1505 East High Street Jefferson City, Missouri 65101 Telephone (573) 659-9078 www.ger-inc.biz

GREDELL Engineering Resources, Inc.

Sikeston Power Station

2020 Annual Groundwater Monitoring Report for Fly Ash Pond Compliance with USEPA 40 CFR 257.90(e)

Sikeston Power Station 1551 West Wakefield Avenue Sikeston, Missouri 63801

August 2020

Sikeston Power Station 2020 Annual Groundwater Monitoring Report for Fly Ash Pond Compliance with USEPA 40 CFR 257.90(e)

<u>Prepared for:</u> Sikeston Board of Municipal Utilities 1551 West Wakefield Avenue Sikeston, Missouri 63801

August 2020

Prepared by: GREDELL Engineering Resources, Inc. 1505 East High Street Jefferson City, Missouri 65101 Phone: (573) 659-9078 www.ger-inc.biz

Sikeston Power Station 2020 Annual Groundwater Monitoring Report for Fly Ash Pond Compliance with USEPA 40 CFR 257.90(e)

August 2020

Table of Contents

INTRODUCTION	1
GROUNDWATER MONITORING SYSTEM	2
FIELD SAMPLING SUMMARY Field Quality Assurance/Quality Control	3 3
ANALYTICAL SUMMARY	5
Laboratory Quality Control	5
Precision and Accuracy	5
Representativeness	6
Comparability	6
Completeness	6
STATISTICAL ANALYSIS	8
Statistical Results	9
SUMMARY	10
LIMITATIONS	11
REFERENCES	12
	INTRODUCTION GROUNDWATER MONITORING SYSTEM FIELD SAMPLING SUMMARY Field Quality Assurance/Quality Control ANALYTICAL SUMMARY Laboratory Quality Control Precision and Accuracy Representativeness Comparability Completeness STATISTICAL ANALYSIS Statistical Results SUMMARY LIMITATIONS REFERENCES

List of Figures

Figure 1 – Groundwater Contour Map – September 24, 2019

List of Tables

- Table 1 Groundwater Monitoring Well Summary Fly Ash Pond
- Table 2 Historical Groundwater Level Summary
- Table 3 Water Levels and Field Parameter Summary
- Table 4 Groundwater Monitoring Constituents
- Table 5 Relative Percent Difference Summary
- Table 6 Intra-Well Prediction Limit Summary

List of Appendices

- Appendix 1 Field Sampling Notes
- Appendix 2 Laboratory Analytical Results
- Appendix 3 Laboratory Quality Assurance/Quality Control Data
- Appendix 4 Fly Ash Pond Groundwater Quality Data Base
- Appendix 5 Statistical Power Curve
- Appendix 6 Time Series Plots
- Appendix 7 Box and Whiskers Plots
- Appendix 8 Prediction Limit Charts
- Appendix 9 Alternate Source Demonstration March 20, 2020

1.0 INTRODUCTION

The Sikeston Power Station (SPS), owned and operated by the Sikeston Board of Municipal Utilities (SBMU), is an electric power producer and distributor located within the western city limits of Sikeston, in southern Scott County, Missouri. The SBMU-SPS began operation in 1981 and produces approximately 235 megawatts of electricity. Coal combustion residuals (approximately 10,000 tons per annum) are currently sold or placed in the facility's two coal ash surface impoundments located immediately east of the power station. Both impoundments are on properties owned and controlled by SBMU. One coal ash impoundment measuring approximately 61 acres in size is actively used for bottom ash disposal. The second coal ash impoundment measuring approximately 30 acres in size is primarily used for fly ash disposal. It is subject to the alternate compliance schedule specified by the United States Environmental Protection Agency (USEPA) under 40 CFR Part 257.100(e)(5)(ii) due to its initial inactive status and the Response to Partial Vacatur (the Direct Final Rule). This report pertains specifically to the Fly Ash Pond.

Pursuant to USEPA's 40 CFR Part 257 (§257) Federal Criteria for Classification of Solid Waste Disposal Facilities and Practices, Subpart D – Standards for Disposal of Coal Combustion Residuals (CCR) in Landfills and Surface Impoundments (ponds), the establishment of a groundwater monitoring system and routine detection sampling and reporting is required at all coal ash surface impoundments. The purpose of a monitoring well system is to evaluate the quality of groundwater as it passes beneath the waste mass within an impoundment. Groundwater samples are collected and analyzed on a semi-annual basis in accordance with §257.93, or as otherwise detailed in a site-specific Groundwater Monitoring and Sampling Plan (GMSAP). Analytical data also are subjected to statistical analysis in accordance with §257.90(e). If results suggest that a statistically significant increase (SSI) in one or more constituents for detection monitoring listed in Appendix III of §257 has occurred, a written demonstration is required to determine if the SSI is attributable to alternate causative factors. If a successful demonstration is not made, an assessment monitoring program must be initiated as required under §257.95.

This report describes the results of the second semi-annual detection groundwater sampling event conducted at the SPS Fly Ash Pond on September 24, 2019. Included is a description of the sampling event, groundwater elevations, water table surface, field activities summary, analytical results, and statistical analysis results. Field sampling and reporting activities were conducted in accordance with the site-specific GMSAP (Gredell Engineering, 2018). Statistical analysis was performed in accordance with §257.93(f) using the statistical analysis method as filed in the SBMU-SPS operating record on April 15, 2019. The third semi-annual groundwater sampling field activities were completed on May 21, 2020, but data analysis was not complete at the time of this report and will therefore be included in the next Annual Groundwater Monitoring Report.

2.0 GROUNDWATER MONITORING SYSTEM

The groundwater monitoring system for the Fly Ash Pond consists of five wells. Well locations are depicted on Figure 1. The wells are identified as MW-1, MW-2, MW-3, MW-7, and MW-9. MW-2 and MW-3 are located hydraulically upgradient of the Fly Ash Pond, whereas MW-1, MW-7, and MW-9 are hydraulically downgradient of the Fly Ash Pond. Monitoring wells MW-1, MW-2, and MW-3 were installed on April 26 and 27, 2016 by Smith & Company of Poplar Bluff, Missouri during characterization of the site (Gredell Engineering, 2017). Monitoring wells MW-7 and MW-9 were installed on April 18, 2017 and November 13, 2017, respectively, by Bulldog Drilling, Inc. of Dupo, Illinois to serve as additional downgradient monitoring wells. Well construction activities were performed under the direction of a Registered Geologist in the State of Missouri. Well design and installation techniques were completed in accordance with 10 CSR 23-4, which is consistent with the standards summarized in 40 CFR 257.91(e). Well depths are between 30 and 35.5 feet below ground surface. All five wells monitor uppermost groundwater, which is within the alluvial aquifer at the Fly Ash Pond site. Each well yields sufficient quantities of water for the purposes of sampling and analysis.

Table 1 presents a construction summary of the wells comprising the Fly Ash Pond groundwater monitoring system. Figure 1 depicts well locations and a groundwater contour map of the uppermost aquifer for the September 2019 semi-annual sampling event. This map confirms that water in the uppermost aquifer continues to move in a west-southwesterly direction, consistent with the conclusions of the Site Characterization Report (Gredell Engineering, 2017). All groundwater wells are equipped with dedicated tubing for use with a peristaltic pump. This system has been used for chemical sampling since inception of groundwater sampling for the Fly Ash Pond. The Fly Ash Pond groundwater monitoring system is described in more detail in the site-specific GMSAP for this facility (Gredell Engineering, 2018).

3.0 FIELD SAMPLING SUMMARY

SPS environmental staff performed groundwater sampling on September 24, 2019. This sampling event was the second semi-annual detection groundwater sampling event conducted at the SPS Fly Ash Pond. Following the September 24, 2019 sampling event, groundwater at MW-1 was resampled for Sulfate, Calcium and Total Dissolved Solids (TDS) on October 22, 2019. The third semi-annual groundwater sampling field activities were completed on May 21, 2020, but data analysis was not complete at the time of this report. Therefore, analytical data (and evaluation) for the third event will be included in the next Annual Groundwater Monitoring Report. Field procedures for all three sampling events were conducted in the manner described in the following paragraphs and the GMSAP for this facility (Gredell Engineering, 2018).

Groundwater samples were collected using low-flow sampling techniques and dedicated sampling equipment. Field tests of indicator parameters were performed using an In-Situ, Inc. SmarTROLL TM MP flow cell unit and HF Scientific MicroTPI field portable turbidimeter. Each groundwater sample was subsequently analyzed for the constituents listed in §257 Appendix III. All monitoring wells produced sufficient volume of groundwater for full analysis.

The environmental staff inspected each monitoring well upon arrival. Wells appeared to be in satisfactory condition and had locks in place. Staff initially gauged water levels in the monitoring wells using a standard electronic water level meter graduated in increments of 0.01 feet. Static water levels were recorded on forms provided in the GMSAP. Each well was then purged, while staff monitored water quality until indicator parameters (pH and specific conductance) stabilized in accordance with the criteria in the GMSAP. Additional indicator parameters (turbidity, temperature, dissolved oxygen, and oxidation/reduction potential) were monitored for stability prior to groundwater sample collection. Following stabilization of all indicator parameters, final pH was recorded and groundwater samples were then collected.

Field notes documenting the September 24, 2019 sampling event and the October 22, 2019 resampling event and a copies of chain-of-custody forms are presented in Appendix 1. Field sampling notes are summarized in Table 3, including initial and final water level measurements, purge volumes, and pH. Raw analytical laboratory data sheets for each sample, including the field blanks and sample duplicates, are included in Appendix 2. Quality Assurance/Quality Control (QA/QC) documentation is presented in Appendix 3. A summary of background and detection monitoring analytical data and field parameters is presented in Appendix 4.

3.1 Field Quality Assurance/Quality Control

Field QA/QC during each sampling event included the collection of one field blank and one field duplicate sample. The duplicate during the September 24 event was collected at MW-2 and the duplicate during the October 22 resample event was collected at MW-1 (duplicate results are summarized in Table 5). Rinsate blanks were not collected because dedicated sampling equipment was used. Samples were shipped to PDC Laboratories' primary facility located in Peoria, Illinois using standard chain-of-custody documentation/procedures.

Samples collected during the September 24 event were received by the primary facility on September 26, 2019 and subsequently analyzed for the six detection monitoring constituents listed in §257 Appendix III and required under §257.94(b) (Table 4). Final hard copy analytical results were received from PDC Laboratories on October 9, 2019.

Samples collected during the October 22 resample event were received by the primary facility on October 25, 2019 and subsequently analyzed for Sulfate, Calcium and TDS. Final hard copy analytical results were received from PDC Laboratories on November 11, 2019

4.0 ANALYTICAL SUMMARY

Hard copy analytical data for each monitoring well sampled during the September 2019 detection monitoring event and the October 2019 resample event are provided in Appendix 2. The data pertain to water quality results from the uppermost aquifer in the area bordering the Fly Ash Pond, along with sample duplicate and field blank results.

4.1 Laboratory Quality Control

Laboratory analysis of the September and October 2019 groundwater samples was completed by PDC Laboratories, Inc., of Peoria, Illinois. The results were accompanied by appropriate QA/QC documentation. That documentation is presented in Appendix 3.

4.2 **Precision and Accuracy**

Precision is a measure of the reproducibility of analytical results, generally expressed as a Relative Percent Difference (RPD). Laboratory quality control procedures to measure precision consist of laboratory control sample (LCS) analysis and analysis of matrix spike/matrix spike duplicates (MS/MSD). These analyses are used to define analytical variability. Accuracy is defined as the degree of agreement between the measured amount of a species and the amount actually known to be present, expressed as a percentage. It is generally determined by calculating the percent recoveries for analyses of surrogate compounds, laboratory control samples, continuing calibration check standards and matrix spike samples. Acceptable percent recoveries are established for SW-846 and USEPA methods. Field and laboratory blank analyses are also used to address measurement bias.

The analyses for detection monitoring samples were performed within appropriate hold times and both initial and continuing calibrations met acceptance criteria for all analyses. Similarly, method blanks and LCS analyses met acceptance criteria. The case narratives for the September and October 2019 groundwater samples indicate that all quality controls met acceptance criteria except the TDS batch QC sample RPDs were outside the acceptance criteria and were flagged with "M".

Additional QA/QC comments include the following:

 Field Duplicates: Analyses of duplicate samples are used to define the total variability of the sampling/analytical system as a whole. One field duplicate from MW-2 was collected during the detection monitoring event and one field duplicate was collected from MW-1 during the resample. The RPD was calculated for all detected chemical parameters. Accordingly, RPDs were calculated for all parameters during the September detection sampling event except Fluoride, which was not reported in a concentration above the detection limit. RPDs were calculated for Sulfate, Calcium and TDS during the October resampling event. A summary table showing the results of the RPD calculations is included as Table 5. Using a tolerance level of ± 20 percent, all calculated RPDs were within acceptable ranges for each parameter except Boron.

- *Field Blank:* One field blank was incorporated into the data set for the detection sampling event and one field blank was incorporated into the data set for the resample. Results for the field blanks showed that they contained no reportable concentrations except for Boron and Calcium during the detection sampling event.
- *Laboratory Blanks:* Method blanks, artificial, and matrix-less samples are analyzed to monitor the laboratory system for interferences and contamination from glassware, reagents, etc. Method blanks are taken throughout the entire sample preparation process. They are included with each batch of extractions or digestions prepared, or with each 20 samples, whichever was more frequent. Reference to Appendix 3 should be made for comments related to these and other laboratory control samples.

4.3 Representativeness

Representativeness expresses the degree to which sample data accurately and precisely reflect site conditions. Representativeness of the data is determined by comparing actual sampling procedures to those delineated in the field sampling plan, comparing results from field duplicate samples and reviewing the results of field blanks.

Approved sampling procedures are described in the GMSAP (Gredell Engineering, 2018). Procedures specified in that plan have been followed. Approved sampling procedures should be reviewed annually. Groundwater monitoring data are evaluated using an intrawell statistical analysis methodology and is conducted separately for each constituent in each monitoring well using prediction limits in accordance with §257.93(f)(3) and the performance standards in §257.93(g). The stated statistical approach, along with supporting documentation and engineering certification, are available in the SBMU-SPS On-Site Operating Record.

4.4 Comparability

Comparability expresses the confidence with which one data set can be compared to another data set measuring the same property. Comparability is ensured by using established and approved sample collection techniques and analytical methods, consistent basis of analysis, consistent reporting units, and analyzing standard reference materials.

4.5 Completeness

Completeness is a measure of the amount of valid data obtained from a measurement system compared to the amount expected under controlled laboratory conditions. Completeness is defined as the valid data percentage of the total tests requested. Valid data are defined as those where the sample arrived at the laboratory intact, properly preserved, in sufficient quantity to perform the requested analyses, and accompanied by a completed chain-of-custody form

(Appendix 3). Furthermore, the sample must have been analyzed within the specified holding time and in such a manner that analytical QC acceptance criteria are met.

5.0 STATISTICAL ANALYSIS

The statistical analysis method used to evaluate groundwater within the uppermost aquifer for the Fly Ash Pond groundwater monitoring system at SBMU-SPS consists of intra-well analysis using prediction limits. The analysis is conducted separately for each constituent in each of the five monitoring wells for each sampling event in accordance with §257.93(f)(3). This statistical method complies with the accepted performance standards listed in §257.93(g).

A complete background data set has been obtained for groundwater, representing the uppermost aquifer, moving below the Fly Ash Pond at the SPS. The background data used to evaluate current groundwater quality is based on eight rounds of groundwater sampling of the five wells spanning March 2018 to December 2018. The background data set may be updated every two years but SSIs will not be included in background unless they are unconfirmed in accordance with Unified Guidance (USEPA, 2009).

Statistical analysis was performed in accordance with §257.93 using Sanitas© for Ground Water (Version 9.6.14; 2019). Intra-well prediction intervals were compared at the 99 percent confidence level for each Appendix III constituent. The groundwater analytical results from the September 2019 detection monitoring event were compared to the prediction limits (Table 6) to determine if SSIs over background exist in the data set.

If the number of reportable concentrations of a given constituent in a background data set for a given well is not sufficient to permit parametric analysis, non-parametric prediction interval analysis is conducted. Both parametric and non-parametric prediction limit analysis were performed for the Fly Ash Pond groundwater monitoring system data. Prediction intervals are based on the background monitoring data sets (Appendix 4), including results reported as less than detection limits. Initially, outlier analysis was performed for the background data set using Exploratory Data Analysis (EDA) with Sanitas©, time-series plots, and box and whiskers plots. However, because the background data span a collection period of less than one year, variance in the data set may be attributable to natural seasonal variation. Therefore, all background data have been retained as recommended by Unified Guidance (USEPA, 2009) when no basis for likely error or discrepancy can be identified. Following future updates to the background data set, the identification of potential outliers will be re-evaluated.

The results of the statistical analysis for the September 2019 sampling event are described below. A complete database summarizing the sample results, dates of sampling, and the purpose of sampling event, as per §257.90(e)(3), is provided in Appendix 4. A statistical power curve, based on the background data, is provided in Appendix 5. Trend analysis (time-series) plots of background data for all detection monitoring constituents are presented in Appendix 6. Box and whiskers plots of background data are presented in Appendix 7. Prediction limit charts are provided in Appendix 8.

5.1 Statistical Results

The statistical analysis for the Fly Ash Pond groundwater monitoring system suggest three suspected SSIs in the September 24, 2019 data set. They are specific to MW-1 and include Sulfate, Calcium and TDS. The prediction limits for Sulfate, Calcium and TDS in MW-1 are 31.57 mg/L, 45.18 mg/L, and 223.2 mg/L, respectively whereas the reported concentrations were 35 mg/L, 47 mg/L, and 230 mg/L, respectively. MW-1 was resampled on October 22, 2019 and the initial results for Sulfate and Calcium were confirmed on November 11, 2019. The subsequent results for Sulfate, Calcium, and TDS were 41 mg/L, 47 mg/L, and 180 mg/L, respectively. A duplicate MW-1 sample during the October resample was tested and concentrations of 42 mg/L, 49 mg/L, and 170 mg/L were reported for Sulfate, Calcium, and TDS, respectively.

In accordance with §257.94, an Alternate Source Demonstration (ASD) has been prepared to address the two confirmed SSIs for Sulfate and Calcium and is included as Appendix 9 to this report. The ASD was completed successfully and certified in accordance with §257.94(e)(2) on March 20, 2020. The ASD report documents that the SSIs of Sulfate and Calcium in MW-1 resulted from an alternate source originating as precipitation runoff/infiltration in the coal storage area. As a result of the successful ASD, detection monitoring in accordance with §257.94 has continued on a semi-annual basis as specified in §257.94(b).

6.0 SUMMARY

The second semi-annual sampling event was conducted by SPS environmental staff on September 24, 2019. Resampling was conducted on October 22, 2019 to confirm suspected SSIs in MW-1 for Sulfate, Calcium, and TDS. Results received on November 11, 2019 confirmed the suspected SSIs for Sulfate and Calcium. In response, an ASD was prepared and successfully completed demonstrating that the source of the SSIs originates in the coal storage area (Appendix 9). Consequently, the statistical analysis results for samples obtained during the second semi-annual groundwater detection monitoring event do not indicate SSIs associated with the Fly Ash Pond. Therefore it is recommended that detection monitoring of the Fly Ash Pond groundwater monitoring system continue on a semi-annual basis in accordance with §257.94(b).

The third semi-annual groundwater sampling field activities were completed on May 21, 2020, but data analysis was not complete at the time of this report. Therefore, analytical data (and evaluation) for the May event will be included in the next Annual Groundwater Monitoring Report.

7.0 LIMITATIONS

This report has been prepared for the exclusive use of the client and GREDELL Engineering Resources, Inc. for the specific project discussed in accordance with generally accepted environmental practices common to this locale at this time. No other warranties, expressed or implied, are provided.

Interpretations of data and recommendations made in this report are based on observations of data that were available and referred to in this report unless otherwise noted. The report is applicable only to this specific project and known site conditions as they existed at the time of report preparation.

This report is not a guarantee of subsurface conditions. Variations in subsurface conditions may be present that were not identified during this or previous investigations. The use of this report and interpretations of data or conclusions developed by others are the sole responsibility of those firms or individuals.

8.0 **REFERENCES**

GREDELL Engineering Resources, Inc., 2017, *Sikeston Power Station Site Characterization for Compliance with Missouri State Operating Permit #MO-0095575*, dated May 2017.

GREDELL Engineering Resources, Inc., 2018, *Sikeston Power Station Groundwater Monitoring and Sampling Plan for Compliance with Missouri State Operating Permit #MO-0095575*, dated September 2018.

Sanitas Statistical Software, © 1992-2019 SANITAS TECHNOLOGIES, Alamosa Colorado 81101-0012.

U.S. Environmental Protection Agency, March 2009, Statistical Analysis of Groundwater Monitoring *Data at RCRA Facilities Unified Guidance*: USEPA 530/R-09-007, Office of Resource Conservation and Recovery, Program Implementation and Information Division, Washington, D.C.

FIGURES

- NOTES:
 IMAGE PROVIDED BY BING MAPS.
 MONITORING WELL LOCATIONS, CASING ELEVATIONS & UNDERGROUND CULVERT ELEVATIONS SURVEYED BY BOWEN ENGINEERING & SURVEYING.
 GROUNDWATER ELEVATIONS MEASURED BY SIKESTON POWER STATION STAFF ON SEPTEMBER 24, 2019.
 MAP DEVELOPMENT BASED ON CONTOURS GENERATED BY SURFER® SOFTWARE.
 RANGE OF GROUNDWATER FLOW GRADIENT AS DETERMINED BY SURFER® SOFTWARE 0.0001 FT./FT. TO 0.001 FT./FT.

WELL	GROUNDWATER ELEVATION (FEET)	CASING ELEVATION (FEET)	NORTHING	EASTING
	296.09	312.77	383119.51	1078467.90
	297.53	308.01	383207.42	1079751.30
	297.05	308.55	381130.00	1079946.62
	295.98	315.03	381584.50	1078847.00
	296.33	314.68	382429.94	1078825.60

REDELL Engineering	Resources, Inc.	S	IKEST	TON P(OWER 3H PO	STATI	NO		FIG	URE 1 D CONTOUD M/	9	THE GEOLOGIST WHO REVIEWED AND APPROVED THIS REPORT ASSUMES RESPONSIBILITY ONLY FOR GEOLOGIC NITERPRETATIONS OF DATA APPEARING ON THE PAGE AND DISCLAINS FURSUANT TO SECTION	1
VIRONMENTAL ENGINEERING	LAND - AIR - WATER	20	20 AN	NUAL	. GROI	MON	ATER		SEPTEMBI		Ļ	256.456 RSMO ANY RESPONSIBILITY FOR ALL OTHER PLANS. SPECIFICATIONS. ESTIMATES. REPORTS OR	
505 East High Street Tele	ephone: (573) 659-9078		MON	ITORI	NG & F	REPOR	F					OTHER DOCUMENTS OR INSTRUMENTS NOT PREPARED	
efferson City. Missouri Fac	csimile: (573) 669-9079 🛛 😾												
MO CORP. ENGINEERING LICENSE NO.	E-2001001669-D	IRVEYED DES	NA	CP RAWIN	KE AP	1CC 7/:	ATE 2020 AS	SCALE NOTED SI	PROJECT NAME IKESTON/GWMAP/FAP	FILE NAME GWCONT FAP 2020	SHEET # 1 OF 1	OUT IN ENDED TO BE USED FOR ANY PART OR PARTS OF THE PROJECT TO WHICH THIS FIGURE REFERS.	

TABLES

Table 1 Groundwater Monitoring Well Summary - Fly Ash Pond

Monitoring Well ID ^{1,2}	Northing Location ^{3,4}	Easting Location ^{3,4}	Ground Surface Elevation ^{3,4} (feet)	Top of Riser Elevation ^{3,4} (feet)	Well Depth ⁵ (feet)	Base of Well Elevation ⁶ (feet)	Screen Length ⁷ (feet)	Top of Screen Elevation (feet)
MW-1	383119.51	1078467.90	310.41	312.77	37.84	274.93	10	285.1
MW-2	383207.42	1079751.30	305.53	308.01	37.42	270.59	10	280.8
MW-3	381130.00	1079946.62	306.11	308.55	37.21	271.34	10	281.5
MW-7	381584.50	1078847.00	312.70	315.03	37.37	277.66	10	287.9
MW-9	382429.94	1078825.60	311.85	314.68	37.28	277.40	10	287.6

NOTES:

1. Refer to Figure 1 for monitoring well locations.

2. Refer to Sikeston Power Station On-Site Operating Record for well construction diagrams.

3. Monitoring well survey data provided by Bowen Engineering & Surveying, Inc.

4. Horizontal Datum: Missouri State Plane Coordinates - NAD 83 (Feet), Vertical Datum: NAVD 88 (Feet).

5. Depth measurements relative to surveyed point on top of well casing.

6. Sump installed at base of screen (0.2 feet length).

7. Actual screen length (9.7 feet) is the machine-slotted section of the 10-foot length of Schedule 40 PVC pipe.

Table 2 Historical Groundwater Level Summary

Well ID	MW-1	MW-2	MW-3	MW-7	MW-9
Date		Groundw	ater Elevation (feet MSL)	
05/12/16	297.50	298.66	298.13	NM	NM
06/28/16	296.60	298.01	297.58	NM	NM
07/15/16	296.57	297.86	297.37	NM	NM
08/08/16	295.62	297.06	297.05	NM	NM
09/08/16	296.06	297.27	296.76	NM	NM
10/05/16	295.86	296.96	296.40	NM	NM
11/01/16	295.47	296.66	296.10	NM	NM
11/30/16	295.45	296.60	296.03	NM	NM
01/24/17	NM	NM	296.35	NM	NM
01/26/17	295.77	296.76	296.35	NM	NM
02/22/17	NM	NM	296.00	NM	NM
02/24/17	295.47	296.40	296.00	NM	NM
03/20/17	296.11	296.96	296.45	NM	NM
04/19/17	296.04	296.86	296.35	NM	NM
04/27/17	NM	NM	296.72	NM	NM
05/17/17	NM	NM	297.81	NM	NM
06/08/17	NM	NM	297.81	NM	NM
07/13/17	NM	NM	296.98	NM	NM
10/31/17	NM	NM	295.22	NM	NM
03/21/18	295.92	296.96	296.65	295.83	296.13
04/15/18	297.07	297.86	297.60	296.95	297.18
05/23/18	296.78	298.01	297.62	296.66	296.98
06/13/18	NM	NM	297.33	NM	NM
06/27/18	296.37	297.61	297.21	296.26	296.56
08/01/18	295.22	296.60	296.15	295.08	295.48
09/05/18	294.79	296.11	295.68	294.71	295.01
11/06/18	295.01	296.21	295.74	294.85	295.17
11/26/18	NM	NM	295.63	NM	NM
12/12/18	295.12	296.21	295.79	295.06	295.36
01/08/19	295.66	296.72	296.38	295.53	295.80
02/05/19	NM	NM	296.73	NM	NM
02/22/19	297.70	298.67	298.35	297.59	297.84
03/27/19	297.69	298.93	298.51	297.58	297.93
04/16/19	298.15	299.29	298.93	298.01	298.38
05/14/19	298.27	299.66	299.25	298.15	298.52
05/28/19	NM	NM	298.95	NM	NM
06/12/19	297.82	299.24	298.82	297.76	298.10
07/17/19	297.32	298.77	298.38	297.25	297.55
07/24/19	297.40	298.80	298.41	297.33	297.65
08/14/19	296.61	298.15	297.80	296.65	296.96
08/28/19	NM	NM	297.55	NM	NM
09/16/19	296.24	297.70	297.22	296.14	296.50
09/24/19	296.09	297.53	297.05	295.98	296.33
10/10/19	295.92	297.29	296.84	295.80	296.13
10/22/19	295.92	297.24	296.80	295.74	296.12
11/04/19	NM	NM	297.34	NM	NM
01/28/20	297.61	298.73	298.34	297.42	297.80
02/18/20	NM	NM	299.00	NM	NM
03/30/20	NM	NM	300.09	NM	NM
04/06/20	299.16	300.40	300.00	298.99	299.41
05/21/20	298.50	300.02	299.55	NM	298.71

NOTES:

1. Refer to Figure 1 for monitoring well locations.

2. Refer to Sikeston Power Station On-Site Operating Record for well construction diagrams.

3. NM - Not Measured.

4. Maximum and minimum groundwater elevations are shaded.

Table 3Water Levels and Field Parameter SummarySeptember 24, 2019

Monitoring Well I.D.	Hydraulic Position	Initial Water Level (ft, BTOC ²)	Final Water Level (ft, BTOC ²)	Minimum ³ Purge Vol. (ml ⁴)	Actual Purge Vol. (ml ⁴)	pH (S.U.⁵)
MW-1	Downgradient	16.68	16.68	300	2,280	7.0
MW-2	Upgradient	10.48	10.48	300	2,180	6.1
MW-3	Upgradient	11.50	11.50	300	4,320	6.5
MW-7	Downgradient	19.05	19.05	300	2,920	7.3
MW-9	Downgradient	18.35	18.35	300	2,220	7.4

NOTES:

1. Sequence of sampling is MW-3, MW-2, MW-1, MW-7, then MW-9.

2. BTOC: Below Top of Casing

3. Purge calculations based on 1/4" ID tubing and complete evacuation of single tubing volume.

4. ml: milliliter

5. S.U.: Standard Unit.

Water Levels and Field Parameter Summary October 22, 2019

Monitoring Well I.D.	Hydraulic Position	Initial Water Level (ft, BTOC ²)	Final Water Level (ft, BTOC ²)	Minimum ³ Purge Vol. (ml ⁴)	Actual Purge Vol. (ml ⁴)	pH (S.U.⁵)
MW-1	Downgradient	16.85	16.85	300	6,020	7.1

NOTES:

1. Sequence of sampling is MW-1.

2. BTOC: Below Top of Casing

3. Purge calculations based on 1/4" ID tubing and complete evacuation of single tubing volume.

4. ml: milliliter

5. S.U.: Standard Unit.

Table 4 Groundwater Monitoring Constituents

	USE	EPA 40 CFR 257	
Appendix III -		Appendix IV -	
Constituents for Detectior	n Monitoring	Constituents for Assessment Mo	nitoring
Chemical Constituent	Method	Chemical Constituent	Method
pH (S.U.)	Field	Antimony (μg/L)	SW 6020
Boron (µg/L)	SW 6020	Arsenic (μg/L)	SW 6020
Calcium (mg/L)	SW 6020	Barium (μg/L)	SW 6020
Chloride (mg/L)	EPA 300.0	Beryllium (μg/L)	SW 6020
Fluoride (mg/L)	EPA 300.0	Cadmium (µg/L)	SW 6020
Sulfate (mg/L)	EPA 300.0	Chromium (μg/L)	SW 6020
Total Dissolved Solids (mg/L)	SM 2540C	Cobalt (μg/L)	SW 6020
		Fluoride (mg/L)	EPA 300
		Lead (µg/L)	SW 6020
		Lithium (µg/L)	SW 6020
		Mercury (µg/L)	SW 6020
		Molybdenum (µg/L)	SW 6020
		Selenium (μg/L)	SW 6020
		Thallium (μg/L)	SW 6020
		Radium 226 and 228 combined (pCi/L)	EPA 903.1 & 904.0

NOTES:

1. S.U. = Standard Unit.

2. μ g/L = micrograms per liter.

3. mg/L = milligrams per liter.

4. pCi/L = picocurie per liter.

Table 5
Relative Percent Differences Summary -
September 24, 2019

Chemical Parameter	Units	MW-2	DUP	Relative Percent Difference
рН	S.U.	6.1	6.1	0.00
Chloride	µg/L	6.6	6.6	0.00
Fluoride	mg/L	<0.250	0.261	N/A
Sulfate	mg/L	17	17	0.00
Total Dissolved Solids	mg/L	130	140	7.41
Boron	mg/L	58	120	69.66
Calcium	mg/L	22	22	0.00

NOTES:

1. S.U. = Standard Unit.

2. μ g/L = micrograms per liter.

3. mg/L = milligrams per liter.

4. Relative Percent Difference tolerance = 20%.

5. N/A = Not applicable - parameter concentration below reporting limit.

Relative Percent Differences Summary -October 22, 2019

Chemical Parameter	Units	MW-1	DUP	Relative Percent Difference
рН	S.U.	7.1	7.1	0.00
Sulfate	mg/L	41	42	2.41
Total Dissolved Solids	mg/L	180	170	5.71
Calcium	mg/L	47	49	4.17

NOTES:

1. S.U. = Standard Unit.

2. mg/L = milligrams per liter.

3. Relative Percent Difference tolerance = 20%.

Chemical Parameter	Units	MW-1	MW-2	MW-3	MW-7	MW-9
40 CFR 257 Appendix III Constituents for						
Detection Monitoring						
pH Upper	S.U.	7.5	6.5	6.6	7.4	7.4
pH Lower	S.U.	6.9	5.9	6.4	7.2	7.3
Boron	µg/L	544.6	60.53	32.7	2385	6236
Calcium	mg/L	45.18	25.29	19.49	152.9	95.09
Chloride	mg/L	12.2	8.15	1.598	15.22	23.28
Fluoride	mg/L	0.313	0.335	0.4083	0.8677	1.14
Sulfate	mg/L	31.57	22.33	21.97	259.2	301.1
Total Dissolved Solids	mg/L	223.2	169.4	177.8	617.2	630.8

Table 6 Intra-Well Prediction Limit Summary

NOTES:

1. Prediction limits based on eight rounds of background data spanning March 2018 to December 2018.

Appendix 1 Field Sampling Notes

 Field Instrumentation Calibration Log

 Calibrated by:

Facility: SBMU SPS CCR Groundwater Sampling

1	Field Instruments: In-Situ smarTROLL Field Meter				HF scientific, Inc. Micro TPI Field Portable Turbidimeter															
	s/N #: 474247						sin #: 201607366													
	Date	Time	pH Standa	ırds	pH Measure- ments	Specific Conductand Standard (µS/cm)	ce	Specific Conductance Measurement (µS/cm)	Oxidation Ro Stan	edu Idar	ction Potent d (mV)	ial	Oxidation Reduction Potential Measurement (mV)	Dissolved (%	Ох)	ygen	Turbidity Standards (NTU)		T Mea	Turbidity asurements (NTU)
>	18/20		4.00	=	4.0				Temperature (°C)	=	21.58			Temperature (°C)	1	21.81	0.02	=	Ģ	2.02
of Day ion		/	7.00	=	7.0									Tap Water Source	=	Silasta	10.0	=	1	1 .
ginning Calibrat	19	0627	1413 10.00 = (0.0	=	1412.3	Standard (mV)	= 229.0	=	289.2	Barometric Pressure (mm/Hg)	=	(305.7	1000		12					
ä														Measurement	=	99.9			1.0	.0
2			4.00	=	4.1		T		Temperature	=	22.87			Temperature (°C)	=	24.56	0.02	=	U).0२
Checl	09-24		7.00	=	7.1			10						Tap Water Source	=	Sikesto	7 10.0	=	1	0.06
l of Day	19	1332	1413	=	1380.1	Standard (mV)	=	229.U	=	927.5	Barometric Pressure (mm/Hg)	=	1004.9	1000	=	10	005			
Eno			10.00							.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			Measurement	=	98.24				- 210	

The Multi-Probe Field Meter measures Temperature, Specific Conductance, Dissolved Oxygen, pH, and Oxidation Reduction Potential. Notes:

The HF scientific, inc. Micro TPI Field Portable Turbidimeter measures Turbidity.

Dissolved oxygen is calibrated via % saturation method; however, field measurements are recorded as mg/L.

I certify that the aforementioned meters were calibrated within the manufacturers specifications.

By: Ashish Parel Date.09/24/19

Monitoring Well Field Inspection

Facility: SBMU SPS - CCR Groundwater Monitoring Monitoring Well ID: MW 3 Name (Field Staff): A Patel D Dillinghum Date: 09-24-19
Access: Accessibility: Good Fair Poor
Well clear of weeds and/or debris?: Yes 🗠 No
Well identification clearly visible?: Yes 📈 No
Remarks:
Concrete Pad: Good 🖌 Inadequate
Depressions or standing water around well?: Yes No 🚩
Remarks:
Protective Outer Casing: Material = $4" \times 4"$ Steel Hinged Casing with Hasp
Condition of Protective Casing: Good
Condition of Locking Cap: Good <u>C</u> Damaged
Condition of Lock: Good 🛩 Damaged
Condition of Weep Hole: Good Damaged
Remarks:
Well Riser: Material = <u>2" Diameter, Schedule 40 PVC, Flush Threaded</u>
Condition of Riser: Good Damaged
Condition of Riser Cap: Good Damaged
Measurement Reference Point: Yes No
Remarks:
Dedicated Purging/Sampling Device: Type = <u>1/4</u> " ID Semi-Rigid Polyethylene & 0.170" ID Flexible Silicone Tubing
Condition: Good <u>Le</u> Damaged <u>Missing</u>
Remarks:
Monitoring Well Locked/Secured Post Sampling?: Yes Kana No
Remarks:
Field Certification Shish Pater Las Tech 09-24-19
Signed Title Date

Prepared by: GREDELL Engineering Resources, Inc.

January 2017

Field	Sam	pling	Log
-------	-----	-------	-----

Monitor	ing Well ID:	MW	3 Faci	ility: SBMU	J Sikeston Po	ower Statio	n - Groundw	ater Monitor	ng	
Initial Wate	r Level (feet	t btoc):	11.5	Э	_	Date: 0	9-24	1-19		
Initial Grou	ndwater Ele	vation (NAVD	88):			Air Pressur	e in Well?	Y / 🕅		
PURGE IN	FORMATIO	N								
Date:	09-0	14-19								
Name (San	nple Collect	or):	Dill	ingh	am					;
Method of V	Well Purge:	Low Flow	Perstaltic F	Pump	Dec	licated Tub	ing?	Ŷ/ N		
Time Purgi	ng Initiated	0	724		One	e (1) Well V	/olume (mL):		NA	
Beginning	Water Level	(feet btoc)	11.	50	 Tot	al Volume I	Purged (mL)	:	43-	25
Boginning	Groundwate	r Elevation (N			We	ll Puraed T	o Drvness?		Y / (N)	
Beginning .			20 9	0	\\/a	tor Lovel a	fter Sampling	r (feet btoc):		50
Vveil Total	Depth (feet		20.1	7	VVa	(i.e	e., pump is c	off)		
Casing Dia	imeter (feet)	2" Sch 4	D PVC		Tim	e Samplin	g Completed	:	074	18
PURGE S	TABILIZATI	ON DATA								
Time	Purge	Cumulative	Temp	Specific	Dissolved	pН	Oxidation Reduction	Turbidity	Water	Notes
	Rate (mL/min)	(mL)	(°C)	(µS/cm)	(mg/L)	(S.U.)	Potential (mV)	(NTU)	(feet btoc)	color, odor)
10726		300	18.97	197.98	1.13	6.4	105.3	16.89	11.50	Red Flake no
0728	260	820	17.72	199.14	0.82	6.3	91.2	12.24	11.50	••
0730	243	1300	17.37	197.95	0.75	6.3	80.6	12.11	11.55	
0732	250	1800	17.11	198.55	2.70	6.4	75.5	5.09	11.50	clear, "odo
2734	250	2300	17.08	197.69	0.64	6.4	71.5	3.80	11.50	
0736	263	2820	17.01	195.53	2.61	6.4	67.2	4.32	11.50	1.
0722	242	3300	1696	194.23	0.58	6.4	64.9	2.23	11.50	
07112	260	3820	16.97	192.43	0.58	6.4	62.1	2.09	11.50	u 7
1142	250	4320	17.07	191.38	0.53	6.5	58.1	2.28	11.50	
UT I.	0- 5									
									0	

.

Fiel	d S	am	plin	g Log
------	-----	----	------	-------

Facility:	SBMU Sikeston I	Power Station - (CCR Groundwa	ter Monitoring	Monitoring We		<u>v3</u>
Sampling Informa	ition:						
Method of Samplin	g: Low Flow -	Perstaltic Pump	& Tubing			Dedicated:	(Y) / N
Water Level @ Sa	mpling (feet btoc)	11.50	>				
Monitoring Event:	Annual ()	Semi-Annua	l 🗙 🛛 Quarte	rly() M	onthly()	Other ()	
Final Purge Stabliz	ation Sampling D	ata:			-	O idefian	
<u>Date</u> Sample Time	Sample Rate (mL/min)	Temp (°C)	Specific Conductance (µS/cm)	Dissolved Oxygen (mg/L)	рН (S.U.)	Reduction Potential (mV)	Turbidity (NTU)
09-24-19	250	17.07	191.38	0.53	6.5	58.1	2.28
Instrument Calibr See instrument cal 1 - In-Situ SmarTr 2 - HF scientific, in General Informat	ration Data: libration log of da roll Multi-Probe Fi nc. Micro TPI Fiel ion:	ily calibration da eld Meter (Temp d Portable Turbi	ta for the followi perature, Specifi idimeter	ing instruments: ic Conductance, Dissol	lved Oxygen, pl	H, Oxidation Red	luction Potentia
Weather Condition	ns @ time of sam			010/05			
Sample Character	istics: <u>CI</u>	ear, co	Torless	Odorless		2	14
Sample Collection	Order:	Per SAP			(4)		
Comments and O	bservations:	а ж	3	а ж	61 20	i) 1	2
x 8				×	2) - 3)		
		- 2 2 2	5	æ		 I 	
						5i i	
		5					

I certify that sampling procedures were in accordance with applicable EPA and State protocols.

Date: 09-24-19 By: ASL, 82 Pase

Title: Las Tech

Page 2 of 2

Monitoring Well Field Inspection

......

-

Facility: <u>SBMU SPS - CCR Groundwater Monitoring</u> Monitoring Well ID: <u>MW 2</u> Name (Field Staff): <u>A Palet D Dittingham</u>
Date: 09 - 24 - 19
Access: Accessibility: Good Fair Poor Poor Well clear of weeds and/or debris?: Yes No Well identification clearly visible?: Yes No No Poor Poor Poor Poor Poor Poor Poo
Concrete Pad: Good // Inadequate Condition of Concrete Pad: Good // Inadequate Depressions or standing water around well?: Yes No // Remarks: Remarks: No //
Protective Outer Casing: Material = 4" x 4" Steel Hinged Casing with Hasp Condition of Protective Casing: Good Imaged Condition of Locking Cap: Good Imaged Condition of Lock: Good Imaged Condition of Weep Hole: Good Imaged Remarks: Bemarks: Damaged
Well Riser: Material = <u>2" Diameter, Schedule 40 PVC, Flush Threaded</u> Condition of Riser: Good <u>//</u> Damaged Condition of Riser Cap: Good <u>//</u> Damaged Measurement Reference Point: Yes <u>//</u> No Remarks: Kenarks: Kenarks
Dedicated Purging/Sampling Device: Type = ½ " ID Semi-Rigid Polyethylene & 0.170" ID Flexible Silicone Tubing Silicone Tubing Condition: Good I Damaged Remarks: Nissing
Monitoring Well Locked/Secured Post Sampling?: Yes No
Field Certification Ashish / Life Lab Tech 09-24-19 Signed Title Date

Prepared by: GREDELL Engineering Resources, Inc.

185

Field Sampling Log

Monitor	ing Well ID:	MW	2_Faci	ility: SBMU	Sikeston Po	ower Statio	n - Groundw	ater Monitor	ing		
Initial Wate	r Level (feet	btoc): [0.4	8		Date: (09-2	4-19			
Initial Grou	ndwater Elev	vation (NAVD	88):			Air Pressu	re in Well?	Y / 🕲			
PURGE IN	FORMATIO	N						اروی با دارد.			
Date:	89-	24-19	0.51	I							
Name (San	nple Collecte	or):	0.1	lingh	am						<i>.</i>
Method of	Well Purge:	Low Flow	Perstaltic F	oump	Dec	licated Tub	oing?	Y) N			
Time Purgi	ng Initiated:	08	09		One	e (1) Well \	/olume (mL)	:	NA		
Beginning	Water Level	(feet btoc):	13	.48	Tot	al Volume	Purged (mL)	:	2180	D	
Beginning	Groundwate	r Elevation (N	AVD88):		We	II Purged T	o Dryness?		Y / 🔃		
Well Total	Depth (feet	btoc):	37.17		Wa	ter Level a	fter Sampling	g (feet btoc):	10.	18	.
Casing Dia	meter (feet)	: 2" Sch 40) PVC			(1.	e., pump is c)TT)	073	1	
					i in	ne Samplin	g Completed	1: {			·
PURGE ST	FABILIZATI	ON DATA					Oxidation		14/-1	Noto	
Time	Purge Rate (mL/min)	Cumulative Volume (mL)	Temp (°C)	Specific Conductance (µS/cm)	Dissolved Oxygen (mg/L)	рН (S.U.)	Reduction Potential (mV)	Turbidity (NTU)	Level (feet btoc)	(e.g., op: color, o	acity, dor)
10811		2/22	12.98	189.27	2.76	6.3	80.5	5.23	10.48	clear n	Stor
12815	250	800	17.55	192.44	2.67	6.1	75.1	2.85	10.48	U	tr
6216	220	1240	12.52	192.43	0.61	6.1	72.2	1.14	10.48	~	h
1317	230	1700	18.56	189.98	0.64	6.1	71.5	1.31	10.48	er.	u
0819	243	2180	18.75	189.43	2.61	6.1	71.3	1.16	12.48		9
									1		
						_					
								1	1		

btoc - below top of casing

Field Sampling Log

Facility:	SBMU Sikeston	Power Station - (CCR Groundwa	ter Monitoring	Monitoring Wel	IID:M	w 2
Sampling Informa	tion:			42 			
Method of Samplin	g: Low Flow -	Perstaltic Pump	& Tubing			Dedicated:	(Y) / N
Water Level @ Sa	mpling (feet btoc)	10.48	>				
Monitoring Event:	Annual ()	Semi-Annual	(>> Quarte	rly() Mo	onthly ()	Other ()	
Final Purge Stabliz	ation Sampling D)ata:					
<u>Date</u> Sample Time	Sample Rate (mL/min)	Temp (°C)	Specific Conductance (µS/cm)	Dissolved Oxygen (mg/L)	рН (S.U.)	Oxidation Reduction Potential (mV)	Turbidity (NTU)
09-24-19	240	18.75	189.43	0.61	6.1	71.3	1.16
Instrument Callbo See instrument ca 1 - In-Situ SmarTu 2 - HF scientific, in	ration Data: libration log of da roll Multi-Probe Fi nc. Micro TPI Fiel	ily calibration dat ield Meter (Temp ld Portable Turbi	ta for the follow berature, Specifi dimeter	ing instruments: ic Conductance, Dissolv	<i>r</i> ed Oxygen, pH	, Oxidation Red	uction Potentia
General Information	lon: ns @ time of sam	pling: <u>Sv</u>	nny				
Sample Character	istics: <u>Cl</u>	lear, co	lorless	, odorles	5		
Sample Collection	Order:	Per SAP					
Comments and O	bservations: FDVP[icare	2				al
I certify that samp	ling procedures v	vere in accordan	ce with applicat	ble EPA and State proto	ocols.		
Date: 09 -2L	<u>І-19</u> ву: _	AD.3L	l'a te	Title	603	Tech	
			Pag	je 2 of 2			

20 m

Monitoring Well Field Inspection

Facility: <u>SBMU SPS - CCR Groundwater Monitoring</u> Monitoring Well ID: <u>MW I</u> Name (Field Staff): <u>A Patel D Oillingham</u>
Date: <u>09- 24 - 14</u>
Accessibility: Good V Fair Poor
Well clear of weeds and/or debris?: Yes / No
Well identification clearly visible?: Yes <u>V</u> No
Remarks:
Concrete Pad: Good Inadequate
Depressions or standing water around well?: Yes No
Remarks:
<u>Protective Outer Casing</u> : Material = $4^{\circ} \times 4^{\circ}$ Steel Hinged Casing with Hasp
Condition of Protective Casing: Good L Damaged
Condition of Locking Cap: Good L Damaged
Condition of Lock: Good 🖌 Damaged
Condition of Weep Hole: Good 🖌 Damaged
Remarks:
Well Riser: Material = 2" Diameter, Schedule 40 PVC, Flush Threaded
Condition of Riser: Good <u>Condition</u> Damaged
Condition of Riser Cap: Good L Damaged
Measurement Reference Point: Yes <u>V</u> No
Remarks:
Dedicated Purging/Sampling Device: Type = 1/4 " ID Semi-Rigid Polyethylene & 0.170" ID Flexible Silicone Tubing
Condition: Good Damaged Missing
Remarks:
Monitoring Well Locked/Secured Post Sampling?: Yes No
Remarks:
Field Certification Ashish Page Lab Tech . 9-24-19 Signed Title Date

Prepared by: GREDELL Engineering Resources, Inc.

18

January 2017

Field Sampling Log

Monitor	ing Well ID:	MW	Fac	ility: SBML	J Sikeston P	ower Static	on - Groundw	ater Monitor	ing	
Initial Wate	r Level (feel	t btoc):	16.68			Date: (19-21	1-19		y.
Initial Grou	ndwater Ele	vation (NAVD				Air Pressu	re in Well?	Y /N		
PURGE IN	FORMATIO	N							- in the second second	
Date:	09-2	4-19	- 111*							
Name (Sar	nple Collect	or):	10,111	rignar	η					
Method of	Well Purge:	Low Flow	Perstaltic F	oump	Dec	dicated Tul	bing? (Y) N		
Time Purgi	ng Initiated:	C	926		On	e (1) Well \	Volume (mL)		NA	
Beginning	Water Level	(feet btoc):	16	. 68	Tot	al Volume	Purged (mL)	: ,	228	0
Beginning	Groundwate	r Elevation (N	AVD88):		We	I Purged 1	To Dryness?		Y / 🚯	
Well Total	Depth (feet	btoc): 3	7.64		Wa	iter Level a	after Samplin	g (feet btoc):	16	. 68
Casing Dia	meter (feet)	: 2" Sch 40) PVC			(i.	.e., pump is c	off)	201	17
Cuong Dia					Tin	ne Samplin	g Completed	13 o	077	
PURGE S	FABILIZATI	ON DATA					Oxidation			Natas
Time	Purge Rate	Cumulative Volume	Temp	Specific Conductance	Dissolved Oxygen	pH	Reduction		Water Level	(e.g., opacity,
۹)	(mL/min)	(mL)	(-0)	(µS/cm)	(mg/L)	(3.0.)	(mV)	(1110)	(feet btoc)	color, odor)
0928		320	20.29	357.18	0.79	6.7	120.3	1.22	16.56	CRUP, OLOV
6930	250	820	18.89	363.11	0.61	6.8	-(22.5	0.46	16.68	× //
0932	242	(300	18.44	368.16	0.57	6.9	-(23.9	0.68	16.08	N N
0434	255	1800	18.27	375.53	0.47	6.9	-1-1-1-1-6	0.53	16.60	4 11
5930	243	2280	1822	372,91	0.30	7.0	-12 (.5	0.52	10.00	
					3					
								÷		
							+			
u										

btoc - below top of casing

2
Field Sampling Log

Facility:	SBMU Sikeston	Power Station -	CCR Groundwa	ter Monitoring	Monitoring We	ell ID: <u>M</u>	w /
Sampling Informa	tion:						
Method of Samplin	g: Low Flow -	Perstaltic Pump	& Tubing			Dedicated:	(Y) / N
Water Level @ Sar	mpling (feet btoc)	: 16.6	9				
Monitoring Event:	Annual ()	Semi-Annua	Quarte	rly() Mo	onthly ()	Other ()	
Final Purge Stabliz	ation Sampling D	ata:				-	
<u>Date</u> Sample Time	Sample Rate (mL/min)	Temp (°C)	Specific Conductance (µS/cm)	Dissolved Oxygen (mg/L)	рН (S.U.)	Oxidation Reduction Potential (mV)	Turbidity (NTU)
09.24.19 0936	240	18.22	372.41	0.56	7.0	-127.5	0,52
Instrument Calibr See instrument cal 1 - In-Situ SmarTr 2 - HF scientific, ir	ation Data: ibration log of dai oll Multi-Probe Fi nc. Micro TPI Fiel	ily calibration dat eld Meter (Temp d Portable Turbi	ta for the followi perature, Specifi dimeter	ng instruments: c Conductance, Dissolv	ved Oxygen, pH	I, Oxidation Red	luction Potentia
General Informati Weather Condition 70 * F	on: s @ time of sam	oling: 5	INNY				
Sample Characteri	stics: <u> </u>	lear, c	oloness	, adorless			
Sample Collection	Order:	Per SAP					
Comments and Ob	servations:	running	HP Q	oo feet f	fom so	amplin	9
I certify that sample	ing procedures w	ere in accordan	ce with applicab	le EPA and State proto	cols.		
Date: 09 - 24-	-19 ву: В	shish	1/4 PL Page	Title:	Las	Tech	

.

Monitoring Well Field Inspection

Facility: <u>SBMU SPS - CCR Groundwater Monitoring</u> Monitoring Well ID: <u>MW 7</u> Name (Field Staff): <u>A Pater 0 0111709hum</u> Date: <u>09 - 24 - 19</u>
Access: Accessibility: Good
Well identification clearly visible?: Yes No Remarks:
Concrete Pad: Good // Inadequate Condition of Concrete Pad: Good // Inadequate Depressions or standing water around well?: Yes No _/ Depressions or standing water around well?: Yes No _/
Protective Outer Casing: Material = $4^{"} \times 4^{"}$ Steel Hinged Casing with Hasp Condition of Protective Casing: Good \checkmark Damaged
Condition of Locking Cap: Good <u>L</u> Damaged
Condition of Weep Hole: Good V Damaged
Well Riser: Material = 2" Diameter, Schedule 40 PVC, Flush Threaded
Condition of Riser: Good Damaged Condition of Riser Cap: Good 1/ Damaged
Measurement Reference Point: Yes No Remarks:
Dedicated Purging/Sampling Device: Type = <u>1/4</u> " ID Semi-Rigid Polyethylene & 0.170" ID Flexible Silicone Tubing
Condition: Good <u>V</u> Damaged <u>Missing</u> Remarks:
Monitoring Well Locked/Secured Post Sampling?: Yes No Remarks:
Field Certification Ashish Pater Las Tech 09-24-29 Signed Title Date

Prepared by: GREDELL Engineering Resources, Inc.

16

Field Sampling Log

Monitori	ng Well ID:	MW	1_7_Faci	lity: SBMU	Sikeston Po	wer Statio	n - Groundwa	ater Monitori	ng	
Initial Water	Level (feet	btoc):	19.0	5		Date: 0	9-21	+-19		
Initial Groun	dwater Elev	vation (NAVD	88):	-		Air Pressur	e in Well?	Y / 🕅		
PURGE INF	ORMATIO	N				-		ere la constantina		
Date:(29-6	24-19								
Name (Sam	ple Collecto	or):	Dil	ling	ham					
Method of V	Veil Purge:	Low Flow	Perstaltic F	Pump	Ded	licated Tub	ing?	DIN		
Time Purgir	ng Initiated:	/	011	-	One	e (1) Well V	/olume (mL):		NA	
Beginning V	Vater Level	(feet btoc):	19	1.05	Tota	al Volume	Purged (mL):	3	2920	<u> </u>
Beginning	Groundwate	r Elevation (N	AVD88):		We	II Purged T	o Dryness?		Y / 🕅	
Well Total I	Depth (feet	btoc):	37.2	3	Wa	ter Level a	fter Sampling	, (feet btoc):		05
Cooing Dia	motor (feet)	· 2" Sch 4(PVC			(i.	e., pump is o	ff)	100	7
Casing Dia		. 2 00114			Tim	ne Sampling	g Completed	:	102	0
PURGE ST	ABILIZATIO	ON DATA					Ovidation			Natas
Time	Purge Rate	Cumulative Volume	Temp	Specific Conductance	Dissolved Oxygen	pH	Reduction		Water Level	(e.g., opacity,
я.)	(mL/min)	(mL)	(°C)	(µS/cm)	(mg/L)	(3.0.)	(mV)	(((10)	(feet btoc)	color, odor)
1013		360	22.38	720.85	0.87	7.1	76.0	5.19	19.05	ador
1019	270	900	19.89	747.76	0.33	7.3	44.1	4.37	19.05	11 11
1017	250	1400	19.24	756.21	0.44	7.3	1107.1	1.38	19.05	u ()
1019	260	1920	19.09	755.16	0.30	1.5	14.5	0.99	19.06	is y
1021	25	2420	18.93	757.71	0.51	1.5	110.1	0.68	10 50	11 11
1023	250	2925	18.88	751.65	0.31	7.5	114.0	0.34	11.03	
							1			
										1
		and the second						1		
						1				
						1				
									9 N	
II										

btoc - below top of casing

1.10

Field Sampling Log

.

Facility:	SBMU Sikeston F	Power Station - C	CCR Groundwa	ter Monitoring	Monitoring Wel	HD:M	W7_
Sampling Information	tion:						
Method of Sampling	a: Low Flow -	Perstaltic Pump	& Tubing			Dedicated:	(Y) / N
Water Level @ Sar	npling (feet btoc)	19.0	5				
Monitoring Event:	Annual ()	Semi-Annual	Quarte	rly() Mo	nthly()	Other ()	
Final Purge Stabliz	ation Sampling D	ata:		and the second	and the second second	Ovidation	
<u>Date</u> Sample Time	Sample Rate (mL/min)	Temp (°C)	Specific Conductance (µS/cm)	Dissolved Oxygen (mg/L)	рН (S.U.)	Reduction Potential (mV)	Turbidity (NTU)
09-24-19	250	18.88	751.65	0.31	7.3	119.0	0.59
Instrument Calibr See instrument cal 1 - In-Situ SmarTr 2 - HF scientific, in	ation Data: ibration log of dai oll Multi-Probe Fi nc. Micro TPI Fiel	ily calibration dat eld Meter (Temp d Portable Turbi	a for the follow erature, Specifi dimeter	ing instruments: ic Conductance, Dissolv	ed Oxygen, pH	, Oxidation Red	uction Potentia
General Informati	on: s @ time of sam	pling: <u></u>	INNY				
73° F				- 1-1-1-			
Sample Characteri	stics: <u>C/(</u>	ear, co	I orless,	, OCTURESS			
Sample Collection	Order:	Per SAP					
Comments and Ot	Field	Blun	k				
10							
				10 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -			
I certify that samp	ling procedures v	vere in accordar	ice with applica	ble EPA and State proto	cols.		
Date: 9 - 24 -	I R By:	3hist	Vater	Title	Las	Tech	

Page 2 of 2

*

Monitoring Well Field Inspection

Facility: <u>SBMU SPS - CCR Groundwater Monitoring</u> Monitoring Well ID: <u>MW 9</u> Name (Field Staff): <u>A Pater D Dilling Lam</u> Date: <u>9-2U-19</u>	
Accessi Accessibility: Good Fair Poor	
Well clear of weeds and/or debris? Yes No	
Well identification clearly visible? Yes V	
Remarks.	
Concrete Pad	
Condition of Concrete Pad: Good Left Inadequate	
Depressions or standing water around well?: Yes No	
Remarks:	
<u>Protective Outer Casing</u> : Material = $4^{\circ} \times 4^{\circ}$ Steel Hinged Casing with Hasp	
Condition of Protective Casing: Good L Damaged	
Condition of Locking Cap: Good <u>C</u> Damaged	
Condition of Lock: Good <u>Condition</u> Damaged	
Condition of Weep Hole: Good L Damaged	
Remarks:	
Well Riser: Material = 2" Diameter, Schedule 40 PVC, Flush Threaded	
Condition of Riser: Good 🖉 Damaged	
Condition of Riser Cap: Good Condition Damaged	
Measurement Reference Point: Yes K No	
Remarks:	
Dedicated Purging/Sampling Device: Type = 1/4 " ID Semi-Rigid Polyethylene & 0.170" ID Flexil Silicone Tubing	<u>ple</u>
Condition: Good 🖌 Damaged Missing	
Remarks:	
Monitoring Well Locked/Secured Post Sampling?: Yes Mo	
Remarks:	
Field Certification Ahigh Paper 1015 Tech 09-24-6	N.
Signed Title Date	

Prepared by: GREDELL Engineering Resources, Inc.

January 2017

Field Sampling Log

 \mathcal{H}

1

Monitor	ing Well ID:	MW	9 Fac	ility: SBML	J Sikeston P	ower Statio	n - Groundw	ater Monitor	ing	
Initial Wate	r Level (feel	t btoc):	18.3	5		Date:	9-2L	t - 19		
Initial Grou	ndwater Ele	vation (NAVD	88):			Air Pressur	e in Well?	Y 🔞		
PURGE IN	FORMATIO	N								
Date:	9-21	4-14	0.511	N						
Name (San	nple Collect	or):D	Dill	ingh	um					
Method of	Nell Purge:	Low Flow	Perstaltic F	Pump	Dec	licated Tub	oing?	Y) / N		
Time Purgi	ng Initiated:		1126		On	e (1) Well \	/olume (mL)	: ,	NA	
Beginning	Water Level	(feet btoc):	18	. 35	Tot	al Volume I	Purged (mL)	:	222	0
Beginning	Groundwate	r Elevation (N	AVD88):		We	I Purged T	o Dryness?		Y /N	11-24
Well Total	Depth (feet	btoc):	37.11		Wa	ter Level a	fter Sampling	g (feet btoc):	18	.35
Casing Dia	meter (feet)	: <u>2" Sch 4</u>	0 PVC			(I.)	a Completed		11.	42
					1 11	ie Sampling	g Completed	i. ⇒		18
PURGE ST	FABILIZATI	ON DATA					Oxidation		Mater	Notos
Time	Purge Rate (mL/min)	Cumulative Volume (mL)	Temp (°C)	Specific Conductance (µS/cm)	Dissolved Oxygen (mg/L)	рН (S.U.)	Reduction Potential (mV)	Turbidity (NTU)	Level (feet btoc)	(e.g., opacity, color, odor)
1128		360	22.96	847.65	1.12	7.5	9.8	0.53	18.35	clear, odar
1130	230	820	20.48	886.91	0.66	7.4	27.2	0.66	18.35	10 10
1132	230	1280	19.70	901.76	0.54	7.4	33.8	0.66	18.35	
1134	230	1740	19.39	898.78	0.53	7.4	36.4	0.34	18.35	
1136	240	2220	19.25	891.52	0.41	7.4	38.3	0.62	18.35	
			-							
									ļ	
Ļ										

btoc - below top of casing

180

Field Sampling Log

Facility:	SBMU Sikeston	Power Station -	CCR Groundwa	ter Monitoring	Monitoring Wel	IID:	N9
Sampling Informa	ition:						
Method of Samplin	g: Low Flow -	Perstaltic Pump	& Tubing			Dedicated:	(Y) / N
Water Level @ Sa	mpling (feet btoc)	: 18.3	5				
Monitoring Event:	Annual ()	Semi-Annua	Quarte	rly() Mo	onthly ()	Other ()	
Final Purge Stabliz	ation Sampling D)ata:					
<u>Date</u> Sample Time	Sample Rate (mL/min)	Temp (°C)	Specific Conductance (µS/cm)	Dissolved Oxygen (mg/L)	рН (S.U.)	Oxidation Reduction Potential (mV)	Turbidity (NTU)
09-24-19	240	19.25	891.52	0.41	7.4	38.3	0.62
Instrument Calibr See instrument cal 1 - In-Situ SmarTr 2 - HF scientific, in General Information Weather Condition	ration Data: libration log of da roll Multi-Probe Fi nc. Micro TPI Fiel ion: is @ time of sam	ily calibration dat eld Meter (Temp d Portable Turbi pling: <u>SV</u>	ta for the followi perature, Specifi dimeter	ing instruments: ic Conductance, Dissolv	ved Oxygen, pH	, Oxidation Red	uction Potentia
<u>77°F</u>	istics:	ear ci	510/1055	odorles	S		-
Sample Collection	Order:	Per SAP		es siè			14
Campio Concentri		8 m - 1	·		36		
Comments and Ol	oservations:	i da	•			а . е	
		-					
				· · · · · · · · · · · · · · · · · · ·			
l certify that same	ling procedures w	vere in accordan	ce with applicat	ble EPA and State proto	ocols.		

certify that sampling procedures were in accordance with applicable EPA and State protocols.

Date: 9-24-19 By: Astish Pater Title: Lab Tech

REGULATURT FRUGRAM (URGLE).	NPDES
MORBCA	RCRA
CCDD	TACO: RES OR IND/COMM

CHAIN OF CUSTODY RECORD

STATE WHERE SAMPLE COLLECTED

	AL	L HIGHLIGHTED AR	EAS <u>MUST</u> BE	COMPLETED BY	CLIENT (PLEAS	SE PRINT)			/		
CLIENT	PRO.	IECT NUMBER	PROJEC	CT LOCATION	PURCHASE O	ORDER#	3 AN	ALYSIS REQ	VESTED	(FOR LAB USE O	NLY)
Sikecta Paulos Station		Fly As	h. ali	2			\bigcirc				
ADDRESS	РНС	NE NUMBER	- 8	E-MAIL	DATE SHIF	PPED				LOGIN #	
I The work I have										LOGGED BY:	
1551 West Wakerield	CANDIER				MATRIX TY	PES				CLIENT:	
STATE	(PLEASE P	RINT)			WW-WASTEWATER		E			PROJECT:	
ZIP Sikelten Ma 63801	David	et Olli	ne lie wi		DW- DRINKING WATE GW- GROUND WATER WWS1-SLIDGE	R R	J			PROJ. MGR.:	
CONTACT PERSON	SAMPLER	S	7		NAS- NON AQUEOUS	5010	8			CUSTODY SEAL #:	
1 c in la r	SIGNATOR		11	1	SO-SOL SOL-SOLD	[T				
Luke Stillary Ken Kiner	i w me	U CL · G)	SAMPLET	VDE MATRIX	BOTTLE	PRES	The second				
2 (UNIQUE DESCRIPTION AS IT WILL APPEAR ON THE ANALYTICAL REPOR	m COLLECT	ED COLLECTED	GRAB (COMP TYPE	COUNT	CODE CLIENT PROVIDED	12.			REMARKS	
Eald Blook	10-22.	19	Dr	DI	2		\times				
Dation	1.2-22-	5	X	(74)	2		X				
Unp Klate						ĺ					
02.5.1	10-27-1	2 1025	×	60	2		×				
10100-1	10.001	1100									
										-	
											····
CHEMICAL FRESERVATION CODES: 1-HCL 2-H2S	04 3-HNO3 4-	NAOH 5-NA	25203 6	- UNPRESERVED	7 – OTHER	<u> </u>					
	NORMAL RUSH		DATE RESULT	s I O				ngan, 1977, 17, meneration of	<u></u>		
(RUSH TAT IS SUBJECT TO PDC LABS APPROVAL AND SURC	HARGE)		NEEDED	(6)	I understand the not meet all san	at by initiali nple confor	ing this box f mance requi	give the lab p rements as de	ermission to efined in the re	proceed with analysis, even tho eceiving facility's Sample Accep	ign it may tance
RUSH RESULTS VIA (PLEASE CIRCLE) EMAIL PI	HONE	L		-1	Policy and the d	lata wili be	qualified. Qu	lified data m	ay <u>NOT</u> be acc	ceptable to report to all regulator	y authorities.
EMAIL IF DIFFERENT FROM ABOVE: PHONE # # DIFFERENT	FROM ABOVE:				PROCEED WIT	H ANALYSI	S AND QUAI	IFY RESULT:	S: (INITIALS)		
RELINQUISHED BY: (SIGNATURE)	DATE	RECEIVE	D BY: (SIGNAT	URE)		DATE		0	COMMENT	TS: (FOR LAB USE ONLY)	
	10-24-17 TIME					TIME		10		100pros	
Auto M Sull	0800					DUTT		-		· · · · · · · · · · · · · · · · · · ·	
RELINQUISHED BY: (SIGNATURE)	DATE	RECEIVE	ed by: (Signat	UKE)		DATE		SAMPLE	TEMPERATUR	RE UPON RECEIPT	°C
	TIME					TIME		CHILL PR	OCESS STAR	TED PRIOR TO RECEIPT	YORN
RELINQUISHED BY: (SIGNATURE)	DATE	RECEIVE	ED BY: (SIGNAT	'URE)		DATE		SAMPLE(S) RECEIVED ON ICE Y OR N SAMPLE ACCEPTANCE NONCONFORMANT			
	71845					TIME	REPORT IS NEEDED				YORN
	, write.							DATE AN	D TIME TAKE	N FROM SAMPLE BOTTLE	
								1			

	Facility:	SBMU SPS	CCR G	rou	ndwater San	pling			-	Ca	librated by:		74.4.5	mal	i	1						
	Field Instr	uments:	In-Situ	sm	arTROLL Fie	d Meter		HF scientific, inc. Micro TPI Field Portable TurbidImeter														
	ร/N #: <u>41424ว</u>					-	SIN #: 20107366															
	Date	Time	pH Standa	rds	pH Measure- ments	Specific Conductan Standard (µS/cm)	ce	Specific Conductance Measurement (µS/cm)	Oxidation Re Stan	edu Idai	iction Poten rd (mV)	tiaf	Oxidation Reduction Potential Measurement (mV)	Dissolved (%	0)	ygen	Turbidity Standards (NTU)		Turbidity Measurements (NTU)			
ž			4.00	=	4.00				Temperature (°C)	=	21.46			Temperature (°C)	=	20.35	0.02	=	0.02			
of D tion	Calibration Calibration 7.22.0	7.00	=	7.00									Tap Water Source	=	Sitteshe	10.0	=	10.0				
eginning Calibre		7.4/1	Je/1	C.C.	06+-	06-	10.00	=	10.90	1413	=	1412	Standard (mV)	=	225	=	227.4	Barometric Pressure (mm/Hg)	=	0.1001	1000	=
Ď														Measurement	=	99.35	0		-			
풍			4.00	=	4.06				Temperature (°C)	=	20.25			Temperature (°C)	=	18:38	0.02	=	0.01			
Cher	10.22	70	7.00	=	7.07									Tap Water Source	=	SNESSER	10.0	=	9.86			
Jon 13	2019	2019	2019	2019	133	10.00	10.00 = 10 .03	1451.4 Standar (mV)		Standard (mV) =	= 229	239.5	Barometric Pressure (mm/Hg)	=	0.6001	1000	=	992.3				
ш														Measurement	=	79.79	•					

Field Instrumentation Calibration Log

The Multi-Probe Field Meter measures Temperature, Specific Conductance, Dissolved Oxygen, pH, and Oxidation Reduction Potential. Notes:

The HF scientific, inc. Micro TPI Field Portable Turbidimeter measures Turbidity.

Dissolved oxygen is calibrated via % saturation method; however, field measurements are recorded as mg/L.

.

Monitoring Well Field Inspection

Facility: Monitoring Name (Fiel	SBMU SPS - CCR (Well ID: <u>Mu</u>	Groundwater M		
Date: 19	• 22-19		U. Omingh	<u><u></u></u>
Access:		3 ø		
Accessibil	ity: Good	_	Fair	Poor
Well clear	of weeds and/or deb	oris?: Yes	<u>No</u>	_
Well ident	ification clearly visible	e?: Yes	<u> </u>	
Remarks:				
Concrete Pad: Condition	of Concrete Pad:		Good 🗹	Inadequate
Depressio	ns or standing water	around well?:	Yes	No <u>/</u>
Remarks:				
Protective Outer	Casing: Mater	ial = <u>4" x 4" St</u>	eel Hinged Cas	ing with Hasp
Condition	of Protective Casing:	Good 🗹	Dama	ged
Condition	of Locking Cap:	Good 📈	Dama	ged
Condition	of Lock:	Good 🧹	Dama	ged
Condition	of Weep Hole:	Good	Dama	ged
Remarks:				
Well Riser: Mate	erial = <u>2" Diameter, s</u>	Schedule 40 P	/C, Flush Threa	aded
Condition	of Riser:	Good 🗹	Dama	ged
Condition	of Riser Cap:	Good 🗹	Dama	ged
Measurem	ent Reference Point	:: Yes 🗹	No	
Remarks:				
Dedicated Purgi	ng/Sampling Device	: Type = <u>1⁄4 " ID</u> <u>Silicon</u>	Semi-Rigid Pol e Tubing	vethylene & 0.170" ID Flexible
Condition:	Good	Damaged	Missin	ıg
Remarks:				
Monitoring	Well Locked/Secure	ed Post Samplin	ng?: Yes 🗹	No
Remarks:				
Id Certification	- Marto a	ALIM	1 milina.	(monils
	Signed	/ / / /	Title	Date

Prepared by: GREDELL Engineering Resources, Inc.

Field Sampling Log

Monito	ring Well ID	: <u>M</u> W-	<u>1</u> Fac	cility: SBM	J Sikeston P	ower Static	n - Groundw	ater Monitor	ing			
Initial Wate	er Level (fee	t btoc):	16.85'			Date:	10-22-19	· · · · · · · · · · · · · · · · · · ·				
Initial Grou	indwater Ele	vation (NAVE	088):	<u> </u>		Air Pressu	re in Well?	Y /🕅				
PURGE IN	FORMATIC	N										
Date:	10-22	-19										
Name (Sar	nple Collect	tor):D	: Dilling	ham						. <u> </u>		
Method of	Well Purge:	Low Flov	v Perstaltic	Pump	Dec	dicated Tub	oing?	Y) I N				
Time Purging Initiated: 0957 One (1) Well Volume (mL): NA												
Beginning Water Level (feet btoc): /6.85 Total Volume Purged (mL):												
Beginning	Groundwate	er Elevation (N	NAVD88):		We	II Purged T	o Dryness?		Y / 🔞			
Well Total	Depth (feet	btoc):	37.63		Wa	ter Level a	fter Samplin	g (feet btoc):	16.85	-1		
Casing Dia	meter (feet)): 2" Sch 4	0 PVC			(i.	e., pump is c	aff)				
	ζ,			<u></u>	Tin	ne Sampling	g Completed	-	1057			
PURGE S	TABILIZATI	ON DATA	111				0.11.11.					
Time	Purge Rate (mL/min)	Cumulative Volume (mL)	Temp (°C)	Specific Conductance (µS/cm)	Dissolved Oxygen (mg/L)	рН (S.U.)	Oxidation Reduction Potential (mV)	Turbidity (NTU)	Water Level (feet btoc)	Notes (e.g., opacity, color, odor)		
0159		320	17.65	405.97	1.02	6.5	-103.1	7.22	16.85	Clear		
1001	220	760	17.19	409.35	0.61	6.7	-110,4	273	11	ы		
1003	230	1220	17.05	411.38	0,51	6.9	-112.7	2.04	ke	*1		
1005	230	1680	17.03	411.25	0145	7.0	-114.7	2.93	11	11		
1007	230	2140	17.01	411.74	0142	7.0	-114.5	1.02	R a	10		
1005	220	2580	17.01	411.24	0.39	7.0	-115.0	2.31	11	11		
1011	220	3029	17.03	412.29	0.36	7.0		1.25	êt.	17		
1013	220	3460	17.07	413.97	0:34	7.7	-114.8	1.95	11	17		
1015	27.	4000	17.09	415.67	0.34	7.1	-113.8	1.15	•1	47		
1017	220	4440	17.14	417.93	0.33	7.1	-112.3	1.86	- 11	<u></u>		
1219	230	4900	17.12	417.87	0.32	7.1	-113.0	0.97	11	U		
1021	990	5340	17.13	419.82	0.32	7.1	-112.9	0.95	- 11	N.		
1023	230	5700	17.13	416.38	0.32	7.1	-112.7	0.98	11	11		
1025	160	6020	17.10	417.97	0.32	7.1	-113.4	0.96	- 11	<u></u>		
								<u></u>				
	1		1		i i	1			1			

btoc - below top of casing

Field Sampling Log

Facility:	SBMU Sikeston	Power Station -	CCR Groundwa	ter Monitoring	Monitoring We	IIID: Myu)-1		
Sampling Informa	ation:								
Method of Samplin	ig: Low Flow -	Perstaltic Pump	& Tubing			Dedicated:	(Y) / N		
Water Level @ Sa	mpling (feet btoc)	. 16.83	51						
Monitoring Event:	Annual ()	Semi-Annua	I() Quarte	riy (_{>}) Mo	onthly ()	Other ()			
Final Purge Stabliz	ation Sampling D)ata:							
<u>Date</u> Sample Time	Sample Rate (mL/min)	Temp (°C)	Specific Conductance (µS/cm)	Dissolved Oxygen (mg/L)	рН (S.U.)	Oxidation Reduction Potential (mV)	Turbidity (NTU)		
<u>10.2275</u> 1025	160	17.10	417.97	0.32	7.1	-113.4	0.96		
See instrument cal 1 - In-Situ SmarTr 2 - HF scientific, ir General Informati Weather Condition	Instrument Calibration Data: See instrument calibration log of daily calibration data for the following instruments: 1 - In-Situ SmarTroll Multi-Probe Field Meter (Temperature, Specific Conductance, Dissolved Oxygen, pH, Oxidation Reduction Potentia 2 - HF scientific, inc. Micro TPI Field Portable Turbidimeter General Information:								
Sample Characteri	istics:	Clear . c	olericss	pedecless	7				
Sample Collection	Order:	Per SAP			· · · · · · · · · · · · · · · · · · ·				
Comments and Ob	servations:								
Field	Blune to	ken					· · · · · · · · · · · · · · · · · · ·		
Duple	ale taken	· · · . · · · · · · · · · · · · · · · ·	<u></u>		· <u></u>				
14				· · · · · · · · · · · · · · · · · · ·					
Barris									
	ne fel han an an fel han an an an an han han star an			<u>, - , </u>					
						·····			
	<u> </u>	<u> </u>							

I certify that sampling procedures were in accordance with applicable EPA and State protocols.

Date	10-22-19	By:	Heather	nt Sill	Title:	fenderen	
------	----------	-----	---------	---------	--------	----------	--

Page 2 of 2

Prepared by: GREDELL Engineering Resources, Inc.

Appendix 2

Laboratory Analytical Results

Appendix 2

Laboratory Analytical Results September 24, 2019

PROFESSIONAL • DEPENDABLE • COMMITTED

October 09, 2019

Luke St Mary Sikeston BMU, Sikeston Power Station 1551 W Wakefield Sikeston, MO 63801

RE: Sikeston BMU-CCR Fly Ash Wells

Dear Luke St Mary:

Please find enclosed the analytical results for the 7 sample(s) the laboratory received on 9/26/19 10:00 am and logged in under work order 9095133. All testing is performed according to our current TNI accreditations unless otherwise noted. This report cannot be reproduced, except in full, without the written permission of PDC Laboratories, Inc.

If you have any questions regarding your report, please contact your project manager. Quality and timely data is of the utmost importance to us.

PDC Laboratories, Inc. appreciates the opportunity to provide you with analytical expertise. We are always trying to improve our customer service and we welcome you to contact the Director of Client Services, Lisa Grant, with any feedback you have about your experience with our laboratory at 309-683-1764 or lgrant@pdclab.com.

Sincerely,

Kurt Stepping Senior Project Manager (309) 692-9688 x1719 kstepping@pdclab.com

Sample: 9095133-0 Name: MW-3 Matrix: Ground W	1 /ater - Regular	Sample					Sampled: 09/24/1 Received: 09/26/1 PO #: 20927	19 07:42 19 10:00	
Parameter	Result	Unit	Qualifier	Prepared	Dilution	MRL	Analyzed	Analyst	Method
Anions - PIA									
Chloride	1.2	mg/L		09/30/19 21:28	1	1.0	09/30/19 21:28	CRD	EPA 300.0
Fluoride	0.332	mg/L		09/30/19 21:28	1	0.250	09/30/19 21:28	CRD	EPA 300.0
Sulfate	16	mg/L		09/30/19 21:46	5	5.0	09/30/19 21:46	CRD	EPA 300.0
General Chemistry - PIA									
Solids - total dissolved solids (TDS)	130	mg/L		09/30/19 07:20	1	26	09/30/19 09:57	TMS	SM 2540C
<u> Total Metals - PIA</u>									
Boron	26	ug/L		10/01/19 13:31	5	10	10/02/19 13:12	JMW	SW 6020
Calcium	17000	ug/L	~	10/01/19 13:31	5	100	10/02/19 09:28	JMW	SW 6020
Sample: 9095133-0 Name: MW-2 Matrix: Ground W	2 ater - Regular	Sample					Sampled: 09/24/1 Received: 09/26/1 PO #: 20927	9 08:19 9 10:00	
Parameter	Result	Unit	Qualifier	Prepared	Dilution	MRL	Analyzed	Analyst	Method
Anions - PIA									
Chloride	6.6	mg/L		09/30/19 22:04	× 11	1.0	09/30/19 22:04	CRD	EPA 300.0
Fluoride	< 0.250	mg/L		09/30/19 22:04	1	0.250	09/30/19 22:04	CRD	EPA 300.0
Sulfate	17	mg/L		09/30/19 22:23	5	5.0	09/30/19 22:23	CRD	EPA 300.0
General Chemistry - PIA									
Solids - total dissolved solids (TDS)	130	mg/L		10/01/19 14:13	1	17	10/01/19 14:44	TMS	SM 2540C
<u> Total Metals - PIA</u>									
Boron	58	ug/L		10/01/19 13:31	5	10	10/02/19 13:16	JMW	SW 6020
Catcium	22000	ug/L		10/01/19 13:31	5	100	10/02/19 09:31	JMW	SW 6020

ANALYTICAL RESULTS

Sample: 9095133-0 Name: MW-1 Matrix: Ground W	93 ⁄ater - Regular	Sample					Sampled: 09/24/ Received: 09/26/ PO #: 20927	19 09:36 19 10:00	
Parameter	Result	Unit	Qualifier	Prepared	Dilution	MRL	Analyzed	Analyst	Method
Anions - PIA									
Chloride	4.3	mg/L		09/30/19 22:41	1	1.0	09/30/19 22:41	CRD	FPA 300 0
Fluoride	0.260	mg/L		09/30/19 22:41	1	0.250	09/30/19 22:41	CRD	EPA 300.0
Sulfate	35	mg/L		09/30/19 22:59	5	5.0	09/30/19 22:59	CRD	EPA 300.0
General Chemistry - PIA									
Solids - total dissolved solids (TDS)	230	mg/L	М	09/30/19 07:20	1	26	09/30/19 09:57	TMS	SM 2540C
<u> Total Metals - PIA</u>									
Boron	500	ug/L		10/01/19 13:31	5	10	10/02/19 13:20	JMW	SW 6020
	47000	ug/L		10/01/19 13:31	5	100	10/02/19 10:05	JMW	SW 6020
Sample: 9095133-0 Name: MW-7 Matrix: Ground W	4 ater - Regular	Sample					Sampled: 09/24/' Received: 09/26/' PO #: 20927	19 10:23 19 10:00	
Parameter	Result	Unit	Qualifier	Prepared	Dilution	MRL	Analyzed	Analyst	Method
Anions - PIA								<u> </u>	
Chloride	3.9	mg/L		09/30/19 23:53	1	1.0	09/30/19 23:53	CRD	EPA 300.0
Fluoride	0.684	mg/L		09/30/19 23:53	1	0.250	09/30/19 23:53	CRD	EPA 300 0
Sulfate	150	mg/L		10/01/19 00:29	25	25	10/01/19 00:29	CRD	EPA 300.0
General Chemistry - PIA									
Solids - total dissolved solids (TDS)	470	mg/L		09/30/19 07:20	1	26	09/30/19 09:57	TMS	SM 2540C
<u> Total Metals - PIA</u>									
Boron	1900	ug/L		10/01/19 13:31	5	10	10/02/19 13:23	JMW	SW 6020
Calcium	120000	ug/L		10/01/19 13:31	5	100	10/02/19 10:09	JMW	SW 6020

Sample: 9095133- Name: MW-9	05						Sampled: 09/24/* Received: 09/26/*	19 11:36 19 10:00	
Matrix: Ground V	Vater - Regular	Sample					PO #: 20927		
Parameter	Result	Unit	Qualifier	Prepared	Dilution	MRL	Analyzed	Analyst	Method
Anions - PIA									
Chloride	16	mg/L		10/01/19 01:06	5	5.0	10/01/19 01:06	CRD	EPA 300.0
Fluoride	0.847	mg/L		10/01/19 00:48	1	0.250	10/01/19 00:48	CRD	EPA 300.0
Sulfate	220	mg/L		10/01/19 01:24	25	25	10/01/19 01:24	CRD	EPA 300.0
General Chemistry - PIA									
Solids - total dissolved solids (TDS)	540	mg/L		09/30/19 07:20	1	26	09/30/19 09:57	TMS	SM 2540C
<u> Total Metals - PIA</u>									
Boron	5000	ug/L		10/01/19 13:31	5	10	10/02/19 13:27	JMW	SW 6020
Calcium	87000	ug/L		10/01/19 13:31	5	100	10/02/19 10:12	JMW	SW 6020
Sample: 9095133- Name: DUPLICAT Matrix: Ground V	06 E WELL Vater - Field Du	plicate					Sampled: 09/24/* Received: 09/26/* PO #: 20927	19 00:00 19 10:00	
Parameter	Result	Unit	Qualifier	Prepared	Dilution	MRL	Analyzed	Analyst	Method
Anions - PIA									
Chloride	6.6	mg/L		10/01/19 01:42	1	1.0	10/01/19 01:42	CRD	EPA 300.0
Fluoride	· 0.261	mg/L		10/01/19 01:42	1	0.250	10/01/19 01:42	CRD	EPA 300.0
Sulfate	17	mg/L		10/01/19 02:00	5	5.0	10/01/19 02:00	CRD	EPA 300.0
General Chemistry - PIA									
Solids - total dissolved solids (TDS)	140	mg/L		09/30/19 07:20	1	26	09/30/19 09:57	TMS	SM 2540C
<u> Total Metals - PIA</u>									
<u>Total Metals - PIA</u> Boron	120	ug/L		10/01/19 13:31	5	10	10/02/19 13:31	JMW	SW 6020

Sample: 9095133 Name: FIELD BL Matrix: Ground	-07 ANK Water - Field Bla	ank		Sampled: 09/24/19 00:00 Received: 09/26/19 10:00 PO #: 20927					
Parameter	Result	Unit	Qualifier	Prepared	Dilution	MRL	Analyzed	Analyst	Method
Anions - PIA									
Chloride	< 1.0	mg/L		10/01/19 02:36	1	1.0	10/01/19 02:36	CRD	EPA 300 0
Fluoride	< 0.250	mg/L		10/01/19 02:36	1	0.250	10/01/19 02:36	CRD	EPA 300.0
Sulfate	< 1.0	mg/L		10/01/19 02:36	1	1.0	10/01/19 02:36	CRD	EPA 300.0
General Chemistry - PIA									
Solids - total dissolved solids (TDS)	< 17	mg/L		09/30/19 07:20	1	17	09/30/19 09:57	TMS	SM 2540C
<u>Total Metals - PIA</u>									
Boron	75	ug/L		10/01/19 13:31	5	10	10/02/19 13:34	.IMW	SW 6020
Calcium	150	ug/L		10/01/19 13:31	5	100	10/02/19 10:20	JMW	SW 6020

Appendix 2

Laboratory Analytical Results October 22, 2020 Resample

PDC Laboratories, Inc.

PROFESSIONAL • DEPENDABLE • COMMITTED

November 11, 2019

Luke St Mary Sikeston BMU, Sikeston Power Station 1551 W Wakefield Sikeston, MO 63801

RE: Sikeston BMU-CCR Fly Ash Wells

Dear Luke St Mary:

Please find enclosed the analytical results for the 3 sample(s) the laboratory received on 10/25/19 9:30 am and logged in under work order 9105201. All testing is performed according to our current TNI accreditations unless otherwise noted. This report cannot be reproduced, except in full, without the written permission of PDC Laboratories, Inc.

If you have any questions regarding your report, please contact your project manager. Quality and timely data is of the utmost importance to us.

PDC Laboratories, Inc. appreciates the opportunity to provide you with analytical expertise. We are always trying to improve our customer service and we welcome you to contact the Director of Client Services, Lisa Grant, with any feedback you have about your experience with our laboratory at 309-683-1764 or lgrant@pdclab.com.

Sincerely,

Kurt Stepping Senior Project Manager (309) 692-9688 x1719 kstepping@pdclab.com

Sample: 9105201-0 Name: FIELD BLAN Matrix: Ground W	11 NK /ater - Regular	Sample					Sampled: 10/22/ Received: 10/25/ PO #: 20927	19 00:00 19 09:30	
Parameter	Result	Unit	Qualifier	Prepared	Dilution	MRL	Analyzed	Analyst	Method
Anions - PIA									
Sulfate	< 1.0	mg/L		10/28/19 10:35	1	1.0	10/28/19 10:35	CRD	EPA 300.0
General Chemistry - PIA									
Solids - total dissolved solids (TDS)	< 17	mg/L		10/28/19 08:04	1	17	10/28/19 09:50	TMS	SM 2540C
<u>Total Metals - PIA</u>									
Calcium	< 100	ug/L		10/29/19 14:18	5	100	10/31/19 12:04	JMW	SW 6020
Sample: 9105201-0 Name: DUPLICATE Matrix: Ground Wa	2 : WELL ater - Regular	Sample					Sampled: 10/22/* Received: 10/25/* PO #: 20927	19 00:00 19 09:30	
Parameter	Result	Unit	Qualifier	Prepared	Dilution	MRL	Analyzed	Analyst	Method
Anions - PIA									
Sulfate	42	mg/L		10/28/19 11:11	5	5.0	10/28/19 11:11	CRD	EPA 300.0
General Chemistry - PIA									
Solids - total dissolved solids (TDS)	170	mg/L		10/28/19 08:06	1	26	10/28/19 09:46	TMS	SM 2540C
<u> Total Metals - PIA</u>									
Calcium	49000	ug/L		10/29/19 14:18	5	100	10/31/19 12:08	JMW	SW 6020

1

Sample: 9105201 Name: MW-1 Matrix: Ground V	-03 Water - Regular	Sample				Sampled:10/22/19 10:25Received:10/25/19 09:30PO #:20927				
Parameter	Result	Unit	Qualifier	Prepared	Dilution	MRL	Analyzed	Analyst	Method	
Anions - PIA										
Sulfate	41	mg/L		10/28/19 12:05	5	5.0	10/28/19 12:05	CRD	EPA 300.0	
General Chemistry - PIA										
Solids - total dissolved solids (TDS)	180	mg/L		10/28/19 08:06	1	26	10/28/19 09:46	TMS	SM 2540C	
<u>Total Metals - PIA</u>										
Calcium	47000	ug/L	ć	10/31/19 12:56	5	100	11/05/19 08:24	JMW	SW 6020	

Appendix 3

Laboratory Quality Assurance/Quality Control Data

Appendix 3

Laboratory Quality Assurance/Quality Control Data September 24, 2020

QC SAMPLE RESULTS

Parameter	Result	Unit	Qual	Spike Level	Source Result	%REC	%REC	PPD	RPD Limit
<u>.</u>									LIM
<u> Batch B922319 - No Prep - SM 2540C</u>									
Blank (B922319-BLK1)				Prepared &	Analyzed: 09/	30/19			
Solids - total dissolved solids (TDS)	< 17	mg/L				·	···		
LCS (B922319-BS1)				Prepared &	Analyzed: 09/	30/19			
Solids - total dissolved solids (TDS)	80.0	mg/L		90.00		89	67.9-132		
Duplicate (B922319-DUP1)	Sample: 909513	3-03		Prepared &	Analyzed: 09/	30/19			
Solids - total dissolved solids (TDS)	210	mg/L	М		230			9	5
Duplicate (B922319-DUP2)	Sample: 909552	0-02		Prepared &	Analyzed: 09/	30/19			
Solids - total dissolved solids (TDS)	410	mg/L			405			1	5
MRL Check (B922319-MRL1)				Prepared &	Analyzed: 09/	30/19			
Solids - total dissolved solids (TDS)	113	mg/L		90.00		126	0-200		
MRL Check (B922319-MRL2)				Prepared &	Analyzed: 09/	30/19			
Solids - total dissolved solids (TDS)	70.0	mg/L		90.00		78	0-200		
<u> Batch B922474 - IC No Prep - EPA 300.0</u>									
Calibration Blank (B922474-CCB1)				Prepared &	Analyzed: 09/	30/19			
Sulfate	0.00	mg/L							
Chloride	0.00	mg/L							
Fluoride	0.00	mg/L							
Calibration Check (B922474-CCV1)		•		Prepared &	Analyzed: 09/	30/19	(*)		
Chloride	4.82	mg/L		5.000		96	90-110		
Sulfate	5.00	mg/L		5.000		100	90-110		
Fluoride	4.93	mg/L		5.000		99	90-110		
Batch B922516 - SW 3015 - SW 6020									
Blank (B922516-BLK1)				Prepared: 1	0/01/19 Analy	/zed: 10/02/19	Э		
Boron	< 10	ug/L			•				
Calcium	< 100	ug/L							
LCS (B922516-BS1)		•		Prepared: 1	0/01/19 Analy	/zed: 10/02/19	9		
Boron	583	ug/L		555.6		105	80-120		
Calcium	5270	ug/L		5556		95	80-120		
Matrix Spike (B922516-MS1)	Sample: 909519	1-02		Prepared: 1	0/01/19 Analy	/zed: 10/02/19	9		
Calcium	15800	ug/L		5556	10300	99	75-125		
Matrix Spike Dup (B922516-MSD1)	Sample: 909519	1-02		Prepared: 1	0/01/19 Analy	/zed: 10/02/19	9		
Calcium	16200	ug/L		5556	10300	106	75-125	2	20
<u> Batch B922528 - No Prep - SM 2540C</u>					*1				
Blank (B922528-BLK1)				Prepared &	Analyzed: 10/	01/19			
Solids - total dissolved solids (TDS)	< 17	mg/L							
LCS (B922528-BS1)		2		Prepared &	Analyzed: 10/	01/19			
Solids - total dissolved solids (TDS)	110	mg/L		90.00		122	67,9-132		
Duplicate (B922528-DUP1)	Sample: 910016	9-02		Prepared &	Analyzed: 10/	01/19			
Solids - total dissolved solids (TDS)	1590	mg/L			1590			0.2	5
N		-							-

* Not a TNI accredited analyte

NOTES

Specific method revisions used for analysis are available upon request.

Certifications

- CHI McHenry, IL 4314 W Crystal Lake Road A, McHenry, IL 60050 TNI Accreditation for Drinking Water, Wastewater, Fields of Testing through IL EPA Lab No. 100279 Illinois Department of Public Health Bacteriological Analysis in Drinking Water Approved Laboratory Registry No. 17556
- PIA Peoria, IL 2231 W Altorfer Drive, Peoria, IL 61615
 TNI Accreditation for Drinking Water, Wastewater, Hazardous and Solid Wastes Fields of Testing through IL EPA Lab No. 100230
 Illinois Department of Public Health Bacteriological Analysis in Drinking Water Approved Laboratory Registry No. 17553
 Drinking Water Certifications: Iowa (240); Kansas (E-10338); Missouri (870)
 Wastewater Certifications: Arkansas (88-0677); Iowa (240); Kansas (E-10338)
 Hazardous/Solid Waste Certifications: Arkansas (88-0677); Iowa (240); Kansas (E-10338)
- SPIL Springfield, IL 1210 Capitol Airport Drive, Springfield, IL 62707 TNI Accreditation through IL EPA Lab No. 100323
- SPMO Springfield, MO 1805 W Sunset Street, Springfield, MO 65807 USEPA DMR-QA Program
- STL St. Louis, MO 3278 N Highway 67, Florissant, MO 63033
 TNI Accreditation for Wastewater, Hazardous and Solid Wastes Fields of Testing through KS Lab No. E-10389
 TNI Accreditation for Wastewater, Hazardous, and Solid Waste Analysis through IL EPA No. 200080
 Illinois Department of Public Health Bacteriological Analysis in Drinking Water Approved Laboratory Registry No. 171050
 Missouri Department of Natural Resources
 Microbiological Laboratory Service for Drinking Water

Qualifiers

M Analyte failed to meet the required acceptance criteria for duplicate analysis.

Certified by: Kurt Stepping, Senior Project Manager

8

PDC Laboratories, Inc. NO Rep X(0) • In Inc. (E1) E1901 INPE ENERGY • ENERGY (E1) • E4 V Incercop and

DATA PACKAGE

CLIENT; Sikeston BMU PROJECT: Sikeston Power Station PDC LAB WORKORDER: 9095133 DATE ISSUED: October 9, 2019

CASE NARRATIVE –

PDC Work Order 9095133

PDC Laboratories, Inc. received 7 water samples on September 26, 2019 in good condition at our Peoria, IL facility. This sample set was designated as work order 9095133.

Sample	ID's	Date					
Field	Lab ID	Collected	Received				
MW-3	9095133-01	9/24/19	9/26/19				
MW-2	9095133-02	9/24/19	9/26/19				
MW-1	9095133-03	9/24/19	9/26/19				
MW-7	9095133-04	9/24/19	9/26/19				
MW-9	9095133-05	9/24/19	9/26/19				
Duplicate One	9095133-06	9/24/19	9/26/19				
Field Blank	9095133-07	9/24/19	9/26/19				

QC Summary:

All items met acceptance criteria with the following noted exceptions:

TDS batch QC sample flagged with M, RPD outside acceptance criteria

Certification

Signature:

Name: Kurt Stepping

Date:

October 9, 2019

Title: Senior Project Manager

PDC LABORATORIES, INC. 2231 WEST ALTORFER DRIVE PEORIA, IL 61615

Page 10 of 10

CHAIN OF CUSTODY RECORD

PHONE # 800-752-6651 FAX # 309-692-9689

State where samples collected

CLIENT	ALL HIGHLIGHTED A	HEAS MUST BE CO	WPLETED BY CLIENT (P	LEASE PRINTI - ISAMPLE ACCE	DTANCE DOLION ON DEPEND
US: Keston Power station	CCA FLY ASK	APP TT	MEANS SHIPPED	3 ANALYSIS REQUESTED	D (FOR LAB USE ONLY)
1551 w wakefield	PHONE NUMBER	FAX NUMBER	DATE SHIPPED		LOGIN # 1045733-
CONTACT PERSON MO 63807	SAMPLER (PLEASE PRINT) Daniel Dilli	mg ha w	MATRIX TYPES WW WASTEWATER DW DRINKING WATER GW-GROUND WATER	70	
Luke St. Mary / Ken Ewers	SAMPLER'S SIGNATURE	Might	OTHER	N T	PROJ. MGR.
AS YOU WANT ON REPORT	COLLECTED COLLECT	ED GRAB COMP	TYPE COUNT	B.C.	REMARKS
MW 2	9-24-19 074		GW 2	XX	
MW 1	9-24-19 0936		6W 2	X X	
MW 7 MW 9	9-24-19 102	X	Gw 2	XX	
Field DuPlicate	9-24-19	×	GW 2 GW 2	xx	
Field Blank	9-24-19	X	DI 2	XX	
TURNAROUND TIME REQUESTED (PLEASE CIRCLE) NO IRUSH TAT IS SUBJECT TO PDC LABS APPROVAL AND SURCHARGES RUSH RESULTS VIA (PLEASE CIRCLE) FAX PHONE # EMAIL ADDRESS	AMAL RUSH DATE	RESULTS NEEDED	6 The sample this area you the sample to sample to	temperature will be measured upon request that the lab notify you, bek amperature is outside of the range of allow the lab to proceed with analy	receipt at the lab. By initialing one proceeding with analysis, if 0.1-6.0°C. By not initialing tical testing regardless of the
ASLISI (GHATURE) DATE	5-19 RECEIVED BY: ISIGNAT	URE)		DATE COMME	NTS: (FOR LAB USE ONLY)
DATE DATE TIME	RECEIVED BY: (SIGNATI	URE)		DATE SAMPLE TEMPERAT CHILL PROCESS ST SAMPLE (S) BECON	
INDUISHED BY: (SIGNATURE) DATE	RECEIVED AT LAB BY	SIGNATURE)	e I	TIME (CARE AND THE CEIVE COATE AND THE SHELED W SAMPLES RECEIVE TIME (CARE AND TIME TAK	CEVEN ICE CEEVED IN GOOD CONDITION TH ADEQUATE VOLUME D WITHIN HOLD TIME(S) L FIELD PARAMETERS)
Copies: white should accompany complex to	0001-1	11			

Appendix 3

Laboratory Quality Assurance/Quality Control Data October 22, 2020 Resample

QC SAMPLE RESULTS

Parameter	Result	Unit	Qual	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch B924996 - No Prep - SM 2540C									
Blank (B924996-BLK1)				Prepared &	Analyzed: 10	/28/19			
Solids - total dissolved solids (TDS)	< 17	mg/L							
LCS (B924996-BS1)		Ū		Prepared &	Analvzed: 10	/28/19			
Solids - total dissolved solids (TDS)	960	mg/L		1000		96	67.9-132		
Duplicate (B924996-DUP2)	Sample: 910519	93-01		Prepared &	Analyzed: 10	/28/19			
Solids - total dissolved solids (TDS)	240	mg/L	M		220			9	5
Batch B924997 - No Prep - SM 2540C									
Blank (B924997-BLK1)				Prenared &	Analyzed: 10	128/10			
Solids - total dissolved solids (TDS)	< 17	ma/L	_			20/10			
LCS (B924997-BS1)				Prepared &	Analyzed: 10	/28/19			
Solids - total dissolved solids (TDS)	950	ma/L		1000		95	67 9-132		
Duplicate (B924997-DUP1)	Sample: 910474	13-01		Prepared &	Analyzed: 10	/28/19	01.0 102		
Solids - total dissolved solids (TDS)	3490	mg/L			3530			1	5
<u> Batch B925174 - IC No Prep - EPA 300.0</u>									
Calibration Blank (B925174-CCB1)				Prepared &	Analyzed: 10	/28/19			
Sulfate	0.166	mg/L							
Calibration Check (B925174-CCV1)				Prepared &	Analyzed: 10/	/28/19			
Sulfate	4.88	mg/L		5,000	· ·	98	90-110		
<u> Batch B925201 - SW 3015 - SW 6020</u>	8								
Blank (B925201-BLK1)				Prepared: 1	0/29/19 Anal	vzed: 10/31/1	9		
Calcium	< 100	ug/L							
LCS (B925201-BS1)				Prepared: 1	0/29/19 Anal	vzed: 10/31/1	9		
Calcium	5430	ug/L		5556		98	80-120		
Matrix Spike (B925201-MS1)	Sample: 910488	0-03		Prepared: 1	0/29/19 Anal	vzed: 10/31/1	9		
Calcium	22400	ug/L		5556	17100	95	75-125		
Matrix Spike Dup (B925201-MSD1)	Sample: 910488	0-03		Prepared: 1	0/29/19 Anal	vzed: 10/31/1	9		
Calcium	22400	ug/L		5556	17100	95	75-125	0.07	20
Batch B925441 - SW 3015 - SW 6020									
Blank (B925441-BLK1)	int.			Prepared: 1	0/31/19 Anal	/zed: 11/05/1	9		
Calcium	< 100	ug/L	_						
LCS (B925441-BS1)				Prepared: 1	0/31/19 Anal	/zed: 11/05/1	9		
Calcium	5280	ug/L		5556		95	80-120		
Matrix Spike (B925441-MS1)	Sample: 910520	1-03		Prepared: 1	0/31/19 Analy	/zed: 11/05/1	9		
Calcium	52200	ug/L		5556	47300	88	75-125		<u> </u>
Matrix Spike Dup (B925441-MSD1)	Sample: 910520	1-03		Prepared: 1	0/31/19 Analy	/zed: 11/05/1	9		
Calcium	52400	ug/L		5556	47300	91	75-125	0.3	20

NOTES

Specifications regarding method revisions and method modifications used for analysis are available upon request. Please contact your project manager.

* Not a TNI accredited analyte

Certifications

- CHI McHenry, IL 4314 W Crystal Lake Road A, McHenry, IL 60050 TNI Accreditation for Drinking Water, Wastewater, Fields of Testing through IL EPA Lab No. 100279 Illinois Department of Public Health Bacteriological Analysis in Drinking Water Approved Laboratory Registry No. 17556
- PIA Peoria, IL 2231 W Altorfer Drive, Peoria, IL 61615 TNI Accreditation for Drinking Water, Wastewater, Hazardous and Solid Wastes Fields of Testing through IL EPA Lab No. 100230 Illinois Department of Public Health Bacteriological Analysis in Drinking Water Approved Laboratory Registry No. 17553 Drinking Water Certifications: Iowa (240); Kansas (E-10338); Missouri (870) Wastewater Certifications: Arkansas (88-0677); Iowa (240); Kansas (E-10338) Hazardous/Solid Waste Certifications: Arkansas (88-0677); Iowa (240); Kansas (E-10338)
- SPIL Springfield, IL 1210 Capitol Airport Drive, Springfield, IL 62707 TNI Accreditation through IL EPA Lab No. 100323
- SPMO Springfield, MO 1805 W Sunset Street, Springfield, MO 65807 USEPA DMR-QA Program
- STL St. Louis, MO 3278 N Highway 67, Florissant, MO 63033 TNI Accreditation for Wastewater, Hazardous and Solid Wastes Fields of Testing through KS Lab No. E-10389 TNI Accreditation for Wastewater, Hazardous, and Solid Waste Analysis through IL EPA No. 200080 Illinois Department of Public Health Bacteriological Analysis in Drinking Water Approved Laboratory Registry No. 171050 Missouri Department of Natural Resources Microbiological Laboratory Service for Drinking Water

Qualifiers

М Analyte failed to meet the required acceptance criteria for duplicate analysis.

Certified by: Kurt Stepping, Senior Project Manager

•

PDC Laboratories, Inc. POLLAR 1911 + Annual B 1 B 12 Stort COMMENDATION + COMPANY STATE STATE STATE

DATA PACKAGE

CLIENT; Sikeston BMU PROJECT: Sikeston Power Station PDC LAB WORKORDER: 9105201 DATE ISSUED: November 11, 2019

CASE NARRATIVE –

PDC Work Order 9105201

PDC Laboratories, Inc. received 3 water samples on October 22, 2019 in good condition at our Peoria, IL facility. This sample set was designated as work order 9105201.

Sample	ID's	Date					
Field	Lab ID	Collected	Received				
MW-1	9105201-03	10/22/19	10/25/19				
Duplicate One	9105201-02	10/22/19	10/25/19				
Field Blank	9105201-01	10/22/19	10/25/19				

QC Summary:

All items met acceptance criteria with the following noted exceptions:

TDS batch QC sample flagged with M, RPD outside acceptance criteria

Certification

Signature:

Just

Name: Kurt Stepping

Date:

November 11, 2019

Title: Senior Project Manager

WWW.PDCLAB.COM

2 H	
MORBCA	RCRA
CCDD	TACO: RES OR IND/COMM

UTIMINUP OUSTOUT RECORD

STATE WHERE SAMPLE COLLECTED

		ALL H	GHLIGHTED AR	EAS MUST	BE COM	PLETED BY	CLIENT (PL	EASE PRIN	T)						
CLIENT		PROJECT NUMB		IBER PROJECT LOCATION		CATION	PURCHASE ORDER #		10					(FOR LAB USE ONLY)	
Sikestan Lower Station			Fly As	hu	:R		1		C	ANA	IL 1315 K	EQUEST	ED		
ADDRESS		PHONE	NUMBER		E-MAIL		DATE S	SHIPPED		· · ·				- LOGIN # 4105201-06	
1551 West Wakefield							-							LOGGED BY:	
CITY STATE		SAMPLER	T				MATRIX	TYPES:						CLIENT:	
ZIP Silvardo MA (350)							WW- WASTEWA DW- DRINKING I	WATER	3					PROJECT 14 ASIA ADD 111 ON	
CONTACT REDSON		Den el	Dilli	nghun	n		GW- GROUND W WWSL- SLUDGE	VATER E FOUS SOLID	1 2					PROJ. MGR.:	
		SIGNATURE		~ ,			LCHT-LEACHAT OIL-OIL	TE	A					CUSTODY SEAL #:	
Luke Sti Marin Ken Ewer		320	a.D	Shin	1_		SOL-SOLID			-					
2 (UNIQUE DESCRIPTION AS IT WILL APPEAR ON THE ANALYTICAL REPOR	τ τ)	DATE	TIME COLLECTED	GRAB	COMP	MATRIX	BOTTLE COUNT	PRES CODE CLIENT	197					REMARKS	
Field Blank		10-22-19		DXr	····	DE	2	PROVIDED	X						
<i>.</i>				NG											
Duplicate		10-22-19		X		GW	2								
MW-1		12-22-19	1025	X		GW	2		X						
										_					
												++			
<u></u>					· · · · · · · · · · · · · · · · · · ·										
					• • • • • • • • • • • • • • • • •			······							
CHEMICAL PRESERVATION CODES: I-HCL 2-H2S	04 3-1	HNO3 4 – NAC	0H 5-NA2	S2O3	6 UNPR	RESERVED	7 – OTHER								
TURNAROUND TIME REQUESTED (PLEASE CIRCLE) (RUSH TAT IS SUBJECT TO PDC LABS APPROVAL AND SURC	NORMA HARGE)	IL RUSH	(DATE RESUL	LTS	\square	Lunderstand	that hy initia	ling this	box La	ive the la				
RUSH RESULTS VIA (PLEASE CIRCLE) EMAIL PH	IONE					U	not meet all s	sample confo	mance	require	ments as	defined i	in the rece	iving facility's Sample Acceptance	
EMAIL IF DIFFERENT FROM ABOVE: PHONE # IF DIFFERENT F	ROM ABOVE:						PROCEED W	VITH ANALYS	SIS AND	QUALIF	Y RESUL	.TS: (INIT	IALS)	table to report to all regulatory authorities.	
RELINQUISHED BY: (SIGNATURE)	DATE /0-	24-15	RECEIVEL	D BY: (SIGN	ATURE)	L		DATE			\frown	CO	MMENTS:	(FOR LAB USE ONLY)	
Lutto Mchall	TIME	CON						TIME			(8)				
RELINQUISHED BY: (SIGNATURE)	DATE	RECEIVED BY: (SIGNATURE)						DATE	DATE						
· •	TIME							TIME			SAMPL	E TEMPE	RATURE		
RELINQUISHED BY: (SIGNATURE)	DATE		RECEIVED	BY: (SIGNA	ATURE)		1	PATE	201	10	SAMPL	E(S) REC	EIVED ON	IICE YDRN ONCONFORMANT	
ł	TIME).	()	\mathcal{A}	2-	1	TIME	22/		REPOR	T IS NEE	DED	Y OR N	
		h			~~ ~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		14	30		DATE				
Appendix 4

Fly Ash Pond Groundwater Quality Data Base

Sikeston Board of Municipal Utilities Sikeston Power Station Fly Ash Pond Scott County, Missouri CCR Groundwater Data Base

			Field Parameters				Appendix III Monitoring Constituents (Detection)				Appendix IV Monitoring Constituents (Assessment)																	
Well	Date	Monitoring Purpose	Spec. Cond.	pН	Temp.	ORP	D.O.	Turbidity	Chloride	Fluoride	Sulfate	TDS	Boron	Calcium	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Lead	Lithium	Mercury	Molybdenum	Selenium	Thallium	Radium 226/228 (Combined)
ID		Monitoring Fulpose	µmhos/cm	S.U.	°C	mV	mg/L	NTU	mg/L	mg/L	mg/L	mg/L	ug/L	mg/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	pCi/L
MW-1 (DG)	3/21/2018	Background	249.6	7.3	16.33	-108.8	0.32	28.35	3.0	<0.250	22	150	360	21	<3.0	<1.0	120	<1.0	<1.0	<4.0	<2.0	<1.0	<10	<0.20	<1.0	<1.0	<1.0	0.353 (ND)
	4/15/2018	Background	233.8	7.4	15.17	-122.7	0.60	14.46	2.8	0.316	22	120	450	29	<3.0	<1.0	120	<1.0	<1.0	<4.0	<2.0	<1.0	<10	<0.20	<1.0	<1.0	<1.0	0.478 (ND)
	5/23/2018	Background	220.0	7.4	18.42	-133.3	0.54	12.11	3.3	<0.250	20	140	420	25	<3.0	<1.0	120	<1.0	<1.0	<4.0	<2.0	<1.0	<10	<0.20	<1.0	<1.0	<1.0	0.378 (ND)
	6/27/2018	Background	227.4	7.3	18.59	-149.3	0.30	11.07	6.9	<0.250	20	120	470	28	<3.0	<1.0	140	<1.0	<1.0	<4.0	<2.0	<1.0	<10	<0.20	<1.0	<1.0	<1.0	1.065 (ND)
	8/1/2018	Background	264.3	7.2	18.26	-138.0	0.56	7.52	5.6	<0.250	23	190	440	30	<3.0	<1.0	140	<1.0	<1.0	<4.0	<2.0	<1.0	<10	<0.20	<1.0	<1.0	<1.0	0.893(ND)
	9/5/2018	Background	281.3	7.1	18.70	-132.1	0.41	3.20	7.0	0.252	24	140	490	34	<3.0	<1.0	150	<1.0	<1.0	<4.0	<2.0	<1.0	<10	<0.20	<1.0	<1.0	<1.0	1.100
	11/6/2018	Background	311.8	7.1	17.86	-128.8	1.00	1.30	9.0	0.262	26	200	480	38	<3.0	<1.0	170	<1.0	<1.0	<4.0	<2.0	<1.0	<10	<0.20	<1.0	<1.0	<1.0	1.282
	12/12/2018	Background	317.5	7.1	16.30	-96.3	0.45	2.27	9.1	0.256	30	140	440	38	<3.0	<1.0	180	<1.0	<1.0	<4.0	<2.0	<1.0	<10	<0.20	<1.0	<1.0	<1.0	1.423 (ND)
	3/27/2019	Detection	361.2	7.1	16.60	-101.9	0.36	53.91	7.9	<0.250	27	210	440	41	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	9/24/2019	Detection	372.9	7.0	18.22	-127.5	0.56	0.53	4.3	0.260	35	230	500	47	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	10/22/2019	Det/RESAMPLE	418.0	7.1	17.10	-113.4	0.32	0.96	NA	NA	41	180	NA	47	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
MW-2 (UG)	3/21/2018	Background	157.8	6.4	15.86	65.3	2.72	3.41	3.4	<0.250	16	110	28	16	<3.0	<1.0	130	<1.0	<1.0	<4.0	<2.0	<1.0	<10	<0.20	<1.0	<1.0	<1.0	0.896 (ND)
	4/15/2018	Background	159.8	6.4	14.04	64.7	0.87	4.05	2.3	0.335	18	63	23	14	<3.0	<1.0	120	<1.0	<1.0	<4.0	<2.0	<1.0	<10	<0.20	<1.0	<1.0	<1.0	0.483 (ND)
	5/23/2018	Background	175.3	6.2	17.40	121.7	0.58	1.72	4.2	<0.250	20	100	36	18	<3.0	<1.0	170	<1.0	<1.0	<4.0	<2.0	<1.0	<10	<0.20	<1.0	<1.0	<1.0	1.199 (ND)
	6/27/2018	Background	172.1	6.2	18.38	243.8	0.27	5.30	4.7	<0.250	18	87	42	19	<3.0	<1.0	180	<1.0	<1.0	<4.0	<2.0	<1.0	<10	<0.20	<1.0	1.4	<1.0	1.006 (ND)
	8/1/2018	Background	184.2	6.1	18.48	80.7	0.75	2.61	5.9	<0.250	19	140	43	20	<3.0	<1.0	200	<1.0	<1.0	<4.0	<2.0	<1.0	<10	<0.20	<1.0	2.0	<1.0	0.751(ND)
	9/5/2018	Background	187.9	6.1	19.26	83.8	0.68	2.58	6.8	<0.250	18	110	46	22	<3.0	<1.0	220	<1.0	<1.0	<4.0	<2.0	<1.0	<10	<0.20	<1.0	2.2	<1.0	1.734
	11/6/2018	Background	174.3	6.2	17.77	79.7	0.60	1.19	4.2	0.272	19	100	43	20	<3.0	<1.0	170	<1.0	<1.0	<4.0	<2.0	<1.0	<10	<0.20	<1.0	<1.0	<1.0	1.583
	12/12/2018	Background	186.3	6.1	16.78	82.3	0.67	5.78	5.5	0.254	21	140	48	21	<3.0	<1.0	210	<1.0	<1.0	<4.0	2.0	<1.0	<10	<0.20	<1.0	<1.0	<1.0	1.18 (ND)
	3/27/2019	Detection	165.9	6.3	15.87	70.4	0.72	2.60	3.3	<0.250	20	130	31	17	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	9/24/2019	Detection	189.4	6.1	18.75	71.3	0.61	1.16	6.6	<0.250	17	130	58	22	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
MW-3 (UG)	3/21/2018	Background	220.7	6.6	15.22	40.7	0.38	14.88	1.4	0.274	18	120	17	19	<3.0	<1.0	96	<1.0	<1.0	<4.0	<2.0	<1.0	<10	<0.20	<1.0	<1.0	<1.0	1.240 (ND)
	4/15/2018	Background	224.7	6.5	14.05	39.2	0.45	10.81	1.5	0.386	20	120	25	18	<3.0	<1.0	100	<1.0	<1.0	<4.0	<2.0	<1.0	<10	<0.20	<1.0	<1.0	<1.0	1.475 (ND)
	5/23/2018	Background	221.3	6.5	17.77	43.2	0.39	13.39	1.4	<0.250	20	100	20	18	<3.0	<1.0	100	<1.0	<1.0	<4.0	<2.0	<1.0	<10	<0.20	<1.0	<1.0	<1.0	0.994 (ND)
	6/27/2018	Background	198.7	6.5	17.81	123.8	0.45	17.03	1.2	<0.250	17	110	27	18	<3.0	<1.0	100	<1.0	<1.0	<4.0	<2.0	<1.0	<10	<0.20	<1.0	<1.0	<1.0	0.214 (ND)
	8/1/2018	Background	209.2	6.6	16.74	41.4	0.43	10.96	1.3	<0.250	17	150	21	18	<3.0	<1.0	91	<1.0	<1.0	<4.0	<2.0	<1.0	<10	<0.20	<1.0	<1.0	<1.0	0.315(ND)
	9/5/2018	Background	196.8	6.5	17.62	56.8	0.46	6.21	1.2	0.308	15	100	22	17	<3.0	<1.0	98	<1.0	<1.0	<4.0	<2.0	<1.0	<10	<0.20	<1.0	<1.0	<1.0	0.860(ND)
	11/6/2018	Background	206.7	6.5	16.84	63.3	0.49	2.37	1.3	0.313	16	130	26	17	<3.0	<1.0	100	<1.0	<1.0	<4.0	<2.0	<1.0	<10	<0.20	<1.0	<1.0	<1.0	1.339
	12/12/2018	Background	195.6	6.5	15.39	48.7	0.40	3.10	1.4	0.334	18	160	28	17	<3.0	<1.0	99	<1.0	<1.0	<4.0	<2.0	<1.0	<10	<0.20	<1.0	<1.0	<1.0	0.8 (ND)
	3/27/2019	Detection	196.0	6.4	15.07	52.2	0.84	12.50	1.5	< 0.250	19	140	22	16	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	9/24/2019	Detection	191.4	6.5	17.07	58.1	0.53	2.28	1.2	0.332	16	130	26	17	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

Sikeston Board of Municipal Utilities Sikeston Power Station Fly Ash Pond Scott County, Missouri CCR Groundwater Data Base

				Fie	ld Param	eters			Appendix III Monitoring Constituents (Detection)						Appendix IV Monitoring Constituents (Assessment)													
Well	Date	Monitoring Purpose	Spec. Cond.	pН	Temp.	ORP	D.O.	Turbidity	Chloride	Fluoride	Sulfate	TDS	Boron	Calcium	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Lead	Lithium	Mercury	Molybdenum	Selenium	Thallium	Radium 226/228 (Combined)
ID		Monitoring r urpose	µmhos/cm	S.U.	°C	mV	mg/L	NTU	mg/L	mg/L	mg/L	mg/L	ug/L	mg/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	pCi/L
MW-7 (DG)	3/21/2018	Background	901.8	7.3	14.85	41.8	0.58	1.61	12	0.752	190	440	1900	110	<3.0	<1.0	41	<1.0	<1.0	<4.0	<2.0	<1.0	25	<0.20	160	5.4	<1.0	0.883 (ND)
	4/15/2018	Background	936.4	7.2	14.04	40.0	0.51	0.96	12	0.794	210	420	1900	110	<3.0	<1.0	43	<1.0	<1.0	<4.0	2.0	<1.0	19	<0.20	170	2.3	<1.0	0.0619 (ND)
	5/23/2018	Background	899.1	7.3	18.05	46.5	0.38	0.25	11	0.650	220	480	1800	120	<3.0	<1.0	44	<1.0	<1.0	<4.0	<2.0	<1.0	22	<0.20	170	28	<1.0	0.896 (ND)
	6/27/2018	Background	891.4	7.2	17.91	66.4	0.22	5.84	11	0.592	220	500	2000	140	<3.0	<1.0	48	<1.0	<1.0	<4.0	2.1	<1.0	26	<0.20	160	53	<1.0	1.153 (ND)
	8/1/2018	Background	958.3	7.2	18.03	53.0	0.28	1.77	9.1	0.608	230	590	2300	140	<3.0	<1.0	47	<1.0	<1.0	<4.0	2.2	<1.0	30	<0.20	160	54	<1.0	0.884(ND)
	9/5/2018	Background	873.3	7.3	19.46	69.3	0.28	2.29	10	0.700	220	520	2100	130	<3.0	<1.0	47	<1.0	<1.0	<4.0	2.0	<1.0	27	<0.20	150	42	<1.0	0.652(ND)
	11/6/2018	Background	787.9	7.4	18.12	344.4	0.44	0.44	6.3	0.693	170	450	2000	120	<3.0	<1.0	43	<1.0	<1.0	<4.0	2.0	<1.0	26	<0.20	150	15	<1.0	1.478
	12/12/2018	Background	784.8	7.3	17.26	51.6	1.05	0.41	6.8	0.746	180	440	1800	120	<3.0	<1.0	44	<1.0	<1.0	<4.0	2.1	<1.0	26	<0.20	150	11	<1.0	0.975 (ND)
	3/27/2019	Detection	797.4	7.3	16.39	52.6	0.32	2.37	6.6	0.670	170	480	1800	110	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	9/24/2019	Detection	751.7	7.3	18.88	119.0	0.31	0.59	3.9	0.684	150	470	1900	120	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
MW-9 (DG)	3/21/2018	Background	979.8	7.4	14.98	25.1	0.52	1.60	17	0.929	230	480	4700	65	<3.0	<1.0	49	<1.0	<1.0	<4.0	<2.0	<1.0	19	<0.20	630	<1.0	<1.0	0.491 (ND)
	4/15/2018	Background	972.7	7.4	14.63	24.9	1.73	2.32	21	1.09	240	460	5100	57	<3.0	1.2	49	<1.0	<1.0	<4.0	<2.0	<1.0	11	<0.20	680	<1.0	<1.0	0.982 (ND)
	5/23/2018	Background	1020.5	7.3	18.70	25.9	0.48	0.64	17	1.05	240	520	5800	55	<3.0	<1.0	45	<1.0	<1.0	8.1	<2.0	<1.0	15	<0.20	840	<1.0	<1.0	0.359 (ND)
	6/27/2018	Background	902.9	7.3	19.33	25.2	0.42	4.97	15	0.910	220	520	4600	73	<3.0	<1.0	47	<1.0	<1.0	<4.0	<2.0	<1.0	15	<0.20	560	<1.0	<1.0	0.327 (ND)
	8/1/2018	Background	942.6	7.3	19.10	20.7	0.47	2.03	16	0.916	220	560	4500	76	<3.0	<1.0	47	<1.0	<1.0	<4.0	<2.0	<1.0	18	<0.20	500	<1.0	<1.0	0.418(ND)
	9/5/2018	Background	829.2	7.3	19.85	20.9	0.45	2.68	16	0.957	180	420	4400	80	<3.0	<1.0	48	<1.0	<1.0	<4.0	<2.0	<1.0	17	<0.20	460	<1.0	<1.0	0.707(ND)
	11/6/2018	Background	732.8	7.3	18.19	428.8	0.60	0.45	11	0.885	130	410	3800	79	<3.0	<1.0	47	<1.0	<1.0	<4.0	<2.0	<1.0	13	<0.20	420	<1.0	<1.0	1.473(ND)
	12/12/2018	Background	742.9	7.3	16.95	36.5	0.48	0.63	12	0.972	170	360	3700	78	<3.0	<1.0	53	<1.0	<1.0	<4.0	<2.0	<1.0	17	<0.20	420	<1.0	<1.0	1.232 (ND)
	3/27/2019	Detection	673.2	7.4	16.74	22.1	0.51	0.96	11	0.827	120	440	3100	70	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	9/24/2019	Detection	891.5	7.4	19.25	38.3	0.41	0.62	16	0.847	220	540	5000	87	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

Notes:

1. All data transcribed from analytical lab data sheets or field notes.

2. Less than (<) symbol denotes concentration below reportable limits.

3. (ND) denotes Radium 226 and 228 (combined) concentration not detected above Minimum Detectable Concentration.

4. (NA) denotes analysis not conducted, or not available at time of report.

5. Background monitoring per USEPA 40 CFR 257.93.

6. Detection monitoring per USEPA 40 CFR 257.94.

7. Assessment monitoring per USEPA 40 CFR 257.95.

Appendix 5

Statistical Power Curve

Power Curve MW-1, 2, 3, 7 & 9

This report reflects annual total based on two evaluations per year.

Analysis Run 5/31/2019 2:59 PM SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

Appendix 6

Time Series Plots

Sanitas™ v.9.6.18 Sanitas software licensed to GREDELL Engineering only. UG

Time Series Analysis Run 7/18/2019 8:57 AM View: AppIII SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background Sanitas™ v.9.6.18 Sanitas software licensed to GREDELL Engineering only. UG

Calcium

 Time Series
 Analysis Run 7/18/2019 8:57 AM
 View: AppIII

 SBMU-Sikeston Power Station
 Client: GREDELL Engineering
 Data: SikestonFAP Background

 Time Series
 Analysis Run 7/18/2019 8:57 AM
 View: AppIII

 SBMU-Sikeston Power Station
 Client: GREDELL Engineering
 Data: SikestonFAP Background

Sanitas[™] v.9.6.18 Sanitas software licensed to GREDELL Engineering only. UG Hollow symbols indicate censored values.

 Time Series
 Analysis Run 7/18/2019 8:57 AM
 View: AppIII

 SBMU-Sikeston Power Station
 Client: GREDELL Engineering
 Data: SikestonFAP Background

Sanitas[™] v.9.6.18 Sanitas software licensed to GREDELL Engineering only. UG

 Time Series
 Analysis Run 7/18/2019 8:57 AM
 View: AppIII

 SBMU-Sikeston Power Station
 Client: GREDELL Engineering
 Data: SikestonFAP Background

Sulfate

 Time Series
 Analysis Run 7/18/2019 8:57 AM
 View: AppIII

 SBMU-Sikeston Power Station
 Client: GREDELL Engineering
 Data: SikestonFAP Background

Sanitas™ v.9.6.18 Sanitas software licensed to GREDELL Engineering only. UG

SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

Appendix 7

Box and Whiskers Plots

Box & Whiskers Plot (MW-1, 2, 3, 7, & 9)

	SBMU-Sikeston Power Station	Client: Gl	REDELL Engineering	Data: Sil	kestonFAP Background	Printed 7/1	8/2019, 9:02 AM		
Constituent	Well	<u>N</u>	Mean	Median	Lower Q.	Upper Q.	<u>Min.</u>	Max.	<u>%NDs</u>
Boron (ug/L)	MW-1	8	443.8	445	430	475	360	490	0
Boron (ug/L)	MW-2	8	38.63	42.5	32	44.5	23	48	0
Boron (ug/L)	MW-3	8	23.25	23.5	20.5	26.5	17	28	0
Boron (ug/L)	MW-7	8	1975	1950	1850	2050	1800	2300	0
Boron (ug/L)	MW-9	8	4575	4550	4100	4900	3700	5800	0
Calcium (mg/L)	MW-1	8	30.38	29.5	26.5	36	21	38	0
Calcium (mg/L)	MW-2	8	18.75	19.5	17	20.5	14	22	0
Calcium (mg/L)	MW-3	8	17.75	18	17	18	17	19	0
Calcium (mg/L)	MW-7	8	123.8	120	115	135	110	140	0
Calcium (mg/L)	MW-9	8	70.38	74.5	61	78.5	55	80	0
Chloride (mg/L)	MW-1	8	5.838	6.25	3.15	8	2.8	9.1	0
Chloride (mg/L)	MW-2	8	4.625	4.45	3.8	5.7	2.3	6.8	0
Chloride (mg/L)	MW-3	8	1.338	1.35	1.25	1.4	1.2	1.5	0
Chloride (mg/L)	MW-7	8	9.775	10.5	7.95	11.5	6.3	12	0
Chloride (mg/L)	MW-9	8	15.63	16	13.5	17	11	21	0
Fluoride (mg/L)	MW-1	8	0.1983	0.1885	0.125	0.259	0.125	0.316	50
Fluoride (mg/L)	MW-2	8	0.1858	0.125	0.125	0.263	0.125	0.335	62.5
Fluoride (mg/L)	MW-3	8	0.2488	0.291	0.125	0.3235	0.125	0.386	37.5
Fluoride (mg/L)	MW-7	8	0.6919	0.6965	0.629	0.749	0.592	0.794	0
Fluoride (mg/L)	MW-9	8	0.9636	0.943	0.913	1.011	0.885	1.09	0
pH (S.U.)	MW-1	8	7.22	7.215	7.125	7.33	7.06	7.36	0
pH (S.U.)	MW-2	8	6.196	6.17	6.12	6.27	6.09	6.36	0
pH (S.U.)	MW-3	8	6.505	6.495	6.485	6.53	6.45	6.57	0
pH (S.U.)	MW-7	8	7.268	7.26	7.23	7.295	7.22	7.35	0
pH (S.U.)	MW-9	8	7.33	7.335	7.315	7.345	7.28	7.37	0
Sulfate (mg/L)	MW-1	8	23.38	22.5	21	25	20	30	0
Sulfate (mg/L)	MW-2	8	18.63	18.5	18	19.5	16	21	0
Sulfate (mg/L)	MW-3	8	17.63	17.5	16.5	19	15	20	0
Sulfate (mg/L)	MW-7	8	205	215	185	220	170	230	0
Sulfate (mg/L)	MW-9	8	203.8	220	175	235	130	240	0
Total Dissolved Solids (mg/L)	MW-1	8	150	140	130	170	120	200	0
Total Dissolved Solids (mg/L)	MW-2	8	106.3	105	93.5	125	63	140	0
Total Dissolved Solids (mg/L)	MW-3	8	123.8	120	105	140	100	160	0
Total Dissolved Solids (mg/L)	MW-7	8	480	465	440	510	420	590	0
Total Dissolved Solids (mg/L)	MW-9	8	466.3	470	415	520	360	560	0

Sanitas™ v.9.6.18 Sanitas software licensed to GREDELL Engineering only. UG

Box & Whiskers Plot Analysis Run 7/18/2019 9:00 AM View: AppIII SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

Calcium

Box & Whiskers Plot Analysis Run 7/18/2019 9:00 AM View: AppIII SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

Sanitas™ v.9.6.18 Sanitas software licensed to GREDELL Engineering only. UG

Chloride

 Box & Whiskers Plot
 Analysis Run 7/18/2019 9:00 AM
 View: AppIII

 SBMU-Sikeston Power Station
 Client: GREDELL Engineering
 Data: SikestonFAP Background

Sanitas™ v.9.6.18 Sanitas software licensed to GREDELL Engineering only. UG

Fluoride

Box & Whiskers Plot Analysis Run 7/18/2019 9:00 AM View: AppIII SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

Sanitas™ v.9.6.18 Sanitas software licensed to GREDELL Engineering only. UG

 Box & Whiskers Plot
 Analysis Run 7/18/2019 9:00 AM
 View: AppIII

 SBMU-Sikeston Power Station
 Client: GREDELL Engineering
 Data: SikestonFAP Background

Box & Whiskers Plot Analysis Run 7/18/2019 9:00 AM View: AppIII SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

Sanitas™ v.9.6.18 Sanitas software licensed to GREDELL Engineering only. UG

Total Dissolved Solids

Box & Whiskers Plot Analysis Run 7/18/2019 9:00 AM View: AppIII SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background Sulfate

Appendix 8

Prediction Limit Charts

Prediction Limits - (MW-1, 2, 3, 7, & 9)

	SBMU	J-Sikeston Power S	tation Client	: GREDELL En	gineering	Data: Sikes	stonFAF	Backgrou	nd Printed 7/	18/2019, 9:05 AM	
<u>Constituent</u>	Well	Upper Lim.	Lower Lim.	Date	Observ.	<u>Sig.</u>	<u>Bg N</u>	<u>%NDs</u>	Transform	Alpha	Method
Boron (ug/L)	MW-1	544.6	n/a	n/a	1 future	n/a	8	0	No	0.002505	Param Intra 1 of 2
Boron (ug/L)	MW-2	60.53	n/a	n/a	1 future	n/a	8	0	No	0.002505	Param Intra 1 of 2
Boron (ug/L)	MW-3	32.7	n/a	n/a	1 future	n/a	8	0	No	0.002505	Param Intra 1 of 2
Boron (ug/L)	MW-7	2385	n/a	n/a	1 future	n/a	8	0	No	0.002505	Param Intra 1 of 2
Boron (ug/L)	MW-9	6236	n/a	n/a	1 future	n/a	8	0	No	0.002505	Param Intra 1 of 2
Calcium (mg/L)	MW-1	45.18	n/a	n/a	1 future	n/a	8	0	No	0.002505	Param Intra 1 of 2
Calcium (mg/L)	MW-2	25.29	n/a	n/a	1 future	n/a	8	0	No	0.002505	Param Intra 1 of 2
Calcium (mg/L)	MW-3	19.49	n/a	n/a	1 future	n/a	8	0	No	0.002505	Param Intra 1 of 2
Calcium (mg/L)	MW-7	152.9	n/a	n/a	1 future	n/a	8	0	No	0.002505	Param Intra 1 of 2
Calcium (mg/L)	MW-9	95.09	n/a	n/a	1 future	n/a	8	0	No	0.002505	Param Intra 1 of 2
Chloride (mg/L)	MW-1	12.2	n/a	n/a	1 future	n/a	8	0	No	0.002505	Param Intra 1 of 2
Chloride (mg/L)	MW-2	8.15	n/a	n/a	1 future	n/a	8	0	No	0.002505	Param Intra 1 of 2
Chloride (mg/L)	MW-3	1.598	n/a	n/a	1 future	n/a	8	0	No	0.002505	Param Intra 1 of 2
Chloride (mg/L)	MW-7	15.22	n/a	n/a	1 future	n/a	8	0	No	0.002505	Param Intra 1 of 2
Chloride (mg/L)	MW-9	23.28	n/a	n/a	1 future	n/a	8	0	No	0.002505	Param Intra 1 of 2
Fluoride (mg/L)	MW-1	0.313	n/a	n/a	1 future	n/a	8	50	No	0.002505	Param Intra 1 of 2
Fluoride (mg/L)	MW-2	0.335	n/a	n/a	1 future	n/a	8	62.5	n/a	0.02144	NP Intra (NDs) 1 of 2
Fluoride (mg/L)	MW-3	0.4083	n/a	n/a	1 future	n/a	8	37.5	No	0.002505	Param Intra 1 of 2
Fluoride (mg/L)	MW-7	0.8677	n/a	n/a	1 future	n/a	8	0	No	0.002505	Param Intra 1 of 2
Fluoride (mg/L)	MW-9	1.14	n/a	n/a	1 future	n/a	8	0	No	0.002505	Param Intra 1 of 2
pH (S.U.)	MW-1	7.5	6.9	n/a	1 future	n/a	8	0	No	0.001253	Param Intra 1 of 2
pH (S.U.)	MW-2	6.5	5.9	n/a	1 future	n/a	8	0	No	0.001253	Param Intra 1 of 2
pH (S.U.)	MW-3	6.6	6.4	n/a	1 future	n/a	8	0	No	0.001253	Param Intra 1 of 2
pH (S.U.)	MW-7	7.4	7.2	n/a	1 future	n/a	8	0	No	0.001253	Param Intra 1 of 2
pH (S.U.)	MW-9	7.4	7.3	n/a	1 future	n/a	8	0	No	0.001253	Param Intra 1 of 2
Sulfate (mg/L)	MW-1	31.57	n/a	n/a	1 future	n/a	8	0	No	0.002505	Param Intra 1 of 2
Sulfate (mg/L)	MW-2	22.33	n/a	n/a	1 future	n/a	8	0	No	0.002505	Param Intra 1 of 2
Sulfate (mg/L)	MW-3	21.97	n/a	n/a	1 future	n/a	8	0	No	0.002505	Param Intra 1 of 2
Sulfate (mg/L)	MW-7	259.2	n/a	n/a	1 future	n/a	8	0	No	0.002505	Param Intra 1 of 2
Sulfate (mg/L)	MW-9	301.1	n/a	n/a	1 future	n/a	8	0	No	0.002505	Param Intra 1 of 2
Total Dissolved Solids (mg/L)	MW-1	223.2	n/a	n/a	1 future	n/a	8	0	No	0.002505	Param Intra 1 of 2
Total Dissolved Solids (mg/L)	MW-2	169.4	n/a	n/a	1 future	n/a	8	0	No	0.002505	Param Intra 1 of 2
Total Dissolved Solids (mg/L)	MW-3	177.8	n/a	n/a	1 future	n/a	8	0	No	0.002505	Param Intra 1 of 2
Total Dissolved Solids (mg/L)	MW-7	617.2	n/a	n/a	1 future	n/a	8	0	No	0.002505	Param Intra 1 of 2
Total Dissolved Solids (mg/L)	MW-9	630.8	n/a	n/a	1 future	n/a	8	0	No	0.002505	Param Intra 1 of 2

Sanitas™ v.9.6.18 Sanitas software licensed to GREDELL Engineering only. UG

Background Data Summary: Mean=443.8, Std. Dev=41.04, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9079, critical = 0.749. Kappa = 2.458 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.005205. Assumes 1 future value.

Background Data Summary: Mean=38.63, Std. Dev=8.911, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8787, critical = 0.749. Kappa = .2458 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.005205. Assumes 1 future value.

Prediction Limit Analysis Run 7/18/2019 9:03 AM View: AppIII SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

Sanitas™ v.9.6.18 Sanitas software licensed to GREDELL Engineering only. UG

Background Data Summary: Mean=23.25, Std. Dev=3.845, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9492, critical = 0.749. Kappa = .2458 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.00505. Assumes 1 future value. Sanitas™ v.9.6.18 Sanitas software licensed to GREDELL Engineering only. UG

Boron

Background Data Summary: Mean=1975, Std. Dev.=166.9, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.907, critical = 0.749. Kappa = 2.458 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505. Assumes 1 future value.

Sanitas™ v.9.6.18 Sanitas software licensed to GREDELL Engineering only. UG

Background Data Summary: Mean=4575, Std. Dev.=675.6, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9478, critical = 0.749. Kappa = 2.458 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505. Assumes 1 future value.

Calcium

Intrawell Parametric, MW-1

Background Data Summary: Mean=30.38, Std. Dev=6.022, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9468, critical = 0.749. Kappa = .2458 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.005205. Assumes 1 future value.

Prediction Limit Analysis Run 7/18/2019 9:03 AM View: AppIII SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

Sanitas™ v.9.6.18 Sanitas software licensed to GREDELL Engineering only. UG

Background Data Summary: Mean=18.75, Std. Dev=2.659, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9419, critical = 0.749. Kappa = 2.458 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.00505. Assumes 1 future value. Sanitas™ v.9.6.18 Sanitas software licensed to GREDELL Engineering only. UG

Calcium

Background Data Summary: Mean=17.75, Std. Dev.=0.7071, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8268, critical = 0.749. Kappa = 2.458 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.00525. Assumes 1 future value.

Sanitas™ v.9.6.18 Sanitas software licensed to GREDELL Engineering only. UG

100

80

mg/L

Calcium Intrawell Parametric, MW-7

Background Data Summary: Mean=123.8, Std. Dev=11.88, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8748, critical = 0.749. Kappa = 2.458 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.005505. Assumes 1 future value.

Calcium

Background Data Summary: Mean=70.38, Std. Dev=10.06, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8497, critical = 0.749. Kappa = .2458 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.005205. Assumes 1 future value.

Prediction Limit Analysis Run 7/18/2019 9:03 AM View: AppIII SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

Chloride

Sanitas™ v.9.6.18 Sanitas software licensed to GREDELL Engineering only. UG

Intrawell Parametric, MW-1

Background Data Summary: Mean=5.838, Std. Dev=2.588, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8813, critical = 0.749. Kappa = 2.458 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.00505. Assumes 1 future value. Sanitas™ v.9.6.18 Sanitas software licensed to GREDELL Engineering only. UG

Background Data Summary: Mean=4.625, Std. Dev.=1.434, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9868, critical = 0.749. Kappa = .2458 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.00505. Assumes 1 future value.

Sanitas™ v.9.6.18 Sanitas software licensed to GREDELL Engineering only. UG

0

3/21/18 5/13/18 7/5/18

mg/L

Background Data Summary: Mean=1.338, Std. Dev.=0.1061, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9112, critical = 0.749. Kappa = 2.458 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.005205. Assumes 1 future value.

Background Data Summary: Mean=9.775, Std. Dev=2.215, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8753, critical = 0.749. Kappa = .2458 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.005205. Assumes 1 future value.

Prediction Limit Analysis Run 7/18/2019 9:03 AM View: AppIII SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

8/27/18 10/19/18 12/12/18

SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

Sanitas™ v.9.6.18 Sanitas software licensed to GREDELL Engineering only. UG

ng/L

Intrawell Parametric, MW-9

Chloride

Background Data Summary: Mean=15.63, Std. Dev=3.114, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9388, critical = 0.749. Kappa = .2458 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.00505. Assumes 1 future value. Sanitas[™] v.9.6.18 Sanitas software licensed to GREDELL Engineering only. UG Hollow symbols indicate censored values.

Fluoride

Background Data Summary (after Kaplan-Meier Adjustment): Mean=0.2608, Std. Dev.=0.02126, n=8, 50% NDs. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.7822, critical = 0.749. Kappa = 2.458 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505. Assumes 1 future value. Sanitas[™] v.9.6.18 Sanitas software licensed to GREDELL Engineering only. UG Hollow symbols indicate censored values.

Fluoride

Intrawell Non-parametric, MW-2

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 8 background values. 62.5% NDs. Well-constituent pair annual alpha = 0.04242. Individual comparison alpha = 0.02144 (1 of 2). Assumes 1 future value. Insufficient data to test for seasonality: data were not deseasonalized. Sanitas[™] v.9.6.18 Sanitas software licensed to GREDELL Engineering only. UG Hollow symbols indicate censored values.

mg/L

Fluoride

Background Data Summary (after Kaplan-Meier Adjustment): Mean=0.2956, Std. Dev.=0.04584, n=8, 37.5% NDs. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8336, critical = 0.749. Kappa = 2.458 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505. Assumes 1 future value.

Prediction Limit Analysis Run 7/18/2019 9:03 AM View: AppIII SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

Prediction Limit Analysis Run 7/18/2019 9:03 AM View: AppIII SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

Sanitas™ v.9.6.18 Sanitas software licensed to GREDELL Engineering only. UG

3/21/18 5/13/18 7/5/18 8/27/18 10/19/18 12/12/18 Background Data Summary: Mean=0.6919, Std. Dev=0.07152, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9552, critical = 0.749. Kappa = 2.458 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505. Assumes 1 future value. Sanitas[™] v.9.6.18 Sanitas software licensed to GREDELL Engineering only. UG

Fluoride

Background Data Summary: Mean=0.9636, Std. Dev=0.07178, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha=0.01, calculated = 0.8952, critical = 0.749. Kappa = 2.458 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505. Assumes 1 future value.

Sanitas™ v.9.6.18 Sanitas software licensed to GREDELL Engineering only. UG

Background Data Summary: Mean=7.22, Std. Dev.=0.1164, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.0974, critical = 0.749. Kappa = 2.458 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.05505. Assumes 1 future value.

pН

Background Data Summary: Mean=6.196, Std. Dev.=0.1036, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.011, calculated = 0.80374, critical = 0.749, Kappa = 2.458 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.005205. Assumes 1 future value.

Prediction Limit Analysis Run 7/18/2019 9:03 AM View: AppIII SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

Prediction Limit Analysis Run 7/18/2019 9:03 AM View: AppIII

SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

3/21/18 5/13/18 7/5/18 8/27/18 10/19/18 12/12/18 Background Data Summary: Mean=6.505, Std. Dev.=0.03854, n=8. Insufficient data to test for seasonality: data were

Background Data Summary: wean=5.505, Sto. Lev.=0.03854, n=8. Insumcient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.939, critical = 0.749. Kappa = 2.458 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505. Assumes 1 future value. Sanitas™ v.9.6.18 Sanitas software licensed to GREDELL Engineering only. UG

Background Data Summary: Mean=7.268, Std. Dev.=0.04464, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9288, critical = 0.749. Kappa = 2.458 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505. Assumes 1 future value.

3/21/18 5/13/18 7/5/18 8/27/18 10/19/18 12/12/18

Sanitas™ v.9.6.18 Sanitas software licensed to GREDELL Engineering only. UG

Background Data Summary: Mean=7.33, Std. Dev.=0.02726, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.0741, critical = 0.749. Kappa = 2.458 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.005205. Assumes 1 future value.

Sulfate

Background Data Summary: Mean=23.38, Std. Dev =3.335, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8864, critical = 0.749. Kappa = .2458 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.005205. Assumes 1 future value.

Prediction Limit Analysis Run 7/18/2019 9:04 AM View: AppIII SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

Prediction Limit Analysis Run 7/18/2019 9:04 AM View: AppIII SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

Sulfate

Sanitas™ v.9.6.18 Sanitas software licensed to GREDELL Engineering only. UG

Background Data Summary: Mean-18.63, Std. Dev.=1.506, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9528, critical = 0.749. Kappa = 2.458 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.005205. Assumes 1 future value. Sanitas™ v.9.6.18 Sanitas software licensed to GREDELL Engineering only. UG

Background Data Summary: Mean=17.63, Std. Dev.=1.768, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9348, critical = 0.749. Kappa = .2458 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.00505. Assumes 1 future value.

Sanitas™ v.9.6.18 Sanitas software licensed to GREDELL Engineering only. UG

Background Data Summary: Mean=205, Std. Dev.=22.04, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8819, critical = 0.749. Kappa = 2.458 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505. Assumes 1 future value.

Sulfate

Background Data Summary: Mean=203.8, Std. Dev=39.62, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.864, critical = 0.749. Kappa = .2458 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.005205. Assumes 1 future value.

Prediction Limit Analysis Run 7/18/2019 9:04 AM View: AppIII SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

Sanitas™ v.9.6.18 Sanitas software licensed to GREDELL Engineering only. UG

Background Data Summary: Mean=150, Std. Dev.=29.76, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8433, critical = 0.749. Kappa = 2.458 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505. Assumes 1 future value. Sanitas™ v.9.6.18 Sanitas software licensed to GREDELL Engineering only. UG

ng/L

Total Dissolved Solids

Background Data Summary: Mean=106.3, Std. Dev.=25.71, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9324, critical = 0.749. Kappa = .2458 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.005205. Assumes 1 future value.

Sanitas™ v.9.6.18 Sanitas software licensed to GREDELL Engineering only. UG

Background Data Summary: Mean=123.8, Std. Dev.=22, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9132, critical = 0.749. Kappa = 2.458 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505. Assumes 1 future value. Sanitas™ v.9.6.18 Sanitas software licensed to GREDELL Engineering only. UG

mg/L

Background Data Summary: Mean=480, Std. Dev.=55.81, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9034, critical = 0.749. Kappa = 2.458 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505. Assumes 1 future value.

Prediction Limit Analysis Run 7/18/2019 9:04 AM View: AppIII SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

Prediction Limit Analysis Run 7/18/2019 9:04 AM View: AppIII SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

Sanitas™ v.9.6.18 Sanitas software licensed to GREDELL Engineering only. UG

Background Data Summary: Mean=466.3, Std. Dev=66.96, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.969, critical = 0.749. Kappa = 2.458 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.005205. Assumes 1 future value.

Appendix 9

Alternate Source Demonstration March 20, 2020

1505 East High Street Jefferson City, Missouri 65101 Telephone (573) 659-9078 Facsimile (573) 659-9079

GREDELL Engineering Resources, Inc.

Sikeston Board of Municipal Utilities Sikeston Power Station Detection Monitoring Program for Fly Ash Pond Alternate Source Demonstration

Sikeston Power Station 1551 West Wakefield Avenue Sikeston, MO 63801

March 20, 2020

PROFESSIONAL ENGINEER'S CERTIFICATION

40 CFR 257.94(e)(2) Alternate Source Demonstration

I, Thomas R. Gredell, P.E., a professional engineer licensed in the State of Missouri, hereby certify in accordance with 40 CFR 257.94(e)(2) to the accuracy of the alternate source demonstration described in the following report for the Sikeston Board of Municipal Utilities, Sikeston Power Station, Fly Ash Pond CCR unit. The report demonstrates that the statistically significant increase of sulfate, and calcium in MW-1 resulted from a source other than the CCR unit. This demonstration successfully meets the requirements of 40 CFR 257.94(e) as found in federal regulation 40 CFR 257, Subpart D – Standards for the Disposal of Coal Combustion Residuals in Landfills and Surface Impoundments. In addition, the demonstration was made using generally accepted methods.

Name:	<u>Thomas R. C</u>	Bredell, P.E	anno -	an a
Signature:	Roll	aRE	Cor Mass	
Date:	03-20	0-26	GREDELL	1+9
Registration Nu State of Registra	mber: PE-02 ation: Misso	1137 . uri	NUMBER PE-021137	LEEK CONTRACTOR
		Y	CSSIONAL E	NOT

Sikeston Board of Municipal Utilities Sikeston Power Station Detection Monitoring Program for Fly Ash Pond Alternate Source Demonstration

March 2020

Table of Contents

1.0	INTRODUCTION	.1
2.0	OBSERVATIONS AND DATA COLLECTION	.2
3.0	SUMMARY OF DATA ANALYSIS AND FINDINGS	.4
4.0	CONCLUSIONS AND RECOMMENDATIONS	.6
5.0	REFERENCES	.7

List of Figures

Figure	1 – Site	Map	and	Samplin	a Locations
iguic		map	unu	Gamping	g Locations

- Figure 2 MW-1 Hydrograph and Annual Precipitation
- Figure 3 Diversion Ditch Photo February 2020 Looking West
- Figure 4 Diversion Ditch Photo February 2020 Looking Northwest
- Figure 5 Diversion Ditch Photo November 2017 Looking Northwest
- Figure 6 Piper Trilinear Plot

List of Tables

- Table 1 MW-1 Detection Monitoring Results and Prediction Limits
- Table 2 Alternate Source Demonstration Sampling Results Summary

 Table 3 – MW-1 Alternate Source Demonstration Results and Prediction Limits

1.0 INTRODUCTION

This Alternate Source Demonstration Report has been prepared to address the results of the semi-annual sampling event conducted on September 24, 2019 at the Sikeston Board of Municipal Utilities (SBMU) Sikeston Power Station's (SPS) Fly Ash Pond, a coal combustion residual (CCR) surface impoundment. Following receipt of final analytical data, statistical analysis was performed by GREDELL Engineering Resources, Inc. (Gredell Engineering) for the parameters listed in Appendix III to Part 257 – Constituents for Detection Monitoring. The results of the statistical evaluation suggested three apparent statistically significant increases (SSIs) in monitoring well MW-1 (Sulfate, Total Dissolved Solids (TDS), and Calcium). Two of the three SSIs (Sulfate and Calcium) were confirmed by subsequent analytical data following resampling on October 22, 2019. As a consequence, SBMU-SPS requested that Gredell Engineering investigate the results and conduct an alternate source demonstration.

As stated in §257.94(e)(2), an owner or operator may demonstrate that a source other than the CCR unit caused the apparent SSI over background levels for a constituent. The owner or operator must complete the written demonstration within 90 days of detecting an apparent SSI over background levels to include obtaining a certification from a qualified professional engineer verifying the accuracy of the information in the report. If a successful demonstration is completed within the 90-day period, the owner of the CCR unit may continue with a detection monitoring program. The owner or operator must also include the certified demonstration in the annual groundwater monitoring and corrective action report required by §257.90(e).

Gredell Engineering has completed an evaluation of the groundwater sampling event, analytical data results, and other potential factors, for the SBMU SPS Fly Ash Pond groundwater monitoring well system to determine if an alternate source is the cause of the apparent SSIs in MW-1. This report presents the results of that evaluation and includes supporting documentation.

Monitoring well MW-1 is located west of the Fly Ash Pond and within the containment area of the coal storage area (Figure 1). The well is situated between the north edge of the coal pile and the coal pile runoff diversion ditch. MW-1 was originally installed in April 2016 as a piezometer for the hydrogeologic characterization (Gredell, 2017) of the uppermost aquifer flowing beneath the Fly Ash and Bottom Ash Ponds at the site. This piezometer was converted to a downgradient monitoring well and retained for routine groundwater elevation monitoring and NPDES compliance sampling. Additional sampling locations were proposed, and two additional downgradient wells (MW-7 and MW-9) were installed for Fly Ash Pond monitoring in April 2017 and November 2017, respectively. Groundwater elevation monitoring since 2016 has consistently demonstrated that flow direction is to the west-southwest, as indicated on Figure 1.

2.0 OBSERVATIONS AND DATA COLLECTION

The September 24, 2019 detection monitoring event and the October 22, 2019 resample event were preceded by abnormally heavy precipitation in the previous months. This is demonstrated by Figure 2, which is a hydrograph of groundwater elevations in MW-1 overlaid on a bar graph of total annual precipitation for 2016 through 2019 (obtained from National Oceanic & Atmospheric Administration Station: Sikeston Power Station, MO US GHCND: US00237772). The data summarized in this figure document 57.38 inches of precipitation at the site in 2019, which represents a 30 to 45 percent increase over the previous three years (44.39 inches in 2018, 39.78 inches in 2017, and 41.50 inches in 2016). This abnormally heavy precipitation is manifested on the hydrograph during the months of February through May 2019 by groundwater elevations in MW-1 that exceed previously recorded measurements by a foot or more.

During periods of abnormal rainfall, infiltration to an aquifer is maximal and groundwater mounding may result. Rainfall that exceeds the infiltration capacity becomes surface runoff. Within the coal storage area, this surface runoff moves toward the unlined perimeter diversion ditch (Figure 1). Runoff concentrates in this unlined diversion and flows counterclockwise around the coal storage area within close proximity to MW-1. Because the diversion is unlined, additional infiltration and aquifer recharge is expected to occur. The excessive runoff in 2019 is illustrated by the photographs presented as Figures 3 and 4. They show considerable coal sediment in the diversion ditch, which is not apparent in photograph dating from November 2017 (Figure 5), nor was it apparent during other field activities conducted by Gredell Engineering in 2016 through 2018.

The analytical data for Sulfate, TDS, and Calcium in MW-1 for the September sampling event, and subsequent resampling data, including the collection of a replicate sample, are summarized on Table 1.

	Sulfate (mg/L)	TDS (mg/L)	Calcium (mg/L)
Detection Sampling 9-24-2019	35	230	47
Resample / Replicate 10/22/2019	41 / 42	180 / 170	47 / 49
Prediction Limit	31.57	223.2	45.18

Table 1 - MW-1 Detection Monitoring Results and Prediction Limits

Sulfate, TDS, and Calcium concentrations in the MW-1 sample from the September sampling event exceeded their respective prediction limits as identified in the 2019 Annual Groundwater Monitoring Report, dated August 1, 2019, and prepared in compliance with USEPA Part 257.90(e)

(Gredell Engineering, 2019). In October, a resampling event was conducted that incorporated a replicate sample for groundwater from MW-1. The resample and replicate concentrations of Sulfate and Calcium confirmed the apparent SSIs. However, the resample and replicate concentrations did not confirm the apparent SSI for TDS.

In response to the apparent SSIs for Sulfate and Calcium, additional sampling was conducted to evaluate a potential alternate source (Figure 1). Two temporary borings (ASD-1 and ASD-2) were advanced along the margin of the existing coal pile to allow sampling of the shallow groundwater between the coal pile and the underlying aquifer. Groundwater was sampled at MW-1, along with a surface water sample collected from the Fly Ash Pond (FAP-SW). Each sample was analyzed for major anions and cations to conduct geochemical analysis. A Piper Trilinear Plot (Piper, 1944) was developed with Sanitas[™] Water (Version 9.6.24; 2019) to identify similarities/variations in hydrochemical facies (Freeze and Cherry. 1979). The reported concentrations are summarized on Table 2. These data were used to evaluate geochemical relationships between the samples with the objective of identifying the most plausible source for the apparent SSIs at MW-1.

	ASD-1	ASD-2	MW-1	FAP-SW
Calcium (mg/L)	79.1	120	43.0	18.4
Sulfate (mg/L)	151	152	25	21
TDS (mg/L)	860	700	170	175
Magnesium (mg/L)	28.7	27.4	9.06	4.96
Potassium (mg/L)	9.74	9.46	1.72	18.7
Sodium (mg/L)	151	135	7.40	36.7
Bicarbonate (mg/L)	350	508	128	172
Carbonate (mg/L)	0	0	0	0
Chloride (mg/L)	35	20	5	5

Table 2 - Alternate Source Demonstration Sampling Results Summary

3.0 SUMMARY OF DATA ANALYSIS AND FINDINGS

The U.S. Environmental Protection Agency (USEPA) provides Unified Guidance for statistical analysis of groundwater monitoring data (USEPA, 2009). This Unified Guidance was reviewed to assess the validity of the apparent SSIs. Chapter 4 of the Unified Guidance discusses groundwater monitoring programs and statistical analysis of the associated data. A key component of statistical analysis is *"to determine whether or not the increase is actually due to a contaminant release"*. The following discussion is intended to assess the validity of apparent SSIs of Calcium and Sulfate associated with MW-1 and demonstrate if they are the result of a contaminant release from the Fly Ash Pond or caused by an alternate source.

A release from a plausible source will contribute water with elevated concentrations of indicator constituents to the aquifer, where it mixes with, and is diluted by, the natural (un-impacted) groundwater, which is characterized by relatively low (background) concentrations of these indicator constituents. The data summarized in Table 2 demonstrate that the concentrations of Calcium, Sulfate, and TDS in samples collected from ASD-1 and ASD-2 are at least four times greater than what was reported for the sample from the Fly Ash Pond, and considerably higher than what was reported in the sample from MW-1. This suggests that water from the coal storage area is a more plausible source for these constituents in MW-1 than water derived from the Fly Ash Pond.

The area of change in groundwater geochemistry as it flows away from a source is referred to as a mixing zone. A Piper Trilinear Plot is a common and convenient tool for showing the effects of mixing waters. The mixing zone will plot on a straight line joining the source to the receiving water (Freeze and Cherry, 1979).

The cation/anion data in Table 2 was used to produce the Piper Trilinear Plot in Figure 5. The concentrations presented in Table 2 for each constituent are first converted from mg/L to milliequivalents per liter (mEq/L) through a calculation based on their valence charge and molecular weight. The concentrations of these major anions and cations in mEq/L are then expressed in relative percentages on the trilinear plot to assess the geochemistry of the sample. Hydrochemical facies can be assessed based on the location of each point, or cluster of points, on the Piper Trilinear Plot.

Major anion data are summarized by the triangular plot on the right side of Figure 5, which indicates that all samples plot in a similar area or facies, with separation owing to minor differences in Bicarbonate concentrations (Carbonate was absent in all samples). Most notable, however, is that the anion fingerprint in MW-1 is more similar to ASD-1 and ASD-2 than it is to the sample from the Fly Ash Pond. The triangular plot on the left side summarizes the major cation data and indicates that the samples cluster in three different areas or facies (MW-1 in "Calcium-type", FAP-SW in "Sodium- or Potassium-type", and ASD-1 and ASD-2 in "No dominant type" (Freeze and Cherry, 1979)). The anion and cation data can be considered collectively with the diamond portion of the Piper Trilinear Plot to assess if all samples plot collinearly.

The Piper Trilinear Plot suggests three separate geochemical populations defined by the samples from the coal storage area (ASD-1 and ASD-2), the Fly Ash Pond (FAP-SW), and MW-1. A sample from a chemical source should plot collinear with samples associated with the mixing zone. ASD-1 and ASD-2 plot closer to MW-1 and are therefore more geochemically similar to MW-1. Conversely FAP-SW plots farther from MW-1 and is less geochemically similar to MW-1. Additionally, FAP-SW plots along a different straight line with MW-1 than ASD-1 and ASD-2.

Relevant data from the alternate source demonstration sampling event for MW-1 (Table 2) were compared to the respective prediction limits for Sulfate, TDS, and Calcium. This comparison is summarized in Table 3. These data demonstrate that Sulfate, TDS, and Calcium concentrations were below their respective prediction limits for the February 27, 2020 sampling event. This demonstrates that the apparent SSIs noted during the September 2019 sampling event are not indicative of a persistent condition affecting groundwater quality in the aquifer near MW-1.

	Sulfate (mg/L)	TDS (mg/L)	Calcium (mg/L)
Demonstration 2-27-2020	25	170	43
Prediction Limit	31.57	223.2	45.18

Table 3 - MW-1 Alternate Source Demonstration Results and Prediction Limits

The hydrograph for MW-1 and annual precipitation data summarized on Figure 2 demonstrate that 2019 was considerably wetter than the previous three years. Moreover, this abnormal precipitation led to excessive runoff and sedimentation from the stockpiled coal into the perimeter diversion that flows near MW-1, as presented in Figures 1, 3, and 4. A photograph of the same area taken in November 2017 (Figure 5) shows no excessive sedimentation, suggesting that the atypically heavy precipitation experienced in 2019 is a changed condition resulting in the increased probability of infiltration of coal-impacted surface water downward into the groundwater environment.

4.0 CONCLUSIONS AND RECOMMENDATIONS

On the basis of this investigation, Gredell Engineering concludes that the apparent SSIs of Sulfate and Calcium in MW-1, detected following the September 24, 2019 sampling event, are attributable to an alternate source originating in the coal storage area and not evidence of a release from the Fly Ash Pond. The following supports this conclusion:

- Groundwater samples collected from ASD-1 and ASD-2 in the coal storage area have elevated concentrations of Sulfate, TDS, and Calcium relative to MW-1 and the Fly Ash Pond.
- Sulfate, TDS, and Calcium concentrations derived from the Fly Ash Pond are not high enough to be mixed with (and diluted by) natural (un-impacted) groundwater and exceed their respective prediction limits for MW-1.
- Piper Trilinear Plot analysis demonstrates that groundwater from MW-1 is geochemically more similar to groundwater under the coal storage area than water in the Fly Ash Pond, and the groundwater under the coal storage area represents a different mixing zone than would result from waters in the Fly Ash Pond.
- Higher than normal precipitation in the months preceding the groundwater monitoring events in September and October 2019 resulted in excessive runoff from the coal storage area that was conveyed as surface runoff into the unlined diversion ditch that lies in close proximity to MW-1. This excessive runoff and coal sedimentation increases the likelihood that infiltration of coal impacted surface water into the groundwater environment had a deleterious effect on the sample results from MW-1. The abnormal precipitation and excessive runoff experienced in 2019 is viewed as a temporary changed condition, as evidenced by a comparison of the photographs of the perimeter diversion ditch presented as Figures 3, 4, and 5.
- Analytical results for Sulfate, TDS, and Calcium in MW-1 obtained following the February 27, 2020 alternate source demonstration sampling event are below their respective prediction limit values, indicating that the apparent SSIs noted previously are not indicative of a persistent or chronic condition impacting groundwater quality in the alluvial aquifer near MW-1.

Based on these conclusions, Gredell Engineering recommends that semi-annual detection monitoring continue in accordance with §257.94. As subsequent analytical results are received for Sulfate, TDS, and Calcium concentrations in MW-1, they should be reviewed and appropriate steps taken if prediction limit values are exceeded. Additionally, periodic inspection and maintenance of the diversion ditch enclosing the coal storage area will ensure excess sediment from the coal stockpiles is removed.

5.0 **REFERENCES**

- Freeze, R.A. and Cherry J.A., 1979, *Groundwater*. Prentice-Hall, Inc. Englewood Cliffs, New Jersey, 604 p.
- GREDELL Engineering Resources, Inc., 2017, Sikeston Power Station Site Characterization for Compliance with Missouri State Operating Permit #MO-0095575. Prepared for Sikeston Board of Municipal Utilities, May 31, 2017.
- GREDELL Engineering Resources, Inc., 2019, Sikeston Power Station 2019 Annual Groundwater Monitoring Report for Fly Ash Pond for Compliance with USEPA 40 CFR 257.90(e). Prepared for Sikeston Board of Municipal Utilities, August 1, 2019.
- Piper, A. M., 1944. A Graphical Procedure in the Geochemical Interpretation of Water Analyses. Trans. Amer. Geophys. Union, 25, pp 914-923.
- Sanitas Statistical Software, © 1992-2019 SANITAS TECHNOLOGIES, Alamosa Colorado 81101-0012.
- USEPA, 2009, Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities Unified Guidance: EPA 530/R-09-007, Office of Resource Conservation and Recovery, Program Implementation and Information Division, Washington, D.C.

FIGURES

Prepared by: GREDELL Engineering Resources, Inc.

200'

Note: MW-1 groundwater elevations do not indicate sampling occurred.

 Figure 2

 MW-1 Hydrograph and Annual Precipitation

Prepared by: GREDELL Engineering Resources, Inc.

Prepared by: GREDELL Engineering Resources, Inc.

Prepared by: GREDELL Engineering Resources, Inc.

Prepared by: GREDELL Engineering Resources, Inc.

11-13-2017

