Hg)	H	131.8	1000	=	1002,0
End			10.00										Measurement	=	97.4			

The Multi-Probe Field Meter measures Temperature, Specific Conductance, Dissolved Oxygen, pH, and Oxidation Reduction Potential. Notes:

The HF scientific, Inc. Micro TPI Field Portable Turbidimeter measures Turbidity.


Dissolved oxygen is calibrated via % saturation method; however, field measurements are recorded as mg/L.

I certify that the aforementioned meters were calibrated within the manufacturers specifications.

Date: 3-27-19 By: DSD. 52 Man

Appendix 2

Laboratory Analytical Results

April 09, 2019

Luke St Mary Sikeston BMU, Sikeston Power Station 1551 W Wakefield Sikeston, MO 63801

Dear Luke St Mary:

Please find enclosed the analytical results for the sample(s) the laboratory received on 3/29/19 9:15 am and logged in under work order 9034665. All testing is performed according to our current TNI certifications unless otherwise noted. This report cannot be reproduced, except in full, without the written permission of PDC Laboratories, Inc.

If you have any questions regarding your report, please contact your project manager. Quality and timely data is of the utmost importance to us.

PDC Laboratories, Inc. appreciates the opportunity to provide you with analytical expertise. We are always trying to improve our customer service and we welcome you to contact the Director of Client Services, Lisa Grant with any feedback you have about your experience with our laboratory.

Sincerely,

Kurt Stepping Senior Project Manager (309) 692-9688 x1719 kstepping@pdclab.com

Sample: 9034665-01 Name: MW-3 Matrix: Ground Water - Grab					•	03/27/19 (03/29/19 (20927	
Parameter	Result	Unit	Qualifier	Prepared	Analyzed	Analyst	Method
Anions - PIA				-			
Chloride	1.5	mg/L		04/04/19 00:11	04/04/19 00:11	LAM	EPA 300.0
Fluoride	< 0.250	mg/L		04/04/19 00:11	04/04/19 00:11	LAM	EPA 300.0
Sulfate	19	mg/L		04/04/19 00:29	04/04/19 00:29	LAM	EPA 300.0
<u> General Chemistry - PIA</u>							
Solids - total dissolved solids (TDS)	140	mg/L		04/01/19 07:52	04/01/19 09:29	TMS	SM 2540C
<u> Fotal Metals - PIA</u>							
Boron	22	ug/L		04/03/19 12:37	04/08/19 08:57	JMW	SW 6020
Całcium	16000	ug/L		04/03/19 12:37	04/08/19 08:57	JMW	SW 6020
Sample: 9034665-02					Sampled:	03/27/19 0	9:59
Name: MW-2					-	03/29/19 0	
Matrix: Ground Water - Grab					PO #:	20927	
Parameter	Result	Unit	Qualifier	Prepared	Analyzed	Analyst	Method
Anions - PIA		_		· · · · · ·			
Chloride	3.3	mg/L		04/04/19 01:24	04/04/19 01:24	LAM	EPA 300.0
	3.3 < 0.250	mg/L mg/L		04/04/19 01:24 04/04/19 01:24	04/04/19 01:24 04/04/19 01:24	LAM LAM	EPA 300.0 EPA 300.0
Fluoride		_					
Fluoride Sulfate	< 0.250	mg/L		04/04/19 01:24	04/04/19 01:24	LAM	EPA 300.0
Fluoride Sulfate General Chemistry - PIA	< 0.250	mg/L		04/04/19 01:24	04/04/19 01:24	LAM	EPA 300.0
Fluoride Sulfate General Chemistry - PIA Solids - total dissolved solids (TDS)	< 0.250 20	mg/L mg/L		04/04/19 01:24 04/04/19 01:42	04/04/19 01:24 04/04/19 01:42	LAM LAM	EPA 300.0 EPA 300.0
Chloride Fluoride Sulfate General Chemistry - PIA Solids - total dissolved solids (TDS) Fotal Metals - PIA Boron	< 0.250 20	mg/L mg/L		04/04/19 01:24 04/04/19 01:42	04/04/19 01:24 04/04/19 01:42	LAM LAM	EPA 300.0 EPA 300.0

	· · ·					-	
Sample: 9034665-03					Sampled:	03/27/19 1	1:18
Name: MW-1					Received:	03/29/19 0	9:15
Matrix: Ground Water - Grab					PO #:	20927	
Parameter	Result	Unit	Qualifier	Prepared	Analyzed	Analyst	Method
Anions - PIA							
Chloride	7.9	mg/L		04/04/19 02:00	04/04/19 02:00	LAM	EPA 300.0
Fluoride	< 0.250	mg/L		04/04/19 02:00	04/04/19 02:00	LAM	EPA 300.0
Sulfate	27	mg/L		04/04/19 02:18	04/04/19 02:18	LAM	EPA 300.0
<u>General Chemistry - PIA</u>							
Solids - total dissolved solids (TDS)	210	mg/L		04/01/19 07:52	04/01/19 09:29	TMS	SM 2540C
Total Metals - PIA							
Boron	440	ug/L		04/03/19 12:37	04/08/19 09:05	JMW	SW 6020
Calcium	41000	ug/L		04/03/19 12:37	04/08/19 09:05	JMW	SW 6020
Sample: 9034665-04					Sampled:	03/27/19 1	2:02
Name: MW-7					Received:	03/29/19 0	9:15
Matrix: Ground Water - Grab					PO #:	20927	
Parameter	Result	Unit	Qualifier	Prepared	Analyzed	Analyst	Method
· · · · · · · · · · · · · · · · · · ·	Result	Unit	Qualifier	Prepared	Analyzed	Analyst	Method
Anions - PIA	Result	Unit mg/L	Qualifier	Prepared	Analyzed	Analyst LAM	Method EPA 300.0
Anions - PIA Chloride			Qualifier				
Anions - PIA Chloride Fluoride	6.6	mg/L	Qualifier	04/04/19 12:14	04/04/19 12:14	LAM	EPA 300.0
Anions - PIA Chloride Fluoride Sulfate	6.6 0.670	mg/L mg/L	Qualifier	04/04/19 12:14 04/04/19 02:37	04/04/19 12:14 04/04/19 02:37	LAM	EPA 300.0 EPA 300.0
Anions - PIA Chloride Fluoride Sulfate General Chemistry - PIA	6.6 0.670	mg/L mg/L	Qualifier	04/04/19 12:14 04/04/19 02:37	04/04/19 12:14 04/04/19 02:37	LAM	EPA 300.0 EPA 300.0
Anions - PIA Chloride Fluoride Sulfate General Chemistry - PIA Solids - total dissolved solids (TDS)	6.6 0.670 170	mg/L mg/L mg/L	Qualifier	04/04/19 12:14 04/04/19 02:37 04/04/19 02:55	04/04/19 12:14 04/04/19 02:37 04/04/19 02:55	LAM LAM LAM	EPA 300.0 EPA 300.0 EPA 300.0
Parameter Anions - PIA Chloride Fluoride Sulfate General Chemistry - PIA Solids - total dissolved solids (TDS) Total Metals - PIA Boron	6.6 0.670 170	mg/L mg/L mg/L	Qualifier	04/04/19 12:14 04/04/19 02:37 04/04/19 02:55	04/04/19 12:14 04/04/19 02:37 04/04/19 02:55	LAM LAM LAM	EPA 300.0 EPA 300.0 EPA 300.0

Sample: 9034665-05 Name: MW-9 Matrix: Ground Water - Grab					Sampled: Received: PO #:	03/27/19 1 03/29/19 0 20927	
Parameter	Result		Qualifier		Analyzed	Analyst	
Anions - PIA							
Chloride	11	mg/L		04/04/19 03:31	04/04/19 03:31	LAM	EPA 300.0
Fluoride	0.827	mg/L		04/04/19 03:13	04/04/19 03:13	LAM	EPA 300,0
Sulfate	120	mg/L		04/04/19 03:50	04/04/19 03:50	LAM	EPA 300.0
<u> General Chemistry - PIA</u>							
Solids - total dissolved solids (TDS)	440	mg/L		04/01/19 07:52	04/01/19 09:29	TMS	SM 2540C
<u>Total Metals - PIA</u>							
Boron	3100	ug/L		04/03/19 12:37	04/08/19 09:14	JMW	SW 6020
Calcium	70000	ug/L		04/03/19 12:37	04/08/19 09:14	JMW	SW 6020
Sample: 9034665-06					Sampled	03/27/19 0	0.00
Name: DUPLICATE WELL					-	03/29/19 0	
Matrix: Ground Water - Grab					PO #:	20927	
Parameter	Result	Unit	Qualifier	Prepared	Analyzed	Analyst	Method
Anions - PIA							
Chloride	3.4	mg/L		04/04/19 04:08	04/04/19 04:08	LAM	EPA 300.0
Chionae	0.4						
	< 0.250	mg/L		04/04/19 04:08	04/04/19 04:08	LAM	EPA 300.0
Fluoride Sulfate		-				LAM LAM	EPA 300.0 EPA 300.0
Fluoride Sulfate	< 0.250	mg/L		04/04/19 04:08	04/04/19 04:08		
Fluoride Sulfate <mark>General Chemistry - PIA</mark>	< 0.250	mg/L		04/04/19 04:08	04/04/19 04:08		
Fluoride Sulfate <u>General Chemistry - PIA</u> Solids - total dissolved solids (TDS)	< 0.250 19	mg/L mg/L		04/04/19 04:08 04/04/19 05:03	04/04/19 04:08 04/04/19 05:03	LAM	EPA 300.0
Fluoride	< 0.250 19	mg/L mg/L		04/04/19 04:08 04/04/19 05:03	04/04/19 04:08 04/04/19 05:03	LAM	EPA 300.0

Sample: 9034665-07 Name: FIELD BLANK Matrix: DI Water - Grab					Sampled: Received: PO #:	03/27/19 (03/29/19 (20927	
Parameter	Result	Unit	Qualifier	Prepared	Analyzed	Analyst	Method
Anions - PIA							
Chloride	< 1.0	mg/L	(04/04/19 15:53	04/04/19 15:53	LAM	EPA 300.0
Fluoride	< 0.250	mg/L	(04/04/19 15:53	04/04/19 15:53	LAM	EPA 300.0
Sulfate	< 1.0	mg/L	(04/04/19 15:53	04/04/19 15:53	LAM	EPA 300,0
General Chemistry - PIA							
Solids - total dissolved solids (TDS)	< 17	mg/L	(04/01/19 07:52	04/01/19 09:29	тмѕ	SM 2540C
<u> Total Metals - PIA</u>							
Boron	< 10	ug/L	(4/03/19 12:37	04/08/19 09:42	JMW	SW 6020
Calcium	< 100	ug/L.	(4/03/19 12:37	04/08/19 09:42	JMW	SW 6020

Appendix 3

Laboratory Quality Assurance/Quality Control Data

QC SAMPLE RESULTS

_	_		_	Spike	Source		%REC		RPI
Parameter	Result	Unit	Qual	Level	Result	%REC	Limits	RPD	Lim
<u> Batch B906436 - No Prep - SM 2540C</u>									
Blank (B906436-BLK1)				Prepared &	Analyzed: 04/	/01/19			
Solids - total dissolved solids (TDS)	< 17	mg/L							
Duplicate (B906436-DUP1)	Sample: 903466	55-03		Prepared &	Analyzed: 04/	/01/19			
Solids - total dissolved solids (TDS)	205	mg/L			210			2	5
<u> Batch B906745 - SW 3015 - SW 6020</u>									
Blank (B906745-BLK1)				Prepared: 0	4/03/19 Analy	yzed: 04/08/19)		
Boron	< 10	ug/L							
Calcium	< 100	ug/L							
LCS (B906745-BS1)				Prepared: 0	4/03/19 Analy	yzed: 04/08/19)		
Boron	530	ug/L		555.6		95	80-120		
Calcium	5230	ug/L		555 6		94	80-120		
Matrix Spike (B906745-MS1)	Sample: 903430) 5-0 1		Prepared: 0	4/03/19 Analy	/zed: 04/08/19)		
Boron	548	ug/L	_	555.6	16.8	96	75-125		·
Calcium	27700	ug/L		5556	22600	91	75-125		
Matrix Spike Dup (B906745-MSD1)	Sample: 903430)5-01		Prepared: 0	4/03/19 Analy	zed: 04/08/19)		
Boron	564	ug/L		555.6	16.8	98	75-125	3	20
Calcium	27700	ug/L		5556	22600	93	75-125	0.3	20
<u> Batch B906828 - IC No Prep - EPA 300.0</u>									
Calibration Blank (B906828-CCB1)				Prepared &	Analyzed: 04/	03/19			
Chloride	0.413	mg/L							
Fluoride	0.00	mg/L							
Sulfate	0.00	mg/L							
Calibration Check (B906828-CCV1)				Prepared &	Analyzed: 04/	03/19			
Fluoride	4.98	mg/L		5,000		100	90-110		
Sulfate	5,01	mg/L		5,000		100	90-110		
Chloride	4.83	mg/L		5.000		97	90-110		
<u> Batch B906965 - IC No Prep - EPA 300.0</u>									
Calibration Blank (B906965-CCB1)				Prepared &	Analyzed: 04/	04/19			
Chloride	0.441	mg/L							
Fluoride	0.00	mg/L							
Sulfate	0.00	mg/L							
Calibration Check (B906965-CCV1)				Prepared &	Analyzed: 04/	04/19			
Sulfate	4.77	mg/L		5.000		95	90-110		
Chloride	4.63	mg/L		5.000		93	90-110		
Fluoride	4.85	mg/L		5.000		97	90-110		

NOTES

Specific method revisions used for analysis are available upon request.

Certifications

CHI - McHenry, IL

TNI Accreditation for Drinking Water, Wastewater, Hazardous and Solid Wastes Fields of Testing through IL EPA Lab No. 100279 Illinois Department of Public Health Bacteriological Analysis in Drinking Water Approved Laboratory Registry No. 17556

PIA - Peoria, IL

TNI Accreditation for Drinking Water, Wastewater, Hazardous and Solid Wastes Fields of Testing through IL EPA Lab No. 100230 Illinois Department of Public Health Bacteriological Analysis in Drinking Water Approved Laboratory Registry No. 17553 Missouri Department of Natural Resources Certificate of Approval for Microbiological Laboratory Service No. 870 Drinking Water Certifications: Iowa (240); Kansas (E-10338); Missouri (870) Wastewater Certifications: Arkansas (88-0677); Iowa (240); Kansas (E-10338) Hazardous/Solid Waste Certifications: Arkansas (88-0677); Iowa (240); Kansas (E-10338)

SPIL - Springfield, IL

NELAP/NELAC accredidation through the Illinois EPA, PAS IL 100323

SPMO - Springfield, MO USEPA DMR-QA Program

STL - St. Louis, MO

TNI Accreditation for Wastewater, Hazardous and Solid Wastes Fields of Testing through KS Lab No. E-10389 Accreditation of Laboratories for Wastewater, Hazardous, and Solid Waste Analysis through IL EPA No. 200080 Illinois Department of Public Health Bacteriological Analysis in Drinking Water Approved Laboratory Registry No. 171050 Drinking Water Certifications: Missouri (1050) Missouri Department of Natural Resources

* Not a TNI accredited analyte

٠

PDC Laboratories, Inc.

DATA PACKAGE

CLIENT; Sikeston BMU PROJECT: Sikeston Power Station PDC LAB WORKORDER: 9034665 DATE ISSUED: April 9, 2019

CASE NARRATIVE -

PDC Work Order 9034665

PDC Laboratories, Inc. received 7 water samples on March 29, 2019 in good condition at our Peoria, IL facility. This sample set was designated as work order 9034665.

Sample	ID's	Date						
Field	Lab ID	Collected	Received					
MW-3	9034665-01	3/27/19	3/29/19					
MW-2	9034665-02	3/27/19	3/29/19					
MW-1	9034665-03	3/27/19	3/29/19					
MW-7	9034665-04	3/27/19	3/29/19					
MW-9	9034665-05	3/27/19	3/29/19					
Duplicate One	9034665-06	3/27/19	3/29/19					
Field Blank	9034665-07	3/27/19	3/29/19					

QC Summary:

All items met acceptance criteria with the following noted exceptions:

No exceptions for this sample group.

Certification

Signature:

Junt.

Name: Kurt Stepping

Date:

April 9, 2019

Title: Senior Project Manager

PDC LABORATORIES, INC. 2231 WEST ALTORFER DRIVE PEORIA, IL 61615

PHONE # 800-752-6651 FAX # 309-692-9689

CHAIN OF CUSTODY RECORD

State where samples collected ______

Coples: white should accompany samples to PDC Labs.

Appendix 4

Fly Ash Pond Groundwater Quality Data Base

Sikeston Board of Municipal Utilities Sikeston Power Station Scott County, Missouri

Fly Ash Pond Groundwater Quality Data Base

				Fie	eld Parar	neters			Ap	pendix III N	Ionitoring	Constituer	ts (Detect	ion)	Appendix IV Monitoring Constituents (Assessment)													
Well	Date	Monitoring Purpose	Spec. Cond.	pН	Temp.	ORP	D.O.	Turbidity	Chloride	Fluoride	Sulfate	TDS	Boron	Calcium	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Lead	Lithium	Mercury	Molybdenum	Selenium	Thallium	Radium 226/228 (Combined)
ID			µmhos/cm	S.U.	°C	mV	mg/L	NTU	mg/L	mg/L	mg/L	mg/L	ug/L	mg/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	pCi/L
MW-1 (DG)	3/21/2018	Background	249.6	7.3	16.33	-108.8	0.32	28.35	3.0	<0.250	22	150	360	21	<3.0	<1.0	120	<1.0	<1.0	<4.0	<2.0	<1.0	<10	<0.20	<1.0	<1.0	<1.0	0.353 (ND)
	4/15/2018	Background	233.8	7.4	15.17	-122.7	0.60	14.46	2.8	0.316	22	120	450	29	<3.0	<1.0	120	<1.0	<1.0	<4.0	<2.0	<1.0	<10	<0.20	<1.0	<1.0	<1.0	0.478 (ND)
	5/23/2018	Background	220.0	7.4	18.42	-133.3	0.54	12.11	3.3	<0.250	20	140	420	25	<3.0	<1.0	120	<1.0	<1.0	<4.0	<2.0	<1.0	<10	<0.20	<1.0	<1.0	<1.0	0.378 (ND)
	6/27/2018	Background	227.4	7.3	18.59	-149.3	0.30	11.07	6.9	<0.250	20	120	470	28	<3.0	<1.0	140	<1.0	<1.0	<4.0	<2.0	<1.0	<10	<0.20	<1.0	<1.0	<1.0	1.065 (ND)
	8/1/2018	Background	264.3	7.2	18.26	-138.0	0.56	7.52	5.6	<0.250	23	190	440	30	<3.0	<1.0	140	<1.0	<1.0	<4.0	<2.0	<1.0	<10	<0.20	<1.0	<1.0	<1.0	0.893(ND)
	9/5/2018	Background	281.3	7.1	18.70	-132.1	0.41	3.20	7.0	0.252	24	140	490	34	<3.0	<1.0	150	<1.0	<1.0	<4.0	<2.0	<1.0	<10	<0.20	<1.0	<1.0	<1.0	1.100
	11/6/2018	Background	311.8	7.1	17.86	-128.8	1.00	1.30	9.0	0.262	26	200	480	38	<3.0	<1.0	170	<1.0	<1.0	<4.0	<2.0	<1.0	<10	<0.20	<1.0	<1.0	<1.0	1.282
	12/12/2018	Background	317.5	7.1	16.30	-96.3	0.45	2.27	9.1	0.256	30	140	440	38	<3.0	<1.0	180	<1.0	<1.0	<4.0	<2.0	<1.0	<10	<0.20	<1.0	<1.0	<1.0	1.423 (ND)
	3/27/2019	Detection	361.2	7.1	16.60	-101.9	0.36	53.91	7.9	<0.250	27	210	440	41	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)
																												ļ!
MW-2 (UG)	3/21/2018	Background	157.8	6.4	15.86	65.3	2.72	3.41	3.4	<0.250	16	110	28	16	<3.0	<1.0	130	<1.0	<1.0	<4.0	<2.0	<1.0	<10	<0.20	<1.0	<1.0	<1.0	0.896 (ND)
	4/15/2018	Background	159.8	6.4	14.04	64.7	0.87	4.05	2.3	0.335	18	63	23	14	<3.0	<1.0	120	<1.0	<1.0	<4.0	<2.0	<1.0	<10	<0.20	<1.0	<1.0	<1.0	0.483 (ND)
	5/23/2018	Background	175.3	6.2	17.40	121.7	0.58	1.72	4.2	<0.250	20	100	36	18	<3.0	<1.0	170	<1.0	<1.0	<4.0	<2.0	<1.0	<10	<0.20	<1.0	<1.0	<1.0	1.199 (ND)
	6/27/2018	Background	172.1	6.2	18.38	243.8	0.27	5.30	4.7	<0.250	18	87	42	19	<3.0	<1.0	180	<1.0	<1.0	<4.0	<2.0	<1.0	<10	<0.20	<1.0	1.4	<1.0	1.006 (ND)
	8/1/2018	Background	184.2	6.1	18.48	80.7	0.75	2.61	5.9	<0.250	19	140	43	20	<3.0	<1.0	200	<1.0	<1.0	<4.0	<2.0	<1.0	<10	<0.20	<1.0	2.0	<1.0	0.751(ND)
	9/5/2018	Background	187.9	6.1	19.26	83.8	0.68	2.58	6.8	<0.250	18	110	46	22	<3.0	<1.0	220	<1.0	<1.0	<4.0	<2.0	<1.0	<10	<0.20	<1.0	2.2	<1.0	1.734
	11/6/2018	Background	174.3	6.2	17.77	79.7	0.60	1.19	4.2	0.272	19	100	43	20	<3.0	<1.0	170	<1.0	<1.0	<4.0	<2.0	<1.0	<10	<0.20	<1.0	<1.0	<1.0	1.583
	12/12/2018	Background	186.3	6.1	16.78	82.3	0.67	5.78	5.5	0.254	21	140	48	21	<3.0	<1.0	210	<1.0	<1.0	<4.0	2.0	<1.0	<10	<0.20	<1.0	<1.0	<1.0	1.18 (ND)
	3/27/2019	Detection	165.9	6.3	15.87	70.4	0.72	2.60	3.3	<0.250	20	130	31	17	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)
MW-3 (UG)	3/21/2018	Background	220.7	6.6	15.22	40.7	0.38	14.88	1.4	0.274	18	120	17	19	<3.0	<1.0	96	<1.0	<1.0	<4.0	<2.0	<1.0	<10	<0.20	<1.0	<1.0	<1.0	1.240 (ND)
	4/15/2018	Background	224.7	6.5	14.05	39.2	0.45	10.81	1.5	0.386	20	120	25	18	<3.0	<1.0	100	<1.0	<1.0	<4.0	<2.0	<1.0	<10	<0.20	<1.0	<1.0	<1.0	1.475 (ND)
	5/23/2018	Background	221.3	6.5	17.77	43.2	0.39	13.39	1.4	<0.250	20	100	20	18	<3.0	<1.0	100	<1.0	<1.0	<4.0	<2.0	<1.0	<10	<0.20	<1.0	<1.0	<1.0	0.994 (ND)
	6/27/2018	Background	198.7	6.5	17.81	123.8	0.45	17.03	1.2	<0.250	17	110	27	18	<3.0	<1.0	100	<1.0	<1.0	<4.0	<2.0	<1.0	<10	<0.20	<1.0	<1.0	<1.0	0.214 (ND)
	8/1/2018	Background	209.2	6.6	16.74	41.4	0.43	10.96	1.3	<0.250	17	150	21	18	<3.0	<1.0	91	<1.0	<1.0	<4.0	<2.0	<1.0	<10	<0.20	<1.0	<1.0	<1.0	0.315(ND)
	9/5/2018	Background	196.8	6.5	17.62	56.8	0.46	6.21	1.2	0.308	15	100	22	17	<3.0	<1.0	98	<1.0	<1.0	<4.0	<2.0	<1.0	<10	<0.20	<1.0	<1.0	<1.0	0.860(ND)
	11/6/2018	Background	206.7	6.5	16.84	63.3	0.49	2.37	1.3	0.313	16	130	26	17	<3.0	<1.0	100	<1.0	<1.0	<4.0	<2.0	<1.0	<10	<0.20	<1.0	<1.0	<1.0	1.339
	12/12/2018	Background	195.6	6.5	15.39	48.7	0.40	3.10	1.4	0.334	18	160	28	17	<3.0	<1.0	99	<1.0	<1.0	<4.0	<2.0	<1.0	<10	<0.20	<1.0	<1.0	<1.0	0.8 (ND)
	3/27/2019	Detection	196.0	6.4	15.07	52.2	0.84	12.50	1.5	<0.250	19	140	22	16	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)
MW-7 (DG)	3/21/2018	Background	901.8	7.3	14.85	41.8	0.58	1.61	12	0.752	190	440	1900	110	<3.0	<1.0	41	<1.0	<1.0	<4.0	<2.0	<1.0	25	<0.20	160	5.4	<1.0	0.883 (ND)
	4/15/2018	Background	936.4	7.2	14.04	40.0	0.51	0.96	12	0.794	210	420	1900	110	<3.0	<1.0	43	<1.0	<1.0	<4.0	2.0	<1.0	19	<0.20	170	2.3	<1.0	0.0619 (ND)
		Background	899.1	7.3		46.5		0.25	11	0.650	220	480	1800	120	<3.0	<1.0	44	<1.0	<1.0	<4.0	<2.0	<1.0		<0.20	170	28	<1.0	0.896 (ND)
		Background	891.4	7.2	17.91	66.4		5.84	11	0.592	220	500	2000	140	<3.0	<1.0	48	<1.0	<1.0	<4.0	2.1	<1.0		<0.20	160	53	<1.0	1.153 (ND)
		Background	958.3	7.2	18.03		0.28	1.77	9.1	0.608	230	590	2300	140	<3.0	<1.0	47	<1.0	<1.0	<4.0	2.2	<1.0		<0.20	160	54	<1.0	0.884(ND)
		Background	873.3	7.3	19.46	69.3		2.29	10	0.700	220	520	2100	130	<3.0	<1.0	47	<1.0	<1.0	<4.0	2.0	<1.0	27	<0.20	150	42	<1.0	0.652(ND)
		Background	787.9	7.4	18.12	344.4	1	0.44	6.3	0.693	170	450	2000	120	<3.0	<1.0	43	<1.0	<1.0	<4.0	2.0	<1.0	26	<0.20	150	15	<1.0	1.478
	12/12/2018	-	784.8	7.3	17.26	51.6		0.41	6.8	0.746	180	440	1800	120	<3.0	<1.0	44	<1.0	<1.0	<4.0	2.1	<1.0	26	<0.20	150	11	<1.0	0.975 (ND)
	3/27/2019	-	797.4	7.3	16.39	52.6		2.37	6.6	0.670	170	480	1800	110	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)

Prepared by: KAE Checked by: MCC

Sikeston Board of Municipal Utilities Sikeston Power Station Scott County, Missouri

Fly Ash Pond Groundwater Quality Data Base

Well	Date	Monitoring Purpose	Spec. Cond.		Temp. °C		1			Fluoride	Sulfate	TDS	Boron						Cadmium						Molybdenum			
ID			µmhos/cm	S.U.	0	mV	mg/L	NTU	mg/L	mg/L	mg/L	mg/L	ug/L	mg/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	pCi/L
MW-9 (DG)	3/21/2018	Background	979.8	7.4	14.98	25.1	0.52	1.60	17	0.929	230	480	4700	65	<3.0	<1.0	49	<1.0	<1.0	<4.0	<2.0	<1.0	19	<0.20	630	<1.0	<1.0	0.491 (ND)
	4/15/2018	Background	972.7	7.4	14.63	24.9	1.73	2.32	21	1.09	240	460	5100	57	<3.0	1.2	49	<1.0	<1.0	<4.0	<2.0	<1.0	11	<0.20	680	<1.0	<1.0	0.982 (ND)
	5/23/2018	Background	1020.5	7.3	18.70	25.9	0.48	0.64	17	1.05	240	520	5800	55	<3.0	<1.0	45	<1.0	<1.0	8.1	<2.0	<1.0	15	<0.20	840	<1.0	<1.0	0.359 (ND)
	6/27/2018	Background	902.9	7.3	19.33	25.2	0.42	4.97	15	0.910	220	520	4600	73	<3.0	<1.0	47	<1.0	<1.0	<4.0	<2.0	<1.0	15	<0.20	560	<1.0	<1.0	0.327 (ND)
	8/1/2018	Background	942.6	7.3	19.10	20.7	0.47	2.03	16	0.916	220	560	4500	76	<3.0	<1.0	47	<1.0	<1.0	<4.0	<2.0	<1.0	18	<0.20	500	<1.0	<1.0	0.418(ND)
	9/5/2018	Background	829.2	7.3	19.85	20.9	0.45	2.68	16	0.957	180	420	4400	80	<3.0	<1.0	48	<1.0	<1.0	<4.0	<2.0	<1.0	17	<0.20	460	<1.0	<1.0	0.707(ND)
	11/6/2018	Background	732.8	7.3	18.19	428.8	0.60	0.45	11	0.885	130	410	3800	79	<3.0	<1.0	47	<1.0	<1.0	<4.0	<2.0	<1.0	13	<0.20	420	<1.0	<1.0	1.473(ND)
	12/12/2018	Background	742.9	7.3	16.95	36.5	0.48	0.63	12	0.972	170	360	3700	78	<3.0	<1.0	53	<1.0	<1.0	<4.0	<2.0	<1.0	17	<0.20	420	<1.0	<1.0	1.232 (ND)
	3/27/2019	Detection	673.2	7.4	16.74	22.1	0.51	0.96	11	0.827	120	440	3100	70	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)

Notes:

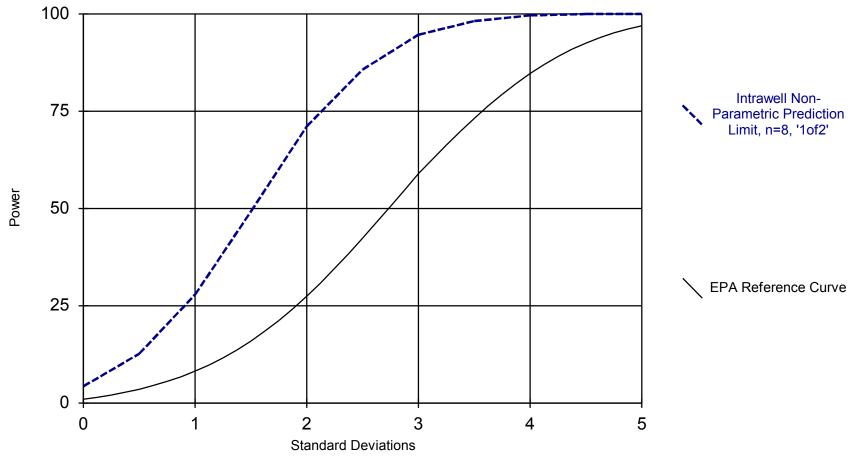
1. All data transcribed from analytical lab data sheets or field notes.

2. Less than (<) symbol denotes concentration below reportable limits.

3. (ND) denotes Radium 226 and 228 (combined) concentration not detected above Minimum Detectable Concentration.

4. (NA) denotes analysis not conducted, or not available at time of report.

5. Background monitoring per USEPA 40 CFR 257.93.

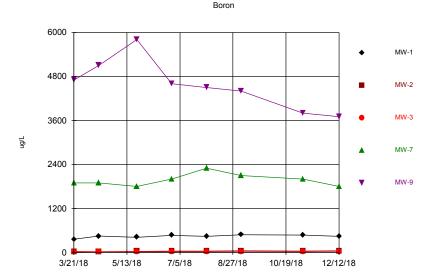

6. Detection monitoring per USEPA 40 CFR 257.94.

7. Assessment monitoring per USEPA 40 CFR 257.95.

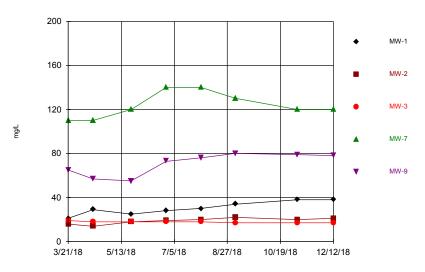
Appendix 5

Statistical Power Curve

Power Curve MW-1, 2, 3, 7 & 9

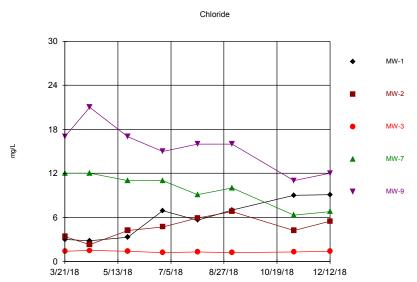

This report reflects annual total based on two evaluations per year.

Analysis Run 5/31/2019 2:59 PM SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background


Appendix 6

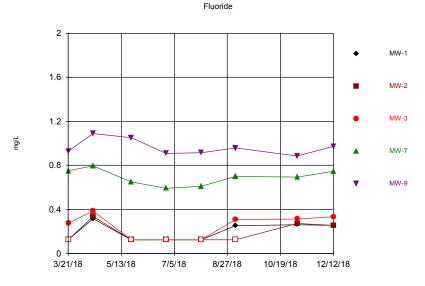
Time Series Plots

Sanitas™ v.9.6.18 Sanitas software licensed to GREDELL Engineering only. UG


Time Series Analysis Run 7/18/2019 8:57 AM View: AppIII SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background Sanitas™ v.9.6.18 Sanitas software licensed to GREDELL Engineering only. UG

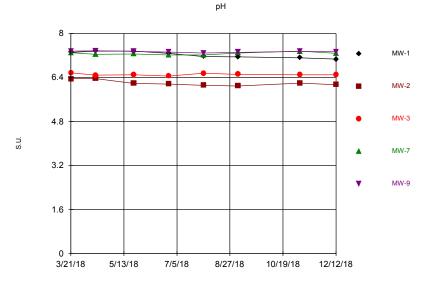
Calcium

 Time Series
 Analysis Run 7/18/2019 8:57 AM
 View: AppIII


 SBMU-Sikeston Power Station
 Client: GREDELL Engineering
 Data: SikestonFAP Background

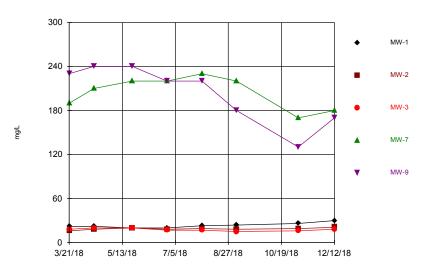
 Time Series
 Analysis Run 7/18/2019 8:57 AM
 View: AppIII

 SBMU-Sikeston Power Station
 Client: GREDELL Engineering
 Data: SikestonFAP Background


Sanitas[™] v.9.6.18 Sanitas software licensed to GREDELL Engineering only. UG Hollow symbols indicate censored values.

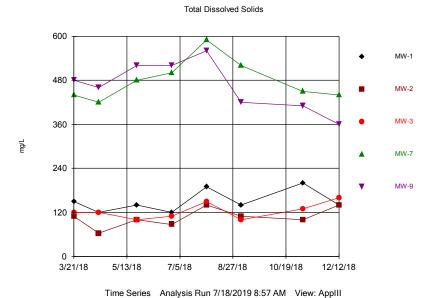
 Time Series
 Analysis Run 7/18/2019 8:57 AM
 View: AppIII

 SBMU-Sikeston Power Station
 Client: GREDELL Engineering
 Data: SikestonFAP Background


Sanitas[™] v.9.6.18 Sanitas software licensed to GREDELL Engineering only. UG

 Time Series
 Analysis Run 7/18/2019 8:57 AM
 View: AppIII

 SBMU-Sikeston Power Station
 Client: GREDELL Engineering
 Data: SikestonFAP Background



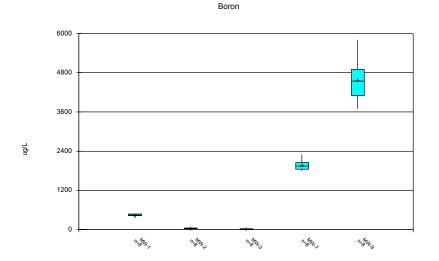
Sulfate

 Time Series
 Analysis Run 7/18/2019 8:57 AM
 View: AppIII

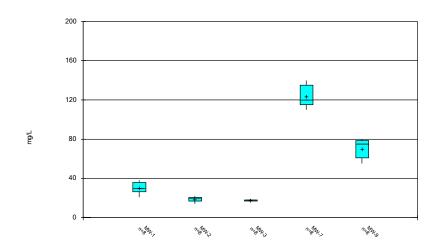
 SBMU-Sikeston Power Station
 Client: GREDELL Engineering
 Data: SikestonFAP Background

Sanitas™ v.9.6.18 Sanitas software licensed to GREDELL Engineering only. UG

SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background


Appendix 7

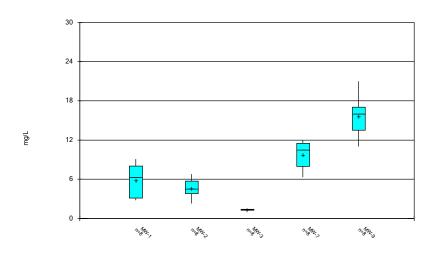
Box and Whiskers Plots


Box & Whiskers Plot (MW-1, 2, 3, 7, & 9)

	SBMU-Sikeston Power Station	Client: GR	EDELL Engineerii	ng Data: Sik	estonFAP Backgrou	und Printed 7/18	2019, 9:02 AM		
<u>Constituent</u>	Well	<u>N</u>	Mean	Median	Lower Q.	Upper Q.	<u>Min.</u>	Max.	<u>%NDs</u>
Boron (ug/L)	MW-1	8	443.8	445	430	475	360	490	0
Boron (ug/L)	MW-2	8	38.63	42.5	32	44.5	23	48	0
Boron (ug/L)	MW-3	8	23.25	23.5	20.5	26.5	17	28	0
Boron (ug/L)	MW-7	8	1975	1950	1850	2050	1800	2300	0
Boron (ug/L)	MW-9	8	4575	4550	4100	4900	3700	5800	0
Calcium (mg/L)	MW-1	8	30.38	29.5	26.5	36	21	38	0
Calcium (mg/L)	MW-2	8	18.75	19.5	17	20.5	14	22	0
Calcium (mg/L)	MW-3	8	17.75	18	17	18	17	19	0
Calcium (mg/L)	MW-7	8	123.8	120	115	135	110	140	0
Calcium (mg/L)	MW-9	8	70.38	74.5	61	78.5	55	80	0
Chloride (mg/L)	MW-1	8	5.838	6.25	3.15	8	2.8	9.1	0
Chloride (mg/L)	MW-2	8	4.625	4.45	3.8	5.7	2.3	6.8	0
Chloride (mg/L)	MW-3	8	1.338	1.35	1.25	1.4	1.2	1.5	0
Chloride (mg/L)	MW-7	8	9.775	10.5	7.95	11.5	6.3	12	0
Chloride (mg/L)	MW-9	8	15.63	16	13.5	17	11	21	0
Fluoride (mg/L)	MW-1	8	0.1983	0.1885	0.125	0.259	0.125	0.316	50
Fluoride (mg/L)	MW-2	8	0.1858	0.125	0.125	0.263	0.125	0.335	62.5
Fluoride (mg/L)	MW-3	8	0.2488	0.291	0.125	0.3235	0.125	0.386	37.5
Fluoride (mg/L)	MW-7	8	0.6919	0.6965	0.629	0.749	0.592	0.794	0
Fluoride (mg/L)	MW-9	8	0.9636	0.943	0.913	1.011	0.885	1.09	0
pH (S.U.)	MW-1	8	7.22	7.215	7.125	7.33	7.06	7.36	0
pH (S.U.)	MW-2	8	6.196	6.17	6.12	6.27	6.09	6.36	0
pH (S.U.)	MW-3	8	6.505	6.495	6.485	6.53	6.45	6.57	0
pH (S.U.)	MW-7	8	7.268	7.26	7.23	7.295	7.22	7.35	0
pH (S.U.)	MW-9	8	7.33	7.335	7.315	7.345	7.28	7.37	0
Sulfate (mg/L)	MW-1	8	23.38	22.5	21	25	20	30	0
Sulfate (mg/L)	MW-2	8	18.63	18.5	18	19.5	16	21	0
Sulfate (mg/L)	MW-3	8	17.63	17.5	16.5	19	15	20	0
Sulfate (mg/L)	MW-7	8	205	215	185	220	170	230	0
Sulfate (mg/L)	MW-9	8	203.8	220	175	235	130	240	0
Total Dissolved Solids (mg/L)	MW-1	8	150	140	130	170	120	200	0
Total Dissolved Solids (mg/L)	MW-2	8	106.3	105	93.5	125	63	140	0
Total Dissolved Solids (mg/L)	MW-3	8	123.8	120	105	140	100	160	0
Total Dissolved Solids (mg/L)	MW-7	8	480	465	440	510	420	590	0
Total Dissolved Solids (mg/L)	MW-9	8	466.3	470	415	520	360	560	0

Sanitas™ v.9.6.18 Sanitas software licensed to GREDELL Engineering only. UG

Box & Whiskers Plot Analysis Run 7/18/2019 9:00 AM View: AppIII SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

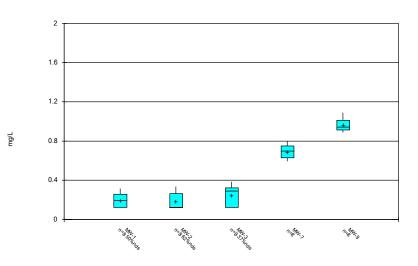


Calcium

Box & Whiskers Plot Analysis Run 7/18/2019 9:00 AM View: AppIII SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

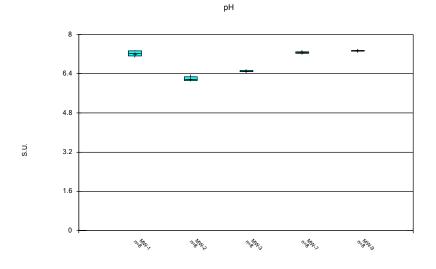
Sanitas™ v.9.6.18 Sanitas software licensed to GREDELL Engineering only. UG

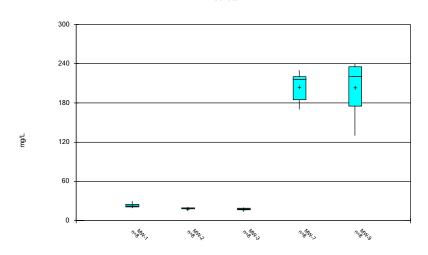
Chloride



 Box & Whiskers Plot
 Analysis Run 7/18/2019 9:00 AM
 View: AppIII

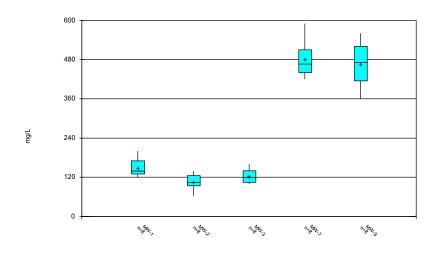
 SBMU-Sikeston Power Station
 Client: GREDELL Engineering
 Data: SikestonFAP Background


Sanitas™ v.9.6.18 Sanitas software licensed to GREDELL Engineering only. UG


Fluoride

Box & Whiskers Plot Analysis Run 7/18/2019 9:00 AM View: AppIII SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

Sanitas™ v.9.6.18 Sanitas software licensed to GREDELL Engineering only. UG



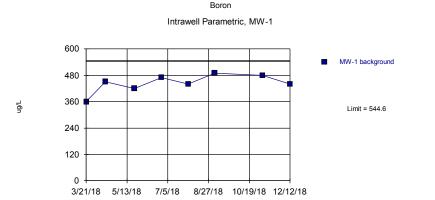
Box & Whiskers Plot Analysis Run 7/18/2019 9:00 AM View: AppIII SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

Box & Whiskers Plot Analysis Run 7/18/2019 9:00 AM View: AppIII SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

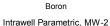
Sanitas™ v.9.6.18 Sanitas software licensed to GREDELL Engineering only. UG

Total Dissolved Solids

Box & Whiskers Plot Analysis Run 7/18/2019 9:00 AM View: AppIII SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background Sulfate

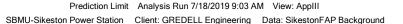

Appendix 8

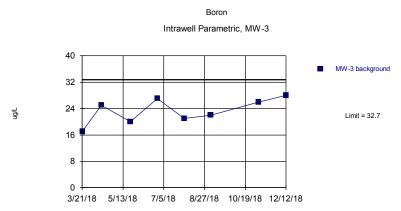
Prediction Limit Charts


Prediction Limits - (MW-1, 2, 3, 7, & 9)

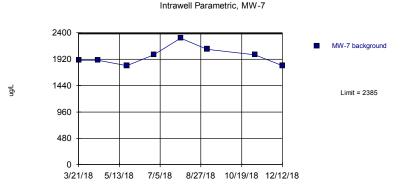
	SBMU-S	ikeston Power St	ation Client: G	REDELL Engi	neering	Data: Sike	stonFA	Backgrou	Ind Printed 7/18	/2019, 9:05 AM	
Constituent	Well	Upper Lim.	Lower Lim.	Date	Observ.	<u>Sig.</u>	<u>Bg N</u>	<u>%NDs</u>	Transform	<u>Alpha</u>	Method
Boron (ug/L)	MW-1	544.6	n/a	n/a	1 future	n/a	8	0	No	0.002505	Param Intra 1 of 2
Boron (ug/L)	MW-2	60.53	n/a	n/a	1 future	n/a	8	0	No	0.002505	Param Intra 1 of 2
Boron (ug/L)	MW-3	32.7	n/a	n/a	1 future	n/a	8	0	No	0.002505	Param Intra 1 of 2
Boron (ug/L)	MW-7	2385	n/a	n/a	1 future	n/a	8	0	No	0.002505	Param Intra 1 of 2
Boron (ug/L)	MW-9	6236	n/a	n/a	1 future	n/a	8	0	No	0.002505	Param Intra 1 of 2
Calcium (mg/L)	MW-1	45.18	n/a	n/a	1 future	n/a	8	0	No	0.002505	Param Intra 1 of 2
Calcium (mg/L)	MW-2	25.29	n/a	n/a	1 future	n/a	8	0	No	0.002505	Param Intra 1 of 2
Calcium (mg/L)	MW-3	19.49	n/a	n/a	1 future	n/a	8	0	No	0.002505	Param Intra 1 of 2
Calcium (mg/L)	MW-7	152.9	n/a	n/a	1 future	n/a	8	0	No	0.002505	Param Intra 1 of 2
Calcium (mg/L)	MW-9	95.09	n/a	n/a	1 future	n/a	8	0	No	0.002505	Param Intra 1 of 2
Chloride (mg/L)	MW-1	12.2	n/a	n/a	1 future	n/a	8	0	No	0.002505	Param Intra 1 of 2
Chloride (mg/L)	MW-2	8.15	n/a	n/a	1 future	n/a	8	0	No	0.002505	Param Intra 1 of 2
Chloride (mg/L)	MW-3	1.598	n/a	n/a	1 future	n/a	8	0	No	0.002505	Param Intra 1 of 2
Chloride (mg/L)	MW-7	15.22	n/a	n/a	1 future	n/a	8	0	No	0.002505	Param Intra 1 of 2
Chloride (mg/L)	MW-9	23.28	n/a	n/a	1 future	n/a	8	0	No	0.002505	Param Intra 1 of 2
Fluoride (mg/L)	MW-1	0.313	n/a	n/a	1 future	n/a	8	50	No	0.002505	Param Intra 1 of 2
Fluoride (mg/L)	MW-2	0.335	n/a	n/a	1 future	n/a	8	62.5	n/a	0.02144	NP Intra (NDs) 1 of 2
Fluoride (mg/L)	MW-3	0.4083	n/a	n/a	1 future	n/a	8	37.5	No	0.002505	Param Intra 1 of 2
Fluoride (mg/L)	MW-7	0.8677	n/a	n/a	1 future	n/a	8	0	No	0.002505	Param Intra 1 of 2
Fluoride (mg/L)	MW-9	1.14	n/a	n/a	1 future	n/a	8	0	No	0.002505	Param Intra 1 of 2
pH (S.U.)	MW-1	7.5	6.9	n/a	1 future	n/a	8	0	No	0.001253	Param Intra 1 of 2
pH (S.U.)	MW-2	6.5	5.9	n/a	1 future	n/a	8	0	No	0.001253	Param Intra 1 of 2
pH (S.U.)	MW-3	6.6	6.4	n/a	1 future	n/a	8	0	No	0.001253	Param Intra 1 of 2
pH (S.U.)	MW-7	7.4	7.2	n/a	1 future	n/a	8	0	No	0.001253	Param Intra 1 of 2
pH (S.U.)	MW-9	7.4	7.3	n/a	1 future	n/a	8	0	No	0.001253	Param Intra 1 of 2
Sulfate (mg/L)	MW-1	31.57	n/a	n/a	1 future	n/a	8	0	No	0.002505	Param Intra 1 of 2
Sulfate (mg/L)	MW-2	22.33	n/a	n/a	1 future	n/a	8	0	No	0.002505	Param Intra 1 of 2
Sulfate (mg/L)	MW-3	21.97	n/a	n/a	1 future	n/a	8	0	No	0.002505	Param Intra 1 of 2
Sulfate (mg/L)	MW-7	259.2	n/a	n/a	1 future	n/a	8	0	No	0.002505	Param Intra 1 of 2
Sulfate (mg/L)	MW-9	301.1	n/a	n/a	1 future	n/a	8	0	No	0.002505	Param Intra 1 of 2
Total Dissolved Solids (mg/L)	MW-1	223.2	n/a	n/a	1 future	n/a	8	0	No	0.002505	Param Intra 1 of 2
Total Dissolved Solids (mg/L)	MW-2	169.4	n/a	n/a	1 future	n/a	8	0	No	0.002505	Param Intra 1 of 2
Total Dissolved Solids (mg/L)	MW-3	177.8	n/a	n/a	1 future	n/a	8	0	No	0.002505	Param Intra 1 of 2
Total Dissolved Solids (mg/L)	MW-7	617.2	n/a	n/a	1 future	n/a	8	0	No	0.002505	Param Intra 1 of 2
Total Dissolved Solids (mg/L)	MW-9	630.8	n/a	n/a	1 future	n/a	8	0	No	0.002505	Param Intra 1 of 2

Sanitas™ v.9.6.18 Sanitas software licensed to GREDELL Engineering only. UG


Background Data Summary: Mean=443.8, Std. Dev=41.04, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9079, critical = 0.749. Kappa = 2.458 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.005205. Assumes 1 future value.

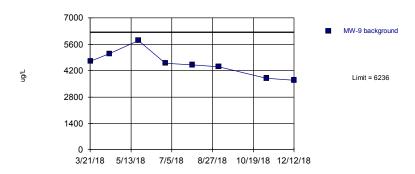


Background Data Summary: Mean=38.63, Std. Dev=8.911, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8787, critical = 0.749. Kappa = .2458 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.005205. Assumes 1 future value.

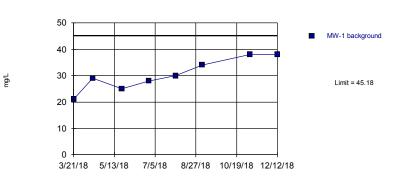

Prediction Limit Analysis Run 7/18/2019 9:03 AM View: AppIII SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

Sanitas™ v.9.6.18 Sanitas software licensed to GREDELL Engineering only. UG

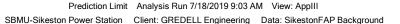
Background Data Summary: Mean=23.25, Std. Dev=3.845, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9492, critical = 0.749. Kappa = .2458 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.00505. Assumes 1 future value. Sanitas™ v.9.6.18 Sanitas software licensed to GREDELL Engineering only. UG


Boron

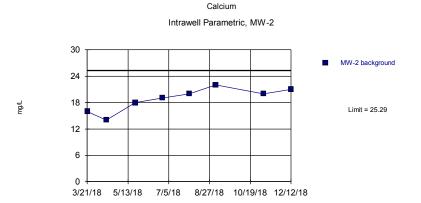
Background Data Summary: Mean=1975, Std. Dev.=166.9, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.907, critical = 0.749. Kappa = 2.458 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505. Assumes 1 future value.


Sanitas™ v.9.6.18 Sanitas software licensed to GREDELL Engineering only. UG

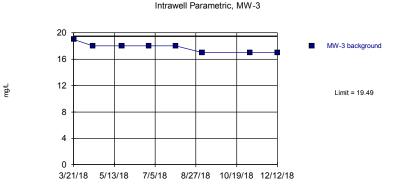
Background Data Summary: Mean=4575, Std. Dev.=675.6, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9478, critical = 0.749. Kappa = 2.458 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505. Assumes 1 future value.



Calcium


Intrawell Parametric, MW-1

Background Data Summary: Mean=30.38, Std. Dev=6.022, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9468, critical = 0.749. Kappa = .2458 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.005205. Assumes 1 future value.

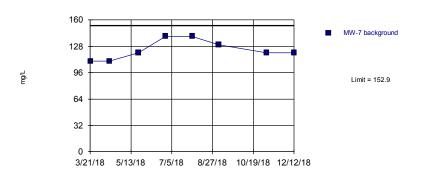

Prediction Limit Analysis Run 7/18/2019 9:03 AM View: AppIII SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

Sanitas™ v.9.6.18 Sanitas software licensed to GREDELL Engineering only. UG

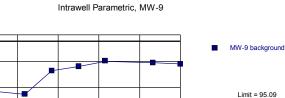
Background Data Summary: Mean=18.75, Std. Dev=2.659, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9419, critical = 0.749. Kappa = 2.458 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.00505. Assumes 1 future value. Sanitas™ v.9.6.18 Sanitas software licensed to GREDELL Engineering only. UG

Calcium

Background Data Summary: Mean=17.75, Std. Dev.=0.7071, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8268, critical = 0.749. Kappa = 2.458 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.00525. Assumes 1 future value.


Sanitas™ v.9.6.18 Sanitas software licensed to GREDELL Engineering only. UG

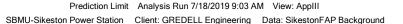
100


80

mg/L

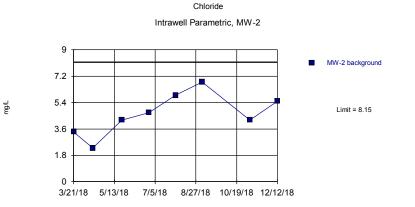
Calcium Intrawell Parametric, MW-7

Background Data Summary: Mean=123.8, Std. Dev=11.88, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8748, critical = 0.749. Kappa = 2.458 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.005205. Assumes 1 future value.


Calcium

Background Data Summary: Mean=70.38, Std. Dev=10.06, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8497, critical = 0.749. Kappa = .2458 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.005205. Assumes 1 future value.

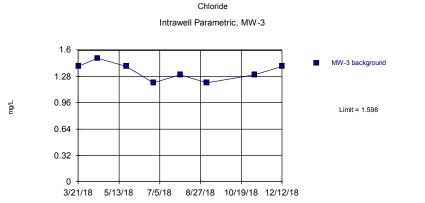
Prediction Limit Analysis Run 7/18/2019 9:03 AM View: AppIII SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background


Chloride

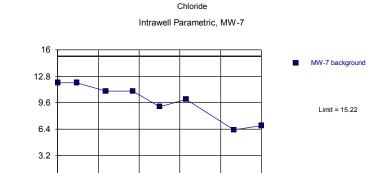
Sanitas™ v.9.6.18 Sanitas software licensed to GREDELL Engineering only. UG

Intrawell Parametric, MW-1

Background Data Summary: Mean=5.838, Std. Dev=2.588, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8813, critical = 0.749. Kappa = .2458 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.00505. Assumes 1 future value. Sanitas™ v.9.6.18 Sanitas software licensed to GREDELL Engineering only. UG

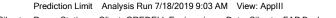

Background Data Summary: Mean=4.625, Std. Dev.=1.434, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9868, critical = 0.749. Kappa = .2458 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.00505. Assumes 1 future value.

Sanitas™ v.9.6.18 Sanitas software licensed to GREDELL Engineering only. UG


0

3/21/18 5/13/18 7/5/18

mg/L


Background Data Summary: Mean=1.338, Std. Dev.=0.1061, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.0112, critical = 0.749. Kappa = 2.458 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.005205. Assumes 1 future value.

Background Data Summary: Mean=9.775, Std. Dev=2.215, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8753, critical = 0.749. Kappa = .2458 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.005205. Assumes 1 future value.

Prediction Limit Analysis Run 7/18/2019 9:03 AM View: AppIII SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

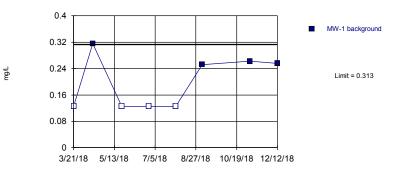
Chloride

8/27/18 10/19/18 12/12/18

SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

Sanitas™ v.9.6.18 Sanitas software licensed to GREDELL Engineering only. UG

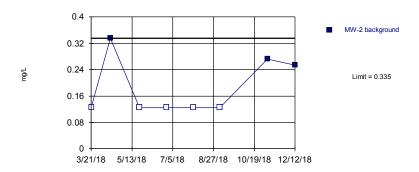
ng/L


not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9388, critical = 0.749. Kappa = 2.458 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505. Assumes 1 future value.

Background Data Summary: Mean=15.63, Std. Dev.=3.114, n=8. Insufficient data to test for seasonality: data were

Sanitas[™] v.9.6.18 Sanitas software licensed to GREDELL Engineering only. UG Hollow symbols indicate censored values.

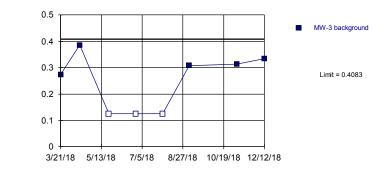
Fluoride



Background Data Summary (after Kaplan-Meier Adjustment): Mean=0.2608, Std. Dev.=0.02126, n=8, 50% NDs. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.7822, critical = 0.749. Kappa = 2.458 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505. Assumes 1 future value. Sanitas[™] v.9.6.18 Sanitas software licensed to GREDELL Engineering only. UG Hollow symbols indicate censored values.

Fluoride

Intrawell Non-parametric, MW-2

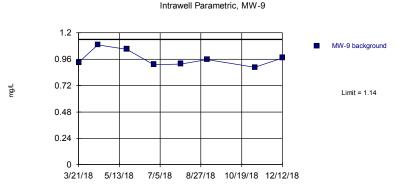


Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 8 background values. 62.5% NDs. Well-constituent pair annual alpha = 0.04242. Individual comparison alpha = 0.02144 (1 of 2). Assumes 1 future value. Insufficient data to test for seasonality: data were not deseasonalized. Sanitas[™] v.9.6.18 Sanitas software licensed to GREDELL Engineering only. UG Hollow symbols indicate censored values.

mg/L

Fluoride

Background Data Summary (after Kaplan-Meier Adjustment): Mean=0.2956, Std. Dev.=0.04584, n=8, 37.5% NDs. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8336, critical = 0.749. Kappa = 2.458 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505. Assumes 1 future value.

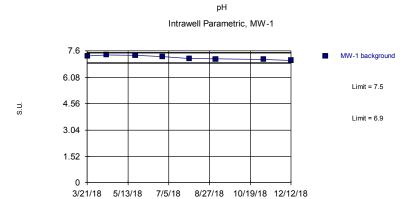

Prediction Limit Analysis Run 7/18/2019 9:03 AM View: AppIII SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

Prediction Limit Analysis Run 7/18/2019 9:03 AM View: AppIII SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

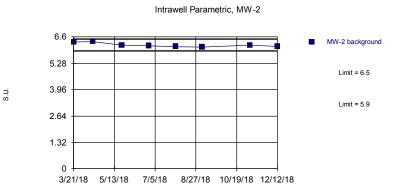
Sanitas™ v.9.6.18 Sanitas software licensed to GREDELL Engineering only. UG

Background Data Summary: Mean=0.6919, Std. Dev=0.07152, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha=0.01, calculated = 0.9552, critical = 0.749. Kappa = 2.458 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505. Assumes 1 future value.

Sanitas™ v.9.6.18 Sanitas software licensed to GREDELL Engineering only. UG

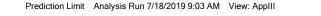

Fluoride

Background Data Summary: Mean=0.9636, Std. Dev=0.07178, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha=0.01, calculated = 0.8952, critical = 0.749. Kappa = 2.458 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505. Assumes 1 future value.

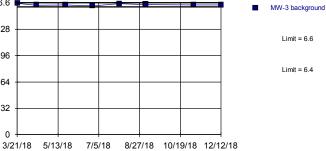

1.32

0

Sanitas™ v.9.6.18 Sanitas software licensed to GREDELL Engineering only. UG


Background Data Summary: Mean=7.22, Std. Dev.=0.1164, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9074, critical = 0.749. Kappa = 2.458 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505. Assumes 1 future value.

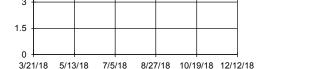
pН


Background Data Summary: Mean=6.196, Std. Dev.=0.1036, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8374, critical = 0.749. Kappa = 2.458 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505. Assumes 1 future value.

Prediction Limit Analysis Run 7/18/2019 9:03 AM View: AppIII SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

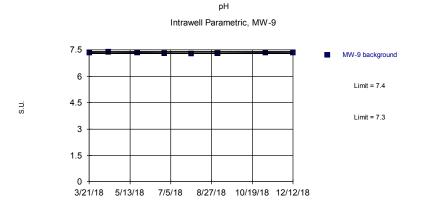
pН Intrawell Parametric, MW-3 6.6 5.28 3.96 S.U. 2.64

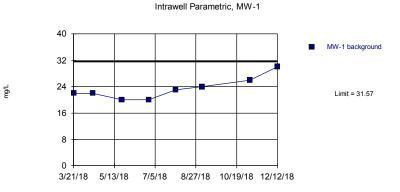


Background Data Summary: Mean=6.505, Std. Dev.=0.03854, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.939, critical = 0.749. Kappa = 2.458 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505. Assumes 1 future value.

Sanitas™ v.9.6.18 Sanitas software licensed to GREDELL Engineering only. UG

S.U


pН Intrawell Parametric, MW-7 7.5 MW-7 background 6 Limit = 7.44.5 Limit = 7.2 3


Background Data Summary: Mean=7.268, Std. Dev.=0.04464, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9288, critical = 0.749. Kappa = 2.458 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505. Assumes 1 future value.

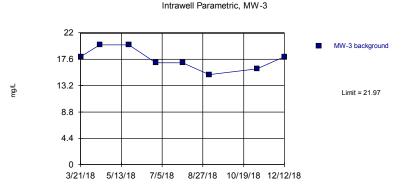
Prediction Limit Analysis Run 7/18/2019 9:03 AM View: AppIII SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

Sanitas™ v.9.6.18 Sanitas software licensed to GREDELL Engineering only. UG

Background Data Summary: Mean=7.33, Std. Dev.=0.02726, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.0741, critical = 0.749. Kappa = 2.458 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.005205. Assumes 1 future value.

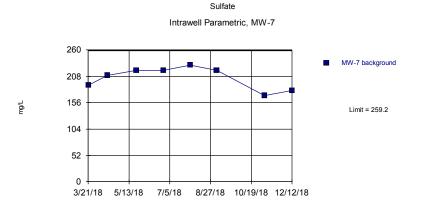
Sulfate

Background Data Summary: Mean=23.38, Std. Dev =3.335, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8864, critical = 0.749. Kappa = .2458 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.005205. Assumes 1 future value.

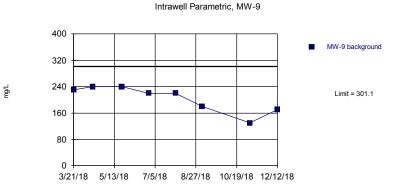

Prediction Limit Analysis Run 7/18/2019 9:04 AM View: AppIII SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

Prediction Limit Analysis Run 7/18/2019 9:04 AM View: AppIII SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

Sulfate

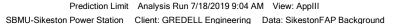

Sanitas™ v.9.6.18 Sanitas software licensed to GREDELL Engineering only. UG

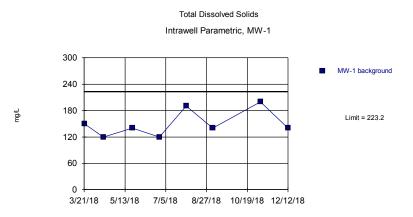
Background Data Summary: Mean-18.63, Std. Dev.=1.506, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9528, critical = 0.749. Kappa = 2.458 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.005205. Assumes 1 future value. Sanitas™ v.9.6.18 Sanitas software licensed to GREDELL Engineering only. UG



Background Data Summary: Mean=17.63, Std. Dev.=1.768, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9348, critical = 0.749. Kappa = .2458 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.00505. Assumes 1 future value.

Sanitas™ v.9.6.18 Sanitas software licensed to GREDELL Engineering only. UG

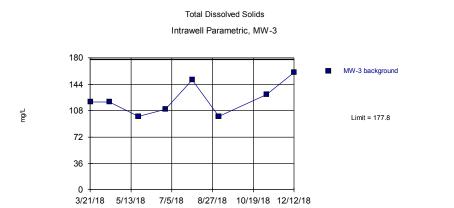

Background Data Summary: Mean=205, Std. Dev.=22.04, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8819, critical = 0.749. Kappa = 2.458 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505. Assumes 1 future value.


Sulfate

Background Data Summary: Mean=203.8, Std. Dev=39.62, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.864, critical = 0.749. Kappa = 2.458 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.005205. Assumes 1 future value.

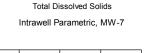
Prediction Limit Analysis Run 7/18/2019 9:04 AM View: AppIII SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

Sanitas™ v.9.6.18 Sanitas software licensed to GREDELL Engineering only. UG


Background Data Summary: Mean=150, Std. Dev.=29.76, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8433, critical = 0.749. Kappa = 2.458 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505. Assumes 1 future value. Sanitas™ v.9.6.18 Sanitas software licensed to GREDELL Engineering only. UG

ng/L

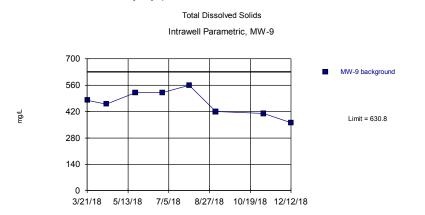
Total Dissolved Solids


Background Data Summary: Mean=106.3, Std. Dev.=25.71, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9324, critical = 0.749. Kappa = .2458 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.005205. Assumes 1 future value.

Sanitas™ v.9.6.18 Sanitas software licensed to GREDELL Engineering only. UG

Background Data Summary: Mean=123.8, Std. Dev.=22, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9132, critical = 0.749. Kappa = 2.458 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505. Assumes 1 future value. Sanitas™ v.9.6.18 Sanitas software licensed to GREDELL Engineering only. UG

mg/L



Background Data Summary: Mean=480, Std. Dev.=55.81, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9034, critical = 0.749. Kappa = 2.458 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505. Assumes 1 future value.

Prediction Limit Analysis Run 7/18/2019 9:04 AM View: AppIII SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

Prediction Limit Analysis Run 7/18/2019 9:04 AM View: AppIII SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

Sanitas™ v.9.6.18 Sanitas software licensed to GREDELL Engineering only. UG

Background Data Summary: Mean=466.3, Std. Dev=66.96, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.969, critical = 0.749. Kappa = 2.458 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.005205. Assumes 1 future value.