1505 East High Street Jefferson City, Missouri 65101 Telephone (573) 659-9078 www.ger-inc.biz

GREDELL Engineering Resources, Inc.

Sikeston Power Station

2021 Annual Groundwater Monitoring Report for Fly Ash Pond Compliance with USEPA 40 CFR 257.90(e)

Sikeston Power Station 1551 West Wakefield Avenue Sikeston, Missouri 63801

August 2021

Sikeston Power Station 2021 Annual Groundwater Monitoring Report for Fly Ash Pond Compliance with USEPA 40 CFR 257.90(e)

<u>Prepared for:</u> Sikeston Board of Municipal Utilities 1551 West Wakefield Avenue Sikeston, Missouri 63801

August 2021

Prepared by: GREDELL Engineering Resources, Inc. 1505 East High Street Jefferson City, Missouri 65101 Phone: (573) 659-9078 www.ger-inc.biz

Sikeston Power Station 2021 Annual Groundwater Monitoring Report for Fly Ash Pond Compliance with USEPA 40 CFR 257.90(e)

August 2021

Table of Contents

1.0	INTRODUCTION	1
2.0	GROUNDWATER MONITORING SYSTEM	2
3.0 3.1	FIELD SAMPLING SUMMARY Field Quality Assurance/Quality Control	
4.0 4.1 4.2 4.3 4.4 4.5	ANALYTICAL SUMMARY Laboratory Quality Control Precision and Accuracy Representativeness Comparability Completeness	. 5 . 5 . 7 . 7
5.0 5.1	STATISTICAL ANALYSIS Statistical Results	
6.0	SUMMARY1	0
7.0	LIMITATIONS1	1
8.0	REFERENCES1	2

List of Figures

Figure 1 – Groundwater Contour Map – April 6, 2020

Figure 2 – Groundwater Contour Map – September 22, 2020

List of Tables

- Table 1 Groundwater Monitoring Well Summary Fly Ash Pond
- Table 2 Historical Groundwater Level Summary
- Table 3 Water Levels and Field Parameter Summary April 6, 2020, and September 22, 2020
- Table 4 Groundwater Monitoring Constituents
- Table 5 Relative Percent Difference Summary April 6, 2020, and September 22, 2020
- Table 6 Intra-Well Prediction Limit Summary

List of Appendices

- Appendix 1 Field Sampling Notes
- Appendix 2 Laboratory Analytical Results
- Appendix 3 Laboratory Quality Assurance/Quality Control Data
- Appendix 4 Fly Ash Pond Groundwater Quality Data Base
- Appendix 5 Statistical Power Curve
- Appendix 6 Time Series Plots
- Appendix 7 Box and Whiskers Plots
- Appendix 8 Prediction Limit Charts
- Appendix 9 Alternate Source Demonstrations
 - Appendix 9A September 11, 2020 Alternate Source Demonstration for -Calcium, Sulfate, and Total Dissolved Solids in MW-1
 - Appendix 9B September 11, 2020 Alternate Source Demonstration for -Fluoride in MW-2
 - Appendix 9C March 10, 2021 Alternate Source Demonstration for Calcium, Sulfate, and Total Dissolved Solids in MW-1
 - Appendix 9D March 10, 2021 Alternate Source Demonstration for pH in MW-9

1.0 INTRODUCTION

The Sikeston Power Station (SPS), owned and operated by the Sikeston Board of Municipal Utilities (SBMU), is an electric power producer and distributor located within the western city limits of Sikeston, in southern Scott County, Missouri. The SBMU-SPS began operation in 1981 and produces approximately 235 megawatts of electricity. Coal combustion residuals (approximately 10,000 tons per annum) are currently sold or placed in the facility's two coal ash surface impoundments located immediately east of the power station. Both impoundments are on properties owned and controlled by SBMU. One coal ash impoundment measuring approximately 61 acres in size is actively used for bottom ash disposal. The second coal ash impoundment measuring approximately 30 acres in size is primarily used for fly ash disposal. It is subject to the alternate compliance schedule specified by the United States Environmental Protection Agency (USEPA) under 40 CFR Part 257.100(e)(5)(ii) due to its initial inactive status and the Response to Partial Vacatur (the Direct Final Rule). This report pertains specifically to the Fly Ash Pond.

Pursuant to USEPA's 40 CFR Part 257 (§257) Federal Criteria for Classification of Solid Waste Disposal Facilities and Practices, Subpart D – Standards for Disposal of Coal Combustion Residuals (CCR) in Landfills and Surface Impoundments (ponds), the establishment of a groundwater monitoring system and routine detection sampling and reporting is required at all coal ash surface impoundments. The purpose of a monitoring well system is to evaluate the quality of groundwater as it passes beneath the waste mass within an impoundment. Groundwater samples are collected and analyzed on a semi-annual basis in accordance with §257.93, or as otherwise detailed in a site-specific Groundwater Monitoring and Sampling Plan (GMSAP). Analytical data also are subjected to statistical analysis in accordance with §257.90(e). If results suggest that a statistically significant increase (SSI) in one or more constituents for detection monitoring listed in Appendix III of §257 has occurred, a written demonstration is required to determine if the SSI is attributable to alternate causative factors. If a successful demonstration is not made, an assessment monitoring program must be initiated as required under §257.95.

This report describes the results of the third and fourth semi-annual detection groundwater sampling events conducted at the SPS Fly Ash Pond on April 6, 2020, and September 22, 2020. Included is a description of the sampling events, groundwater elevations, water table surfaces, field activities summaries, analytical results, and statistical analysis results. Field sampling and reporting activities were conducted in accordance with the site-specific GMSAP (Gredell Engineering, 2018). Statistical analysis was performed in accordance with §257.93(f) using the statistical analysis method as filed in the SBMU-SPS operating record on April 15, 2019. The fifth semi-annual groundwater sampling field activities were completed on April 17, 2021, but data analysis was not complete at the time of this report and will therefore be included in the next Annual Groundwater Monitoring Report.

2.0 GROUNDWATER MONITORING SYSTEM

The groundwater monitoring system for the Fly Ash Pond consists of five wells. Well locations are depicted on Figures 1 and 2. The wells are identified as MW-1, MW-2, MW-3, MW-7, and MW-9. MW-2 and MW-3 are located hydraulically upgradient of the Fly Ash Pond, whereas MW-1, MW-7, and MW-9 are hydraulically downgradient of the Fly Ash Pond. Monitoring wells MW-1, MW-2, and MW-3 were installed on April 26 and 27, 2016 by Smith & Company of Poplar Bluff, Missouri during characterization of the site (Gredell Engineering, 2017). Monitoring wells MW-7 and MW-9 were installed on April 18, 2017 and November 13, 2017, respectively, by Bulldog Drilling, Inc. of Dupo, Illinois to serve as additional downgradient monitoring wells. Well construction activities were performed under the direction of a Registered Geologist in the State of Missouri. Well design and installation techniques were completed in accordance with 10 CSR 23-4, which is consistent with the standards summarized in 40 CFR 257.91(e). Well depths are between 30 and 35.5 feet below ground surface. All five wells monitor uppermost groundwater, which is within the alluvial aquifer at the Fly Ash Pond site. Each well yields sufficient quantities of water for the purposes of sampling and analysis.

Table 1 presents a construction summary of the wells comprising the Fly Ash Pond groundwater monitoring system. Figures 1 and 2 depict well locations and groundwater contour maps of the uppermost aquifer for the April 6, 2020, and September 22, 2020 semi-annual sampling events. These maps confirm that water in the uppermost aquifer continues to move in a west-southwesterly direction, consistent with the conclusions of the Site Characterization Report (Gredell Engineering, 2017). All groundwater wells are equipped with dedicated tubing for use with a peristaltic pump. This system has been used for chemical sampling since inception of groundwater sampling for the Fly Ash Pond. The Fly Ash Pond groundwater monitoring system is described in more detail in the site-specific GMSAP for this facility (Gredell Engineering, 2018).

3.0 FIELD SAMPLING SUMMARY

SPS environmental staff performed groundwater sampling on April 6, 2020, and September 22, 2020. These sampling events were the third and fourth semi-annual detection groundwater sampling events conducted at the SPS Fly Ash Pond.

Following the April 6, 2020 sampling event, monitoring wells MW-1, MW-2, MW-3 and MW-9 were resampled on May 21, 2020. Groundwater at MW-1 was resampled for Sulfate, Calcium and Total Dissolved Solids (TDS). Groundwater at MW-2 was resampled for Fluoride and Boron. Groundwater at MW-3 was resampled for Chloride and TDS. Groundwater at MW-9 was resampled for TDS.

Following the September 22, 2020 sampling event, monitoring wells MW-1 and MW-2 were resampled on December 8, 2020, and MW-7 and MW-9 were resampled on January 26, 2021. Groundwater at MW-1 was resampled for Sulfate, Calcium, Boron, and TDS. Groundwater at MW-2 was resampled for Boron. Groundwater at MW-7 and MW-9 was resampled for pH.

The fifth semi-annual groundwater sampling field activities were initially conducted on April 17, 2021, but data analysis was not complete at the time of this annual report. Therefore, final analytical data (and evaluation) for the fifth event will be included in the next Annual Groundwater Monitoring Report.

Field procedures for the April 6, 2020 and September 22, 2020 sampling events (and subsequent resampling events) were conducted in the manner described in the following paragraphs and the GMSAP for this facility (Gredell Engineering, 2018).

Groundwater samples were collected using low-flow sampling techniques and dedicated sampling equipment. Field tests of indicator parameters were performed using an In-Situ, Inc. SmarTROLL TM MP flow cell unit and HF Scientific MicroTPI field portable turbidimeter. Each groundwater sample was subsequently analyzed for the constituents listed in §257 Appendix III. All monitoring wells produced sufficient volume of groundwater for full analysis.

The environmental staff inspected each monitoring well upon arrival. Wells appeared to be in satisfactory condition and had locks in place. Staff initially gauged water levels in the monitoring wells using a standard electronic water level meter graduated in increments of 0.01 feet. Static water levels were recorded on forms provided in the GMSAP. Each well was then purged, while staff monitored water quality until indicator parameters (pH and specific conductance) stabilized in accordance with the criteria in the GMSAP. Additional indicator parameters (turbidity, temperature, dissolved oxygen, and oxidation/reduction potential) were monitored for stability prior to groundwater sample collection. Following stabilization of all indicator parameters, final pH was recorded and groundwater samples were then collected.

Field notes documenting the third and fourth detection sampling events and the respective resampling events are presented in Appendix 1. Field sampling notes are summarized in Table 3, including initial and final water level measurements, purge volumes, and pH. Laboratory analytical reports for each sampling event, including the field blanks and sample duplicates, are included in Appendix 2. Quality Assurance/Quality Control (QA/QC) documentation is presented in Appendix 3. A summary of background and detection monitoring analytical data, including field parameters, is presented in Appendix 4.

3.1 Field Quality Assurance/Quality Control

Field QA/QC during each sampling event included the collection of one field blank and one field duplicate sample. The duplicate during the April 6, 2020 event was collected at MW-2, and the duplicate during the September 22, 2020 event was collected at MW-1 (duplicate results are summarized in Table 5). Rinsate blanks were not collected because dedicated sampling equipment was used. Samples were shipped to PDC Laboratories' primary facility located in Peoria, Illinois using standard chain-of-custody documentation/procedures.

Samples collected during the April 6, 2020 event were received by the primary facility on April 8, 2020 and subsequently analyzed for the six detection monitoring constituents listed in §257 Appendix III and required under §257.94(b) (Table 4). Final hard copy analytical results were received from PDC Laboratories on April 16, 2020.

Samples collected during the May 21, 2020 resample event were received by the primary facility on May 26, 2020 and subsequently analyzed for the requested analytes. Final hard copy analytical results were received from PDC Laboratories on June 15, 2020.

Samples collected during the September 22, 2020 event were received by the primary facility on September 24, 2020 and subsequently analyzed for the six detection monitoring constituents listed in §257 Appendix III and required under §257.94(b) (Table 4). Final hard copy analytical results were received from PDC Laboratories on October 16, 2020.

Samples collected during the December 8, 2020 resample event were received by the primary facility on December 10, 2020 and subsequently analyzed for the requested analytes. Final hard copy analytical results were received from PDC Laboratories on December 23, 2020. The January 26, 2021 resample event was conducted for field parameters (pH) only.

4.0 ANALYTICAL SUMMARY

Hard copy analytical data for each monitoring well sampled during the April 2020 and September 2020 detection monitoring events and the respective May 2020 and December 2020 resample events are provided in Appendix 2. Resampling data (field-measured pH) resulting from the January 2021 resampling event for the September 2020 detection monitoring event are provided in Appendix 1. The data pertain to water quality results from the uppermost aquifer in the area bordering the Fly Ash Pond, along with sample duplicate and field blank results.

4.1 Laboratory Quality Control

Laboratory analyses of all groundwater samples collected in 2020 was completed by PDC Laboratories, Inc., of Peoria, Illinois. The results were accompanied by appropriate QA/QC documentation. That documentation is presented in Appendix 3.

4.2 **Precision and Accuracy**

Precision is a measure of the reproducibility of analytical results, generally expressed as a Relative Percent Difference (RPD). Laboratory quality control procedures to measure precision consist of laboratory control sample (LCS) analysis and analysis of matrix spike/matrix spike duplicates (MS/MSD). These analyses are used to define analytical variability. Accuracy is defined as the degree of agreement between the measured amount of a species and the amount actually known to be present, expressed as a percentage. It is generally determined by calculating the percent recoveries for analyses of surrogate compounds, laboratory control samples, continuing calibration check standards and matrix spike samples. Acceptable percent recoveries are established for SW-846 and USEPA methods. Field and laboratory blank analyses are also used to address measurement bias.

The analyses for detection monitoring samples and resamples were performed within appropriate hold times and both initial and continuing calibrations met acceptance criteria for all analyses. Similarly, method blanks and LCS analyses met acceptance criteria. The case narratives for the 2020 groundwater sampling events indicate that all quality controls met acceptance criteria except as follows:

Detection sampling event April 6, 2020

- The batch Quality Control sample for TDS is flagged "M" because the RPD is outside acceptance criteria.
- The batch Quality Control samples for Chloride and Sulfate are flagged "Q4" because the associated sample concentrations exceed four times the spiked values.
- The batch Quality Control sample for Fluoride is flagged "Q3", "Q2", and "Q1" because the Matrix Spike (MS) and Matrix Spike Duplicate are outside acceptance criteria.

Resample event May 21, 2020

- The batch Quality Control sample for Calcium is flagged "Q4" because the associated sample concentrations exceed four times the spiked values.
- The batch Quality Control sample for Chloride is flagged "Q1" because the MS is outside acceptance criteria.

Detection sampling event September 22, 2021

• Lower level Boron sample results are flagged "B" due to trace Boron detected in the Method Blank.

Resample event December 8, 2020

• Batch sample duplicates for TDS are flagged "M" because the RPD is outside acceptance criteria.

Additional QA/QC comments include the following:

- Field Duplicates: Analyses of duplicate samples are used to define the total variability of the sampling/analytical system as a whole. One field duplicate from MW-2 was collected during the April 6, 2020 detection monitoring event and one field duplicate was collected from MW-1 during the September 22, 2020 detection monitoring event. The RPD was calculated for all detected chemical parameters. A summary table showing the results of the RPD calculations is included as Table 5. Using a tolerance level of <u>+</u>20 percent, all calculated RPDs were within acceptable ranges for each parameter with the exception of Boron from the April 2020 sampling event.
- *Field Blank:* One field blank was incorporated into the data set for the both the April and September detection sampling events and one field blank was incorporated into the data set for the May resample event. Results for the field blanks showed that they contained no reportable concentrations except for Boron in the April and September 2020 detection events and Calcium during the May 2020 resample event.
- Laboratory Blanks: Method blanks, artificial, and matrix-less samples are analyzed to monitor the laboratory system for interferences and contamination from glassware, reagents, etc. Method blanks are taken throughout the entire sample preparation process. They are included with each batch of extractions or digestions prepared, or with each 20 samples, whichever was more frequent. Reference to Appendix 3 should be made for comments related to these and other laboratory control samples.

4.3 Representativeness

Representativeness expresses the degree to which sample data accurately and precisely reflect site conditions. Representativeness of the data is determined by comparing actual sampling procedures to those delineated in the field sampling plan, comparing results from field duplicate samples and reviewing the results of field blanks.

Approved sampling procedures are described in the GMSAP (Gredell Engineering, 2018). Procedures specified in that plan have been followed. Approved sampling procedures should be reviewed annually. Groundwater monitoring data are evaluated using an intrawell statistical analysis methodology and is conducted separately for each constituent in each monitoring well using prediction limits in accordance with §257.93(f)(3) and the performance standards in §257.93(g). The stated statistical approach, along with supporting documentation and engineering certification, are available in the SBMU-SPS On-Site Operating Record.

4.4 Comparability

Comparability expresses the confidence with which one data set can be compared to another data set measuring the same property. Comparability is ensured by using established and approved sample collection techniques and analytical methods, consistent basis of analysis, consistent reporting units, and analyzing standard reference materials.

4.5 Completeness

Completeness is a measure of the amount of valid data obtained from a measurement system compared to the amount expected under controlled laboratory conditions. Completeness is defined as the valid data percentage of the total tests requested. Valid data are defined as those where the sample arrived at the laboratory intact, properly preserved, in sufficient quantity to perform the requested analyses, and accompanied by a completed chain-of-custody form (Appendix 3). Furthermore, the sample must have been analyzed within the specified holding time and in such a manner that analytical QC acceptance criteria are met.

5.0 STATISTICAL ANALYSIS

The statistical analysis method used to evaluate groundwater within the uppermost aquifer for the Fly Ash Pond groundwater monitoring system at SBMU-SPS consists of intra-well analysis using prediction limits. The analysis is conducted separately for each constituent in each of the five monitoring wells for each sampling event in accordance with §257.93(f)(3). This statistical method complies with the accepted performance standards listed in §257.93(g).

A complete background data set has been obtained for groundwater, representing the uppermost aquifer, moving below the Fly Ash Pond at the SPS. The background data used to evaluate current groundwater quality is based on eight rounds of groundwater sampling of the five wells spanning March 2018 to December 2018. The background data set may be updated every two years but SSIs will not be included in background unless they are unconfirmed in accordance with Unified Guidance (USEPA, 2009).

Statistical analysis was performed in accordance with §257.93 using Sanitas© for Ground Water (Version 9.6.14; 2019). Intra-well prediction intervals were compared at the 99 percent confidence level for each Appendix III constituent. The groundwater analytical results from the April and September 2020 detection monitoring events were compared to the prediction limits (Table 6) to determine if SSIs over background exist in the data sets.

If the number of reportable concentrations of a given constituent in a background data set for a given well is not sufficient to permit parametric analysis, non-parametric prediction interval analysis is conducted. Both parametric and non-parametric prediction limit analysis were performed for the Fly Ash Pond groundwater monitoring system data. Prediction intervals are based on the background monitoring data sets (Appendix 4), including results reported as less than detection limits. Initially, outlier analysis was performed for the background data set using Exploratory Data Analysis (EDA) with Sanitas©, time-series plots, and box and whiskers plots. However, because the background data span a collection period of less than one year, variance in the data set may be attributable to natural seasonal variation. Therefore, all background data have been retained as recommended by Unified Guidance (USEPA, 2009) when no basis for likely error or discrepancy can be identified. Following future updates to the background data set, the identification of potential outliers will be re-evaluated.

The results of the statistical analysis for the April 2020 sampling event and the September 2020 sampling event are described below. A complete database summarizing the sample results, dates of sampling, and the purpose of sampling event, as per §257.90(e)(3), is provided in Appendix 4. A statistical power curve, based on the background data, is provided in Appendix 5. Trend analysis (time-series) plots of background data for all detection monitoring constituents are presented in Appendix 6. Box and whiskers plots of background data are presented in Appendix 7. Prediction limit charts are provided in Appendix 8.

5.1 Statistical Results

The statistical analysis for the Fly Ash Pond groundwater monitoring system suggest eight suspected SSIs in the April 2020 data set. Three are associated with MW-1 and include Sulfate, Calcium and TDS, two are associated with MW-2 and include Boron and Fluoride, two are associated with MW-3 and include Chloride and TDS, and the final suspected SSI is Boron in MW-9. The associated prediction limits for these well constituent pairs are summarized on Table 6. Each of these well constituent pairs was resampled on May 21, 2020 and the initial results for Sulfate, Calcium and TDS in MW-1, and Fluoride in MW-2 were confirmed with the laboratory data report received on June 15, 2020. In accordance with §257.94, Alternate Source Demonstrations (ASDs) have been prepared to address these SSIs and are included as Appendix 9 to this report. The ASDs were completed successfully and certified in accordance with §257.94(e)(2) on September 11, 2020.

The statistical analysis for the September 2020 Fly Ash Pond groundwater monitoring results suggest seven suspected SSIs. Four are associated with MW-1 and include Boron, Sulfate, Calcium and TDS, one is associated with Boron in MW-2, and the remaining two are associated with pH in MW-7 and MW-9. The associated prediction limits for these well constituent pairs are summarized on Table 6. Monitoring wells MW-1 and MW-2 were resampled on December 8, 2020 and the initial results for Sulfate, Calcium and TDS in MW-1 were confirmed with the laboratory data report received on December 23, 2020. Monitoring wells MW-7 and MW-9 were resampled for pH on January 26, 2021, and the initial results for pH in MW-9 were confirmed. In accordance with §257.94, ASDs have been prepared to address these SSIs and are included as Appendix 9 to this report. The ASDs were completed successfully and certified in accordance with §257.94(e)(2) on March 10, 2021.

As a result of the successful ASDs, detection monitoring in accordance with §257.94 has continued on a semi-annual basis as specified in §257.94(b).

6.0 SUMMARY

The third semi-annual sampling event was conducted by SPS environmental staff on April 6, 2020. Resampling was conducted on May 21, 2020, and suspected SSIs of Sulfate, Calcium and TDS in MW-1, and Fluoride in MW-2 were confirmed on June 15, 2020. In response, ASDs were prepared and successfully completed (Appendix 9). Consequently, GREDELL Engineering Resources, Inc. concluded the statistical analysis results for samples obtained during the third semi-annual groundwater detection monitoring event do not indicate SSIs associated with the Fly Ash Pond.

The fourth semi-annual sampling event was conducted by SPS environmental staff on September 22, 2020. Resampling was conducted on December 8, 2020 (MW-1 and MW-2) and January 26, 2021 (MW-7 and MW-9). Three suspected SSIs in MW-1 for Sulfate, Calcium, and TDS were confirmed following receipt of the laboratory data on December 23, 2020, and the suspected SSI for pH in MW-9 was confirmed following receipt of the field data on February 2, 2021. In response, ASDs were prepared and successfully completed (Appendix 9). Consequently, GREDELL Engineering Resources, Inc. concluded the statistical analysis results for samples obtained during the fourth semi-annual groundwater detection monitoring event do not indicate SSIs associated with the Fly Ash Pond.

The fifth semi-annual groundwater sampling field activities was initially conducted on April 17, 2021, but data analysis was not complete at the time of this report. Therefore, analytical data (and evaluation) for the May event will be included in the next Annual Groundwater Monitoring Report.

7.0 LIMITATIONS

This report has been prepared for the exclusive use of the client and GREDELL Engineering Resources, Inc. for the specific project discussed in accordance with generally accepted environmental practices common to this locale at this time. No other warranties, expressed or implied, are provided.

Interpretations of data and recommendations made in this report are based on observations of data that were available and referred to in this report unless otherwise noted. The report is applicable only to this specific project and known site conditions as they existed at the time of report preparation.

This report is not a guarantee of subsurface conditions. Variations in subsurface conditions may be present that were not identified during this or previous investigations. The use of this report and interpretations of data or conclusions developed by others are the sole responsibility of those firms or individuals.

8.0 **REFERENCES**

GREDELL Engineering Resources, Inc., 2017, *Sikeston Power Station Site Characterization for Compliance with Missouri State Operating Permit #MO-0095575*, dated May 2017.

GREDELL Engineering Resources, Inc., 2018, *Sikeston Power Station Groundwater Monitoring and Sampling Plan for Compliance with Missouri State Operating Permit #MO-0095575*, dated September 2018.

GREDELL Engineering Resources, Inc., 2020a, Sikeston Board of Municipal Utilities Sikeston Power Station Detection Monitoring Program for Fly Ash Pond – Calcium, Sulfate, and Total Dissolved Solids in MW-1 Alternate Source Demonstration, dated September 9, 2020.

GREDELL Engineering Resources, Inc., 2020b, Sikeston Board of Municipal Utilities Sikeston Power Station Detection Monitoring Program for Fly Ash Pond – Fluoride in MW-2 Alternate Source Demonstration, dated September 9, 2020.

GREDELL Engineering Resources, Inc., 2021a, Sikeston Board of Municipal Utilities Sikeston Power Station Detection Monitoring Program for Fly Ash Pond – Calcium, Sulfate, and Total Dissolved Solids in MW-1 Alternate Source Demonstration, dated March 10, 2021.

GREDELL Engineering Resources, Inc., 2021b, Sikeston Board of Municipal Utilities Sikeston Power Station Detection Monitoring Program for Fly Ash Pond – pH in MW-9 Alternate Source Demonstration, dated March 10, 2021.

Sanitas Statistical Software, © 1992-2019 SANITAS TECHNOLOGIES, Alamosa Colorado 81101-0012.

U.S. Environmental Protection Agency, March 2009, Statistical Analysis of Groundwater Monitoring *Data at RCRA Facilities Unified Guidance*: USEPA 530/R-09-007, Office of Resource Conservation and Recovery, Program Implementation and Information Division, Washington, D.C.

FIGURES

LEGEND	
PROPERTY LINE	PL
GROUNDWATER CONTOUR (DASHED WHERE INFERRED)	
MONITORING WELL	MW
UP GRADIENT MONITORING LOCATION	UG
DOWN GRADIENT MONITORING LOCATION	DG
GENERAL FLOW DIRECTION	-

- NOTES:
 IMAGE PROVIDED BY BING MAPS.
 MONITORING WELL LOCATIONS, CASING ELEVATIONS & UNDERGROUND CULVERT ELEVATIONS SURVEYED BY BOWEN ENGINEERING & SURVEYING.
 GROUNDWATER ELEVATIONS MEASURED BY SIKESTON POWER STATION STAFF ON APRIL 6, 2020.
 MAP DEVELOPMENT BASED ON CONTOURS GENERATED BY SURFER® SOFTWARE.
 RANGE OF GROUNDWATER FLOW GRADIENT AS DETERMINED BY SURFER® SOFTWARE 0.0001 FT./FT. TO 0.001 FT./FT.

WELL	GROUNDWATER ELEVATION (FEET)	CASING ELEVATION (FEET)	NORTHING	EASTING
	299.16	312.77	383119.51	1078467.90
	300.40	308.01	383207.42	1079751.30
	300.00	308.55	381130.00	1079946.62
	298.99	315.03	381584.50	1078847.00
	299.41	314.68	382429.94	1078825.60

THE GEOLOGIST WHO REVIEWED AND APPROVED THIS REPORT ASSUMES RESPONSIBILITY ONLY FOR GEOLOGICI NITERPRETATIONS OF DATA APPEARING ON THE PAGE AND DISCI AIMS PURSUANT TO SECTION	266.456 RSMO ANY RESPONSIBILITY FOR ALL OTHER PLANS, SPECIFICATIONS, ESTIMATES, REPORTS OR	OTHER DOCUMENTS OR INSTRUMENTS NOT PREPARED UNDER THE SUPERVISION OF THE GEOLOGIST RELATING	TO OR INTENDED TO BE USED FOR ANY PART OR PARTS OF THE PROJECT TO WHICH THIS FIGURE REFERS.
	ЧАР		SHEET # 1 OF 2
FIGURE 1		0, 2020	FILE NAME GWCONT FAP 2021
FIG	GRUUNDWAIEK CUNIUUK MAP APRIL 6 2020		CHECKED APPROVED DATE SCALE PROJECT NAME FILE NAME FILE NAME FILE NAME CHECKED APPROVED DATE SCALE AS NOTED SCALE FILE NAME CHECKED APPROVED TO FILE NAME FI
			SCALE AS NOTED
TION	2021 ANNUAL GROUNDWATER	RT	CHECKED APPROVED DATE SCALE KE MCC 7/2021 AS NOTED
SIKESTON POWER STATION FLY ASH POND	OUND	AONITORING & REPORT	APPROVED MCC
I POWER ST	JAL GR	RING 8	
ESTON FLY /	ANNL	ONITO	DRAWN CM
SIK	2021	Ē	URVEYED DESIGNED DRAWN
5	R		SURVE NA
GREDELL Engineering Resources, Inc.	ENVIRONMENTAL ENGINEERING LAND - AIR - WATER	F	JETTERSON UTY, IMISSOURI FACSIMILIE: (373) 633-3073 MO CORP. ENGINEERING LICENSE NO. E-2001001669-D

LEGEND	
PROPERTY LINE	PL
GROUNDWATER CONTOUR (DASHED WHERE INFERRED)	
MONITORING WELL	MW
UP GRADIENT MONITORING LOCATION	UG
DOWN GRADIENT MONITORING LOCATION	DG
GENERAL FLOW DIRECTION	-

- NOTES:
 1. IMAGE PROVIDED BY BING MAPS.
 2. MONITORING WELL LOCATIONS, CASING ELEVATIONS & UNDERGROUND CULVERT ELEVATIONS SURVEYED BY BOWEN ENGINEERING & SURVEYING.
 3. GROUNDWATER ELEVATIONS MEASURED BY SIKESTON POWER STATION STAFF ON SEPTEMBER 22, 2020.
 4. MAP DEVELOPMENT BASED ON CONTOURS GENERATED BY SURFER® SOFTWARE.
 5. RANGE OF GROUNDWATER FLOW GRADIENT AS DETERMINED BY SURFER® SOFTWARE 0.0001 FT./FT. TO 0.001 FT./FT.

WELL	GROUNDWATER ELEVATION (FEET)	CASING ELEVATION (FEET)	NORTHING	EASTING
	296.53	312.77	383119.51	1078467.90
	297.97	308.01	383207.42	1079751.30
	297.47	308.55	381130.00	1079946.62
	296.33	315.03	381584.50	1078847.00
	296.78	314.68	382429.94	1078825.60

GREDELL Engineering Resources, Inc. SIKESTON POWER STATION FIGURE 2 ENVIRONMENTAL Engineering Resources, Inc. FLY ASH POND FLY ASH POND ENVIRONMENTAL ENGINEERING LAND - AIR - WATER 2021 ANNUAL GROUNDWATER FIGURE 2 1505 East High Street Telephone: (573) 659-9078 2021 ANNUAL GROUNDWATER GROUNDWATER CONTOUR MAP Jefferson City, Missouri Facsimile: (573) 659-9078 Non Order Exemption September 22, 2020 Jefferson City, Missouri Facsimile: (573) 659-9078 Nam Nam September 22, 2020 Jefferson City, Missouri Facsimile: (573) 659-9078 Nam Nam Nam September 22, 2020
SIKESTON FLY 2021 ANNU MONITOF NA CM
SURVEYED
SURVEYED

TABLES

 Table 1

 Groundwater Monitoring Well Summary - Fly Ash Pond

Monitoring Well ID ^{1,2}	Northing Location ^{3,4}	Easting Location ^{3,4}	Ground Surface Elevation ^{3,4} (feet)	Top of Riser Elevation ^{3,4} (feet)	Well Depth ⁵ (feet)	Base of Well Elevation ⁶ (feet)	Screen Length ⁷ (feet)	Top of Screen Elevation (feet)
MW-1	383119.51	1078467.90	310.41	312.77	37.84	274.93	10	285.1
MW-2	383207.42	1079751.30	305.53	308.01	37.42	270.59	10	280.8
MW-3	381130.00	1079946.62	306.11	308.55	37.21	271.34	10	281.5
MW-7	381584.50	1078847.00	312.70	315.03	37.37	277.66	10	287.9
MW-9	382429.94	1078825.60	311.85	314.68	37.28	277.40	10	287.6

NOTES:

1. Refer to Figure 1 for monitoring well locations.

2. Refer to Sikeston Power Station On-Site Operating Record for well construction diagrams.

3. Monitoring well survey data provided by Bowen Engineering & Surveying, Inc.

4. Horizontal Datum: Missouri State Plane Coordinates - NAD 83 (Feet), Vertical Datum: NAVD 88 (Feet).

5. Depth measurements relative to surveyed point on top of well casing.

6. Sump installed at base of screen (0.2 feet length).

7. Actual screen length (9.7 feet) is the machine-slotted section of the 10-foot length of Schedule 40 PVC pipe.

Table 2 Historical Groundwater Level Summary

Well ID	MW-1	MW-2	MW-3	MW-7	MW-9
Date		Groundwa	ater Elevation	(feet MSL)	
05/12/16	297.50	298.66	298.13	NM	NM
06/28/16	296.60	298.01	297.58	NM	NM
07/15/16	296.57	297.86	297.37	NM	NM
08/08/16	295.62	297.06	297.05	NM	NM
09/08/16	296.06	297.27	296.76	NM	NM
10/05/16	295.86	296.96	296.40	NM	NM
11/01/16	295.47	296.66	296.10	NM	NM
11/30/16	295.45	296.60	296.03	NM	NM
01/24/17	NM	NM	296.35	NM	NM
01/26/17	295.77	296.76	296.35	NM	NM
02/22/17	NM	NM	296.00	NM	NM
02/24/17	295.47	296.40	296.00	NM	NM
03/20/17	296.11	296.96	296.45	NM	NM
04/19/17	296.04	296.86	296.35	NM	NM
04/27/17	NM	NM	296.72	NM	NM
05/17/17	NM	NM	297.81	NM	NM
06/08/17	NM	NM	297.81	NM	NM
07/13/17	NM	NM	296.98	NM	NM
10/31/17	NM	NM	295.22	NM	NM
03/21/18	295.92	296.96	296.65	295.83	296.13
04/15/18	297.07	297.86	297.60	296.95	297.18
05/23/18	296.78	298.01	297.62	296.66	296.98
06/13/18	NM	NM	297.33	NM	NM
06/27/18	296.37	297.61	297.21	296.26	296.56
08/01/18	295.22	296.60	296.15	295.08	295.48
09/05/18	294.79	296.11	295.68	294.71	295.01
11/06/18	295.01	296.21	295.74	294.85	295.17
11/26/18	NM	NM	295.63	NM	NM
12/12/18	295.12	296.21	295.79	295.06	295.36
01/08/19	295.66	296.72	296.38	295.53	295.80
02/05/19	NM	NM	296.73	NM	NM
02/22/19	297.70	298.67	298.35	297.59	297.84
03/27/19	297.69	298.93	298.51	297.58	297.93
04/16/19	298.15	299.29	298.93	298.01	298.38
05/14/19	298.27	299.66	299.25	298.15	298.52
05/28/19	NM	NM	298.95	NM	NM
06/12/19	297.82	299.24	298.82	297.76	298.10
07/17/19	297.32	298.77	298.38	297.25	297.55
07/24/19	297.40	298.80	298.41	297.33	297.65
08/14/19	296.61	298.15	297.80	296.65	296.96
08/28/19	NM	NM	297.55	NM	NM
09/16/19	296.24	297.70	297.22	296.14	296.50
09/24/19	296.09	297.53	297.05	295.98	296.33
10/10/19	295.92	297.29	296.84	295.80	296.13
10/22/19	295.92	297.24	296.80	295.74	296.12
11/04/19	NM	NM	297.34	NM	NM
01/28/20	297.61	298.73	298.34	297.42	297.80
02/18/20	NM	NM	299.00	NM	NM
03/30/20	NM	NM	300.09	NM	NM
04/06/20	299.16	300.40	300.00	298.99	299.41
05/21/20	298.50	300.02	299.55	NM	298.71
09/22/20	296.53	297.97	297.47	296.33	296.78
12/08/20	296.63	298.00	NM	NM	NM
01/26/21	NM	NM	NM	296.51	296.82
NOTES:					

NOTES:

1. Refer to Figure 1 for monitoring well locations.

2. Refer to Sikeston Power Station On-Site Operating Record for well construction diagrams.

3. NM - Not Measured.

4. Maximum and minimum groundwater elevations are shaded.

Monitoring Well I.D.	Hydraulic Position	Initial Water Level (ft, BTOC ²)	Final Water Level (ft, BTOC ²)	Minimum ³ Purge Vol. (ml ⁴)	Actual Purge Vol. (ml ⁴)	pH (S.U.⁵)
MW-1	Downgradient	13.61	13.61	300	8,800	7.1
MW-2	Upgradient	7.61	7.61	300	2,440	6.3
MW-3	Upgradient	8.55	8.55	300	5,460	6.4
MW-7	Downgradient	16.04	16.04	300	3,460	7.2
MW-9	Downgradient	15.27	15.27	300	2,440	7.3

Table 3 Water Levels and Field Parameter Summary April 6, 2020

NOTES:

1. Sequence of sampling is MW-3, MW-2, MW-1, MW-7, then MW-9. Note MW-1, MW-3, and MW-9 resampled May 21, 2020.

2. BTOC: Below Top of Casing

3. Purge calculations based on 1/4" ID tubing and complete evacuation of single tubing volume.

4. ml: milliliter

5. S.U.: Standard Unit.

Water Levels and Field Parameter Summary September 22, 2020

Monitoring Well I.D.	Hydraulic Position	Initial Water Level (ft, BTOC ²)	Final Water Level (ft, BTOC ²)	Minimum ³ Purge Vol. (ml ⁴)	Actual Purge Vol. (ml ⁴)	рН (S.U.⁵)
MW-1	Downgradient	16.24	16.24	300	2,260	7.2
MW-2	Upgradient	10.04	10.04	300	3,200	6.2
MW-3	Upgradient	11.08	11.08	300	3,880	6.5
MW-7	Downgradient	18.70	18.70	300	2,780	7.5/7.4
MW-9	Downgradient	17.90	17.90	300	2,180	7.5

NOTES:

1. Sequence of sampling is MW-3, MW-2, MW-1, MW-7, then MW-9.

Note MW-1 and MW-2 resampled December 8, 2020 and MW-9 and MW-7 resampled January 26, 2021.

2. BTOC: Below Top of Casing

3. Purge calculations based on 1/4" ID tubing and complete evacuation of single tubing volume.

4. ml: milliliter

5. S.U.: Standard Unit.

Table 4 Groundwater Monitoring Constituents

USEPA 40 CFR 257					
Appendix III	Appendix III - Appendix IV -				
Constituents for Detectio	n Monitoring	Constituents for Assessment Monitoring			
Chemical Constituent	Method	Chemical Constituent	Method		
pH (S.U.)	Field	Antimony (μg/L)	SW 6020		
Boron (μg/L)	SW 6020	Arsenic (µg/L)	SW 6020		
Calcium (mg/L)	SW 6020	Barium (μg/L)	SW 6020		
Chloride (mg/L)	EPA 300.0	Beryllium (µg/L)	SW 6020		
Fluoride (mg/L)	EPA 300.0	Cadmium (µg/L)	SW 6020		
Sulfate (mg/L)	EPA 300.0	Chromium (μg/L)	SW 6020		
Total Dissolved Solids (mg/L)	SM 2540C	Cobalt (μg/L)	SW 6020		
		Fluoride (mg/L)	EPA 300		
		Lead (µg/L)	SW 6020		
		Lithium (µg/L)	SW 6020		
		Mercury (µg/L)	SW 6020		
		Molybdenum (µg/L)	SW 6020		
		Selenium (μg/L)	SW 6020		
		Thallium (μg/L)	SW 6020		
		Radium 226 and 228 combined (pCi/L)	EPA 903.1 & 904.0		

NOTES:

1. S.U. = Standard Unit.

2. μ g/L = micrograms per liter.

3. mg/L = milligrams per liter.

4. pCi/L = picocurie per liter.

April 6, 2020										
Chemical Parameter	Units	MW-2	DUP	Relative Percent Difference						
рН	S.U.	6.3	6.3	0.00						
Chloride	µg/L	2.1	2	4.88						
Fluoride	mg/L	0.336	0.287	15.73						
Sulfate	mg/L	16	16	0.00						
Total Dissolved Solids	mg/L	140	160	13.33						
Boron	mg/L	34	80	80.70						
Calcium	mg/L	15	15	0.00						

Table 5Relative Percent Differences Summary -April 6, 2020

NOTES:

1. S.U. = Standard Unit.

2. μ g/L = micrograms per liter.

3. mg/L = milligrams per liter.

4. Relative Percent Difference tolerance = 20%.

Relative Percent Differences Summary -

September	22,	20	20
-----------	-----	----	----

Chemical Parameter	Units	MW-1	DUP	Relative Percent Difference
рН	S.U.	7.2	7.2	0.00
Chloride	µg/L	5.9	5.9	0.00
Fluoride	mg/L	<0.250	<0.250	N/A
Sulfate	mg/L	67	70	4.38
Total Dissolved Solids	mg/L	310	340	9.23
Boron	µg/L	620	700	12.12
Calcium	mg/L	67	66	1.50

NOTES:

1. S.U. = Standard Unit.

2. μ g/L = micrograms per liter.

3. mg/L = milligrams per liter.

4. Relative Percent Difference tolerance = 20%.

5. N/A = Not applicable - parameter concentration below reporting limit.

Chemical Parameter	Units	MW-1	MW-2	MW-3	MW-7	MW-9
40 CFR 257 Appendix III Constituents for						
Detection Monitoring						
pH Upper	S.U.	7.5	6.5	6.6	7.4	7.4
pH Lower	S.U.	6.9	5.9	6.4	7.2	7.3
Boron	µg/L	544.6	60.53	32.7	2385	6236
Calcium	mg/L	45.18	25.29	19.49	152.9	95.09
Chloride	mg/L	12.2	8.15	1.598	15.22	23.28
Fluoride	mg/L	0.313	0.335	0.4083	0.8677	1.14
Sulfate	mg/L	31.57	22.33	21.97	259.2	301.1
Total Dissolved Solids	mg/L	223.2	169.4	177.8	617.2	630.8

Table 6 Intra-Well Prediction Limit Summary

NOTES:

1. Prediction limits based on eight rounds of background data spanning March 2018 to December 2018.

2. Prediction limits summarized from Sanitas outputs provided in Appendix 8.

Appendix 1

Field Sampling Notes

Appendix 1

Field Sampling Notes April 6, 2020 Field Instrumentation Calibration Log

Facility: SBMU SPS CCR Groundwater Sampling

Calibrated by: Khist CARL

		Turbidity Measurements (NTU)	= 0.02	10.0		2.	= 0,02	= 9.77		
		Turbidity Standards (NTU)	0.02	10.0 =	1000		0.02	10.0	1000	
rbidimeter		l Oxygen	= 21.0 6	= Sirce	= 1006 6	= 99-98	= 24.93	= Sikeston	= 1004,2	Measurement = 97.9
eld Portable Tu	9	Dissolved Oxygen (%)	Temperature (°C)	Tap Water Source	Barometric Pressure (mm/Hg)	Measurement	Temperature (°C)	Tap Water Source	Barometric Pressure (mm/Hg)	Measurement
HF scientific, inc. Micro TPI Field Portable Turbidimeter	SIN <u>#:</u> 20/607366 SIN <u>#:</u> 20/607366 Reduction Potential Reduction Potential Measurement				2.26.2				= 447.3	
HF scientific, i	10C #	Oxidation Reduction Potential Standard (mV)	= 21.73		= 229.0		= 22.41		= 229°0 =	_
	S/N		Temperature = (°C)		Standard (mV)		Temperature = (°C)		Standard (mV)	
		Specific Conductance Measurement (JJS/Cm)			1412.0			10.0	×. *.	
d Meter		Specific Conductance Standard (µS/cm)			1413				1413 =	
In-Situ smarTROLL Field Meter	H74247	pH Measure- ments	0.1	7.0			4.1		11 11	
In-Situ sm	474	pH Standards	4.00 =	7.00 =	10.00	_	4.00 =	7.00 =	0001	
- 195	S/N #:	Time			0630				2020 1438	
Field Instruments:		Date		30/h0				00/100	2020	
			٨		ginning Calibrat	98	k	сувс	l of Day	Enc

The Multi-Probe Field Meter measures Temperature. Specific Conductance, Dissolved Oxygen, pH, and Oxidation Reduction Potential. 14 The HF scientific, inc. Micro TPI Field Portable Turbidimeter measures Turbidity. Notes:

Dissolved oxygen is calibrated via % saturation method; however, field measurements are recorded as mg/L.

I certify that the aforementioned meters were calibrated within the manufacturers specifications.

BY: KL31 Date: 4/6/2020

aler

Prepared by: GREDELL Engineering Resources, Inc.

Monitoring Well Field Inspection

Facility: <u>SBMU SPS – CCR Groundwater Monitoring</u>
Monitoring Well ID: <u>MW3</u> Name (Field Staff): <u>A Patel D Dillingham</u>
Date: 4-6-2020
Accessibility: Good 🗹 Fair Poor
Well clear of weeds and/or debris?: Yes \checkmark No
Well identification clearly visible?: Yes 🔟 No
Remarks:
Concrete Pad: Condition of Concrete Pad: Good Legendrate
Depressions or standing water around well?: Yes No
Remarks:
Protective Outer Casing: Material = <u>4" x 4" Steel Hinged Casing with Hasp</u>
Condition of Protective Casing: Good <u> </u> Damaged
Condition of Locking Cap: Good <u>L</u> Damaged
Condition of Lock: Good <u>U</u> Damaged
Condition of Weep Hole: Good Damaged
Remarks:
Well Riser: Material = <u>2" Diameter, Schedule 40 PVC, Flush Threaded</u>
Condition of Riser: Good 🗹 Damaged
Condition of Riser Cap: Good 🖌 Damaged
Measurement Reference Point: Yes No
Remarks:
Dedicated Purging/Sampling Device: Type = <u>1/4</u> " ID Semi-Rigid Polyethylene & 0.170" ID Flexible Silicone Tubing
Condition: Good Damaged Missing
Remarks:
Monitoring Well Locked/Secured Post Sampling?: Yes No
Remarks:
Field Certification Ashish Parer Las Tech 4-6-2020
Signed Title Date

1

Prepared by: GREDELL Engineering Resources, Inc.

Field Sampling Log

Monito	ring Well ID:	Mw	3 Fac	ility: SBML	J Sikeston P	ower Static	on - Groundw	ater Monitor	ing		
Initial Wate	er Level (fee	t btoc):	8.55	÷.		Date: L	1-6.	2020			
		vation (NAVE		47 - E	2	Air Pressu	re in Well?	Ý /W			
PURGE IN	FORMATIO	N									
Date:		-2020									
Name (Sar	nple Collect	or):	Dil	lingl	nam						
	Well Purge:		Perstaltic	0		dicated Tub	oing?	Y) / N			
Time Purg	ing Initiated:	0	800		On	e (1) Well \	/olume (mL)	:	NA		_
		(feet btoc):	_	.55			Purged (mL)		5460)	
		er Elevation (N					o Dryness?		Y /		5.
, at at		btoc):		0		-	,	g (feet btoc):		S	
				7	VVa		e., pump is o		0.00		
Casing Dia	ameter (feet)	: <u>2" Sch 4</u>	0 PVC		Tin	ne Samplin	g Completed	l: .	082	8	
PURGE S	TABILIZATI	ON DATA									
Time	Purge	Cumulative	Temp	Specific	Dissolved	pН	Oxidation Reduction	Turbidity	Water	Note (e.g., op	
1	Rate (mL/min)	Volume (mL)	(°C)	Conductance (µS/cm)	Oxygen (mg/L)	(S.U.)	Potential (mV)	(NTU)	Level (feet btoc)	color, c	
0802		340	16.33	194.23	2.31	8.1	-	२ ० . S4	8.55	Yellow FIGKO,	10201
0804	250	840	15.24	197.52	2.12	7.5	85.6	30.81	8.55	Reduce	ido)
0806	260	1360	14.99	198.35	2.02	7.0	82.0	25.17	8.55		11
0808	260	1880	14.86	198.49	1.92	6.8	78.5	20,00	8.55	**	47
01 80	250	2380	14.86	198.07	1.69	6.6	74.2	18.07	8.55	11	7]
0812		2880	14.94		1.55	6.5	73.9	13.13	8.55	Clear,	odot
0814	260	3400	14.99	196.06	1.47	6.5	68.3	10.90	8.55	69	"
0816		3920		197.84	1.45	6.4	67.6	9.40	8.55	14	11
0818	260	4440	10.99	196.02	1.31	6.4	64.8	7.49	8.55	tt.	11
0820	250	4940	14.97	147.50	1.29	6.4	64.4	7.27	8.55		17
	260	5460	14.94		1.17	6.4	61.3	7.37	8.55	11	11
				*							
							9	-			
I											
										-	

btoc - below top of casing

Field Sampling Log

Facility:	SBMU Sikeston	Power Station - (CCR Groundwa	ter Monitoring	Monitoring We		W3
Sampling Informa	ation:						
Method of Samplin	ng: Low Flow -	Perstaltic Pump	& Tubing			Dedicated:	(Y) / N
Water Level @ Sa	mpling (feet btoc)	: 8.55					
Monitoring Event:	Annual ()			rly() Mo	onthly ()	Other ()	
Final Purge Stabliz							
<u>Date</u> Sample Time	Sample Rate (mL/min)	Temp (°C)	Specific Conductance (µS/cm)	Dissolved Oxygen (mg/L)	рН (S.U.)	Oxidation Reduction Potential (mV)	Turbidity (NTU)
0822	260	14.94	198.38	1.(7	6.4	61.3	7.37
Instrument Calibo See instrument ca 1 - In-Situ SmarTu 2 - HF scientific, in	libration log of da roll Multi-Probe Fi	ield Meter (Temp	perature, Specif	ing instruments: ic Conductance, Dissolv	ved Oxygen, p⊦	I, Oxidation Red	uction Potentia
General Informat	ion:						
Weather Condition	ns @ time of sam	pling: <u>Sv</u>	nny				
Sample Character	istics: CR	ar, colo	rless, c	dorless	·		2
Sample Collection	Order:	Per SAP	0 4	3 e e e			
		. н. Н					8
Comments and O	bservations		а. ^с				
		<u> </u>	5			4	а. И. <u>и</u>
				4 N	2.1		
		*		்தல்	2		
		18 (1	11				
I certify that samp	ling procedures v	vere in accordan	ce with applical	ble EPA and State prote	ocols.		

Date 04-06-220 By: Achist Corec

Title: Las TReh

Page 2 of 2

Monitoring Well Field Inspection

Facility: <u>SBMU SPS – CCR Groundwater Monitoring</u>
Monitoring Well ID: <u>MW 2</u> Name (Field Staff): <u>A Patel O Dillingham</u>
Date: $\underline{\partial 4} - \underline{\partial 6} - \underline{\partial 2} \underline{\partial 2} \underline{\partial 2}$
Access: Accessibility: Good <u>Fair</u> Poor
Well clear of weeds and/or debris?: Yes // No
Well identification clearly visible?: Yes <u>Ves</u> No
Remarks:
Concrete Pad: Good Legender Inadequate
Depressions or standing water around well?: Yes No
Remarks:
<u>Protective Outer Casing</u> : Material = $4^{\circ} \times 4^{\circ}$ Steel Hinged Casing with Hasp
Condition of Protective Casing: Good <u>//</u> Damaged
Condition of Locking Cap: Good Lagrandian Damaged
Condition of Lock: Good V Damaged
Condition of Weep Hole: Good L Damaged
Remarks:
Well Riser: Material = <u>2" Diameter, Schedule 40 PVC, Flush Threaded</u>
Condition of Riser: Good J Damaged
Condition of Riser Cap: Good <u>//</u> Damaged
Measurement Reference Point: Yes // No
Remarks:
Dedicated Purging/Sampling Device: Type = <u>1/4</u> " ID Semi-Rigid Polyethylene & 0.170" ID Flexible Silicone Tubing
Condition: Good Damaged Missing
Remarks:
Monitoring Well Locked/Secured Post Sampling?: Yes Mo No
Remarks:
eld Certification Anish Patel Lab Tech 04-06-2020 Signed Title Date

Prepared by: GREDELL Engineering Resources, Inc.

Field Sampling Log	Field	Sam	pling	Log
--------------------	-------	-----	-------	-----

Monitor	ring Well ID:	Mu	Z Fac	ility: SBML	J Sikeston P	ower Statio	n - Groundw	ater Monitor	ing	
Initial Wate	r Level (fee	t btoc):	7.61			Date: 0	4-06.	2020		
Initial Grou	ndwater Ele	vation (NAVD	988):			Air Pressur	re in Well?	Y / 🕅		
	FORMATIO									
Date: 0	4-06-	2020	0.11	· 10 10 0						
Name (Sar	nple Collect	or):	$\mathcal{Y}_{\mathcal{H}}$	ingho	(** (
Method of	Well Purge:	Low Flow	Perstaltic F	oump	Dec	dicated Tub	ping? (Y) / N		
Time Purgi	ng Initiated:	0	854		One	e (1) Well \	/olume (mL):		NA	
Beginning	Water Level	(feet btoc):	7.	61	Tot	al Volume	Purged (mL)	: ,	244	<u> </u>
Beginning	Groundwate	er Elevation (N	AVD88):		We	II Purged T	o Dryness?		Y / N	
Well Total	Depth (feet	btoc):	37.18		Wa		fter Sampling		7.61	
Casing Dia	meter (feet)	: 2" Sch 40	D PVC			·	e., pump is c	-	0910	
					III	ie Sampling	g Completed	11 a	- 10	2
PURGE ST					D 1	,	Oxidation		16/-4	Notes
Time	Purge Rate (mL/min)	Cumulative Volume (mL)	Temp (°C)	Specific Conductance (µS/cm)	Dissolved Oxygen (mg/L)	рН (S.U.)	Reduction Potential (mV)	Turbidity (NTU)	Water Level (feet btoc)	(e.g., opacity, color, odor)
0856		380	16.87	146.61	1.70	6.5	66.2	13.71		clear, ofor
0858	250	880		148.49		6.4	62.5	5.45	7.61	
0200	260	1400		148.40		6.4	63.2	4.35	7.61	
0902	270	1940		148.95		6.3	59.7	4.63	7.61	u v
0904	250	2440	16.04	148.70	1.36	6.3	58.2	4.73	7.61	
<u> </u>			3							
		-								
								4		
							×			
							1		Ľ .	

Field Sampling Log

Facility:	SBMU Sikeston	Power Station - (CCR Groundwa	ter Monitoring	Monitoring We	II ID: M	w 2
Sampling Informa	tion:						
Method of Samplin	g: Low Flow -	Perstaltic Pump	& Tubing			Dedicated:	(Y) / N
Water Level @ Sa	npling (feet btoc)	7.6	1				
Monitoring Event:	Annual ()	Semi-Annual	Quarte	rly() Mo	onthly ()	Other ()	
Final Purge Stabliz	ation Sampling D	ata:	- 14 A		~		
<u>Date</u> Sample Time	Sample Rate (mL/min)	Temp (°C)	Specific Conductance (µS/cm)	Dissolved Oxygen (mg/L)	рН (S.U.)	Oxidation Reduction Potential (mV)	Turbidity (NTU)
04-06-2023 AP 25 0904	250	16.04	148.70	1.36	6.3	58.2	4.70
Instrument Calibr See instrument cal 1 - In-Situ SmarTr 2 - HF scientific, in	ibration log of dai oll Multi-Probe Fi	eld Meter (Temp	erature, Specifi	ing instruments: ic Conductance, Dissolv	ved Oxygen, pH	, Oxidation Red	uction Potentia
General Informati		c					
Weather Condition			<u>nny</u>				
Sample Character	stics: <u>Cl</u>	ear, Co	iorless	, odorless	8 3 8 8		* X
Sample Collection	Order:	Per SAP					
Comments and Ob	convetions:			4	***3		
Collect		cate (Fiyash	APP TTT)		8	
I certify that samp	ing procedures w	vere in accordan	ce with applicat	ole EPA and State proto	icols.		
Date: 04-06-	2020 By: A	shish 1	Pate 1	Title:	Las 7	ech	
			Pag	e 2 of 2			

Facility: <u>SBMU SPS – CCR Groundwater Monitoring</u> Monitoring Well ID: <u>MW I</u>
Name (Field Staff): <u>A Pater D Dillingham</u> Date: 04 -06 - 2020
Access:
Accessibility: Good Fair Poor
Well clear of weeds and/or debris?: Yes 📈 No
Well identification clearly visible?: Yes 📈 No
Remarks:
Concrete Pad: Good <u></u> Inadequate
Depressions or standing water around well?: Yes No
Remarks:
<u>Protective Outer Casing</u> : Material = $4^{\circ} \times 4^{\circ}$ Steel Hinged Casing with Hasp
Condition of Protective Casing: Good
Condition of Locking Cap: Good V Damaged
Condition of Lock: Good // Damaged
Condition of Weep Hole: Good 🖌 Damaged
Remarks:
Well Riser: Material = <u>2</u> " Diameter, Schedule 40 PVC, Flush Threaded
Condition of Riser: Good 🖌 Damaged
Condition of Riser Cap: Good 📝 Damaged
Measurement Reference Point: Yes V No
Remarks:
Dedicated Purging/Sampling Device: Type = <u>1/4</u> " ID Semi-Rigid Polyethylene & 0.170" ID Flexible Silicone Tubing
Condition: Good 📈 Damaged Missing
Remarks:
Monitoring Well Locked/Secured Post Sampling?: Yes 🔽 No
Remarks:
Field Certification Ashish luger Lay Tooh 04-06-2025 Signed Title Date

Prepared by: GREDELL Engineering Resources, Inc.

Field Sampling Log	g
--------------------	---

Monitor	ring Well ID:	Mn	/ (Fac	ility: SBML	J Sikeston P	ower Static	on - Groundw	ater Monitor	ing		
Initial Wate	er Level (fee	t btoc):	13.61	2		Date: C	4.06	200	12		
Initial Grou	ndwater Ele	vation (NAVE	088):		5.	Air Pressu	re in Well?	Y/N			
PURGE IN	FORMATIO	N									
		-202	2								
Name (Sar	nple Collect	or):	pill	; ny h	am						
Method of	Well Purge:	Low Flow	Perstaltic	oump	De	dicated Tub	oing?	Y) / N			
Time Purgi	ng Initiated:		039		On	e (1) Well \	/olume (mL)	:	NA		
Beginning	Water Level	(feet btoc):	13.	61	Tot	al Volume	Purged (mL)	:	8800		
Beginning	Groundwate	er Elevation (N	NAVD88):		We	ll Purged 1	o Dryness?		Y /M		
Well Total	Depth (feet	btoc):	37.64		Wa		fter Sampling		(3.	61	
Casing Dia	imeter (feet)	2" Sch 4	0 PVC				e., pump is c		1118	>	
					L In	ne Samplin	g Completed	1.			
PURGE S	TABILIZATI				Pinnhad		Oxidation		Matar	No	tes
Time	Purge Rate (mL/min)	Cumulative Volume (mL)	Temp (°C)	Specific Conductance (µS/cm)	Dissolved Oxygen (mg/L)	рН (S.U.)	Reduction Potential (mV)	Turbidity (NTU)	Water Level (feet btoc)	(e.g., c	opacity, odor)
(041		380	19.75	370.39	0.77	6.8	-113.1	163.9	13.61	Yellow	, odar
1043	260	900	18.04	383.28	2.73	6.9	-117.2	112.9	13.61	ii.	1/
1045	275	1440	17.43	385.11	0.50	7.0	-119.4	179.1	13.61	15	4
1047	260	1960	17.32	386.47	0.46	7.1	-120.6	48.68	13.61	L.C.	V
1049	270	2500	17.28	398.04	0.45	7.1	-119.5	23.66	13.61	-	7
1061	260	3020	17.23	396.60	0.39	7.1	-118.7	25.65	13.61	11	"
1053	260	3540	17.28	394,76	0.31	7.1	-1183	17.46	13.61	clear	odor
1055		4080	17.23	403.33	2.37	7.1	-117.5	10.71	13.61	u	11
1057		4600	17.27	411.71	0.35	7.1	-115.0	13.36	13.61		
1059		5120	17.27	409.38	0.35	7.1	-115.3	11.96	13.61		L
1101	260	5640	17.29	403.60	D. 34	7.1	-115.0	9.98	13.61	11	10
1103		6180	17.27			7.1	-114.5	8.52	13.61	"	17
1105	260	6700	17.27	417.74		7.1	-114.2	9.56	13.61	"	9
1107	263	7220	17.30	410.68	0.32	7.1	-115.8	1	13.61	11	11
1109	310	7840	17.33	44.32		7.1	-114.2	1	13.61	11	11
1111	220	8280	17.28	416.15	0.33	7.1	-118.4	3.70	13.61	"	'n
1113	260	8800	17.32			7.1	-117.7	4.30	13.61	ų	t,

Facility:	SBMU Sikeston	Power Station -	CCR Groundwa	ter Monitoring	Monitoring We	HID: M	w I
Sampling Informa							
		Dereteltie Dump	8 Tubing			Dedicated:	(Y) / N
Method of Samplin		Perstaltic Pump				Dedicated.	
Water Level @ Sa	mpling (feet btoc)	: 13.61					
Monitoring Event:	Annual ()	Semi-Annua	I () Quarte	rly() Mo	onthly ()	Other ()	
Final Purge Stabliz	ation Sampling D)ata:	- <u>.</u>	1.0		Ovidation	
<u>Date</u> Sample Time	Sample Rate (mL/min)	Temp (°C)	Specific Conductance (µS/cm)	Dissolved Oxygen (mg/L)	рН (S.U.)	Oxidation Reduction Potential (mV)	Turbidity (NTU)
04-06-2020	260	17.32	416.50	<i>∂.3</i> (7.1	-117.7	4.38
Instrument Calibr See instrument cal 1 - In-Situ SmarTr 2 - HF scientific, in	libration log of da oll Multi-Probe Fi	ield Meter (Temp	perature, Specifi	ng instruments: c Conductance, Dissolv	ved Oxygen, p⊢	I, Oxidation Red	luction Potentia
General Information	ion:						
Weather Condition			$\nabla \nabla \lambda$				
Sample Character	istics: <u></u>	ear, Co	Iorless,	odorless			
Sample Collection	Order:	Per SAP		in i			0
				4.) 10			
Comments and Ol	oservations	91			ж		
			i.				
		a ji	·		a		
		2.	1	-			
14					ið		
24		ale)3	8 P				
**					6	<u>,</u>	
3		D = F		× × ×			
I certify that samp	ling procedures w		•	ble EPA and State proto	ocols.	a.	
Date: 04-06-	2020 BV: A	shish	laser	Title	Las -	Tech	
			Page	e 2 of 2			

Facility: SBMU SPS - CCR Groundwater Monitoring Monitoring Well ID: MW 7 Name (Field Staff): A Parki D Pillingham
Date: 04-06-2027
Accessibility: Good Fair Poor
Well clear of weeds and/or debris?: Yes 🗠 No
Well identification clearly visible?: Yes 🗹 No
Remarks:
Concrete Pad: Condition of Concrete Pad: Good // Inadequate
Depressions or standing water around well?: Yes No
Remarks:
<u>Protective Outer Casing</u> : Material = $\frac{4^{"} \times 4^{"}}{5}$ Steel Hinged Casing with Hasp
Condition of Protective Casing: Good Damaged
Condition of Locking Cap: Good 📈 Damaged
Condition of Lock: Good 📈 Damaged
Condition of Weep Hole: Good Damaged
Remarks:
Well Riser: Material = 2" Diameter, Schedule 40 PVC, Flush Threaded
Condition of Riser: Good 🖌 Damaged
Condition of Riser Cap: Good <u> </u>
Measurement Reference Point: Yes No
Remarks:
Dedicated Purging/Sampling Device: Type = <u>1/4</u> " ID Semi-Rigid Polyethylene & 0.170" ID Flexible Silicone Tubing
Condition: Good 🕢 Damaged Missing
Remarks:
Monitoring Well Locked/Secured Post Sampling?: Yes V No
Remarks:
Field Certification Ashi'sh Patel Las Tech 04-26-2020 Signed Title Date

Prepared by: GREDELL Engineering Resources, Inc.

Field Sampling Log

Monito	ring Well ID:	MW	7 Fac	ility: SBMU	J Sikeston P	ower Statio	n - Groundw	ater Monito	ring		
Initial Wate	er Level (fee	t btoc):	16.04			Date:	04-06	-202	2		
Initial Grou	ndwater Ele	vation (NAVE)88):			Air Pressu	re in Well?	Y /N			
PURGE IN	FORMATIO	N									i
Date:	24-06	-2020									
Name (Sar	nple Collect	or):	Dil	lingl	ham						
Method of	Well Purge:	Low Flow	Perstaltic I	oump	Dec	dicated Tub	oing? (Y) / N			
Time Purging Initiated: <u>1146</u> One (1) Well Volume (mL): <u>NA</u>											
Beginning	Water Level	(feet btoc):		5.04	Tot	al Volume I	Purged (mL)	:	346	0	
Beginning	Groundwate	er Elevation (N	AVD88):		We	II Purged T	o Dryness?		Y /		
Well Total	Depth (feet	btoc):	37.	20	Wa		fter Samplin e., pump is c		16	.04	
Casing Dia	imeter (feet)	: <u>2" Sch 40</u>	D PVC		Tim		g Completed		120	3	
PURGES	TABILIZATI					io oumping	g oomplotot				
	Purge	Cumulative		Specific	Dissolved		Oxidation	-	Water	Notes	
Time	Rate (mL/min)	Volume (mL)	Temp (°C)	Conductance (µS/cm)	Oxygen (mg/L)	рН (S.U.)	Reduction Potential (mV)	Turbidity (NTU)	Level (feet btoc)	(e.g., opac color, ode	
1148		620	18.11	834.79	0.60	7.1	66.9	3.25	16.24	Red Flake, 0	10
1150	290	1200	16.83	855.02	0.43	7.2	76.4	5.11	16.04	Biack Fick	12
1152	290	1780	16.56	859.69		7.2	80.3	2.52	16.04		~
1154	300	2380	16.42		0.27	7.2	69.7	2.44	16.04	u	Ч
1156	280	2945	16.37		0.25	7.2	71.2	2.32	16.04	1	U
1158	260	3460	16.34	865.56	0.24	7.2	68.3	1.62	16.0L/		4
										· · · · · · · · · · · · · · · · · · ·	
							-				

							u., 7
Facility:	SBMU Sikeston	Power Station -	CCR Groundwa	ter Monitoring	Monitoring We	ell ID:	MW /
Sampling Informa	ation:						
Method of Samplin	ig: Low Flow -	Perstaltic Pump	& Tubing			Dedicated:	(Y) / N
Water Level @ Sa	mpling (feet btoc)	16.01	1				
Monitoring Event:	Ánnual ()	Semi-Annua	Quarte	rly() Mo	onthly ()	Other ()	
Final Purge Stabliz	zation Sampling D)ata:				T	
<u>Date</u> Sample Time	Sample Rate (mL/min)	Temp (°C)	Specific Conductance (µS/cm)	Dissolved Oxygen (mg/L)	рН (S.U.)	Oxidation Reduction Potential (mV)	Turbidity (NTU)
04.06.2020 1158	260	16.34	86 <i>5. 5</i> 6	0.24	7.2	68.3	1.62
Instrument Calibr See instrument cal 1 - In-Situ SmarTr 2 - HF scientific, ir	libration log of da oll Multi-Probe Fi	eld Meter (Temp	erature, Specifi	ing instruments: ic Conductance, Dissolv	red Oxygen, p⊦	I, Oxidation Red	uction Potentia
General Information		pling: <u>Sv</u>	nny			5	
Sample Characteri	istics: Bla	ck Flakes	, Color L	ess, odorles	S		· · ·
Sample Collection	Order:	Per SAP		3	1		
Comments and Ot	oservations:	· · · · ·		· · · ·	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
				19			
					27 		
I certify that sampl	ling procedures w	vere in accordance	ce with applicat	le EPA and State proto	cols.		
Date: 04-06.	2023 ву: А	,2.32	Pater	Title:	Las	Tech	

Page 2 of 2

. .

......

......

181

. . .

Facility: <u>SBMU SPS - CCR Groundwater Monitoring</u> Monitoring Well ID: <u>MW9</u> Name (Field Staff): <u>A Puter O Dir(ingham</u> Date: <u>0 4-06-202</u>
Accessibility: Good / Fair Poor Well clear of weeds and/or debris?: Yes / No Well identification clearly visible?: Yes / No
Remarks: <u>Concrete Pad</u> : Condition of Concrete Pad: Good Depressions or standing water around well?: Yes No Remarks:
Protective Outer Casing: Material = <u>4" x 4" Steel Hinged Casing with Hasp</u> Condition of Protective Casing: Good <u>//</u> Damaged Condition of Locking Cap: Good <u>//</u> Damaged Condition of Lock: Good <u>//</u> Damaged Condition of Weep Hole: Good <u>//</u> Damaged
Remarks: Well Riser: Material = 2" Diameter, Schedule 40 PVC, Flush Threaded Condition of Riser: Good // Damaged Condition of Riser Cap: Good // Damaged Measurement Reference Point: Yes No
Remarks: Dedicated Purging/Sampling Device: Type = ½ " ID Semi-Rigid Polyethylene & 0.170" ID Flexible Silicone Tubing Condition: Good Damaged Missing
Remarks: Monitoring Well Locked/Secured Post Sampling?: Yes No
Field Certification #1.31 Carel Lab Tech 04-06-2020 Signed Title Date

Prepared by: GREDELL Engineering Resources, Inc.

1.5

Field	Sam	pling	Log
-------	-----	-------	-----

Monitor	ing Well ID:	MW	9 Fac	ility: SBMU	J Sikeston P	ower Static	on - Groundw	ater Monitor	ing	
Initial Wate	r Level (feel	btoc):	15.2	7		Date: 0	4-06	- 2020)	
Initial Grou	ndwater Ele	vation (NAVE	88):			Air Pressu	re in Well?	Y 🔊		
	FORMATIO									
Date:	54-0	6-202	<u> </u>							101
Name (San	nple Collect	or):	De	lingt	160					
Method of	Well Purge:	Low Flow	Perstaltic I	Pump	Dec	dicated Tub	oing?	Y) I N		
Time Purging Initiated: 1309 One (1) Well Volume (mL): NA										
Beginning	Water Level	(feet btoc):	15	.27	Tot	al Volume	Purged (mL)		244	0
Beginning	Groundwate	r Elevation (N	AVD88):		We	I Purged T	o Dryness?		Y / 🕅	
Well Total	Depth (feet	btoc):	37.11		Wa				15	.27
Casing Dia	meter (feet)	: <u>2" Sch 40</u>	DPVC			,	e., pump is c		132	11
					Tin	ne Samplin	g Completed	12	130	9
PURGE ST	TABILIZATIO						Oxidation		14/-1	Nisteo
Time	Purge Rate	Cumulative Volume	Temp	Specific Conductance	Dissolved Oxygen	рН (S.U.)	Reduction Potential	Turbidity (NTU)	Water Level	Notes (e.g., opacity,
)	(mL/min)	(mL)	(°C)	(µS/cm)	(mg/L)	(3.0.)	(mV)		(feet btoc)	color, odor)
1311		380	21.02	913.45	0.71	7.3	28.3	7.24	15.27	clear, no odor
1313	250	880	18.56	462.49		7.3	40.5	3.01	15.27	
1315	255	1387	17.81	973.55	ə.u	7.3	50.1	0.70	15,27	11 11
1317		1900	17.65	973.75	0.43	7.3	59.0	J.59	15.27	
1319	270	2440	17.60	967.52	0.34	7.3	61.6	2,92	15.27	
				×						
I							1			

							r g
Facility:	SBMU Sikeston	Power Station -	CCR Groundwa	iter Monitoring	Monitoring We		
Sampling Informa	ition:				12		~
Method of Samplin	g: Low Flow -	Perstaltic Pump	& Tubing			Dedicated:	(Y) / N
Water Level @ Sa	mpling (feet btoc)	15.2	7				
Monitoring Event:	Annual ()	Semi-Annua	Quarte	rly() Mo	onthly ()	Other ()	
Final Purge Stabliz	ation Sampling D)ata:	7	H	<u></u>	Outdation]
<u>Date</u> Sample Time	Sample Rate (mL/min)	Temp (°C)	Specific Conductance (µS/cm)	Dissolved Oxygen (mg/L)	рН (S.U.)	Oxidation Reduction Potential (mV)	Turbidity (NTU)
04-06-2020	270	17.60	967.52	0.34	7.3	61.6	0.92
Instrument Calibr See instrument cal 1 - In-Situ SmarTr 2 - HF scientific, in	ibration log of dai oll Multi-Probe Fi	eld Meter (Temp	erature, Specifi	ing instruments: ic Conductance, Dissolv	red Oxygen, pH	, Oxidation Red	uction Potentia
General Informati	ion:	C					
Weather Condition			nny				
Sample Character	istics: <u>J</u> e	ar, Colo	siles,	odorless	975. 		3.
Sample Collection	Order:	Per SAP	N. Contraction	30		T2	
Comments and Ot	servations.	81 1 ² 2	· ·	in juli		9	
		Blan	k (FIY	ash App :	亚)		
Concer	11010	201-01					
·							
				ble EPA and State proto	cols.		
Date:04-06-0	2020 _{Ву:} А	phish Po	iver	Title:	Las I	eeh	
			Page	e 2 of 2			

Appendix 1

Field Sampling Notes May 21, 2020 Resample

Facility: SBMU SPS CCR Groundwater Sampling

Field Instrumentation Calibration Log calibrated by: がえ, ろ ん ろよ

Field Instruments: In-Situ smartROL Field Meter HF scientific. SIN #: $4742U$ Sin #: 201 SIN #: $4742U$ Sin #: 201 Date Time pH pH pH pH pH pH pH pH 201 20
In-Situ smartRoll FieldSIN #:In-Situ smartRoll FieldSIN #: $\mathcal{H} ? \mathcal{H} 2 \mathcal{U} \mathcal{J}$ Time $\mathcal{H} ? \mathcal{H} 2 \mathcal{U} \mathcal{J}$ Time $\mathcal{H} ? \mathcal{H} 2 \mathcal{U} \mathcal{J}$ Time $\mathcal{H} ? \mathcal{H} 2 \mathcal{U} \mathcal{J}$ Standardsments $\mathcal{H} ? \mathcal{H} = \mathcal{H} . \mathcal{H} $ $\mathcal{H} ? \mathcal{H} = \mathcal{H} . \mathcal{H} ? \mathcal{H} $ $\mathcal{H} ? \mathcal{H} = \mathcal{H} . \mathcal{H} ? \mathcal{H} ? \mathcal{H} ? $ $\mathcal{H} ? \mathcal{H} ? \mathcal{H} ? $ $\mathcal{H} ? \mathcal{H} ? \mathcal{H} ? \mathcal{H} ? \mathcal{H} ? \mathcal{H} ? $ $\mathcal{H} ? \mathcal{H} ? H$
S/N #: S/N #: Time 0620
₩ ₩ ₩ ₩

The Multi-Probe Field Meter measures Temperature. Specific Conductance, Dissolved Oxygen, pH, and Oxidation Reduction Potential. Notes:

The HF scientific, inc. Micro TPI Field Portable Turbidimeter measures Turbidity.

Dissolved oxygen is calibrated via % saturation method; however, field measurements are recorded as mg/L.

Date: 5-21-2020

Prepared by: GREDELL Engineering Resources, Inc.

I certify that the aforementioned meters were calibrated within the manufacturers specifications.

Pafor

BW BS Ligh

Name (Field Staff):
Accessibility: Good // Fair Poor Well clear of weeds and/or debris?: Yes // No Well identification clearly visible?: Yes // No Remarks:
Remarks: Concrete Pad: Good Inadequate Depressions or standing water around well?: Yes No Remarks: Protective Outer Casing: Material = 4" x 4" Steel Hinged Casing with Hasp Condition of Protective Casing: Good Condition of Protective Casing: Good Damaged Condition of Locking Cap: Good Damaged Condition of Lock: Good Damaged Condition of Weep Hole: Good Damaged Remarks:
Remarks: Concrete Pad: Good Inadequate Depressions or standing water around well?: Yes No Remarks:
Remarks: Concrete Pad: Good Inadequate Depressions or standing water around well?: Yes No Remarks: Protective Outer Casing: Material = 4" x 4" Steel Hinged Casing with Hasp Condition of Protective Casing: Good Condition of Protective Casing: Good Damaged Condition of Locking Cap: Good Damaged Condition of Lock: Good Damaged Condition of Weep Hole: Good Damaged Remarks:
Condition of Concrete Pad: Good ⊻ Inadequate Depressions or standing water around well?: Yes No ⊻ Remarks: Protective Outer Casing: Material = 4" x 4" Steel Hinged Casing with Hasp Condition of Protective Casing: Good ⊻ Damaged Condition of Locking Cap: Good ⊻ Damaged Condition of Lock: Good ⊻ Damaged Condition of Weep Hole: Good ⊻ Damaged Remarks: Well Riser: Material = 2" Diameter, Schedule 40 PVC, Flush Threaded
Remarks: Protective Outer Casing: Material = 4" x 4" Steel Hinged Casing with Hasp Condition of Protective Casing: Good // Damaged Condition of Locking Cap: Good // Damaged Condition of Lock: Good // Damaged Condition of Veep Hole: Good // Damaged Remarks: Well Riser: Material = 2" Diameter, Schedule 40 PVC, Flush Threaded
Protective Outer Casing: Material = 4" x 4" Steel Hinged Casing with Hasp Condition of Protective Casing: Good // Damaged Condition of Locking Cap: Good // Damaged Condition of Lock: Good // Damaged Condition of Veep Hole: Good // Damaged Remarks: Well Riser: Material = 2" Diameter, Schedule 40 PVC, Flush Threaded
Condition of Protective Casing: Good Damaged Condition of Locking Cap: Good Damaged Condition of Lock: Good Damaged Condition of Veep Hole: Good Damaged Remarks: Vell Riser: Material
Condition of Locking Cap: Good // Damaged Condition of Lock: Good // Damaged Condition of Weep Hole: Good // Damaged Remarks:
Condition of Lock: Good Damaged Condition of Weep Hole: Good Damaged Remarks:
Condition of Weep Hole: Good Damaged Remarks:
Condition of Weep Hole: Good Damaged Remarks:
Well Riser: Material = <u>2" Diameter, Schedule 40 PVC, Flush Threaded</u>
Condition of Dison
Condition of Riser: Good Condition of Riser: Good
Condition of Riser Cap: Good Lange Damaged
Measurement Reference Point: Yes V No
Remarks:
Dedicated Purging/Sampling Device: Type = <u>1/4</u> " ID Semi-Rigid Polyethylene & 0.170" ID Flexible Silicone Tubing
Condition: Good Damaged Missing
Remarks:
Monitoring Well Locked/Secured Post Sampling?: Yes No
Remarks:
Field Certification Ashisi Papel Las Tech 5-21-2020 Signed Title Date

Prepared by: GREDELL Engineering Resources, Inc.

1.5

Monit	oring Well I	D: <u>M</u> V	√ <u>}</u> Fa	cility: SBM	IU Sikeston	Power Stat	ion - Ground	water Monito	oring	
Initial Wat	ter Level (fe	et btoc):	9.00)		Date:	5-21	- 202)	_
Initial Gro	undwater E	levation (NAV	′D88):			Air Press	ure in Well?	Y /0		
	NFORMATI									
Date:	5-2	1-202	0	-						
Name (Sa	mple Collec	ctor): D	Dilli	ngha	M					
Method of	f Well Purge	E Low Flor	w Perstaltic	Pump	De	edicated Tu	bing? (Ƴ/ N		
Time Purg	ging Initiated	l:	0712		Or	ne (1) Well	Volume (mL):	NA	
Beginning	Water Leve	el (feet btoc):	_9	. 00	То	tal Volume	Purged (mL):	438	0
Beginning	Groundwat	er Elevation (NAVD88):		W	ell Purged	To Dryness?		Y/N	
Well Total	Depth (feel	: btoc):	36.9	9	Wa		after Samplin .e., pump is	ig (feet btoc)	9.2	00
Casing Dia	ameter (feel): <u>2" Sch 4</u>	0 PVC		Tir		g Completed		076	7
PURGE S	TABILIZATI	ON DATA				ne oumpin	ig completed	J. 3		
Time	Purge Rate (mL/min)	Cumulative Volume (mL)	Temp (°C)	Specific Conductance (µS/cm)	Dissolved Oxygen (mg/L)	рН (S.U.)	Oxidation Reduction Potential	Turbidity (NTU)	Water Level (feet btoc)	Notes (e.g., opacity, color, odor)
0714		340	17.19	202.65	23.53	8.4	(mV) 4っ、4	21.71	9.00	Red Flake, no
0716	250	840	15.85		20.48		33.6	17.11		Red Flake No
0718	250	1340	15.44	207.20	19.17	7.3	29.6	15.11	9.00	1000
0720	250	1845	15.31	207.22	(8.51	7.0	27.0	14.11	C	14 IV
0722	260	2360	15.30		16.42	6.8	24.0	12.25	9.00	Clear, Odor
0724	aus	2840	15.26	207.12		6.64	21.4	11.49	9.00	1. 1
0726	250	3340	15.27	203.47	14.67	6.5	19.6	7.14	9.00	() (V)
5220	270	3880	15.25	203.07	14.57	6.5	16.5	7.02	9.00	1. 17
0730	250	4390	15.25	205.51	13.47	6.4	14.9	7.29	9.00	an li
						H				

Facility:	SBMU Sikeston	Power Station -	CCR Groundwa	ater Monitoring	Monitoring We	ell ID: M	N3_
Sampling Informa	tion:						
Method of Samplin	g: Low Flow -	Perstaltic Pump	& Tubing			Dedicated:	(Y) / N
Water Level @ Sar	mpling (feet btoc)	9.00	>		٩		
Monitoring Event:	Annual ()	Semi-Annua	Quarte	erly ()	Monthly ()	Other ()	
Final Purge Stabliz	ation Sampling D	Data:	<u> </u>				
<u>Date</u> Sample Time	Sample Rate (mL/min)	Temp (°C)	Specific Conductance (µS/cm)	Dissolved Oxygen (mg/L)	рН (S.U.)	Oxidation Reduction Potential (mV)	Turbidity (NTU)
5-21-2020	250	15.25	205.51	13.48	6.4	14.9	7.29
Instrument Calibra See instrument cali 1 - In-Situ SmarTro 2 - HF scientific, in	ibration log of dai oll Multi-Probe Fi	eld Meter (Temp	erature, Specifi	ing instruments: ic Conductance, Disso	olved Oxygen, pH	l, Oxidation Red	uction Potentia
General Information	on:	0.1					
Weather Conditions	s @ time of sam;	oling: <u>Cl</u>	ovdy				
Sample Characteri	stics:	ear, co	10ress	, odorless		····	
Sample Collection	Order:	Per SAP		4 4 6	-		1.0
Comments and Ob	servations:	×				ġ	Å
2							,
•				15	<u></u>		<u>,</u>
<u>. </u>			··· ······		<u>.</u>		
b	*						
1 portific that some th	na pranodurne w	oro in gooordoor	a with applicab	le EPA and State pro	tocols		

I certify that sampling pr in app p

Date: 5-21-2020 By: ASLISh Pater Title: Los Trees

Page 2 of 2

Facility: SBMU SPS – CCR Groundwater Monitoring
Monitoring Well ID: MW I
Name (Field Staff): A Pater D Dillingham
Date: 05-21-2020
Access:
Accessibility: Good V Fair Poor Poor
Well clear of weeds and/or debris?: Yes 📈 No
Well identification clearly visible?: Yes
Remarks:
Concrete Pad: Good Landequate
Depressions or standing water around well?: Yes No
Remarks:
Protective Outer Casing: Material = $4'' \times 4''$ Steel Hinged Casing with Hasp
Condition of Protective Casing: Good
Condition of Locking Cap: Good 🕢 Damaged
Condition of Lock: Good Condition
Condition of Weep Hole: Good Langed
Remarks:
Well Riser: Material = 2" Diameter, Schedule 40 PVC, Flush Threaded
Condition of Riser: Good <u>L</u> Damaged
Condition of Riser Cap: Good L
Measurement Reference Point: Yes No
Remarks:
Dedicated Purging/Sampling Device: Type = <u>1/4</u> " ID Semi-Rigid Polyethylene & 0.170" ID Flexible Silicone Tubing
Condition: Good 🔙 Damaged Missing
Remarks:
Monitoring Well Locked/Secured Post Sampling?: Yes 🖉 No
Remarks:
ield Certification Ashish Patel Lab Tech 05-21-2020
Signed Title Date

Prepared by: GREDELL Engineering Resources, Inc.

Monit	oring Well II	D: MI	W Fa	cility: SBN	IU Sikeston	Power Stat	tion - Ground	water Monito	oring		
Initial Wa	ter Level (fe	et btoc):	14.2	17		Date:	05-2	21-20	23		
Initial Gro	undwater El	evation (NAV	′D88):			Air Press	ure in Well?	YIN)	-	
PURGE	NFORMATI	ON									
Date:	05-	21-20									
Name (Sa	imple Collec	ctor): D	Di	Iling.	ham						
Method of	Well Purge	Low Flo	w Perstaltic	Pump	De	edicated Tu	ubing? (Y/ N			0
Time Purg	jing Initiated	l:	1157	7	Or	ne (1) Well	Volume (mL):	NA		
Beginning	Water Leve	el (feet btoc):	10	1.27	То	tal Volume	Purged (mL):	520	20	
Beginning	Groundwate	er Elevation (NAVD88):		We	ell Purged	, To Dryness?		Y / (N)		
Well Total	Depth (feet	btoc):	37.	67	Wa		after Samplir		: 14.	27	
Casing Dia	ameter (feet): <u>2" Sch 4</u>	0 PVC				i.e., pump is		10	CC.	
DUDOF 0	T. O				Tin x x	ne Samplir	ng Complete	d:		55	
PURGES			1			1	Oxidation		1		
Time	Purge Rate (mL/min)	Cumulative Volume (mL)	Temp (°C)	Specific Conductance (µS/cm)	Dissolved Oxygen (mg/L)	рН (S.U.)	Reduction Potential (mV)	Turbidity (NTU)	Water Level (feet btoc)	Notes (e.g., opaci color, odo	
1159		400	18.49	48.12	9.77	7.18	-13.3.6	10.46	14.27	Yenow IL	SHOY
1201	270	940	17.11	498.75	7.09	7.2	-130.9	12.56		11	11
1203	260	1460	16.74	503.52	5-81	7.2	-131.2	12.63	14.27	11	4
1205	270	2000	16.61	508.15	4.37	72	-130.8	6.66	14.27	clear, no	dor
1207	275	2543	16.61	507.15	4.18	7.2	-131.3	7.74	14-27	~	1/
1208	260	3060	16.64	513.41	3.56	7.2	-129.2		14.27	11	11
1210	275	3600	16.61	515.98	3.69	7.2	-128.4	5.75	14.27	10	(r
1212	25	4160	16.58	518.70	3.30	7.2	-125.5	3.79	(TIA)	n	1/
1214		4685		521.82		7.2	-124.9		14.27	11	1,
1216	270	5220	6.56	524.71	3.25	7.2	-125.2		14.27		11
			1								
			- 24	*							
_											
									4		

							A 1
Facility:	SBMU Sikeston	Power Station -	- CCR Groundwa	ater Monitoring	Monitoring W	ell ID:	
Sampling Informa	ation:						
Method of Samplin	ig: Low Flow	Perstaltic Pum	p & Tubing			Dedicated:	(Y) / N
Water Level @ Sa	mpling (feet btoc): 14.0	27				
Monitoring Event:	Annual ()	Semi-Annua	al (1/ Quarte	rfy() Mo	onthly()	Other ()	
Final Purge Stabliz							
<u>Date</u> Sample Time	Sample Rate (mL/min)	Temp (°C)	Specific Conductance (µS/cm)	Dissolved Oxygen (mg/L)	рН (S.U.)	Oxidation Reduction Potential (mV)	Turbidity (NTU)
05-21-2020 1216	270	16.56	524.71	3.25	7.2	-125.2	3, 3,2
Instrument Calibr See instrument cal 1 - In-Situ SmarTr 2 - HF scientific, in	ibration log of da oll Multi-Probe Fi	eld Meter (Tem	perature, Specifi	ng instruments: c Conductance, Dissolv	ved Oxygen, p⊦	ł, Oxidation Red	uction Potentia
General Informati	on:	_	,				
Weather Condition	s @ time of samp	oling: <i>C10</i>	vdy				
Sample Characteri	stics: <u>Clu</u>	ear, Co	Ioness,	odorless			
Sample Collection		Per SAP		×			20
Comments and Ob		Blonk	<u>k</u>	9			¥
				19 E - 11	^	τ. 	
		it.			#1		
с <u>ь</u>				34 B			
certify that samplir	na procedures we	re in accordanc	e with applicable	e EPA and State protoc			
			0			~ .	
Date: 5-21-2	By: HS	high	Pase	Title:	Las	rech	

. Same

e gene

Facility: <u>SBMU SPS – CCR Groundwater Monitoring</u> Monitoring Well ID: <u>MW</u> 9
Name (Field Staff): <u>A Pater D Dillingham</u> Date: S-21-2620
Access: Accessibility: Good <u> </u>
Well clear of weeds and/or debris?: Yes No
Well identification clearly visible?: Yes <u>No</u>
Remarks:
Concrete Pad: Good Leven Inadequate
Depressions or standing water around well?: Yes No
Remarks:
<u>Protective Outer Casing</u> : Material = $\frac{4^{n} \times 4^{n}}{5}$ Steel Hinged Casing with Hasp
Condition of Protective Casing: Good <u> </u> Damaged
Condition of Locking Cap: Good Condition of Locking Cap: Damaged
Condition of Lock: Good <u>Condition</u> Damaged
Condition of Weep Hole: Good L Damaged
Remarks:
Well Riser: Material = <u>2" Diameter, Schedule 40 PVC, Flush Threaded</u>
Condition of Riser: Good 1 Damaged
Condition of Riser Cap: Good V Damaged
Measurement Reference Point: Yes No
Remarks:
Dedicated Purging/Sampling Device: Type = <u>1/4</u> " ID Semi-Rigid Polyethylene & 0.170" ID Flexible Silicone Tubing
Condition: Good Damaged Missing
Remarks:
Monitoring Well Locked/Secured Post Sampling?: Yes No
Remarks:
ield Certification the las Tech 5-21-2020
Sighed Title Date

Prepared by: GREDELL Engineering Resources, Inc.

.

. . .

Monite	oring Well IC	$\sim M V$	√ 9_ Fa	cility: SBM	U Sikeston I	^D ower Stati	ion - Ground	water Monito	oring		
Initial Wat	ter Level (fe	et btoc):	15.0	17		Date:	5-21	1-202	5		
Initial Gro	undwater El	evation (NAV	D88):			Air Pressu	ure in Well?	ү / 🔞			
PURGE I	FORMATIC	N									
Date: 4	5-21-	2020									
Name (Sa	mple Collec	tor):	0	lling	ham	š					_
Method of	Well Purge	: Low Flow	w Perstaltic	Pump	De	dicated Tu	bing? (Ý/ N			
Time Purg	ing Initiated	:/	414		On	ie (1) Well	Volume (mL):	NA		-
Beginning	Water Leve	l (feet btoc):	15.	97	To	tal Volume	Purged (mL):	<u>२</u> 5	20	- 5
		er Elevation (I			X	ell Purged	Fo Dryness?		Y / (N)		
Well Total	Depth (feet	btoc):	37.1		Wa			ig (feet btoc)	15	5.97	_
Casing Dia	ameter (feet): <u>2" Sch 4</u>	0 PVC		Tin		e., pump is g G Completed		15	01	
PURGE S	TABILIZATI	ON DATA			111	ne Sampin	g Completer	J. :		<u> </u>	2
Time	Purge Rate (mL/min)	Cumulative Volume (mL)	Temp (°C)	Specific Conductance (µS/cm)	Dissolved Oxygen (mg/L)	рН (S.U.)	Oxidation Reduction Potential (mV)	Turbidity (NTU)	Water Level (feet btoc)	Note (e.g., op color, o	acity,
1416		365	20.04	979.66	10.07	7.3	-57.1	4.63	15.97	clear, ?	19_
1418		900	17.82	1018.2	8.51	7.3	-52.0	1.75	15.97	1	11
1420		1440	17.19	1028.2	5.46	7.3	-50.7	0.75	15.97	4	り
1422	272	1980	17.02	10281	4.84	7.3	-50.9		15.97	м.,	IJ
1424	270	2520	17.09	1024.4	4.95	7.4	-51.1	0.59	15.97	8	N
					÷						
							4				
											1

Facility:	SBMU Sikeston	Power Station -	CCR Groundwa	ater Monitoring	Monitoring We		w 9
Sampling Informa	ation:						
Method of Samplin	g: Low Flow	- Perstaltic Pump	o & Tubing			Dedicated:	(Y) / N
Water Level @ Sa	mpling (feet btoc	15.97	7				\bigcirc
Monitoring Event:	Annual ()	Semi-Annua	l () Quarte	erly() M	onthly ()	Other ()	
Final Purge Stabliz	ation Sampling D	Data:				.,	
<u>Date</u> Sample Time	Sample Rate (mL/min)	Temp (°C)	Specific Conductance (µS/cm)	Dissolved Oxygen (mg/L)	рН (S.U.)	Oxidation Reduction Potential (mV)	Turbidity (NTU)
05-21-2020 1424	270	17.09	1024.4	4.95	7.4	-51.1	0.59
Instrument Calibra See instrument cali 1 - In-Situ SmarTro 2 - HF scientific, in	bration log of dat oll Multi-Probe Fi	eld Meter (Temp	erature, Specifi	ing instruments: c Conductance, Dissolv	ved Oxygen, pH	, Oxidation Redu	uction Potentia
General Information	on:		1 = ×				
Weather Conditions	s @ time of samp	oling: <u>C</u> 16	vdy				
Sample Characteris	stics: <u>Cl</u>	ear, C	blorle.	ss, odorl	ess		
Sample Collection		Per SAP		N			
Comments and Obs	servations:						
				11 A			
I certify that samplin	g procedures we	re in accordance	e with applicabl	e EPA and State protoc	cols.		

Date: 5-21-2020 By: ASLish Paser Title: Los Tech

Appendix 1

Field Sampling Notes September 22, 2020 Field Instrumentation Calibration Log

Facility: SBMU SPS CCR Groundwater Sampling

A.

HF scientific, inc. Micro TPI Field Portable Turbidimeter Callbrated by: ALISA

aler

		Turbidity Measurements (NTU)	0.02	10. J			100=	= 10.JJ	= 991.4	
		Turbidity Standards (NTU)	0.02 =	10.0	1000 =		0.02	10.0	1000	
bidimeter		Oxygen	= 20.84	14450110 =	4.1101 =	= 100.0%	= 2297	= Sikestal	1:4051 =	= 100.37
ld Portable Turl		Dissolved Oxygen (%)	Temperature (°C)	Tap Water Source	Barometric Pressure (mm/Hg)	Measurement	Temperature (°C)	Tap Water Source	Barometric Pressure (mm/Hg)	Measurement = 100.37
HF scientific, inc. Micro TPI Field Portable Turbidimeter	SIN #: 201607366	Oxidation Reduction Potential Measurement (mV)			239.5				227.6	
HF scientific, i	* 201 b	Oxidation Reduction Potential Standard (mV)	=21.58		- C.955		= 21.65		= 229.0	
	S/N	Oxidation Redu Standa	Temperature	5	Standard (mV)		Temperature		Standard (mV)	
		Specific Conductance Measurement (µS/cm)			1410.3				Liss H	
d Meter		Specific Conductance Standard (µS/cm)			1413 =				1413	
In-Situ smarTROLL Fleid Meter	Lhenry	pH Measure- ments	4.0	-		000	4.0		101	-
In-Situ sm	172	pH Standards	4.00 =	7.00 =			4.00 =	7.00	0007	0.01
1.1	:# N/S	Time			9615				P. 11	
Field Instruments:		Date		- 22 - 20				0	2023 1729	
Logisto				uo	inning c Calibrati		,		of Day	pug

The Multi-Probe Field Meter measures Temperature. Specific Conductance, Dissolved Oxygen, pH, and Oxidation Reduction Potential.

The HF scientific, inc. Micro TPI Field Portable Turbidimeter measures Turbidity.

Notes:

Dissolved oxygen is calibrated via % saturation method; however, field measurements are recorded as mg/L.

I certify that the aforementioned meters were calibrated within the manufacturers specifications.

Date.09-22-2020

à BV. 154.53 2

January 2017

Prepared by: GREDELL Engineering Resources, Inc.

Access: Good ∠ Fair Poor Well clear of weeds and/or debris?: Yes ∠ No Well identification clearly visible?: Yes ∠ No Remarks: Good ∠ Inadequate Concrete Pad: Good ∠ Inadequate
<u>Concrete Pad</u> : Condition of Concrete Pad: Good <u>C</u> Inadequate
Depressions or standing water around well?: Yes No
Protective Outer Casing: Material = 4" x 4" Steel Hinged Casing with Hasp Condition of Protective Casing: Good Damaged Condition of Locking Cap: Good Damaged Condition of Lock: Good Damaged Condition of Weep Hole: Good Damaged
Remarks: Well Riser: Material = <u>2" Diameter, Schedule 40 PVC, Flush Threaded</u> Condition of Riser: Good Damaged Condition of Riser Cap: Good Damaged Measurement Reference Point: Yes No Demoderation Demoderation
Remarks: Dedicated Purging/Sampling Device: Type = ½ " ID Semi-Rigid Polyethylene & 0.170" ID Flexible Silicone Tubing Condition: Good Damaged Missing Remarks:
Monitoring Well Locked/Secured Post Sampling?: Yes No

Prepared by: GREDELL Engineering Resources, Inc.

Monitori	ng Well ID:	Mh	13 Faci	lity: SBMU	Sikeston Po	wer Statio	n - Groundw	ater Monitor	ing	
Initial Water	· Level (feet	btoc):	11.07	3	<u> </u>	Date: 0	9-22-	2020		
		vation (NAVD				Air Pressur	e in Well?	Y /N		
PURGE INF	ORMATIO	N				in the second second				
		2-202			563					
Name (Sam	ple Collecto	or):	011	inch	GM	;				
Method of V	Vell Purge:	Low Flow	Perstaltic F	ump	Dec	licated Tub	oing?	Y) N		
	ng Initiated:		0734		One	• e (1) Well \	/olume`(mL):	:	NA	
				.08			Purged (mL)		388	2
		(feet btoc):		0			o Dryness?		Y /N	
1.000		r Elevation (N				•			11 0	
Well Total	Depth (feet I	btoc):	36.9	9	Wa		fter Sampling e., pump is c			
Casing Dia	meter (feet)	: <u>2" Sch 40</u>) PVC		Tim	e Samplin	g Completed	:	()82	6
						io ourripiiri,	3			
PURGE ST		ON DATA Cumulative		Specific	Dissolved		Oxidation		Water	Notes
Time	Purge Rate	Volume	Temp (°C)	Conductance	Oxygen	рН (S.U.)	Reduction Potential	Turbidity (NTU)	Level (feet btoc)	(e.g., opacity, color, odor)
	(mL/min)	(mL)		(µS/cm)	(mg/L)	CII	(mV)	7.92	11.08	Char, no alor
0736	0(2	320	18.19	203.72 203.58		6.4	54.9 54.8	7.34	11.08	Red FICHO MA
0738	260	840		201.05	12.32	6.4	52.2	7.19	11.08	N Ded
0740	240	1320	16.90	199.44		6.4	49.2	3.92	11.08	1. 7
0742 0740	260	2360	16.73	197.78	10.33	6.5	46.0	3.65	11.68	N 17
0746	260	2880	16.67	196.82	9.72	6.5	43.7	2.05		clear, no oda-
0748	250	3380		193.57	8.81	6.5	40.3	2.70		clear, no odor
0762	250	3880	16.65	194.11	8.29	6.5	36.7		11.08	1 II
0.0	~~~									
									L	
							×	ļ		
						<u>}</u>				
									1	
	+			5.						91
L										

Facility:							
ampling Information	tion:	39 34					
lethod of Sampling	g: Low Flow -	Perstaltic Pump	& Tubing			Dedicated:	(Y) / N
/ater Level @ San	mpling (feet btoc)	11.08	?				
Ionitoring Event:	Annual ()	Semi-Annua	Quarte	rly() M	onthly ()	Other ()	
inal Purge Stabliz	ation Sampling D	Data:	9 a. 2 19				
<u>Date</u> Sample Time	Sample Rate (mL/min)	Temp ⊶ · (°C)	Specific Conductance (µS/cm)	Dissolved Oxygen (mg/L)	рН (S.U.)	Oxidation Reduction Potential (mV)	Turbidity (NTU)
09-22-2020	250	16.65	194.11	8.29	6.5	36.7	2.13
2 - HF scientific, ir General Informati	roll Multi-Probe F nc. Micro TPI Fie ion:	ield Meter (Tem Id Portable Turb	perature, Specifi	ing instruments: ic Conductance, Disso	ved Oxygen, pł	I, Oxidation Reo	luction Pote
1 - In-Situ SmarTro 2 - HF scientific, ir General Informati Veather Condition 55°F Gample Characteri	roll Multi-Probe F nc. Micro TPI Fie ion: ns @ time of sam	ield Meter (Tem ld Portable Turb pling: <u>SU</u>	nny	Od or less	ved Oxygen, pł	I, Oxidation Red	luction Poter
2 - HF scientific, ir General Information Veather Condition 55°F Sample Characteri	roll Multi-Probe F nc. Micro TPI Fie ion: ns @ time of sam istics:	ield Meter (Tem ld Portable Turb pling: <u>SU</u>	nny	ic Conductance, Disso	ved Oxygen, pł	I, Oxidation Red	luction Poter
2 - HF scientific, ir General Information Veather Condition 55°F Sample Characterion	roll Multi-Probe F nc. Micro TPI Fie ion: ns @ time of sam istics: Order:	ield Meter (Tem Id Portable Turb ppling: <u>SU</u>	nny	ic Conductance, Disso	ved Oxygen, pł	I, Oxidation Red	luction Poter
2 - HF scientific, ir General Information Veather Condition 55°F Gample Characterion	roll Multi-Probe F nc. Micro TPI Fie ion: ns @ time of sam istics: Order:	ield Meter (Tem Id Portable Turb ppling: <u>SU</u>	nny	ic Conductance, Disso	ved Oxygen, pł	I, Oxidation Red	luction Poter
2 - HF scientific, ir General Information Veather Condition 55°F Gample Characterion	roll Multi-Probe F nc. Micro TPI Fie ion: ns @ time of sam istics: Order:	ield Meter (Tem Id Portable Turb ppling: <u>SU</u>	nny	od or less	•	I, Oxidation Red	luction Poter
2 - HF scientific, ir General Information Veather Condition 55°F Sample Characteric Sample Collection	roll Multi-Probe F nc. Micro TPI Fie ion: ns @ time of sam istics: Order:	ield Meter (Tem Id Portable Turb ppling: <u>SU</u>	nny	od or less	ved Oxygen, pł	I, Oxidation Red	luction Poter
2 - HF scientific, ir General Information Veather Condition 55°F Sample Characteric Sample Collection	roll Multi-Probe F nc. Micro TPI Fie ion: ns @ time of sam istics: Order:	ield Meter (Tem Id Portable Turb ppling: <u>SU</u>	nny	od or less	•	I, Oxidation Red	
2 - HF scientific, ir General Information Veather Condition 55°F Sample Characteric Sample Collection	roll Multi-Probe F nc. Micro TPI Fie ion: ns @ time of sam istics: Order:	ield Meter (Tem Id Portable Turb ppling: <u>SU</u>	nny	od or less	•	I, Oxidation Red	
2 - HF scientific, ir General Information Veather Condition 55°F Sample Characteric Sample Collection	roll Multi-Probe F nc. Micro TPI Fie ion: ns @ time of sam istics: Order:	ield Meter (Tem Id Portable Turb ppling: <u>SU</u>	nny	od or less	•	I, Oxidation Red	
2 - HF scientific, ir General Informati Weather Condition	roll Multi-Probe F nc. Micro TPI Fie ion: ns @ time of sam istics: Order:	ield Meter (Tem Id Portable Turb ppling: <u>SU</u>	nny	od or less	•	I, Oxidation Red	

Date 9-22-2020 By: Ashish Reser

Title: Las Tech

Page 2 of 2

Facility: <u>SBMU SPS - CCR Groundwater Monitoring</u> Monitoring Well ID: <u>MW 2</u> Name (Field Staff): <u>A Patel D Oillingham</u> Date: <u>OP-22-25</u>
Access: Accessibility: Good L Fair Poor
Well clear of weeds and/or debris?: Yes $\underline{\nu}$ No
Well identification clearly visible?: Yes <u>V</u> No
Remarks:
Concrete Pad: Good / Inadequate
Depressions or standing water around well?: Yes No
Remarks:
<u>Protective Outer Casing</u> : Material = $4^{\circ} \times 4^{\circ}$ Steel Hinged Casing with Hasp
Condition of Protective Casing: Good Land Damaged
Condition of Locking Cap: Good <u> Condition</u> Damaged
Condition of Lock: Good <u>C</u> Damaged
Condition of Weep Hole: Good V Damaged
Remarks:
Well Riser: Material = 2" Diameter, Schedule 40 PVC, Flush Threaded
Condition of Riser: Good V Damaged
Condition of Riser Cap: Good <u>Damaged</u>
Measurement Reference Point: Yes No
Remarks:
Dedicated Purging/Sampling Device: Type = 1/4 " ID Semi-Rigid Polyethylene & 0.170" ID Flexible Silicone Tubing
Condition: Good V Damaged Missing
Remarks:
Monitoring Well Locked/Secured Post Sampling?: Yes Mo No
Remarks:
Field Certification ASLISI Paler Las Tech 09-22-2020
Signed Title Date

Prepared by: GREDELL Engineering Resources, Inc.

Monitori	ing Well ID:	MW	2 Facil	lity: SBMU	Sikeston Po	wer Statio	n - Groundwa	ater Monitori	ing		1
Initial Water	r Level (feet	btoc):	0.04	4	[Date: C	9-22	-252	>		
		vation (NAVD			/	Air Pressur	e in Well?	Y / 🕅			
PURGE INF	FORMATIO	N									
		2-25		2							
Name (Sam	nple Collecto	or):	Dill	ingh	C.m.	7					-
Method of V	Nell Purge:	Low Flow	Perstaltic P	ump	Ded	licated Tub	ing?	V) N			
Time Purgir	ng Initiated:	C	849		One	e (1) Well V	/ołume (mL):		NA		-
_	-	(feet btoc):	15	. 34	Tota	al Volume I	Purged (mL):		320	O	_
102					We	II Puraed T	o Dryness?		Y / 🕅		
		r Elevation (N		3		_	fter Sampling		10.0	4	
1		otoc):		0			e., pump is o				-
Casing Dia	meter (feet)	2" Sch 40) PVC		Tim	e Sampling	g Completed	:	094	0	_
DURGE ST	FABILIZATIO				127						
	Purge	Cumulative	Temp	Specific	Dissolved	pН	Oxidation Reduction	Turbidity	Water	Not	
Time	Rate (mL/min)	Volume (mL)	(°C)	Conductance (µS/cm)	Oxygen (mg/L)	(S.U.)	Potential (mV)	(NTU)	Level (feet btoc)	(e.g., oj color,	
0851	(18.75	187.19	10.41	6.2	-12.7	1.53	10.04	cleur,	notar
0853	230	800	18.52	188.32	9.04	6.2	-11.1	1.83	10.04	et	n
0855			18.48	176.69	10.14	6.2	-10.3	1.80	10.04	"	4
0357		1740	18.43			6.2	-9.5	1.31	10.04	a	4
0859	-	2260	18.39			6.2	-10.0	0.63	10.04	u.	41
0901	230	2120	18.35	1		6.2	-9.2	0.82	10.04		ч
0903		3200	18.34	184.84		6.2	-9.6	0.62	10.04	"	4
											_
				· ·							
							· · · · ·				
				ļ				ļ			
= <i>v</i> 2		1 °	1	1		1 -				1	

Facility:	Facility: SBMU Sikeston Power Station - CCR Groundwater Monitoring Monitoring Well ID: MW2									
Sampling Informa	tion:									
Method of Samplin	g: Low Flow -	Perstaltic Pump	& Tubing			Dedicated:	(Y) / N			
Water Level @ Sa	mpling (feet btoc)	10.0	4							
Monitoring Event:	Annual ()	Semi-Annual	Quarte	rly() Mo	onthly ()	Other ()				
Final Purge Stabliz	ation Sampling D	ata:				Oxidation				
<u>Date</u> Sample Time	Sample Rate (mL/min)	Temp ∞ (°C)	Specific Conductance (µS/cm)	Dissolved Oxygen (mg/L)	рН (S.U.)	Reduction Potential (mV)	Turbidity (NTU)			
09-22-2020 0903	240	18.34	(89.84	6 <i>.5२</i>	6.2	-9.6	0.62			
1 - In-Situ SmarTr 2 - HF scientific, ii General Informat	Instrument Calibration Data: See instrument calibration log of daily calibration data for the following instruments: 1 - In-Situ SmarTroll Multi-Probe Field Meter (Temperature, Specific Conductance, Dissolved Oxygen, pH, Oxidation Reduction Potentia 2 - HF scientific, inc. Micro TPI Field Portable Turbidimeter General Information: Weather Conditions @ time of sampling:									
Sample Character	istics: C/G	ear. Col	orless,	odorless		į.	*			
Sample Collection		Per SAP		10 4 74	*	÷ *	*			
Comments and O	115 8 18	•		**************************************	* *	а а зе ^с , ф	9 10			
÷	10		· · · · ·							
			w to							
the state of the s	line menoduree v	vere in eccorder	oo with applica	ble EPA and State prote	ocols					

I certify that sampling procedures were

A Date: 09-22-2020 By: Bh

Title: Log Tech

Page 2 of 2

Facility: <u>SBMU SPS – CCR Groundwater Monitoring</u> Monitoring Well ID: <u>MW I</u> Name (Field Staff): <u>A PG たし の の しに へらん u M</u>
Date: 09-22-2020
Access: Accessibility: Good Fair Poor
Well clear of weeds and/or debris?: Yes K No
Well identification clearly visible?: Yes Ves No
Remarks:
Concrete Pad: Good I Inadequate
Depressions or standing water around well?: Yes No
Remarks:
Protective Outer Casing: Material = $4^{\circ} \times 4^{\circ}$ Steel Hinged Casing with Hasp
Condition of Protective Casing: Good
Condition of Locking Cap: Good Condition Damaged
Condition of Lock: Good <u>C</u> Damaged
Condition of Weep Hole: Good L Damaged
Remarks:
Well Riser: Material = $2^{"}$ Diameter, Schedule 40 PVC, Flush Threaded
Condition of Riser. Good 📈 Damaged
Condition of Riser Cap: Good <u>Condition</u> Damaged
Measurement Reference Point: Yes No
Remarks:
Dedicated Purging/Sampling Device: Type = 1/4 " ID Semi-Rigid Polyethylene & 0.170" ID Flexible Silicone Tubing
Condition: Good / Damaged Missing
Remarks:
Monitoring Well Locked/Secured Post Sampling?: Yes // No
Remarks:
rield Certification ASK3L Parel Las Tech 09-22-2020
Signed Title Date

Prepared by: GREDELL Engineering Resources, Inc.

				ity: SBMU					In case of the last	
Initial Water	Level (feet	btoc):	16.24	0 		Date: 09-22-2020				
		ation (NAVD			/	Air Pressure in Well? Y / N				
PURGE INF	ORMATION	N			01 XIX - EV-10 TAB					
Date:(09-2	2-20=	2.5	20-1	22					
Name (Sam	ple Collecto	or):	0.11	ingh	GM					
Method of Well Purge: Low Flow Perstaltic Pump					Ded	licated Tub	ing?	Y) N		
Time Purgir	ng Initiated:	1	045		One	e (1) Well V	/olume (mL):		NA	
Beginning V	Vater Level	(feet btoc):	16.	24	Tota	al Volume I	Purged (mL):	: 3	226	0
		r Elevation (N	IAVD88):		We	I Purged T	o Dryness?		Y / 🕅	
		otoc):		2	Wa				16	14
1		2" Sch 40				•	e., pump is o		112	-1
Casing Dia					Tim	e Sampling	g Completed	: s	113	<i>/</i>
PURGE ST	ABILIZATIO	ON DATA		1			Oxidation			Natao
Time	Purge Rate	Cumulative Volume	Temp	Specific Conductance	Dissolved Oxygen	pH	Reduction Potential	Turbidity (NTU)	Water Level	Notes (e.g., opacity,
1	(mL/min)	(mL)	(°C)	(µS/cm)	(mg/L)	(S.U.)	(mV)		(feet btoc)	color, odor)
1047		320	19.72	529.33		7.3	-85.1	0.98	16.24	Clear, no odor
1049	240	800	18.30	541.23		7.3	- 84.7	1.43	16.24	· · · · · · · · · · · · · · · · · · ·
1051	240	1285	17.93	546.11	5.51	7.3	-9 <u>3.2</u> -95.3		16.24	N ()
1053	240	1760		554.31	4.93	7.2	- 95.2		16.24	
1055	250	2260	17.07	556.93	9.0			0,0		
							1			
							···			
				1			100 100 100			
L										
		1	and the second s			the second s	And the second s	and the second s	and the second sec	and the second sec

btoc - below top of casing

ľ

Facility:	SBMU Sikeston I	Power Station - (ter Monitoring	Monitoring Well ID:					
Sampling Informa	tion:	4							
Method of Samplin	g: Low Flow -	Perstattic Pump	& Tubing			Dedicated:	(Y) / N		
Water Level @ Sar	mpling (feet btoc)	16.21	f		2				
Monitoring Event:	Annual ()	Semi-Annual		riy() Mo	onthly ()	Other ()			
Final Purge Stabliz	ation Sampling D	ata:							
<u>Date</u> Sample Time	Sample Rate (mL/min)	Temp . (°C)	Specific Conductance (µS/cm)	Dissolved Oxygen (mg/L)	рН (S.U.)	Oxidation Reduction Potential (mV)	Turbidity (NTU)		
09-22-2020	250	17.67	556.93	4.23	7.2	-95.2	J.51		
See instrument cal 1 - In-Situ SmarTr	Instrument Calibration Data: See instrument calibration log of daily calibration data for the following instruments: 1 - In-Situ SmarTroll Multi-Probe Field Meter (Temperature, Specific Conductance, Dissolved Oxygen, pH, Oxidation Reduction Potentia 2 - HF scientific, inc. Micro TPI Field Portable Turbidimeter								
General Informati	ion:	-				20			
Weather Condition	ns @ time of sam	pling: <u>SV1</u>	nn y						
Sample Character	istics:	lear, Co	lones,	oderless					
Sample Collection		Per SAP	ta 🤺 x		៤ នត្ត	а — ^ж	N)		
Comments and Ol		na m m	in the		× *				
Collec	+ Fi	eld N	ovplice	R					
	10 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -								

I certify that sampling procedures were in accordance with applicable EPA and State protocols.

Paser Date 09-22-2020 By: Bh.32

Title: Las Tean

Page 2 of 2

Facility: <u>SBMU SPS-CCR Groundwater Monitoring</u> Monitoring Well ID: <u>MW 7</u> Name (Field Staff): <u>A Pakel O Dillingha</u> Date: <u>09-22-20</u>
Access: Accessibility: Good <u>Fair</u> Poor
Well clear of weeds and/or debris?: Yes Mo
Well identification clearly visible?: Yes // No
Remarks:
Concrete Pad: Good // Inadequate
Depressions or standing water around well?: Yes No
Remarks:
Protective Outer Casing: Material = $4^{"} \times 4^{"}$ Steel Hinged Casing with Hasp
Condition of Protective Casing: Good Damaged
Condition of Locking Cap: Good L Damaged
Condition of Lock: Good 2 Damaged
Condition of Weep Hole: Good <u>C</u> Damaged
Remarks:
Well Riser: Material = <u>2" Diameter, Schedule 40 PVC, Flush Threaded</u>
Condition of Riser. Good <u> </u> Damaged
Condition of Riser Cap: Good <u>C</u> Damaged
Measurement Reference Point: Yes No
Remarks:
Dedicated Purging/Sampling Device: Type = <u>1/4</u> " ID Semi-Rigid Polyethylene & 0.170" ID Flexible Silicone Tubing
Condition: Good Condition: Damaged Missing
Remarks:
Monitoring Well Locked/Secured Post Sampling?: Yes No
Remarks:
Field Certification A54,84 Page Las Tech 09-22-2020 Signed Title Date

Prepared by: GREDELL Engineering Resources, Inc.

Monitori	ing Well ID:	Mw	7 Faci	lity: SBMU	Sikeston Po	ower Statio	n - Groundw	ater Monitori	ng	
Initial Wate	r Level (feet	btoc):	18.1) *>		Date: O	9-22	202	<u>с</u>	
Initial Grour	ndwater Elev	ation (NAVD	88):			Air Pressur	e in Well?	Y /		
PURGE INI	And a second sec	and the second se								لعمقيسية
Date:		22.20								
Name (San	nple Collecto	or):	Dilli	ngha	M					
Method of Well Purge: Low Flow Perstattic Pump Dedicated Tubing? (Y) / N										
Time Purgi	ng Initiated:	}	210		One	e (1) Well V	/olume (mL):		NA	
Beginning	Water Level	(feet btoc):	18.	13	Tot	al Volume I	Purged (mL)		27	800
Beginning	Groundwate	r Elevation (N	IAVD88):		We	II Purged T	o Dryness?		Y /	
Well Total	Depth (feet	btoc):	37.0	25	Wa		iter Sampling e., pump is c	g (feet btoc):	18.	70
Casing Dia	meter (feet)	: <u>2" Sch 40</u>) PVC		T:		g Completed		25	8
1						ie Sampling	g Completed		1-1-1	
PURGE ST	FABILIZATIO				Distant		Oxidation		Motor	Notes
Time	Purge Rate	Cumulative Volume	Temp	Specific Conductance	Dissolved Oxygen	рН (S.U.)	Reduction Potential	Turbidity (NTU)	Water Level	(e.g., opacity,
	(mL/min)	(mL)	(°C)	(µS/cm)	(mg/L)	(3.0.)	(mV)		(feet btoc)	color, odor) BIACK FIGHE,
1212		320	19.24	71524	7.47	7.6	-81.0	1-61	18.70	ISTRUM AD DODY
1214	250	820	18.17	723.21	5.03	7.5	-82.2	1.14	18.70	
1216	240	1300		727.92	3.64	7.9	-81.3	ට. 63	18:20	N 1/
1218	242	1783	17.50	729.37	3.85	7.5	-80.3	0.34	18.70	11 1/
1220		2280				7.5		0.65	18.70	11 11
1222	250	2780	17.60	720.45	3.63	7.5	-80.8	0.50	18.70	
			1	1			and the statement of th			And the second se

Facility:	SBMU Sikeston	Power Station -	CCR Groundwa	ter Monitoring	Monitoring We	HID: M	w 7
Sampling Informa	tion:	•					
Method of Sampling	g: Low Flow -	Perstaltic Pump	& Tubing			Dedicated:	(Y) / N
Water Level @ Sar	npling (feet btoc)	: 18.7	10				
Monitoring Event:	Annual ()	Semi-Annua	Quarte	rly() M	onthly ()	Other ()	
Final Purge Stabliz	ation Sampling D	Data:	and the second second				
<u>Date</u> Sample Time	Sample Rate (mL/min)	Temp (°C)	Specific Conductance (µS/cm)	Dissolved Oxygen (mg/L)	рН (S.U.)	Oxidation Reduction Potential (mV)	Turbidity (NTU)
09-22-2023	250	17.40	723.45	3.63	7.5	- 70.8	0.50
2 - HF scientific, in General Informati Weather Condition	on: s @ time of sam	pling: SV	nny	oloness, o	Lorless	*	
Sample Collection	Order:	Per SAP					
Comments and Ob	servations:			e es a de e e es a de e	a ¹⁰⁹ 2. ¹⁰	*	
	<i>1</i> .			*		17	
							·····
	7						
	 In a subsequence of 	terms the second second	ee with explicit	In EDA and State prote	ooolo		

I certify that sampling procedures were in accordance with applicable EPA and State protocols.

Date: 09,22-2020 By: 18hsh er

Title: CUS TRCH

Page 2 of 2

Facility:SBMU SPS - CCR Groundwater MonitoringMonitoring Well ID:MW 9Name (Field Staff):A Pak 0 Dil	
Date: 04-22-2020	
Access: Accessibility: Good Fair	Poor
Well clear of weeds and/or debris?: Yes	
Well identification clearly visible?: Yes	No
Remarks:	
	Inadequate
Depressions or standing water around well?: Yes _	No
Remarks:	
<u>Protective Outer Casing</u> : Material = $\frac{4" \times 4"}{5teel Hing}$	ed Casing with Hasp
Condition of Protective Casing: Good	Damaged
Condition of Locking Cap: Good	Damaged
Condition of Lock: Good	Damaged
Condition of Weep Hole: Good	Damaged
Remarks:	1.
Well Riser: Material = 2" Diameter, Schedule 40 PVC, Flus	h Threaded
Condition of Riser: Good	Damaged
Condition of Riser Cap: Good 🗹	Damaged
Measurement Reference Point: Yes	No
Remarks:	
Dedicated Purging/Sampling Device: Type = <u>1/4</u> " ID Semi-R Silicone Tubing	tigid Polyethylene & 0.170" ID Flexible
Condition: Good Damaged	Missing
Remarks:	· · · · · · · · · · · · · · · · · · ·
Monitoring Well Locked/Secured Post Sampling?:	Yes No
Remarks:	
Field Certification BL32 Page Ca3 Signed Title	Tech 29-22-2020 Date

Prepared by: GREDELL Engineering Resources, Inc.

Monitor	ing Well ID:	MW	G Fac	ility: SBMU	Sikeston Po	ower Statio	n - Groundw	ater Monitor	ing		
Initial Water Level (feet bloc): 7.40						Date: 09-22-2020					
Initial Groundwater Elevation (NAVD88):						Air Pressure in Well? Y N					
PURGE IN	ORMATIO	N									
Date: $09-22-2020$											
Name (Sample Collector): 0 Dillingham											
Method of Well Purge: Low Flow Perstaltic Pump Dedicated Tubing? (Y) / N											
Time Purging Initiated: 1346						One (1) Well Volume (mL): NA					
Beginning Water Level (feet btoc): 17.90						Total Volume Purged (mL):					
Beginning Groundwater Elevation (NAVD88):						Well Purged To Dryness? Y / 🕅					
Well Total Depth (feet btoc): 37.14 Water Level after Sampling (feet btoc): 17.90										90	
Casing Diameter (feet): 2" Sch 40 PVC											
					Tim	ne Samplin	g Completed	1:	175		
PURGE STABILIZATION DATA											
Time	Purge Rate	Cumulative Volume	Temp (°C)	Specific Conductance	Dissolved Oxygen	рН (S.U.)	Reduction Potential	Turbidity (NTU)	Water Level	Notes (e.g., opacity,	
٩	(mL/min)	(mL)	(0)	(µS/cm)	(mg/L)		(mV)		(feet btoc)	color, odor)	
1348		360	20.68	892.74	4.72	75	-76.6		17.90	la h	
1350	170	700		883.77	4.20	7.5	-71.9		17.40	1 H	
1352	240	1173	17.63	386.97	4.15	7.5		0.26	17.63	· · · · · · · · · · · · · · · · · · ·	
13.54	230	16 hs	17.65	894.35		7.5	-75.7	0.21	17.93	er y	
1356	270	2180	17.59	841.41	U.18	7.5	-70.4	0.64	17.90		
									1.15		
									1651		
J											
			h								
ļ							1				

1.2

Facility:	SBMU Sikeston	Power Station - (CCR Groundwa	ter Monitoring	Monitoring We	II ID:	wg
Sampling Informa	ition:				z.		
Method of Samplin	g: Low Flow -	Perstaltic Pump	& Tubing			Dedicated:	(Y) / N
Water Level @ Sa	mpling (feet btoc)	. 17.9					
Monitoring Event:	Annual ()	Semi-Annua	Quarte	nly() Mo	onthly ()	Other ()	
Final Purge Stabliz	ation Sampling D)ata:		10.2 million 10.2 million 10.2 million 10.2			
<u>Date</u> Sample Time	Sample Rate (mL/min)	Temp (°C)	Specific Conductance (µS/cm)	Dissolved Oxygen (mg/L)	рН (S.U.)	Oxidation Reduction Potential (mV)	Turbidity (NTU)
1356	270	17.59	801.91	4.18	7.5	- 70.4	0.64
Instrument Calibu See instrument ca 1 - In-Situ SmarTu 2 - HF scientific, in General Informat	libration log of da roll Multi-Probe Fi nc. Micro TPI Fie	ield Meter (Temp Id Portable Turbi	erature, Specifi dimeter	ng instruments: c Conductance, Dissolv	ved Oxygen, pH	, Oxidation Red	uction Potentia
Weather Condition		pling: <u>Svi</u>	nny				
Sample Character	istics: _C	lear. Co	1 mess	, odorles	5	- *	· ·
Sample Collection	Order:	Per SAP	× ::•		2000 20	4	**
Comments and O		12 BIC	un <u>k</u>	** * * * * * *	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	* * * *	
I certify that samp	ling procedures v	vere in accordan	ce with applicat	e EPA and State proto	cols.		
Date: 09 - 22	- <u>202</u> р ву: /	82.782	Paper	Title:	Las	Tell	

2

.

Appendix 1

Field Sampling Notes December 8, 2020 Resample

Measurements U.0001 = 9 88.2 50 0 9.90 Turbidity 10.01 0.04 (NTU) н H 11 11 н Turbidity Standards (NTU) 1000 1000 10.0 0.02 10.0 0.02 Si Kester Sikester 5:500/= 1.8001 = 8:3 = |حرز. <u>م</u> = 99.2 ~~ yb= HF scientific, Inc. Micro TPI Field Portable Turbidimeter Dissolved Oxygen 11 . н Casel 3 Temperature (°C) Measurement Measurement **Temperature** Tap Water Source Barometric Pressure (mm/Hg) Tap Water Source Barometric Pressure (gH/mm) õ 201607366 Prove 1 The Multi-Probe Field Meter measures Temperature, Specific Conductance, Dissolved Oxygen, pH, and Oxidation Reduction Potential 229.3 calibrated by: A.J.J Oxidation Reduction Potential Measurement Я Ш Field Instrumentation Calibration Log 8 11 Conductance Oxidation Reduction Potential Measurement Standard (mV) 229.0 0.225 21.96 = 21.82 Dissolved oxygen is calibrated via % saturation method; however, field measurements are recorded as mg/L. S/N#: 11 11 n Temperature (°C) Temperature Standard (mV) Standard (mV) (0°) 142.5 < .75. 1 = The HF scientific, inc. Micro TPI Field Portable Turbidimeter measures Turbidity (ms/cm) Specific 11 Conductance Standard (ms/cm) Specific 1413 1413 In-Situ smarTROLL Field Meter Facility: SBMU SPS CCR Groundwater Sampling 1 2 2 2 1 2 pH Measure-100 = 0.0 ments 4.0 7.0 0 ロア 1 10.00 = n 11 в Standards 11 10.00 五 4.00 7.00 4.00 7.00 5001 0000 :# N/S Time Fleld Instruments: 2-8-Date Beginning of Day Calibration Notes: End of Day Check

Prepared by: GREDELL Engineering Resources, Inc.

I certify that the aforementioned meters were calibrated within the manufacturers specifications.

そうろ

By: 181

20

Date: 12-8-

January 2017

Monitoring Well Field Inspection

Facility: <u>SBMU SPS – CCR Groundwater Monitoring</u> Monitoring Well ID: <u>MW 2</u>
Name (Field Staff): A Patel D Dillingham
Date: 12-08-20
Access:
Accessibility: Good <u>Fair</u> Poor
Well clear of weeds and/or debris?: Yes Ves No
Well identification clearly visible?: Yes V No
Remarks:
Concrete Pad: Good V Inadequate
Depressions or standing water around well?: Yes No _/
Remarks:
Protective Outer Casing: Material = $4^{"} \times 4^{"}$ Steel Hinged Casing with Hasp
Condition of Protective Casing: Good V Damaged
Condition of Locking Cap: Good V Damaged
Condition of Lock: Good V Damaged
Condition of Weep Hole: Good Damaged
Remarks:
Well Riser: Material = 2" Diameter, Schedule 40 PVC, Flush Threaded
Condition of Riser: Good L Damaged
Condition of Riser Cap: Good 📈 Damaged
Measurement Reference Point: Yes _/ No
Remarks:
Dedicated Purging/Sampling Device: Type = <u>1/4</u> " ID Semi-Rigid Polyethylene & 0.170" ID Flexible Silicone Tubing
Condition: Good Damaged Missing
Remarks:
Monitoring Well Locked/Secured Post Sampling?: Yes V No
Remarks:
Field Certification Achigh Pajel Lus Tech 12-8-20
Signed Title Date

Prepared by: GREDELL Engineering Resources, Inc.

January 2017

Monitor	ing Well ID:	MW	2 Fac	ility: SBML	J Sikeston Po	ower Statio	n - Groundw	ater Monitor	ing		
Initial Wate	r Level (feel	t btoc):	3.01			Date:	2-68	- 20			
Initial Grou	ndwater Ele	vation (NAVD	988):			Air Pressu	re in Well?	Y 10			
PURGE IN	FORMATIO	N							at the second second		
Date:	2-07.	- 20									
Name (San	nple Collect	or):	D:11	inghan	N						-
Method of	Nell Purge:	Low Flow	Perstaltic I	oump	Dec	licated Tub	oing? (Y) N			
Time Purgi	ng Initiated:		107		One	e (1) Well \	/olume (mL):		NA		_
Beginning	Nater Level	(feet btoc):	10	01	Tot	al Volume	Purged (mL)	:	221	10	-
Beginning	Groundwate	er Elevation (N	AVD88):		We	Il Purged T	o Dryness?		Y / 🕅		
Well Total I	Depth (feet	btoc):	37.19	ļ	Wa		fter Sampling e., pump is c		10.0	<i></i>	
Casing Dia	meter (feet)	: <u>2" Sch 40</u>	0 PVC			·			114	0	
						ie Samplin	g Completed				-
PURGE ST	ABILIZATIO	ON DATA					Oxidation			Nia	tes
Time	Purge Rate (mL/min)	Cumulative Volume (mL)	Temp (°C)	Specific Conductance (µS/cm)	Dissolved Oxygen (mg/L)	рН (S.U.)	Reduction Potential	Turbidity (NTU)	Water Level (feet btoc)	(e.g., c color,	opacity, odor)
1109	vv	320	18.14	185.62		6.6	(mV) 209./	6.93	10.01	clear	odor
1111	240	800	17.41	181.02	6.93	6.3	223.1	1.69	10.01		47
1113	\$30	1260	17.14	181.99		6.2	218.8	1.15	10.01	t 1	0
us	240	1740	16.96	186.98	5.54	6.2	2222	1.28	10.01	11	17
1117	250	2240	16.90	186.51	5.56	6.2	223.4	0.79	10.01	"	Ч
			-								
l				1							
	e										
							-				
					3						
R						1					فالمراد المراجع

btoc - below top of casing

Facility:	SBMU Sikeston	Power Station -	CCR Groundwa	ter Monitoring	Monitoring We	11 ID: <u>M</u>	~~
Sampling Informa	ition:						
Method of Samplin		Perstaltic Pump	& Tubing			Dedicated:	(Y) / N
Water Level @ Sa		12.0					-
		Semi-Annua	b	rly() M	onthly ()	Other ()	
Monitoring Event:	Annual ()			ily() iv			
Final Purge Stabliz Date Sample Time	Sample Rate (mL/min)	Temp (°C)	Specific Conductance (µS/cm)	Dissolved Oxygen (mg/L)	рН (S.U.)	Oxidation Reduction Potential (mV)	Turbidity (NTU)
12-08-20	250	16.90	186.51	5.56	6.2	<i>Q</i> &3, 4	0.79
Instrument Calibr See instrument cal 1 - In-Situ SmarTr 2 - HF scientific, ir General Informati Weather Condition $\mu s^{o} F$	ibration log of dai oll Multi-Probe Fi nc. Micro TPI Fiel on:	eld Meter (Temp d Portable Turbi	erature, Specifi	ng instruments: c Conductance, Disso	lved Oxygen, pH	, Oxidation Red	uction Potentia
Sample Characteri	stics:	ear, Co	oness,	odorless.	370 - B		< <u>,</u> 2
Sample Collection	Order:	Per SAP	a	· · · · · · · · · · · · · · · · · · ·			đi
(전) 12년 12 12(4)		- 1			5 C	3	
Comments and Ob	oservations:	3.45 5 V					
				ble EPA and State pro		Tech	

Page 2 of 2

Monitoring Well Field Inspection

		and the second
Facility: <u>SBMU SPS – CCR G</u>	roundwater Monitoring	54
	tel D Dilli	naham
Date: 2 07-20		y run
Date. 12 00 00		
Access: Accessibility: Good <u>1</u>	Fair	Poor
Well clear of weeds and/or debri		
Well identification clearly visible	?: Yes 🗹	No
Remarks:		
<u>Concrete Pad</u> : Condition of Concrete Pad:	Good	
Depressions or standing water a	around well?: Yes _	No /
Remarks:		
Protective Outer Casing: Materia	$al = \underline{4^* \times 4^*} \text{ Steel Hing}$	ed Casing with Hasp
Condition of Protective Casing:	Good 🗠	Damaged
Condition of Locking Cap:	Good <u>//</u>	Damaged
Condition of Lock:	Good L	Damaged
Condition of Weep Hole:	Good	Damaged
Remarks:		
Well Riser: Material = <u>2" Diameter, S</u>	chedule 40 PVC, Flus	h Threaded
Condition of Riser:	Good 🖌	Damaged
Condition of Riser Cap:	Good	Damaged
Measurement Reference Point:	Yes L	No
Remarks:		
Dedicated Purging/Sampling Device:	Type = <u>¼ " ID Semi-R</u> Silicone Tubing	igid Polyethylene & 0.170" ID Flexible
Condition: Good V	Damaged	Missing
Remarks:		
Monitoring Well Locked/Secured	d Post Sampling?:	ves No
Remarks:		
Fillo Man Read	Las Te	12-08-20
Field Certification ALSL 1990 Signed	Title	Date

Prepared by: GREDELL Engineering Resources, Inc.

January 2017

Field	Sam	pling	Log
-------	-----	-------	-----

Monito	ring Well ID:	Mw	Fac	ility: SBMU	J.Sikeston P	ower Statio	n - Groundw	ater Monitor	ing		
Initial Wate	er Level (fee	t btoc):	6.14			Date:] 🤉	- 58-	ථා			
Initial Grou	ndwater Ele	vation (NAVD	88):			Air Pressur	e in Well?	Y / 🕅			
PURGE IN	FORMATIO	N									
	12-05										
Name (Sar	nple Collect	or):	DIIG	nghan	1						
Method of	Well Purge:	Low Flow	Perstaltic F	Pump	Dec	dicated Tub	oing?	Ƴ/N ₀			
Time Purging Initiated: 1234 One (1) Well Volume (mL): NA											
Beginning Water Level (feet btoc): 16.14 Total Volume Purged (mL): 2300											
Beginning Groundwater Elevation (NAVD88): Well Purged To Dryness? Y /											
Well Total Depth (feet btoc): <u>37.64</u> Water Level after Sampling (feet btoc): <u>/6.14</u> (i.e., pump is off)											
Casing Diameter (feet): 2" Sch 40 PVC											
Time Sampling Completed:											
PURGE S	TABILIZATIO			Creatific	Dissolved		Oxidation		Water	Notes	
Time	Purge Rate	Cumulative Volume	Temp (°C)	Specific Conductance	Oxygen	рН (S.U.)	Reduction Potential	Turbidity (NTU)	Level	(e.g., opacity, color, odor)	
<u>}</u>	(mL/min)	(mL)		(µS/cm)	(mg/L)		(mV)		(feet btoc)	clear, "Bdor	
1236		380	15.79	457.84	9.51	7.3	133.8	3.10	16.14	11 0001	
123-8		880	15.42		6.45	7.3	128.1	2.44	16.14	11 11	
1240	255	1382	15.93		5.25	7.3	107.5	2.15	16.14	1 ¹ //	
1242	250	1783		460.52	u.85	7.3	88.9	2.32	16.14	IN //	
1244	262	2300	15.90	462.07	4.19	7.3	82.1	2.44	16.14		
					-						
							<u> </u>				
11											
N								1940 G			

Facility:	SBMU Sikeston	Power Station -	CCR Groundwa	ter Monitoring	Monitoring We		N I
Sampling Informa	ition:	.(# 7					
Method of Samplin	ig: Low Flow -	Perstaltic Pump	& Tubing			Dedicated:	(Y) / N
Water Level @ Sa	mpling (feet btoc)	16.14	<u>/</u>				
Monitoring Event:	Annual ()	Semi-Annua	Quarte	rly() Mo	onthly ()	Other ()	
Final Purge Stabliz	ation Sampling D)ata:					
<u>Date</u> Sample Time	Sample Rate (mL/min)	Temp (°C)	Specific Conductance (µS/cm)	Dissolved Oxygen (mg/L)	рН (S.U.)	Oxidation Reduction Potential (mV)	Turbidity (NTU)
12-08-23 1244	262	15.9°C.	462.07	4.19	7.3	४३.१	<i>ચ.</i> ५५
See instrument cal 1 - In-Situ SmarTr 2 - HF scientific, in General Information Weather Condition	oll Multi-Probe Fi nc. Micro TPI Fiel	eld Meter (Temp d Portable Turbi	erature, Specifi	ng instruments: c Conductance, Dissolv	ved Oxygen, pH	, Oxidation Red	uction Potentia
H8°F							
Sample Characteri	stics: <u>C</u>	lear, G	orass,	odorless		x 2 ³ *	•
Sample Collection	Order:	Per SAP		•			
Comments and Ob	oservations:	ен 19 С			66 ⁶⁴	а. Х	*
							2

I certify that sampling procedures were in accordance with applicable EPA and State protocols.

Paser Title: Las Teak Date: 12-08-20 By: Ashish

Page 2 of 2

Appendix 1

Field Sampling Notes January 26, 2021 Resample

Field Instrumentation Calibration Log

Facility: SBMU SPS CCR Groundwater Sampling

Calibrated by: A. L. S. C. P.C.

le Turbidimeter		Dissolved Oxygen Turbidity Measurements (%) (NTU) (NTU)	Temperature = 21.5 0.02 = 0.03	Tap Water = $2 (1 + 1)$ 10.0 = 10.0	Barometric = 900.57 1000 = 1000 0	Measurement = / ۵۵, /۶	Temperature = $IGSO 0.02 = 0.03$	Tap Water = $\frac{35}{53}$ $\frac{10.0}{53}$ = 7.83	Barometric Fressure = 1020.5 1000 = 92.7	Measurement = ??. 8 0
HF scientific, inc. Micro TPI Field Portable TurbidImeter	201607366	A Oxidation Reduction Potential Measurement (mV)			= वेक्9,2				= da7.4	
HF scientific,	sin #: 201	Oxidation Reduction Potential Standard (mV)	12.15=	= <i>227.</i> 0			= 20.71		= 229.0	
5	Ū,		Temperature (°C)		Standard (mV)		Temperature (°C)		Standard (mV)	
		Specific Conductance Measurement (µS/cm)			ואנהא				1416.5	
d Meter		Specific Conductance Standard (µS/cm)			1413				1413	
In-Situ smarTROLL Field Meter	<i>Chehru</i>	pH Measure- ments	5.0	1	10.0		4.0	1.1	10.0	5
In-Situ sm	LU	pH Standards	4.00 =	7.00 =	1000		4.00 =	7,00 =	1	- 8.5
iments:	S/N #:	Time		01/24/ 1005 2021 1005					laus	
Field Instruments: S/N #: Date Time				3/20	1202			01/26/	902	
			-	uoj	ginning Calibrat		>	Checl	of Day	pu∃

The Multi-Probe Field Meter measures Temperature. Specific Conductance, Dissolved Oxygen, pH, and Oxidation Reduction Potential. Notes:

The HF scientific, inc. Micro TPI Field Portable Turbidimeter measures Turbidity.

Dissolved oxygen is calibrated via % saturation method; however, field measurements are recorded as mg/l.

I certify that the aforementioned meters were calibrated within the manufacturers specifications.

BY NELIC Date: 01/26/2021

Paper

January 2017

Prepared by: GREDELL Engineering Resources, Inc.

Monitoring Well Field Inspection

19	Facility: <u>SBMU SPS – CCR Groundwater Monitoring</u> Monitoring Well ID: <u>MW7</u> Name (Field Staff): <u>A Pater O Dilling hum</u> Date: <u>I - 26 - 2021</u>									
-	Accessibility: Good <u>Fair</u> Poor Well clear of weeds and/or debris?: Yes <u>Yes</u> No Well identification clearly visible?: Yes <u>No</u> Remarks: <u>Concrete Pad</u> :									
	Condition of Concrete Pad: Good Inadequate Depressions or standing water around well?: Yes No <u>/</u> Remarks:									
	Protective Outer Casing:Material = $\underline{4^* \times 4^*}$ Steel Hinged Casing with HaspCondition of Protective Casing:Good $\underline{\checkmark}$ DamagedCondition of Locking Cap:Good $\underline{\checkmark}$ Damaged									
))	Condition of Lock: Good Damaged Condition of Weep Hole: Good Damaged									
-	Well Riser: Material = 2" Diameter, Schedule 40 PVC, Flush Threaded Condition of Riser: Good Damaged									
	Condition of Riser Cap: Good Damaged Measurement Reference Point: Yes No									
	Remarks: <u>Dedicated Purging/Sampling Device</u> : Type = <u>1/4</u> " ID Semi-Rigid Polyethylene & 0.170" ID Flexible <u>Silicone Tubing</u>									
-	Condition: Good Damaged Missing Remarks: Monitoring Well Locked/Secured Post Sampling?: Yes L No									
	Remarks:									
	Field Certification AGMED False Lars Jeen 1126/2021 Signed . Title Date									

Prepared by: GREDELL Engineering Resources, Inc.

January 2017

Monitor	ing Well ID:	Mw	7 Faci	ility: SBMU	Sikeston Po	wer Statio	n - Groundw	ater Monitor	ing	
Initial Wate	r Level (feet	t btoc):	18.52		(Date:	126/0	2021		
		vation (NAVD		* *		Air Pressur	e in Well?	Y I 🕅		
PURGE IN	FORMATIO	N					Mr. 1			
Date:	1/26									
Name (San	nple Collecte	or):	Dilli	ngha	m					i)
Method of \	Nell Purge:	Low Flow	Perstaltic F	Pump	Ded	licated Tub	ing?	Y) / N		
Time Purai	ng Initiated:	1	052		One) (1) Well V	/olume (mL):		NA	
	•	(feet btoc):		8.52	 Tota	al Volume F	Purged (mL)		826	3
							o Dryness?		Y / 🕅	
		r Elevation (N				Ū			1.50	2
Well Total I	Depth (feet	btoc):	3 (- 2 (Wa		iter Sampling e., pump is o			×
Casing Dia	meter (feet)	: 2" Sch 40	OPVC		Tim	e Sampling	completed	:	112	7
		0.0000000000000000000000000000000000000				o oan piniş				
PURGE ST	ABILIZATIO	ON DATA Cumulative		Specific	Dissolved		Oxidation		Water	Notes
Time	Purge Rate	Volume	Temp (°C)	Conductance	Oxygen	рН (S.U.)	Reduction Potential	Turbidity (NTU)	Level	(e.g., opacity, color, odor)
l)	(mL/min)	(mL)		(µS/cm)	(mg/L)		(mV)	1.35	(feet btoc)	Clear, odor
1054	011	320	17.71	811.34	1.00	7.5	27.1	1.00	10.55	1' 1 0dor
1056	240	800	16.87	825.74		7.5	19.5	0.68	18.52	1 <u> </u>
1058		1280	16.62	823.24		7.5	5.9	0,64	18.52	v. 03
1100	250	1780	16.70	816.05	A	7.4	05	0.47	18.52	N 11
1102		2300	16.51	796.72		7.4	-11.8	0.52	18.60	N N
1004	<i>৯</i> ९৩ <i>৯</i> ९৩	2800	16.48	826.73		7.4	-18.3	0.43	18.52	11 4
1108	250	3800	16.37	826.37		7.4	-22.7	0,52	18.52	******
1110		4340	16.40	824.20		7.4	-27.6	0.51	18.52	11 Y
1112	1	4820	16.26			7.4		0.44	18.50	11 9
1114	2	5300	16.11	837.56		7.4	-362	0.51	18.52	N 5
((16	250	5800	16.07		3.31	7.4	-38.4	0.54	18.52	
1118	250		15.94	842.16	0.29	7.4	-42.0	0.36	18.52	11 // 11 //
1150		6780	16.22	841.53		7.4	-44.0		18.52	
1122		7260		834.33		7.4	-46.1		18.52	1, 1,
1124	940			827.89		7.4	-47.9		18.52	
1126	260	8260	16.00	823.44	2.27	7.4	-49.2	0.41	18.52	
10 C										

btoc - below top of casing

)

Facility:	SBMU Sikeston	Power Station -	CCR Groundwa	ater Monitoring	Moni	toring Wel	ID:	W7
Sampling Informa	ation:	3 2			··· · ·			
Method of Samplin	ng: Low Flow -	- Perstaltic Pum	p & Tubing		**		Dedicated:	(Y) / N
Water Level @ Sa		: 17.5	2					
-	Annual ()			erly (`i)	Monthly	()	Other 🔀	
Monitoring Event:				, , , , , , , , , , , , , , , , , , ,	monting	()	y ,	
Final Purge Stabliz	ation Sampling L		Specific		T		Oxidation	
<u>Date</u> Sample Time	Sample Rate (mL/min)	Temp (°C)	Conductance (µS/cm)	Dissolved Ox (mg/L)		рН (S.U.)	Reduction Potential (mV)	Turbidity (NTU)
01/26/2021	260	16.40	823.44	0.27	7	.4	-49.2	5.41
General Information	ns @ time of sam	ear, (s)	Iorless,	02512	25	2		No. 2
Sample Collection	Order:	Per SAP			3	-		
Comments and Ol	bservations:				2 2 2			
<u>*</u> *			0 22 BC	й. ЭК. Ж			34 ×	
		ी 24 36		lin.		2		
		2 I.		*: 			(n. 1916)	
		E			ŧ,	<u>_</u> *	10 III III III III III III III III III I	
	χ		5.4		•	т. 72	. 5	
8. B					. AC		5	
	2	2			•			
11.0	t a	8		<u>د</u> در این				
	* 4				17. 47 			
				r 9	- ²	×		
<u> </u>		a.			to protocolo			

I certify that sampling procedures were in accordance with applicable EPA and State protocols.

Date: 126/2021 By: Achiros Pully

_____ Title: Les Tech

Page 2 of 2

Monitoring Well Field Inspection

Facility: <u>SBMU SPS – CCR Groundwater Monitoring</u> Monitoring Well ID: <u>MW 9</u> Name (Field Staff): <u>A PGLE(D Oilling hum</u>	e.
Date: $61 - 26 - 2021$	
Access: Accessibility: Good — Fair Poor	r
Well clear of weeds and/or debris?: Yes 🗠 No	
Well identification clearly visible?: Yes 🕍 No	
Remarks:	
Concrete Pad: Good Legender Inadequate	
Depressions or standing water around well?: Yes No	
Remarks:	
<u>Protective Outer Casing</u> : Material = $\frac{4^{\circ} \times 4^{\circ}}{5 \times 4^{\circ}}$ Steel Hinged Casing with Has	<u>D</u>
Condition of Protective Casing: Good <u></u> Damaged	
Condition of Locking Cap: Good <u></u> Damaged	
Condition of Lock: Good <u>Condition</u> Damaged	
Condition of Weep Hole: Good <u>Condition</u> Damaged	
Remarks:	
Well Riser: Material = 2" Diameter, Schedule 40 PVC, Flush Threaded	
Condition of Riser: Good <u> </u>	
Condition of Riser Cap: Good <u>C</u> Damaged	
Measurement Reference Point: Yes No	
Remarks:	
Dedicated Purging/Sampling Device: Type = <u>1/4</u> " ID Semi-Rigid Polyethylene & Silicone Tubing	0.170" ID Flexible
Condition: Good L Damaged Missing	
Remarks:	
Monitoring Well Locked/Secured Post Sampling?: Yes Vo	
Remarks:	
Field Certification AST, 32 Pasel, Las Tech	1/26/2021
Signed Title	Date

Prepared by: GREDELL Engineering Resources, Inc.

January 2017

	Monito	ring Well ID	MW	Y Fac	ility: SBML	J Sikeston P	ower Statio	n - Groundw	vater Monitor	ing		
I	Initial Wate	er Level (fee	t btoc):	17.86			Date: 0	1/261	2021			
	Initial Grou	ndwater Ele	vation (NAVE)88):			Air Pressu	re in Well?	Y /			
1	PURGE IN	FORMATIO	N									
	Date:	1/21	2021		N							
	Ńame (Sar	nple Collect	or):	0:11	insha	m						
		Well Purge:	1500	Perstaltic F			dicated Tub	oing?	Y/N			
	Time Purai	ng Initiated:		144		On	e (1) Well V	/olume (mL)	:	NA		
		-			7 20					8800		
					7.86			Purged (mL)	1			
	Beginning	Groundwate	er Elevation (N	AVD88):				o Dryness?		Y / 🖉		
	Well Total	Depth (feet	btoc):	37.12		Wa		fter Samplin e., pump is o	g (feet btoc):	17.5	76	
	Casing Dia	meter (feet)	: <u>2" Sch 4</u>	0 PVC						122	2	
						Tin	ne Sampling	g Completed): (149	5	
	PURGE ST	TABILIZATI	ON DATA			1		Oxidation	· · · · ·	_		
	Time	Purge Rate	Cumulative Volume	Temp	Specific Conductance	Dissolved Oxygen	pН	Reduction	Turbidity	Water Level		lotes , opacity,
		(mL/min)	(mL)	(°C)	(µS/cm)	(mg/L)	(S.U.)	Potential (mV)	(NTU)	(feet btoc)	colo	or, odor)
đ	1146		300	16.51	957.59	1.32	7.6	-58.9	0.73	17.86	clear,	odor
	1148	220	740	16.43	470.73		7.5	=60.0		17.86	n	11
	1150		1180	16.20	977.57	0.67	7.5	-61.2	0.56	17.86	I	11
	1152	200	1580	16-49	966.46		7.5	-59.6	0.Su	17.86	NI NI	<u>\j</u>
	1154	210		16.44	976.11		7.5	-64.6	0.45	17.86	1	<i>h</i>
	1156	230			968.43		1.5	-65.6		17.86	III.	•/
P	1158	050	2960	16.44	18.15	J.LK	7.5	-66.1	0.43	17.86	II.	tr
0	Rico				973.45		7.5	-67.4	0.47	17.86	ų	У
	1202	250		15.84	970.45	0.45	7.5	-67.8	0.43	17.86	u	11
	1204	230	4820	15.91	977.99	0.2	7.5	-66.1	0.53	17.86	11	و او
	1208		6280		965.74		7.5	-66.6	0.46	17.86	13	1
	1210			16.34	966.13		7.5	- 67.2	0.44	17.86	15	Ŋ
	1212	270	6300	16.15	974.67		7.5	-67.0	0.53	17.86	11	y
	1214	250	6800	15.84	979.97	0.35	7.5	-65.2	0.42	17.86	u u	11 D
	1216	240	7280	16.01	976.70	0-34	7-5	-65-6	0.62	17.86		<i>"</i> <i>1</i>
	1218	240		15.92	973 53	0.35	7.5	-70.3		17.86	IN IN	
	1220	280	8320	16-19	975.47	0.34	7.5	-69.2		17.86	u.	1
1	1222	Quo	8800	16.07	971.71	0.34	7.5	-69.1	0.47	17.86		-

btoc - below top of casing

Sampling Information:						
	our Docataltia D	ump P Tubing			Dedicated:	(Y) / N
	ow - Perstaltic Pi		· · · · · · · · · · · · · · · · · · ·	<u></u>	Dedicated	07 1
Nater Level @ Sampling (feet I	otoc):	86				
Monitoring Event: Annua	() Semi-An	nual () Quart	erly () M	lonthly()	Other 📉	
Final Purge Stablization Sampli	ng Data:		1		Oxidation	1
Date Sample Ra Sample Time (mL/min)		Specific Conductance (µS/cm)	Dissolved Oxygen (mg/L)	рН (S.U.)	Reduction Potential (mV)	Turbidity (NTU)
01/26/2021 240	16.07	971.71	0.34	7.5	-69-1	0,47
General Information: Weather Conditions @ time of s	sampling:	SUNNY				
Weather Conditions @ time of s			6261855			4 6
Weather Conditions @ time of s <u>50°F</u> Sample Characteristics:	Clear,	Colortess	6 dorless	× ×		94 ⁽³⁷ 4) 1
Neather Conditions @ time of $50^{\circ}F$		Colortess	6 dorress	9 ⁹⁰ 1		
Weather Conditions @ time of s <u>50°F</u> Sample Characteristics: Sample Collection Order:	Clear,	Colortess	. 6 dorress	x *	*	14 14 11 14 14
Neather Conditions @ time of s <u>50°F</u> Sample Characteristics:	Clear,	Colortess	. SJorress	30 ³⁰ 2 ¹		
Weather Conditions @ time of s 50°F Sample Characteristics: Sample Collection Order:	Clear,	Colortess	6 Joness	3 ³⁶ 16 16		
Weather Conditions @ time of s <u>50°F</u> Sample Characteristics: Sample Collection Order:	Clear,	Colortess	6 Joness	9 ⁹⁰ 1 1 1		
Weather Conditions @ time of s <u>50°F</u> Sample Characteristics: Sample Collection Order:	Clear,	Colortess	6 Joness	3 ³ 1 1		
Weather Conditions @ time of s <u>50°F</u> Sample Characteristics: Sample Collection Order:	Clear,	Colortess	6 Joness	x x x x		
Weather Conditions @ time of s <u>50°F</u> Sample Characteristics: Sample Collection Order:	Clear,	Colortess	6 Joness	x x x x		
Weather Conditions @ time of s 50°F Sample Characteristics: Sample Collection Order:	Clear,	Colortess	. 6 dorress	x x		
Weather Conditions @ time of s <u>50°F</u> Sample Characteristics: Sample Collection Order:	Clear,	Colortess	. 6 Joness	x *		

Date: 1/26/20/1By: 18282 PG22

Title: Las Tech

Page 2 of 2

Appendix 2

Laboratory Analytical Results

Appendix 2

Laboratory Analytical Results April 6, 2020

April 16, 2020

Luke St Mary Sikeston BMU, Sikeston Power Station 1551 W Wakefield Sikeston, MO 63801

RE: Sikeston BMU-CCR Fly Ash Wells

Dear Luke St Mary:

Please find enclosed the analytical results for the **7** sample(s) the laboratory received on **4/8/20 10:00 am** and logged in under work order **0041811**. All testing is performed according to our current TNI accreditations unless otherwise noted. This report cannot be reproduced, except in full, without the written permission of PDC Laboratories, Inc.

If you have any questions regarding your report, please contact your project manager. Quality and timely data is of the utmost importance to us.

PDC Laboratories, Inc. appreciates the opportunity to provide you with analytical expertise. We are always trying to improve our customer service and we welcome you to contact the Director of Client Services, Lisa Grant, with any feedback you have about your experience with our laboratory at 309-683-1764 or Igrant@pdclab.com.

Sincerely,

Yert

Kurt Stepping Senior Project Manager (309) 692-9688 x1719 kstepping@pdclab.com

Sample: 0041811-01 Name: MW-1 Matrix: Ground Wat	er - Regular	Sample					Sampled: 04/06/2 Received: 04/08/2 PO #: 23574		
Parameter	Result	Unit	Qualifier	Prepared	Dilution	MRL	Analyzed	Analyst	Method
Anions - PIA									
Chloride	5.4	mg/L		04/14/20 10:34	1	1.0	04/14/20 10:34	LAM	EPA 300.0 REV 2.1
Fluoride	0.255	mg/L		04/14/20 10:34	1	0.250	04/14/20 10:34	LAM	EPA 300.0 REV 2.1
Sulfate	39	mg/L	Q4	04/14/20 11:29	5	5.0	04/14/20 11:29	LAM	EPA 300.0 REV 2.1
General Chemistry - PIA									
Solids - total dissolved solids (TDS)	230	mg/L		04/09/20 13:28	1	26	04/09/20 14:08	CPC	SM 2540C
<u> Total Metals - PIA</u>									
Boron	520	ug/L		04/14/20 08:45	5	10	04/16/20 08:49	JMW	EPA 6020A
Calcium	48000	ug/L		04/14/20 08:45	5	100	04/15/20 08:03	JMW	EPA 6020A
Sample: 0041811-02 Name: MW-2 Matrix: Ground Wat	er - Regular	Sample					Sampled: 04/06/2 Received: 04/08/2 PO #: 23574		
Parameter	Result	Unit	Qualifier	Prepared	Dilution	MRL	Analyzed	Analyst	Method
<u> Anions - PIA</u>									
Chloride	2.1	mg/L		04/14/20 11:47	1	1.0	04/14/20 11:47	LAM	EPA 300.0 REV 2.1
Fluoride	0.336	mg/L		04/14/20 11:47	1	0.250	04/14/20 11:47	LAM	EPA 300.0 REV 2.1
	0.550	mg/L		04/14/20 11.47	I	0.200	0 11 1 20 11111		
Sulfate	16	mg/L	Q4	04/14/20 12:41	5	5.0	04/14/20 12:41	LAM	EPA 300.0 REV 2.1
		-	Q4						
<u>General Chemistry - PIA</u> Solids - total dissolved		-	Q4						
General Chemistry - PIA Solids - total dissolved solids (TDS)	16	mg/L	Q4	04/14/20 12:41	5	5.0	04/14/20 12:41	LAM	EPA 300.0 REV 2.1
Sulfate <u>General Chemistry - PIA</u> Solids - total dissolved solids (TDS) <u>Total Metals - PIA</u> Boron	16	mg/L	Q4	04/14/20 12:41	5	5.0	04/14/20 12:41	LAM	EPA 300.0 REV 2.1

Sample: 0041811-03 Name: MW-3 Matrix: Ground Wa	3 ater - Regular	Sample					Sampled: 04/06/2 Received: 04/08/2 PO #: 23574		
Parameter	Result	Unit	Qualifier	Prepared	Dilution	MRL	Analyzed	Analyst	Method
Anions - PIA									
Chloride	1.8	mg/L		04/13/20 19:38	1	1.0	04/13/20 19:38	KCC	EPA 300.0 REV 2.1
Fluoride	0.371	mg/L		04/13/20 19:38	1	0.250	04/13/20 19:38	KCC	EPA 300.0 REV 2.1
Sulfate	20	mg/L		04/13/20 20:33	10	10	04/13/20 20:33	KCC	EPA 300.0 REV 2.1
General Chemistry - PIA									
Solids - total dissolved solids (TDS)	380	mg/L		04/09/20 13:28	1	26	04/09/20 14:08	CPC	SM 2540C
<u> Total Metals - PIA</u>									
Boron	29	ug/L		04/14/20 08:45	5	10	04/16/20 09:12	JMW	EPA 6020A
Calcium	16000	ug/L		04/14/20 08:45	5	100	04/15/20 08:10	JMW	EPA 6020A
Sample: 0041811-04 Name: MW-7 Matrix: Ground Wa	1 ater - Regular	Sample					Sampled: 04/06/2 Received: 04/08/2 PO #: 23574		
Parameter	Result	Unit	Qualifier	Prepared	Dilution	MRL	Analyzed	Analyst	Method
Anions - PIA									
Chloride	4.0	mg/L		04/13/20 20:51	1	1.0	04/13/20 20:51	KCC	EPA 300.0 REV 2.1
Fluoride	0.737	mg/L		04/13/20 20:51	1	0.250	04/13/20 20:51	KCC	EPA 300.0 REV 2.1
Sulfate	200	mg/L		04/13/20 21:09	25	25	04/13/20 21:09	KCC	EPA 300.0 REV 2.1
General Chemistry - PIA									
Solids - total dissolved solids (TDS)	540	mg/L		04/09/20 13:28	1	26	04/09/20 14:08	CPC	SM 2540C
<u> Total Metals - PIA</u>									
				04/44/00 00 45	-		04/40/00 00 00		
Boron	2200	ug/L		04/14/20 08:45	5	10	04/16/20 09:20	JMW	EPA 6020A

Sample: 0041811-05 Name: MW-9 Matrix: Ground Wa	i iter - Regular	Sample					Sampled: 04/06/2 Received: 04/08/2 PO #: 23574		
Parameter	Result	Unit	Qualifier	Prepared	Dilution	MRL	Analyzed	Analyst	Method
Anions - PIA									
Chloride	18	mg/L	Q4	04/14/20 14:30	5	5.0	04/14/20 14:30	LAM	EPA 300.0 REV 2.1
Fluoride	0.816	mg/L	Q3	04/14/20 12:59	1	0.250	04/14/20 12:59	LAM	EPA 300.0 REV 2.1
Sulfate	250	mg/L	Q4	04/14/20 14:48	25	25	04/14/20 14:48	LAM	EPA 300.0 REV 2.1
General Chemistry - PIA									
Solids - total dissolved solids (TDS)	840	mg/L		04/09/20 13:28	1	26	04/09/20 14:08	CPC	SM 2540C
<u> Total Metals - PIA</u>									
Boron	4900	ug/L		04/14/20 08:45	5	10	04/16/20 09:23	JMW	EPA 6020A
Calcium	92000	ug/L		04/14/20 08:45	5	100	04/15/20 08:18	JMW	EPA 6020A
Sample: 0041811-06 Name: DUPLICATE Matrix: Ground Wa		Sample					Sampled: 04/06/2 Received: 04/08/2 PO #: 23574		
Parameter	Result	Unit	Qualifier	Prepared	Dilution	MRL	Analyzed	Analyst	Method
Anions - PIA									
Chloride	2.0	mg/L		04/14/20 15:06	1	1.0	04/14/20 15:06	LAM	EPA 300.0 REV 2.1
Fluoride	0.287	mg/L		04/14/20 15:06	1	0.250	04/14/20 15:06	LAM	EPA 300.0 REV 2.1
Sulfate	16	mg/L		04/14/20 15:24	5	5.0	04/14/20 15:24	LAM	EPA 300.0 REV 2.1
General Chemistry - PIA									
Solids - total dissolved solids (TDS)	160	mg/L		04/09/20 13:28	1	26	04/09/20 14:08	CPC	SM 2540C
<u>Total Metals - PIA</u>									
Boron	80	ug/L		04/14/20 08:45	5	10	04/16/20 09:27	JMW	EPA 6020A
Calcium	15000	ug/L		04/14/20 08:45	5	100	04/15/20 08:30	JMW	EPA 6020A

Sample: 0041811-07 Sampled: 04/06/20 00:00 Name: FIELD BLANK Received: 04/08/20 10:00 Matrix: Ground Water - Regular Sample PO #: 23574											
Parameter	Result	Unit	Qualifier	Prepared	Dilution	MRL	Analyzed	Analyst	Method		
Anions - PIA											
Chloride	< 1.0	mg/L		04/14/20 16:01	1	1.0	04/14/20 16:01	LAM	EPA 300.0 REV 2.1		
Fluoride	< 0.250	mg/L		04/14/20 16:01	1	0.250	04/14/20 16:01	LAM	EPA 300.0 REV 2.1		
Sulfate	< 1.0	mg/L		04/14/20 16:01	1	1.0	04/14/20 16:01	LAM	EPA 300.0 REV 2.1		
General Chemistry - PIA											
Solids - total dissolved solids (TDS)	< 17	mg/L		04/09/20 13:28	1	17	04/09/20 14:08	CPC	SM 2540C		
<u> Total Metals - PIA</u>											
Boron	23	ug/L		04/14/20 08:45	5	10	04/16/20 09:31	JMW	EPA 6020A		
Calcium	< 100	ug/L		04/14/20 08:45	5	100	04/15/20 08:33	JMW	EPA 6020A		

Appendix 2

Laboratory Analytical Results May 21, 2020 Resample

June 15, 2020

Luke St Mary Sikeston BMU, Sikeston Power Station 1551 W Wakefield Sikeston, MO 63801

RE: Sikeston Bottom Ash App III and App IV 2019

Dear Luke St Mary:

Please find enclosed the analytical results for the **6** sample(s) the laboratory received on **5/26/20 8:00 am** and logged in under work order **0054242**. All testing is performed according to our current TNI accreditations unless otherwise noted. This report cannot be reproduced, except in full, without the written permission of PDC Laboratories, Inc.

If you have any questions regarding your report, please contact your project manager. Quality and timely data is of the utmost importance to us.

PDC Laboratories, Inc. appreciates the opportunity to provide you with analytical expertise. We are always trying to improve our customer service and we welcome you to contact the Director of Client Services, Lisa Grant, with any feedback you have about your experience with our laboratory at 309-683-1764 or Igrant@pdclab.com.

Sincerely,

Kurt

Kurt Stepping Senior Project Manager (309) 692-9688 x1719 kstepping@pdclab.com

Sample: 0054242-01 Name: MW-1 Alias: RESAMPLE							Sampled: 05/21/2 Received: 05/26/2 Matrix: Ground PO #: 23573	0 08:00	gular Sample
Parameter	Result	Unit	Qualifier	Prepared	Dilution	MRL	Analyzed	Analyst	Method
Anions - PIA									
Sulfate	63	mg/L		06/02/20 00:17	10	10	06/02/20 00:17	KCC	EPA 300.0 REV 2.1
General Chemistry - PIA									
Solids - total dissolved solids (TDS)	260	mg/L		05/28/20 07:45	1	26	05/28/20 08:44	BMS	SM 2540C
<u>Total Metals - PIA</u>									
Calcium	60000	ug/L		06/09/20 13:19	5	200	06/11/20 08:51	JMW	EPA 6020A
Sample: 0054242-02 Name: DUPLICATE Alias: RESAMPLE							Sampled: 05/21/2 Received: 05/26/2 Matrix: Ground PO #: 23573	0 08:00	gular Sample
Parameter	Result	Unit	Qualifier	Prepared	Dilution	MRL	Analyzed	Analyst	Method
Anions - PIA									
Sulfate	16	mg/L		06/04/20 14:35	5	5.0	06/04/20 14:35	MGU	EPA 300.0 REV 2.1
General Chemistry - PIA									
Solids - total dissolved	100	mg/L	н	05/29/20 12:45	1	17	05/29/20 13:05	BMS	SM 2540C
solids (TDS) Solids - total dissolved solids (TDS)	90	mg/L	М, Х	05/28/20 07:45	1	17	05/28/20 08:44	BMS	SM 2540C
<u>Total Metals - PIA</u>									
Calcium	18000	ug/L		06/09/20 13:19	5	200	06/11/20 08:54	JMW	EPA 6020A

Sample: 0054242-03 Name: MW-2 Alias: RESAMPLE							Sampled: 05/21/ Received: 05/26/ Matrix: Groun	20 08:00	gular Sample
							PO #: 23573		
Parameter	Result	Unit	Qualifier	Prepared	Dilution	MRL	Analyzed	Analyst	Method
Anions - PIA									
Fluoride	0.374	mg/L		06/02/20 00:35	1	0.250	06/02/20 00:35	KCC	EPA 300.0 REV 2.1
<u>Total Metals - PIA</u>									
Boron	36	ug/L		06/09/20 13:19	5	10	06/11/20 08:58	JMW	EPA 6020A
Sample: 0054242-04 Name: MW-3 Alias: RESAMPLE							Sampled: 05/21/ Received: 05/26/ Matrix: Groun	20 08:00	gular Sample
							PO #: 23573		
Parameter	Result	Unit	Qualifier	Prepared	Dilution	MRL	Analyzed	Analyst	Method
Anions - PIA									
Chloride	1.5	mg/L	Q1	06/02/20 02:06	1	1.0	06/02/20 02:06	KCC	EPA 300.0 REV 2.1
General Chemistry - PIA									
Solids - total dissolved solids (TDS)	130	mg/L		05/28/20 07:45	1	26	05/28/20 08:44	BMS	SM 2540C
Sample: 0054242-05 Name: MW-9 Alias: RESAMPLE							Sampled: 05/21/ Received: 05/26/ Matrix: Groun	20 08:00	gular Sample
							PO # : 23573		
Parameter	Result	Unit	Qualifier	Prepared	Dilution	MRL	Analyzed	Analyst	Method
General Chemistry - PIA									
Solids - total dissolved solids (TDS)	560	mg/L		05/28/20 07:45	1	26	05/28/20 08:44	BMS	SM 2540C

Sample: 0054242-06 Sampled: 05/21/20 00:00 Name: FIELD BLANK Received: 05/26/20 08:00 Matrix: Ground Water - Regular Sample PO #: 23573											
Parameter	Result	Unit	Qualifier Pre	pared Dilution	MRL	Analyzed	Analyst	Method			
Anions - PIA											
Chloride	< 1.0	mg/L	06/02/2	20 03:01 1	1.0	06/02/20 03:01	KCC	EPA 300.0 REV 2.1			
Fluoride	< 0.250	mg/L	06/02/2	20 03:01 1	0.250	06/02/20 03:01	KCC	EPA 300.0 REV 2.1			
Sulfate	< 1.0	mg/L	06/02/2	20 03:01 1	1.0	06/02/20 03:01	KCC	EPA 300.0 REV 2.1			
<u>General Chemistry - PIA</u>											
Solids - total dissolved solids (TDS)	< 17	mg/L	05/28/2	20 07:45 1	17	05/28/20 08:44	BMS	SM 2540C			
Total Metals - PIA											
Boron	< 10	ug/L	06/09/2	20 13:19 5	10	06/11/20 09:02	JMW	EPA 6020A			
Calcium	220	ug/L	06/09/2	20 13:19 5	200	06/11/20 09:02	JMW	EPA 6020A			

Appendix 2

Laboratory Analytical Results September 22, 2020

October 16, 2020

Luke St Mary Sikeston BMU, Sikeston Power Station 1551 W Wakefield Sikeston, MO 63801

RE: Sikeston BMU-CCR Fly Ash Wells

Dear Luke St Mary:

Please find enclosed the **revised** analytical results for the **7** sample(s) the laboratory received on **9/24/20 10:00 am** and logged in under work order **0095312**. All testing is performed according to our current TNI accreditations unless otherwise noted. This report cannot be reproduced, except in full, without the written permission of PDC Laboratories, Inc.

If you have any questions regarding your report, please contact your project manager. Quality and timely data is of the utmost importance to us.

PDC Laboratories, Inc. appreciates the opportunity to provide you with analytical expertise. We are always trying to improve our customer service and we welcome you to contact the Director of Client Services, Lisa Grant, with any feedback you have about your experience with our laboratory at 309-683-1764 or lgrant@pdclab.com.

Sincerely,

Kurt Stepping Senior Project Manager (309) 692-9688 x1719 kstepping@pdclab.com

SAMPLE RECEIPT CHECK LIST

Work Order 0095312

YES	Samples received within temperature compliance
YES	COC present
YES	COC completed & legible
YES	Sampler name & signature present
YES	Unique sample IDs assigned
YES	Sample collection location recorded
YES	Date & time collected recorded on COC
YES	Relinquished by client signature on COC
YES	COC & labels match
YES	Sample labels are legible
YES	Appropriate bottle(s) received
YES	Sufficient sample volume received
YES	Samples are free from signs of damage & contamination
NO	No headspace >6 mm present in VOA vials or TOX bottles
NO	Sulfide bottle(s) completely filled if required
NO	Trip blank(s) received if required
NO	Custody seals used
NO	Custody seals intact
YES	All analyses received within holding times
NO	Short hold time analysis requested
NO	RUSH TAT requested
NO	Field parameters recorded on COC
YES	Current PDC COC submitted
NO	Sample receipt case narrative provided

Sample: 0095312-01 Name: MW-1 Matrix: Ground Wa							Sampled: 09/22/2 Received: 09/24/2 PO #: 23574		
Parameter	Result	Unit	Qualifier	Prepared	Dilution	MRL	Analyzed	Analyst	Method
Anions - PIA									
Chloride	5.9	mg/L		09/29/20 21:52	1	1.0	09/29/20 21:52	CRD	EPA 300.0 REV 2.1
Fluoride	< 0.250	mg/L		09/29/20 21:52	1	0.250	09/29/20 21:52	CRD	EPA 300.0 REV 2.1
Sulfate	67	mg/L		09/30/20 16:49	10	10	09/30/20 16:49	CRD	EPA 300.0 REV 2.1
<u> General Chemistry - PIA</u>									
Solids - total dissolved solids (TDS)	310	mg/L		09/28/20 09:52	1	26	09/28/20 11:16	BCR	SM 2540C
<u> Total Metals - PIA</u>									
Boron	620	ug/L		10/08/20 09:47	5	10	10/15/20 12:13	JMW	EPA 6020A
Calcium	67000	ug/L		10/08/20 09:47	5	200	10/15/20 08:14	JMW	EPA 6020A
Sample: 0095312-02 Name: MW-2 Matrix: Ground Wa							Sampled: 09/22/2 Received: 09/24/2 PO #: 23574		
Parameter	Result	Unit	Qualifier	Prepared	Dilution	MRL	Analyzed	Analyst	Method
Anions - PIA									
Chloride	4.8	mg/L		09/29/20 22:28	1	1.0	09/29/20 22:28	CRD	EPA 300.0 REV 2.1
Fluoride	< 0.250	mg/L		09/29/20 22:28	1	0.250	09/29/20 22:28	CRD	EPA 300.0 REV 2.1
Sulfate	17	mg/L		09/29/20 23:22	5	5.0	09/29/20 23:22	CRD	EPA 300.0 REV 2.1
General Chemistry - PIA									
	150	mg/L		09/28/20 09:52	1	26	09/28/20 11:16	BCR	SM 2540C
Solids - total dissolved solids (TDS)									
solids (TDS)	68	ug/L	В	10/08/20 09:47	5	10	10/15/20 12:17	JMW	EPA 6020A

Sample: 0095312-03 Name: MW-3 Matrix: Ground Water - Grab						Sampled: 09/22/20 07:50 Received: 09/24/20 10:00 PO #: 23574			
Parameter	Result	Unit	Qualifier	Prepared	Dilution	MRL	Analyzed	Analyst	Method
Anions - PIA									
Chloride	1.1	mg/L		09/29/20 23:41	1	1.0	09/29/20 23:41	CRD	EPA 300.0 REV 2.1
Fluoride	< 0.250	mg/L		09/30/20 17:07	1	0.250	09/30/20 17:07	CRD	EPA 300.0 REV 2.1
Sulfate	17	mg/L		09/29/20 23:59	5	5.0	09/29/20 23:59	CRD	EPA 300.0 REV 2.1
General Chemistry - PIA									
Solids - total dissolved solids (TDS)	120	mg/L		09/28/20 09:52	1	26	09/28/20 11:16	BCR	SM 2540C
<u>Total Metals - PIA</u>									
Boron	31	ug/L	В	10/08/20 09:47	5	10	10/15/20 12:21	JMW	EPA 6020A
Calcium	17000	ug/L		10/08/20 09:47	5	200	10/15/20 08:21	JMW	EPA 6020A
Sample: 0095312-04 Name: MW-7 Matrix: Ground Water - Grab							Sampled:09/22/20 12:22Received:09/24/20 10:00PO #:23574		
Parameter	Result	Unit	Qualifier	Prepared	Dilution	MRL	Analyzed	Analyst	Method
Anions - PIA									
Chloride	3.1	mg/L		09/30/20 00:17	1	1.0	09/30/20 00:17	CRD	EPA 300.0 REV 2.1
Fluoride	0.628	mg/L		09/30/20 17:25	1	0.250	09/30/20 17:25	CRD	EPA 300.0 REV 2.1
Sulfate	110	mg/L		09/30/20 00:35	50	50	09/30/20 00:35	CRD	EPA 300.0 REV 2.1
General Chemistry - PIA									
Solids - total dissolved solids (TDS)	460	mg/L		09/28/20 09:52	1	26	09/28/20 11:16	BCR	SM 2540C
<u>Total Metals - PIA</u>									
Boron	1700	ug/L		10/08/20 09:47	5	10	10/15/20 12:24	JMW	EPA 6020A
Calcium	100000	ug/L		10/08/20 09:47	5	200	10/15/20 08:25	JMW	EPA 6020A

Sample: 0095312-05 Name: MW-9 Matrix: Ground Water - Grab							Sampled:09/22/20 13:56Received:09/24/20 10:00PO #:23574			
Parameter	Result	Unit	Qualifier	Prepared	Dilution	MRL	Analyzed	Analyst	Method	
Anions - PIA										
Chloride	15	mg/L		09/30/20 01:11	5	5.0	09/30/20 01:11	CRD	EPA 300.0 REV 2.1	
Fluoride	0.832	mg/L		09/30/20 17:43	1	0.250	09/30/20 17:43	CRD	EPA 300.0 REV 2.1	
Sulfate	210	mg/L		09/30/20 01:29	25	25	09/30/20 01:29	CRD	EPA 300.0 REV 2.1	
General Chemistry - PIA										
Solids - total dissolved solids (TDS)	550	mg/L		09/28/20 09:52	1	26	09/28/20 11:16	BCR	SM 2540C	
<u>Total Metals - PIA</u>										
Boron	5000	ug/L		10/08/20 09:47	5	10	10/15/20 12:28	JMW	EPA 6020A	
Calcium	80000	ug/L		10/08/20 09:47	5	200	10/15/20 08:28	JMW	EPA 6020A	
Sample: 0095312-06 Name: DUPLICATE Matrix: Ground Wa		plicate					Sampled: 09/22/2 Received: 09/24/2 PO #: 23574			
Parameter	Result	Unit	Qualifier	Prepared	Dilution	MRL	Analyzed	Analyst	Method	
Anions - PIA										
Chloride	5.9	mg/L		09/30/20 01:48	1	1.0	09/30/20 01:48	CRD	EPA 300.0 REV 2.1	
Fluoride	< 0.250	mg/L		09/30/20 18:01	1	0.250	09/30/20 18:01	CRD	EPA 300.0 REV 2.1	
Sulfate	70	mg/L		09/30/20 03:04	50	50	09/30/20 03:04	CRD	EPA 300.0 REV 2.1	
General Chemistry - PIA										
Solids - total dissolved solids (TDS)	340	mg/L		09/28/20 09:52	1	26	09/28/20 11:16	BCR	SM 2540C	
<u>Total Metals - PIA</u>										
Boron	700	ug/L		10/08/20 09:47	5	10	10/15/20 12:32	JMW	EPA 6020A	
Calcium	66000	ug/L		10/08/20 09:47	5	200	10/15/20 08:32	JMW	EPA 6020A	

Name: FIELD BLANK Received:								09/22/20 13:56 09/24/20 10:00 23574		
Parameter	Result	Unit	Qualifier	Prepared	Dilution	MRL	Analyzed	Analyst	Method	
Anions - PIA										
Chloride	< 1.0	mg/L		09/30/20 03:23	1	1.0	09/30/20 03:23	CRD	EPA 300.0 REV 2.1	
Fluoride	< 0.250	mg/L		09/30/20 18:19	1	0.250	09/30/20 18:19	CRD	EPA 300.0 REV 2.1	
Sulfate	< 1.0	mg/L		09/30/20 03:23	1	1.0	09/30/20 03:23	CRD	EPA 300.0 REV 2.1	
<u>General Chemistry - PIA</u>										
Solids - total dissolved solids (TDS)	< 17	mg/L		09/28/20 09:52	1	17	09/28/20 11:16	BCR	SM 2540C	
Total Metals - PIA										
Boron	33	ug/L	В	10/08/20 09:47	5	10	10/15/20 12:35	JMW	EPA 6020A	
Calcium	< 200	ug/L		10/08/20 09:47	5	200	10/15/20 08:36	JMW	EPA 6020A	

Laboratory Analytical Results December 8, 2020 Resample

December 23, 2020

Luke St Mary Sikeston BMU, Sikeston Power Station 1551 W Wakefield Sikeston, MO 63801

RE: FLYASH RE-SAMPLES

Dear Luke St Mary:

Please find enclosed the analytical results for the 2 sample(s) the laboratory received on 12/10/20 10:00 am and logged in under work order 0122324. All testing is performed according to our current TNI accreditations unless otherwise noted. This report cannot be reproduced, except in full, without the written permission of PDC Laboratories, Inc.

If you have any questions regarding your report, please contact your project manager. Quality and timely data is of the utmost importance to us.

PDC Laboratories, Inc. appreciates the opportunity to provide you with analytical expertise. We are always trying to improve our customer service and we welcome you to contact the Director of Client Services, Lisa Grant, with any feedback you have about your experience with our laboratory at 309-683-1764 or lgrant@pdclab.com.

Sincerely,

Vin 1

Kurt Stepping Senior Project Manager (309) 692-9688 x1719 kstepping@pdclab.com

SAMPLE RECEIPT CHECK LIST

Items not applicable will be marked as in compliance

Work Order 0122324

YES	Samples received within temperature compliance when applicable
YES	COC present upon sample receipt
YES	COC completed & legible
YES	Sampler name & signature present
YES	Unique sample IDs assigned
YES	Sample collection location recorded
YES	Date & time collected recorded on COC
YES	Relinquished by client signature on COC
YES	COC & labels match
YES	Sample labels are legible
YES	Appropriate bottle(s) received
YES	Sufficient sample volume received
YES	Sample containers recieved undamaged
NO	Zero headspace, <6 mm present in VOA vials
NO	Trip blank(s) received
YES	All non-field analyses received within holding times
NO	Short hold time analysis
YES	Current PDC COC submitted
NO	Case narrative provided

ANALYTICAL RESULTS

Sample: 0122324-01 Name: MW-1 Matrix: Ground Wate	er - Grab						Sampled: 12/08/2 Received: 12/10/2 PO #: 23574		
Parameter	Result	Unit	Qualifier	Prepared	Dilution	MRL	Analyzed	Analyst	Method
Anions - PIA									
Sulfate	43	mg/L		12/11/20 13:30	10	10	12/11/20 13:30	CRD	EPA 300.0 REV 2.1
General Chemistry - PIA Solids - total dissolved	250	mg/L		12/11/20 08:04	1	26	12/11/20 10:51	BCR	SM 2540C
solids (TDS)									
<u>Total Metals - PIA</u>									
Boron	440	ug/L		12/17/20 10:53	5	10	12/22/20 07:13	JMW	EPA 6020A
Calcium	49000	ug/L		12/17/20 10:53	5	200	12/21/20 09:37	JMW	EPA 6020A
Sample: 0122324-02 Name: MW-2 Matrix: Ground Wate	er - Grab						•	20 11:17 20 10:00	
Parameter	Result	Unit	Qualifier	Prepared	Dilution	MRL	Analyzed	Analyst	Method
<u>Total Metals - PIA</u>									
Boron	49	ug/L		12/17/20 10:53	5	10	12/22/20 07:16	JMW	EPA 6020A

Laboratory Quality Assurance/Quality Control Data

Laboratory Quality Assurance/Quality Control Data April 6, 2020

Parameter	Result	Unit	Qual	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limi
Batch B008447 - No Prep - SM 2540C									
Blank (B008447-BLK1)				Prepared &	Analyzed: 04	/09/20			
Solids - total dissolved solids (TDS)	< 17	mg/L							
LCS (B008447-BS1)				Prepared &	Analyzed: 04	/09/20			
Solids - total dissolved solids (TDS)	1000	mg/L		1000		100	67.9-132		
Duplicate (B008447-DUP1)	Sample: 004119	5-01		Prepared &	Analyzed: 04	/09/20			
Solids - total dissolved solids (TDS)	1310	mg/L	М		727			58	5
Duplicate (B008447-DUP2)	Sample: 004119	5-02		Prepared &	Analyzed: 04	/09/20			
Solids - total dissolved solids (TDS)	427	mg/L	М		360			17	5
<u> Batch B008764 - SW 3015 - EPA 6020A</u>									
Blank (B008764-BLK1)				Prepared: 0	4/14/20 Anal	yzed: 04/16/2	0		
Boron	< 10	ug/L							
Calcium	< 100	ug/L							
LCS (B008764-BS1)				Prepared: 0	4/14/20 Anal	yzed: 04/16/2	0		
Boron	574	ug/L		555.6		103	80-120		
Calcium	5060	ug/L		5556		91	80-120		
Matrix Spike (B008764-MS1)	Sample: 004181	1-07		Prepared: 0	4/14/20 Anal	yzed: 04/16/2	0		
Boron	591	ug/L		555.6	23.4	102	75-125		
Calcium	5170	ug/L		5556	86.3	92	75-125		
Matrix Spike Dup (B008764-MSD1)	Sample: 004181	1-07		Prepared: 0	4/14/20 Anal	yzed: 04/16/2	0		
Boron	594	ug/L		555.6	23.4	103	75-125	0.5	20
Calcium	5420	ug/L		5556	86.3	96	75-125	5	20
<u> Batch B008794 - No Prep - EPA 300.0 REV 2.1</u>									
Calibration Blank (B008794-CCB1)				Prepared &	Analyzed: 04	/13/20			
Sulfate	0.0870	mg/L							
Fluoride	0.00	mg/L							
Chloride	0.297	mg/L							
Calibration Check (B008794-CCV1)				Prepared &	Analyzed: 04	/13/20			
Sulfate	5.03	mg/L		5.000		101	90-110		
Fluoride	5.13	mg/L		5.000		103	90-110		
Chloride	4.73	mg/L		5.000		95	90-110		
Batch B008886 - No Prep - EPA 300.0 REV 2.1									
Calibration Blank (B008886-CCB1)				Prepared &	Analyzed: 04	/14/20			
Fluoride	0.00	mg/L							
Chloride	0.457	mg/L							
Sulfate	0.00	mg/L							
Calibration Check (B008886-CCV1)				Prepared &	Analyzed: 04	/14/20			
Sulfate	5.20	mg/L		5.000		104	90-110		
Fluoride	5.18	mg/L		5.000		104	90-110		
Fluonde		m m /l		5.000		100	90-110		
Chloride	4.99	mg/L		0.000					
	4.99 Sample: 004181	-			Analyzed: 04	/14/20			

				Spike	Source		N/ DEO		
Parameter	Result	Unit	Qual	Level	Result	%REC	%REC Limits	RPD	RPC Limi
Batch B008886 - No Prep - EPA 300.0 REV 2.1									
Matrix Spike (B008886-MS1)	Sample: 00418 ⁴	11-01		Prepared &	Analyzed: 04/	14/20			
Sulfate	1.00E9	mg/L	Q4	1.500	38.8	NR	80-120		
Fluoride	1.54	mg/L		1.500	0.255	86	80-120		
Matrix Spike (B008886-MS2)	Sample: 00418	11-02		Prepared &	Analyzed: 04/	14/20			
Fluoride	1.58	mg/L		1.500	0.336	83	80-120		
Sulfate	1.00E9	mg/L	Q4	1.500	16.1	NR	80-120		
Chloride	3.4	mg/L		1.500	2.1	84	80-120		
Matrix Spike (B008886-MS3)	Sample: 00418	11-05		Prepared &	Analyzed: 04/	14/20			
Chloride	1.0E9	mg/L	Q4	1.500	18	NR	80-120		
Sulfate	1.00E9	mg/L	Q4	1.500	246	NR	80-120		
Fluoride	1.68	mg/L	Q1	1.500	0.816	58	80-120		
Matrix Spike Dup (B008886-MSD1)	Sample: 00418 ²	11-01		Prepared &	Analyzed: 04/	14/20			
Fluoride	1.51	mg/L		1.500	0.255	84	80-120	2	20
Chloride	6.7	mg/L		1.500	5.4	87	80-120	0.7	20
Sulfate	1.00E9	mg/L	Q4	1.500	38.8	NR	80-120	0	20
Matrix Spike Dup (B008886-MSD2)	Sample: 00418	11-02		Prepared &	Analyzed: 04/	14/20			
Sulfate	1.00E9	mg/L	Q4	1.500	16.1	NR	80-120	0	20
Fluoride	1.61	mg/L		1.500	0.336	85	80-120	2	20
Chloride	3.4	mg/L		1.500	2.1	84	80-120	0.1	20
Matrix Spike Dup (B008886-MSD3)	Sample: 00418	11-05		Prepared &	Analyzed: 04/	14/20			
Chloride	1.0E9	mg/L	Q4	1.500	18	NR	80-120	0	20
Sulfate	1.00E9	mg/L	Q4	1.500	246	NR	80-120	0	20
Fluoride	2.14	mg/L	Q2	1.500	0.816	88	80-120	24	20

NOTES

Specifications regarding method revisions and method modifications used for analysis are available upon request. Please contact your project manager.

* Not a TNI accredited analyte

Certifications

- CHI McHenry, IL 4314-A W. Crystal Lake Road, McHenry, IL 60050 TNI Accreditation for Drinking Water and Wastewater Fields of Testing through IL EPA Accreditation No. 100279 Illinois Department of Public Health Bacterial Analysis in Drinking Water Approved Laboratory Registry No. 17556
- PIA Peoria, IL 2231 W. Altorfer Drive, Peoria, IL 61615

TNI Accreditation for Drinking Water, Wastewater, Solid and Hazardous Material Fields of Testing through IL EPA Accreditation No. 100230 Illinois Department of Public Health Bacterial Analysis in Drinking Water Approved Laboratory Registry No. 17553

Drinking Water Certifications/Accreditations: Iowa (240); Kansas (E-10338); Missouri (870) Wastewater Certifications/Accreditations: Arkansas (88-0677); Iowa (240); Kansas (E-10338) Solid and Hazardous Material Certifications/Accreditations: Arkansas (88-0677); Iowa (240); Kansas (E-10338)

- SPIL Springfield, IL 1210 Capitol Airport Drive, Springfield, IL 62707 Illinois Department of Public Health Bacterial Analysis in Drinking Water Approved Laboratory Registry No. 17592
- SPMO Springfield, MO 1805 W Sunset Street, Springfield, MO 65807 USEPA DMR-QA Program
- STL Hazelwood, MO 944 Anglum Rd, Hazelwood, MO 63042

TNI Accreditation for Wastewater, Solid and Hazardous Material Fields of Testing through KS KDHE Certification No. E-10389 TNI Accreditation for Wastewater, Solid and Hazardous Material Fields of Testing through IL EPA Accreditation No. - 200080 Illinois Department of Public Health Bacterial Analysis in Drinking Water Approved Laboratory, Registry No. 171050 Missouri Department of Natural Resources - Certificate of Approval for Microbiological Laboratory Service - No. 1050

Qualifiers

- M Analyte failed to meet the required acceptance criteria for duplicate analysis.
- Q1 Matrix Spike failed % recovery acceptance limits. The associated blank spike recovery was acceptable.
- Q2 Matrix Spike Duplicate failed % recovery acceptance limits. The associated blank spike recovery was acceptable.
- Q3 Matrix Spike/Matrix Spike Duplicate both failed % recovery acceptance limits. The associated blank spike recovery was acceptable.
- Q4 The matrix spike recovery result is unusable since the analyte concentration in the sample is greater than four times the spike level. The associated blank spike was acceptable.

Certified by: Kurt Si

Kurt Stepping, Senior Project Manager

۰

PDC Laboratories, Inc. P.O. Box 9071 • Peoria, IL 61612-9071 (309) 692-9688 • (800) 752-6651 • FAX (309) 692-9689

DATA PACKAGE

CLIENT; Sikeston BMU PROJECT: Sikeston Power Station PDC LAB WORKORDER: 0041811 DATE ISSUED: April 16, 2020

CASE NARRATIVE –

PDC Work Order 0041811

PDC Laboratories, Inc. received 7 water samples on April 8, 2020 in good condition at our Peoria, IL facility. This sample set was designated as work order 0041811

Sample I	D's	Dat	te
Field	Lab ID	Collected	Received
MW-1	0041811-01	4/6/20	4/8/20
MW-2	0041811-02	4/6/20	4/8/20
MW-3	0041811-03	4/6/20	4/8/20
MW-7	0041811-04	4/6/20	4/8/20
MW-9	0041811-05	4/6/20	4/8/20
DUPLICATE WELL	0041811-06	4/6/20	4/8/20
FIELD BLANK	0041811-07	4/6/20	4/8/20

QC Summary:

All items met acceptance criteria with the following noted exceptions:

TDS batch QC samples flagged with M, RPD outside acceptance criteria

SO4, CL, Batch QC samples flagged with Q4, sample exceeds 4x spiked values

F, batch QC sample flagged with Q3, Q2, Q1, matrix spike and spike dup outside acceptance criteria.

Certification

Signature:

Yut 2

Name: Kurt Stepping

Date:

April 16, 2020

Title: Senior Project Manager

PDC LABORATORIES, INC.	REGULATORY PROGRAM (Check one:)	ROGRAM (Ch	eck one:)		NPDES				CHAIN C	CHAIN OF CUSTODY RECORD	CORD
WWW.PDCLAB.COM	IOW	MORBCA			RCRA		_	FC			OM CL
	ŏ	ccDD		TACO	TACO: RES OR IND/COMM	D/COMM		N.	A I E WHEKI	SIAIE WHERE SAMPLE COLLECIED	
3	ALL HIGH	ALL HIGHLIGHTED AREAS <u>MUST</u> BE COMPLETED BY CLIENT (PLEASE PRINT)	AS MUST B	IE COMPLETE	D BY CLIENT	(PLEASE PR	NT)				
(1) SIKESTON BMU POWER STATION		UMBER	PROJE FLYASH	FLYASH APP III ONLY	VLY 23	PURCHASE ORDER 23574	(r) #	ANALYSIS REQUESTED	QUESTED		4LY)
ADDRESS	5	MBER		E-MAIL	-	DATE SHIPPED	•			FOGIN# DOM P	
1551 W WAKEFIELD	573.475.31	.3131	LSTMAR	LSTMARY@SBMU.NET	7	- 7-2020				LOGGED BY:	BMU
ZINE SIKESTON, MO 63801	SAMPLER (PLEASE PRINT) Daniel Dillingham	ngham			MJ WW-WI GW-GR GW-GR WWSL-	MATRIX TYPES: WASTEWATER DRINKING WATER GROUND WATER 5L- SLUDGE				PROJECT: FLYASH APP III ONLY	P III ONLY
CONTACT PERSON LUKE ST MARY	Sampler's Signature	3	. Ille	Acher	NAS-N LCHT-L OIL-OIL SO-SOI	NAS- NON AQUEDUS SOLID LCHT-LEACHATE OLL-OLL SOL-SOLID SOL-SOLID	70S '	ł		CUSTODY SEAL #:	
2 (UNIQUE DESCRIPTION AS IT WILL APPEAR ON THE ANALYTICAL REPORT)	ATE .ECTED	COLLECTED	SAMPLE	COMP TY	TYPE COUNT	TLE PRES INT CODE CLIENT PROVIDED	сг' Е І	B, C/		REMARKS	
MW-1	4-6-2020	1113	×	σ	GW 2		X				
×MW-2	4-6-2020	0904	×	σ	GW 2		X	×			
-MW-3	4-6-2020	0822	×	G	GW 2		X	×			
2-WM*	4-6-2020	1158	×	G	GW 2	-	X X	×			
6-MW	4-6-2020	1319	×	U	GW 2		×	×			
DUPLICATE WELL	4-6-2020		×	0	GW 2		××	×		-	
FIELD BLANK	4-6-2020		\times	σ	GW 2		×				
CHEMICAL PRESERVATION CODES: 1-HCL 2-H2SO4 3	3 - HNO3 4 - NAOH	1 5 - NA2S2O3	\$203	6 – UNPRESERVED		7 – OTHER					
TURNAROUND TIME REQUESTED (PLEASE CHECK) X NORMAL 6 (RUSH TAT IS SUBJECT TO PDC LABS APPROVAL AND SURCHARGE)			DATE RESULTS NEEDED	\vdash	6 lunde not m	estand that by set all sample	initialing this l	ox I give the la	b permission to p defined in the re	I understand that by initialing this box I give the lab permission to proceed with analysis, even though it may not meet all sample conformance requirements as defined in the receiving facility's Sample Acceptance	ugh it may tance
RUSH RESULTS VIA (PLEASE CIRCLE) EMAIL PHONE EMALL IF DIFFERENT FROM ABOVE: PHONE 4 IF DIFFERENT FROM ABOVE:	ZE:				Policy	r and the data w CEED WITH AN	III be qualified	Quaimed data	'olicy and the data will be quainfed. Quainfed data may <u>ruu</u> be acc PROCEED WITH ANALYSIS AND QUALIFY RESULTS: (INITIALS) _	eptable to report to all regulator.	ry autronnes.
TIMELINQUISHED BY, SIGNATURE)	020	RECEIVE	RECEIVED BY: (SIGNATURE	ATURE)			DATE TIME		COMMENT	COMMENTS: (FOR LAB USE ONLY)	
	30	RECEIVE	RECEIVED BY: (SIGNATURE)	ATURE)			DATE	T			i de
				C			TIME	CHILL	PROCESS STAR	SAMPLE TEMPERATURE UPON RECEIPT CHILL PROCESS STARTED PRIOR TO RECEIPT	SOR N
DATE DATURE) DATE TIME		RECEIVE	RECEIVED BY: (SIGNATURE)				PAYE C	SAMP	LE(S) RECEIVED LE ACCEPTANCE RT IS NEEDED	SAMPLE(S) RECEIVED ON ICE REPORT IS NEEDED REPORT IS NEEDED	Y ORN
			Z	X			(MM)	DAIE		DATE AND TIME TAKEN FROM SAMPLE BOTTLE	
Qualtrax ID #3219			6							Page 1 of 1	

Page 11 of 11

Laboratory Quality Assurance/Quality Control Data May 21, 2020 Resample

Parameter	Result	Unit	Qual	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch B012525 - No Prep - SM 2540C									
Blank (B012525-BLK1)				Prepared &	Analyzed: 05/	28/20			
Solids - total dissolved solids (TDS)	< 17	mg/L			-				
LCS (B012525-BS1)				Prepared &	Analyzed: 05/	28/20			
Solids - total dissolved solids (TDS)	947	mg/L		1000		95	67.9-132		
Duplicate (B012525-DUP2)	Sample: 005424	42-02RE1		Prepared &	Analyzed: 05/	28/20			
Solids - total dissolved solids (TDS)	110	mg/L	M, X		90.0			20	
Batch B012718 - No Prep - SM 2540C									
Blank (B012718-BLK1)				Prepared &	Analyzed: 05/	29/20			
Solids - total dissolved solids (TDS)	< 17	mg/L							
LCS (B012718-BS1)				Prepared &	Analyzed: 05/	29/20			
Solids - total dissolved solids (TDS)	947	mg/L		1000		95	67.9-132		
Duplicate (B012718-DUP1)	Sample: 005424	42-02		Prepared &	Analyzed: 05/	29/20			
Solids - total dissolved solids (TDS)	100	mg/L	Н		100			0	5
Batch B013015 - No Prep - EPA 300.0 REV 2.1									
Calibration Blank (B013015-CCB1)				Prepared &	Analyzed: 06	/01/20			
Fluoride	0.00	mg/L							
Chloride	0.552	mg/L							
Sulfate	0.00	mg/L							
Calibration Check (B013015-CCV1)				Prepared &	Analyzed: 06/	01/20			
Chloride	4.88	mg/L		5.000		98	90-110		
Fluoride	4.95	mg/L		5.000		99	90-110		
Sulfate	5.17	mg/L		5.000		103	90-110		
Matrix Spike (B013015-MS3)	Sample: 005424	42-03		Prepared &	Analyzed: 06/	02/20			
Fluoride	1.76	mg/L		1.500	0.374	92	80-120		
Matrix Spike (B013015-MS4)	Sample: 005424	42-04		Prepared &	Analyzed: 06/	02/20			
Chloride	2.6	mg/L	Q1	1.500	1.5	75	80-120		
Matrix Spike Dup (B013015-MSD3)	Sample: 005424	42-03		Prepared &	Analyzed: 06/	02/20			
Fluoride	1.78	mg/L		1.500	0.374	94	80-120	2	20
Matrix Spike Dup (B013015-MSD4)	Sample: 005424	42-04		Prepared &	Analyzed: 06/	02/20			
Chloride	3.1	mg/L		1.500	1.5	107	80-120	17	20
Batch B013404 - No Prep - EPA 300.0 REV 2.1									
Calibration Blank (B013404-CCB1)				Prepared &	Analyzed: 06/	04/20			
Sulfate	0.00	mg/L							
Calibration Check (B013404-CCV1)				Prepared &	Analyzed: 06/	/04/20			
Sulfate	5.07	mg/L		5.000		101	90-110		
Batch B013688 - SW 3015 - EPA 6020A									
Blank (B013688-BLK1)				Prepared: 0	6/09/20 Anal	/zed: 06/11/2	0		
Boron	< 10	ug/L							
Calcium	< 200	ug/L							
		-		D	6/09/20 Anal	- 1 00/11/0	•		

Parameter	Result	Unit	Qual	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch B013688 - SW 3015 - EPA 6020A									
LCS (B013688-BS1)				Prepared: 0)6/09/20 Analy	/zed: 06/11/2	D		
Boron	524	ug/L		555.6		94	80-120		
Calcium	5630	ug/L		5556		101	80-120		
Matrix Spike (B013688-MS1)	Sample: 005499	94-01		Prepared: 0	06/09/20 Analy	zed: 06/11/2	D		
Boron	1900	ug/L		555.6	1340	101	75-125		
Calcium	186000	ug/L	Q4	5556	183000	63	75-125		
Matrix Spike Dup (B013688-MSD1)	Sample: 005499	94-01		Prepared: 0	06/09/20 Analy	zed: 06/11/2	D		
Boron	1920	ug/L		555.6	1340	104	75-125	1	20
Calcium	185000	ug/L	Q4	5556	183000	42	75-125	0.6	20

NOTES

Specifications regarding method revisions and method modifications used for analysis are available upon request. Please contact your project manager.

* Not a TNI accredited analyte

Certifications

- CHI McHenry, IL 4314-A W. Crystal Lake Road, McHenry, IL 60050 TNI Accreditation for Drinking Water and Wastewater Fields of Testing through IL EPA Accreditation No. 100279 Illinois Department of Public Health Bacterial Analysis in Drinking Water Approved Laboratory Registry No. 17556
- PIA Peoria, IL 2231 W. Altorfer Drive, Peoria, IL 61615

TNI Accreditation for Drinking Water, Wastewater, Solid and Hazardous Material Fields of Testing through IL EPA Accreditation No. 100230

Illinois Department of Public Health Bacterial Analysis in Drinking Water Approved Laboratory Registry No. 17553 Drinking Water Certifications/Accreditations: Iowa (240); Kansas (E-10338); Missouri (870) Wastewater Certifications/Accreditations: Arkansas (88-0677); Iowa (240); Kansas (E-10338) Solid and Hazardous Material Certifications/Accreditations: Arkansas (88-0677); Iowa (240); Kansas (E-10338)

SPMO - Springfield, MO - 1805 W Sunset Street, Springfield, MO 65807 USEPA DMR-QA Program

STL - Hazelwood, MO - 944 Anglum Rd, Hazelwood, MO 63042

TNI Accreditation for Wastewater, Solid and Hazardous Material Fields of Testing through KS KDHE Certification No. E-10389 TNI Accreditation for Wastewater, Solid and Hazardous Material Fields of Testing through IL EPA Accreditation No. - 200080 Illinois Department of Public Health Bacterial Analysis in Drinking Water Approved Laboratory, Registry No. 171050 Missouri Department of Natural Resources - Certificate of Approval for Microbiological Laboratory Service - No. 1050

Qualifiers

- H Test performed after the expiration of the appropriate regulatory/advisory maximum allowable hold time.
- M Analyte failed to meet the required acceptance criteria for duplicate analysis.
- Q1 Matrix Spike failed % recovery acceptance limits. The associated blank spike recovery was acceptable.
- Q4 The matrix spike recovery result is unusable since the analyte concentration in the sample is greater than four times the spike level. The associated blank spike was acceptable.
- X Sample did not meet weighback criteria established in the method. Reset out of hold for confirmation of result. Both sets of data to be reported. H flagged data is to confirm the validity of the initial data in spite of the weigh back criteria.

Certified by: Kurt Stepping, Senior Project Manager

۰

PDC Laboratories, Inc. P.O. Box 9071 • Peoria, IL 61612-9071 (309) 692-9688 • (800) 752-6651 • FAX (309) 692-9689

DATA PACKAGE

CLIENT: Sikeston BMU PROJECT: Sikeston Power Station PDC LAB WORKORDER: 0054242 DATE ISSUED: June 15, 2020

CASE NARRATIVE –

PDC Work Order 0054242

PDC Laboratories, Inc. received 6 water samples on May 26, 2020 in good condition at our Peoria, IL facility. This sample set was designated as work order 0054242

Sample	ID's	Dat	te
Field	Lab ID	Collected	Received
MW-1	0054242-01	5/21/20	5/26/20
DUPLICATE	0054242-02	5/21/20	5/26/20
MW-2	0054242-03	5/21/20	5/26/20
MW-3	0054242-04	5/21/20	5/26/20
MW-9	0054242-05	5/21/20	5/26/20
FIELD BLANK	0054242-06	5/21/20	5/26/20

QC Summary:

All items met acceptance criteria with the following noted exceptions:

Ca, batch QC sample flagged with Q4, sample exceeds 4x spiked values

Cl, batch QC sample flagged with Q1, matrix spike outside acceptance criteria.

Initial analysis for TDS on sample 0054242-02 was below method criteria for weigh back and also was done in duplicate with an RPD greater than 5%. Flagged with X and M. See LIMS report for full X qualifier description.

TDS on sample 0054242-02 was repeated in duplicate out of hold time to confirm initial analysis. Re-analysis RPD was 0%, weigh back was acceptable. Re-analysis flagged with H for hold time.

Certification

Signature:

Yunt S

Name: Kurt Stepping

Date:

June 15, 2020

Title: Senior Project Manager

1	REGULATORY PROGRAM (Check one:)	Check one:)		NPDES	Γ		(9
WWW.PDCLAB.COM	MORBCA			RCRA	Τ		5	HAIN	CHAIN OF CUSTODY RECORD	Y RECORD
	CCDD		TACO: RE	TACO: RES OR IND/COMM			STAI	HM 3.	STATE WHERE SAMPLE COLLECTED_MO	LECTED MO
CLENT	ALL HIGHLIGHTED AREAS MUST BE COMPLETED BY CLIENT (PLEASE PRINT)	REAS <u>MUST</u> BE	COMPLETED BY	CLIENT (PLEASE PR	NT)					
SIKESTON BMU POWER STATION		RESAMPLES	APLES	PURCHASE ORDER	(m) #	ANALYS	ANAL YSIS REQUESTED	STED	(FOR LAE	(FOR LAB USE ONLY)
1551 W WAKEFIELD	РНОИЕ NUMBER 573.475.3131	1	E-MAIL LSTMARY@SBMU.NET	DATE SHIPPED		0	٠	8	LOGIN # 02 4	Cheh
ZINE SIKESTON, MO 63801	SAMPLER (PLEASE PRINT) D @ D_111	2111		MATRIX TYPES: WW- WASTEWATER DW- BRUNIND WATER DW- GROTIND WATER	1				CLIENT: SIKESTON BMU PROJECT: RESAMPLES MA	CLIENT: SIKESTON BMU PROJECT: RESAMPLES MAY 2020
	0			WWSL-SLUDGE WWSL-SLUDGE NAS-NON AQUEOUS SOLID LCHTLEACHATE OL-OIL SO-SOLID SOLSOLID					PROJ. MGR.: KURT CUSTODY SEAL #:	RT
<mark>PTION</mark> ON THE ANALYTICAL REPORT)		SAMBLE TYPE GRAB CO	COMP MATRIX	BOTTLE PRES COUNT CODE	SQT			CHLOF SORO	REMARKS	RKS
	05-21-23 /216	×	GW	2	X					
TE	05-21-20	×	GW	2	X	X				
		×	GW	2			X			
	05.21-22 0730	×	GW	-	×			X		
	12 M CK- 18-20	×	GW	-	×					
FIELD BLANK	05-21-20	×	GW	2	X	X	X	X		
							+			
CHEMICAL PRESERVATION CODES: I-HCL 2-H2SO4 3-HM03										
	4 - NAUH 5 - NA		6 – UNPRESERVED	7 – OTHER		1				
(6) (RUSH TAT IS SUBJECT TO POC LABS APPROVAL AND SURCHARGE) X NORMAL RUSH RESULTS VIA (PLEASE CIRCLE) EMAIL T PHONE TO EMAIL IF DIFFERENT FROM ABOVE: PHONE & IF DIFFERENT FROM ABOVE:	HSON	DATE RESULTS NEEDED	() ()	understand that by initialing this box I give the lab permission to not meet all sample conformance requirements as defined in the folicy and the data will be qualified. Qualified data may \underline{NOT} be at PROCEED WITH ANALYSIS AND OILALEY DEFILITES.	ialing this box formance req be qualified. Q	I give th lirement ualified o	e lab perm as define ata may <u>n</u>	ission to p ad in the re IOT be acc	I understand that by initialing this box I give the lab permission to proceed with analysis, even though it may not meet all sample conformance requirements as defined in the receiving facility's Sample Acceptance Policy and the data will be qualified. Qualified data may <u>NOT</u> acceptable to report to all regulatory authorities. PROCEED WITH ANALYSIS AND LAIS SAMPLES IN TA ANALYSIS AND ALYSIS AND ALYSIS AND ALYSIS AND ALYSIS AND ALYSIS AND AND ALYSIS AND	n though it may tcceptance ulatory authorities.
The and the standard stand sta	RE	CEIVED BY: (SIGNATURE)		DATE	ш			COMMENT	COMMENTS: (FOR LAB USE ONLY)	
PELINOUISHED BY, (SIGNATURE)				TIME		$\overset{\circ}{\top}$	\sim	×		
	RECEIVED	RECEIVED BY: (SIGNATURE)	(1)	DATE		SA	IPLE TEN	PERATUR	SAMPLE TEMPERATURE UPON RECEIPT	10. 0°c
D EUNQUISHED BY: (SIGNATURE) 0 0 10	RECEIVED	RECEIVED BY: (SIGNATURE)	E C	DATES	ES/26/20		LL PROCI IPLE(S) R IPLE ACC ORT IS N	ESS STAR1 ECEIVED (EPTANCE EEDED	CHILL PROCESS STARTED PRIOR TO RECEIPT SAMPLE(S) RECEIVED ON ICE SAMPLE ACCEPTANCE NONCONFORMANT REPORT IS NEEDED	NORN VORN
				80	CD	DAT	E AND TI	ME TAKEN	DATE AND TIME TAKEN FROM SAMPLE BOTTLE	
Qualtrax ID #3219	1								Page 1 of 1	

Laboratory Quality Assurance/Quality Control Data September 22, 2020

Parameter	Result	Unit	Qual	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch B024220 - No Prep - SM 2540C									
Blank (B024220-BLK1)				Prepared &	Analyzed: 09/	28/20			
Solids - total dissolved solids (TDS)	< 17	mg/L							
LCS (B024220-BS1)				Prepared &	Analyzed: 09/	28/20			
Solids - total dissolved solids (TDS)	1020	mg/L		1000		102	84.9-109		
Duplicate (B024220-DUP1)	Sample: 009531	2-02		Prepared &	Analyzed: 09/	28/20			
Solids - total dissolved solids (TDS)	150	mg/L			150			0	5
Duplicate (B024220-DUP2)	Sample: 009531			Prepared &	Analyzed: 09/	28/20			
Solids - total dissolved solids (TDS)	120	mg/L			120			0	5
<u>Batch B024429 - SW 3015 - EPA 6020A</u>									
Blank (B024429-BLK1)				Prepared: 0	9/30/20 Anal	/zed: 10/02/2	0		
Boron	< 10	ug/L							
Calcium	< 200	ug/L							
LCS (B024429-BS1)				Prepared: 0	9/30/20 Analy	/zed: 10/02/2	0		
Boron	555	ug/L		555.6		100	80-120		
Calcium	6040	ug/L		5556		109	80-120		
Matrix Spike (B024429-MS1)	Sample: 009528	37-05			9/30/20 Analy	-			
Boron	675	ug/L		555.6	164	92	75-125		
Calcium	82500	ug/L		5556	77600	87	75-125		
Matrix Spike Dup (B024429-MSD1)	Sample: 009528	37-05			9/30/20 Analy	-			
Boron	679	ug/L		555.6	164	93	75-125	0.6	20
Calcium	82500	ug/L		5556	77600	88	75-125	0.06	20
Batch B024486 - No Prep - EPA 300.0 REV 2.1									
Calibration Blank (B024486-CCB1)				Prepared &	Analyzed: 09/	29/20			
Chloride	0.00	mg/L							
Fluoride	0.00	mg/L							
Sulfate	0.00	mg/L							
Calibration Check (B024486-CCV1)				Prepared &	Analyzed: 09/	29/20			
Fluoride	5.23	mg/L		5.000		105	90-110		
Sulfate	5.00	mg/L		5.000		100	90-110		
Chloride	4.87	mg/L		5.000		97	90-110		
Batch B024618 - No Prep - EPA 300.0 REV 2.1									
Calibration Blank (B024618-CCB1)				Prepared &	Analyzed: 09/	/30/20			
Fluoride	0.00	mg/L							
Sulfate	0.00	mg/L							
Calibration Check (B024618-CCV1)				Prepared &	Analyzed: 09/	30/20			
Fluoride	4.88	mg/L		5.000		98	90-110		
Sulfate	4.77	mg/L		5.000		95	90-110		
<u> Batch B025298 - SW 3015 - EPA 6020A</u>									
Blank (B025298-BLK1)				Prepared: 1	0/08/20 Analy	zed: 10/15/2	0		

Parameter	Result	Unit	Qual	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch B025298 - SW 3015 - EPA 6020A									
Blank (B025298-BLK1)				Prepared: 1	0/08/20 Analy	yzed: 10/15/20)		
Calcium	314	ug/L	Ba						
LCS (B025298-BS1)				Prepared: 1	0/08/20 Analy	yzed: 10/15/20)		
Boron	552	ug/L		555.6		99	80-120		
Calcium	6230	ug/L		5556		112	80-120		

NOTES

Specifications regarding method revisions and method modifications used for analysis are available upon request. Please contact your project manager.

* Not a TNI accredited analyte

<u>Memos</u>

Revised Report, Ca and B repeated and reported.

Certifications

- CHI McHenry, IL 4314-A W. Crystal Lake Road, McHenry, IL 60050 TNI Accreditation for Drinking Water and Wastewater Fields of Testing through IL EPA Accreditation No. 100279 Illinois Department of Public Health Bacterial Analysis in Drinking Water Approved Laboratory Registry No. 17556
- PIA Peoria, IL 2231 W. Altorfer Drive, Peoria, IL 61615

TNI Accreditation for Drinking Water, Wastewater, Solid and Hazardous Material Fields of Testing through IL EPA Accreditation No. 100230

Illinois Department of Public Health Bacterial Analysis in Drinking Water Approved Laboratory Registry No. 17553 Drinking Water Certifications/Accreditations: Iowa (240); Kansas (E-10338); Missouri (870) Wastewater Certifications/Accreditations: Arkansas (88-0677); Iowa (240); Kansas (E-10338) Solid and Hazardous Material Certifications/Accreditations: Arkansas (88-0677); Iowa (240); Kansas (E-10338)

- SPMO Springfield, MO 1805 W Sunset Street, Springfield, MO 65807 USEPA DMR-QA Program
- STL Hazelwood, MO 944 Anglum Rd, Hazelwood, MO 63042

TNI Accreditation for Wastewater, Solid and Hazardous Material Fields of Testing through KS KDHE Certification No. E-10389 TNI Accreditation for Wastewater, Solid and Hazardous Material Fields of Testing through IL EPA Accreditation No. - 200080 Illinois Department of Public Health Bacterial Analysis in Drinking Water Approved Laboratory, Registry No. 171050 Missouri Department of Natural Resources - Certificate of Approval for Microbiological Laboratory Service - No. 1050

Qualifiers

- B Present in the method blank at 20.7 ug/L.
- Ba Present in the method blank at 314 ug/L.

Certified by: Kurt Stepping, Senior Project Manager

•

PDC Laboratories, Inc. P.O. Box 9071 • Peoria, IL 61612-9071 (309) 692-9688 • (800) 752-6651 • FAX (309) 692-9689

CLIENT: Sikeston BMU PROJECT: Sikeston Power Station PDC LAB WORKORDER: 0095312 DATE ISSUED: October 16, 2020

CASE NARRATIVE –

PDC Work Order 0095312

PDC Laboratories, Inc. received 7 water samples on September 24, 2020 in good condition at our Peoria, IL facility. This sample set was designated as work order 0095312.

Sample I	D's	Dat	e
Field	Lab ID	Collected	Received
MW-1	0095312-01	9/22/20	9/24/20
MW-2	0095312-02	9/22/20	9/24/20
MW-3	0095312-03	9/22/20	9/24/20
MW-7	0095312-04	9/22/20	9/24/20
MW-9	0095312-05	9/22/20	9/24/20
DUPLICATE WELL	0095312-06	9/22/20	9/24/20
FIELD BLANK	0095312-07	9/22/20	9/24/20

QC Summary:

All items met acceptance criteria with the following noted exceptions:

Calcium and Boron redigested and reanalyzed for all samples. Reanalysis consistent with historical data. Suspect a sample preparation error.

Lower level Boron samples flagged with B for trace of Boron in the method blank.

Certification

Signature:

Just.

Name: Kurt Stepping

Date:

October 16, 2020

Title: Senior Project Manager

PDC LABORATORIES, INC.	WWW.PDCLAB.COM
G	8

NPDES	RCRA	TACO: RES OR IND/COMM
REGULATORY PROGRAM (Check one:)	MORBCA	CCDD

CHAIN OF CUSTODY RECORD

STATE WHERE SAMPLE COLLECTED MO

			PROJECT: DINES LON DINO PROJECT: FLYASH APP III ONLY	CUSTODY SEAL #:	REMARKS											I understand that by initialing this box I give the lab permission to proceed with analysis, even though it may not meet all sample conformance requirements as defined in the receiving facility's Sample Acceptance	eptable to report to all regulatory authorities.	COMMENTS: (FOR LAB USE ONLY)		LE UPON RECEIPT	TED PRIOR TO RECEIPT	SAMPLES RECEIVED ON ICE SAMPLE ACCEPTANCE NONCONFORMANT PRPORT SNEEDED	Ш	Page 1 of 1
					B, C¢	×	××	××	××	××	×	X				his box i give the lab permission to r ce requirements as defined in the re	olicy and the data will be qualified. Qualified data may <u>NOT</u> be acc PROCEED WITH ANALYSIS AND QUALIFY RESULTS: (INITIALS) _	COMMENT	() () () () () () () () () () () () () (SAMPLE TEMPERATURE UPON RECEIPT	CHILL PROCESS STAR	SAMPLE(S) RECEIVED SAMPLE ACCEPTANCE REPORT IS NEEDED	DATE AND TIME TAKEN	
E PRINT)	OER #	E be	1	' † OS '	CL. F CODE	×	X	×	X	X	X	X		_		t by initialing ti ple conforman	ita wili be guali 4 ANALYSIS Al	DATE	TIME	DATE	TIME	212	TIME	
LIENT (PLEASI	PURCHASE ORDER # 23574	DATE SHIPPED	MATRIX TYPES: WW- WASTEWATER DW- DRUNKING WATER GW- GROUND WATER	NAR-NON AQUEOUS 3 LCHT-LEACHATE OLL-OIL SOL-SOLID SOL-SOLID	BOTTLE	0	2	2	2	2	2	2			7 - OTHER	understand tha not meet all sam	ollcy and the de PROCEED WITH						V	
PLETED BY CI	-	3MU.NET		4	TYPE	GW	GW	GW	GW	GW	GW	GW			6 - UNPRESERVED	٣)							
UST BE COMI	PROJECT LOCATION FLYASH APP III ONLY	E-MAIL LSTMARY@SBMU.NET		- And	MPLE TYPE					×	~	×			6 – UNP	DATE RESULTS NEEDED		(SIGNATURE)		(SIGNATURE)		(SIGNATURE)	$\overline{}$	
ED AREAS M			gham		COLLECTED GRAB	X 5501	0903 X	× c510	1222 ×		^	<u>ک</u> ر			5 - NA25203			RECEIVED BY: (SIGNATURE)		RECEIVED BY: (SIGNATURE)		RECEIVED BY: (SIGNATURE)	-	
ALL HIGHLIG	PROJECT NUMBER	573.475.3131	sampler (Please Print) Daniel Dilling	SIGNATURE	COLLECTED COL	09-22-20 [0	9-22-20 00	0 62-78-90	F1 CE-82-90	09-22-20 13	J 12 - PO	29-22-20 13			4	ORMAL RUSH		1 200	0640				J.	
	STATION			V		0	0	0	9	0	0	<u>a</u>			2 - H2SO4 3 - HNO3	CK) SURCHARGE) X N	ICLE) EMAIL PHONE PHONE PHONE + IF DIFFERENT FROM ABOVE:	DATE	TIME 0 6 4	DATE	TIME	DATE	TIME	
	SIKESTON BMU POWER STATION	ADDRESS 1551 W WAKEFIELD	SIKESTON, MO 63801	CONTACT PERSON LUKE ST MARY	2 (UNIQUE DESCRIPTION AS IT WILL APPEAR ON THE ANALYTICAL REPORT)	MW-1	MW-2	MVV-3	7-WW	6-WW	DUPLICATE WELL	FIELD BLANK			CHEMICAL PRESERVATION CODES: 1-HCL 2-1	TURNAROUND TIME REQUESTED PLEASE CHECK X NORMAL 6 (RUBH TAT IS SUBJECT TO PDC LABS AFPROVAL AND SURCHARGE)	RUSH RESULTS VIA (PLEASE CIRCLE) EMAIL	RELINQUISHED BY: (SIGNATURE)	War a Williers	RELINQUISHED BY: (SIGNATURE)		RELINQUISHED BY: (SIGNATURE)		Qualtrax ID #3219
3			4	di-					lr			-	 		-			-			Pa	de .	12 of ⁻	12

Laboratory Quality Assurance/Quality Control Data December 8, 2020 Resample

				Spike	Source		* 550		
Parameter	Result	Unit	Qual	Spike Level	Result	%REC	%REC Limits	RPD	RPD Limit
Batch B030991 - No Prep - SM 2540C									
Blank (B030991-BLK1)				Prepared &	Analyzed: 12	/11/20			
Solids - total dissolved solids (TDS)	< 17	mg/L							
LCS (B030991-BS1)				Prepared &	Analyzed: 12	./11/20			
Solids - total dissolved solids (TDS)	960	mg/L		1000		96	84.9-109		
Duplicate (B030991-DUP1)	Sample: 01214	57-01		Prepared &	Analyzed: 12	./11/20			
Solids - total dissolved solids (TDS)	500	mg/L	М		460			8	5
Duplicate (B030991-DUP2)	Sample: 01214	57-02		Prepared &	Analyzed: 12	./11/20			
Solids - total dissolved solids (TDS)	530	mg/L	М		440			19	5
<u> Batch B031149 - IC No Prep - EPA 300.0 REV 2.1</u>									
Calibration Blank (B031149-CCB1)				Prepared &	Analyzed: 12	/11/20			
Sulfate	0.0804	mg/L							
Calibration Check (B031149-CCV1)				Prepared &	Analyzed: 12	/11/20			
Sulfate	4.86	mg/L		5.000		97	90-110		
<u> Batch B031544 - SW 3015 - EPA 6020A</u>									
Blank (B031544-BLK1)				Prepared: 1	12/17/20 Anal	yzed: 12/21/2	20		
Boron	< 10	ug/L							
Calcium	< 200	ug/L							
LCS (B031544-BS1)				Prepared: 1	12/17/20 Anal	yzed: 12/21/2	20		
Boron	462	ug/L		555.6		83	80-120		
Calcium	5130	ug/L		5556		92	80-120		
Matrix Spike (B031544-MS1)	Sample: 01224	55-04		Prepared: 1	12/17/20 Anal	yzed: 12/22/2	20		
Boron	536	ug/L		555.6	16.5	93	75-125		
Calcium	36500	ug/L		5556	30000	117	75-125		
Matrix Spike Dup (B031544-MSD1)	Sample: 012245	55-04		Prepared: 1	12/17/20 Anal	yzed: 12/22/2	20		
Boron	530	ug/L		555.6	16.5	92	75-125	1	20
Calcium	35400	ug/L		5556	30000	98	75-125	3	20

NOTES

Specifications regarding method revisions and method modifications used for analysis are available upon request. Please contact your project manager.

* Not a TNI accredited analyte

Certifications

- CHI McHenry, IL 4314-A W. Crystal Lake Road, McHenry, IL 60050 TNI Accreditation for Drinking Water and Wastewater Fields of Testing through IL EPA Accreditation No. 100279 Illinois Department of Public Health Bacterial Analysis in Drinking Water Approved Laboratory Registry No. 17556
- PIA Peoria, IL 2231 W. Altorfer Drive, Peoria, IL 61615

TNI Accreditation for Drinking Water, Wastewater, Solid and Hazardous Material Fields of Testing through IL EPA Accreditation No. 100230

Illinois Department of Public Health Bacterial Analysis in Drinking Water Approved Laboratory Registry No. 17553 Drinking Water Certifications/Accreditations: Iowa (240); Kansas (E-10338); Missouri (870) Wastewater Certifications/Accreditations: Arkansas (88-0677); Iowa (240); Kansas (E-10338) Solid and Hazardous Material Certifications/Accreditations: Arkansas (88-0677); Iowa (240); Kansas (E-10338)

- SPMO Springfield, MO 1805 W Sunset Street, Springfield, MO 65807 USEPA DMR-QA Program
- STL Hazelwood, MO 944 Anglum Rd, Hazelwood, MO 63042

TNI Accreditation for Wastewater, Solid and Hazardous Material Fields of Testing through KS KDHE Certification No. E-10389 TNI Accreditation for Wastewater, Solid and Hazardous Material Fields of Testing through IL EPA Accreditation No. - 200080 Illinois Department of Public Health Bacterial Analysis in Drinking Water Approved Laboratory, Registry No. 171050 Missouri Department of Natural Resources - Certificate of Approval for Microbiological Laboratory Service - No. 1050

Qualifiers

M Analyte failed to meet the required acceptance criteria for duplicate analysis.

Certified by: Kurt Stepping, Senior Project Manager

•

PDC Laboratories, Inc. P.O. Box 9071 • Peoria, IL 61612-9071 (309) 692-9688 • (800) 752-6651 • FAX (309) 692-9689

CLIENT: Sikeston BMU PROJECT: Sikeston Power Station PDC LAB WORKORDER: 0122324 DATE ISSUED: December 23, 2020

CASE NARRATIVE –

PDC Work Order 0122324

PDC Laboratories, Inc. received 2 water samples on December 10, 2020 in good condition at our Peoria, IL facility. This sample set was designated as work order 0122324.

Samp	le ID's	Dat	e
Field	Lab ID	Collected	Received
MW-1	0122324-01	12/8/20	12/10/20
MW-2	0122324-02	12/8/20	12/10/20

QC Summary:

All items met acceptance criteria with the following noted exceptions:

Batch sample duplicates for TDS had high RPD.

Certification

Signature:

Just &

Name: Kurt Stepping

Date:

December 23, 2020

Title: Senior Project Manager

CHAIN OF CUSTODY RECORD	MO NO	STATE WHERE SAMPLE COLLECTED			rogin #	LOGGED BY: CLIENT: SHKESTON BMU	PROJECT: FLYASH APP RESAMPLES	CUSTODY SEAL #:	REMARKS								I understand that by initialing this box I give the lab permission to proceed with analysis, even though it may not meet all sample conformance requirements as defined in the receiving facility's Sample Acceptance Policy and the data will be qualified. Qualified data may <u>NOT</u> be acceptable to report to all regulatory authorities.	: (INITIALS)	COMMENTS: (FOR LAB USE ONLY)			CHILL PROCESS STARTED PRIOR TO RECEIPT YOR N SAMPLE(S) RECEIVED ON ICE	SAMPLE ACCEPTANCE NONCONFORMANT Y OR N POR NO REPORT IS NEEDED DATE AND TIME TAKEN FROM SAMPLE BOTTLE		
ц С		STATE		ANALYSIS REQUESTED	0	1			8		×						c I give the lab pe uirements as del ualified data ma	ALIFY RESULTS	0		SAMPLE	CHILL PR	REPORTI DATE AN		
Basedon				(~					B' C∀ 20†'	X X							tialing this box formance req be qualified. C	YSIS AND QU	E	w	H	E	17/10/20	000	
NPDES	L N	TACO: RES OR IND/COMM	ENT (PI EASE PRINT)	ALL HIGHLIGHTED AREAS MUST BE COMPLETED BT CLEAN TO THE PROJECT NUMBER PROJECT LOCATION OT TA	230/4		MATRIX TYPES: www.wastewater dw. drainging water dw. ground water	NASS NON AQUEOUS SOUD LCHTLEACHATE OL-OIL SOLSOIL SOLSOILD	BOTTLE PRES COUNT CODE	2	-			 		7 OTHER	l understand that by ini not meet all sample cor oolicy and the data will	PROCEED WITH ANALYSIS AND QUALIFY RESULTS: (INITIALS)	DATE	TIME	DATE	TIME	17 TIME		
N	RCRA	ACO: RES OF	CTED BV CI I			IU.NET	5205		MATRIX	GW	GW					6 – UNPRESERVED	\odot						11		
		F		DJECT LOCAT	FLYASH RESAMPLES	E-MAIL LSTMARY@SBMU.NET	Acha	1	SAMPLE COMP		100	2				6 - UNPF	DED		SIGNATURE)		RECEIVED BY: (SIGNATURE)		RECEIVED BY: (SIGNATURE)	Cal	
Check one:	F			REAS MUS	FLYAS		-			×	×			 	 	NA2S203	DATE RESULTS NEEDED		RECEIVED BY: (SIGNATURE)		EIVED BY: (EIVED BY: (V	
ROGRAM (A DOOV	CCDD		HLIGHTED A		_{0.313}			COLLECTED	1244	111.7					OH S-	RUSH		REC		REC		REC		1
REGILI ATORY PROGRAM (Check one:)		ž C		ALL HIG		573.475.3131	SAMPLER (PLEASE PRINT)	SAMPLER'S	W Land	12-8-23	12-8-20					3-HNO3 4-NAOH		ů		12-04-00	200				
	PDC LABORATORIES, INC.	DO. WWW.PDCLAB.COM			(1) SIKESTON BMU POWER STATION			SINE OF ON, MO COOC	LUKE SI MARY sample description		L-WM	7 44141				1 1 - HCI 2 - H2SO4	CHEMICAL PRESERVATION COUCES: TURNAROUND TIME REQUESTED (PLEASE CHECK) TURNAROUND TIME REQUESTED (PLEASE CHECK) (RUSH TAT IS SUBJECT TO PDC LABS APPROVAL AND SURCHARGE)	A (PLEASE CIF	PHONE # IF DIFFERENT	IY: (SIGNA LUKE)	MSA. 84 6 CAPE DATE		0 8 BATE DATE		

Fly Ash Pond Groundwater Quality Data Base

Sikeston Board of Municipal Utilities Sikeston Power Station Fly Ash Pond Scott County, Missouri CCR Groundwater Data Base

				Fie	d Param	neters				Appendix III M	onitorina C	onstituents (Detection)						App	endix IV Mo	onitorin	a Cons	tituents (Assessme	nt)			
Well	Date	Monitoring Purpose	Spec. Cond. umhos/cm	pH S.U.	Temp. ℃		D.O. mg/L	Turbidity NTU	Chloride mg/L	Fluoride mg/L	Sulfate mg/L	TDS mg/L	Boron ug/L	Calcium mg/L	Antimony ug/L	Arsenic ug/L	Barium ug/L	Beryllium ug/L		Chromium ug/L			Lithium ug/L		Molybdenum ug/L	Selenium uq/L	n Thallium ug/L	Radium 226/228 (Combined) pCi/L
MW-1 (DG)	3/21/2018	Background	249.6	7.31	16.33	-108.8		28.35	3.0	<0.250	22	150	360	21	<3.0	<1.0	120	<1.0	<1.0	<4.0	<2.0	<1.0	Ŭ	<0.20	<1.0	<1.0	<1.0	0.353 (ND)
MW-1 (DO)	4/15/2018	Background	233.8	7.36	15.17	-122.7	0.60		2.8	0.316	22	130	450	29	<3.0	<1.0	120	<1.0	<1.0	<4.0	<2.0	<1.0		<0.20	<1.0	<1.0	<1.0	0.478 (ND)
	5/23/2018	Background	233.0	7.35	18.42	-133.3	1	12.11	3.3	<0.250	20	120	420	25	<3.0	<1.0	120	<1.0	<1.0	<4.0	<2.0	<1.0		<0.20	<1.0	<1.0	<1.0	0.378 (ND)
	6/27/2018	Background	227.4	7.27	18.59	-149.3	1		6.9	<0.250	20	120	470	28	<3.0	<1.0	140	<1.0	<1.0	<4.0	<2.0	<1.0		<0.20	<1.0	<1.0	<1.0	1.065 (ND)
	8/1/2018	Background	264.3	7.16	18.26	-138.0	1	7.52	5.6	<0.250	23	120	440	30	<3.0	<1.0	140	<1.0	<1.0	<4.0	<2.0	<1.0	<10	<0.20	<1.0	<1.0	<1.0	0.893(ND)
	9/5/2018	Background	281.3	7.14	18.70	-132.1	0.41	3.20	7.0	0.252	24	140	490	34	<3.0	<1.0	150	<1.0	<1.0	<4.0	<2.0	<1.0		<0.20	<1.0	<1.0	<1.0	1.100
	11/6/2018	Background	311.8	7.11	17.86	-128.8	1.00	1.30	9.0	0.262	26	200	480	38	<3.0	<1.0	170	<1.0	<1.0	<4.0	<2.0	<1.0	-	<0.20	<1.0	<1.0	<1.0	1.282
	12/12/2018	Background	317.5	7.06	16.30	-96.3	1		9.1	0.256	30	140	440	38	<3.0	<1.0	180	<1.0	<1.0	<4.0	<2.0	<1.0		<0.20	<1.0	<1.0	<1.0	1.423 (ND)
	3/27/2019	Detection 1	361.2	7.13	16.60	-101.9	1		7.9	<0.250	27	210	440	41	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	9/24/2019	Detection 2	372.9	7.0	18.22	1	0.56	0.53	4.3	0.260	35	230	500	47	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	10/22/2019	Det/RESAMPLE	418.0	7.1	17.10	-113.4	0.32	0.96	NA	NA	41	180	NA	47	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	4/6/2020	Detection 3	416.5	7.1	17.32	-117.7		4.38	5.4	0.255	39	230	520	48	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	5/21/2020	Det/RESAMPLE	524.7	7.2	16.56	-125.2	3.25	3.32	NA	NA	63	260	NA	60	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	9/22/2020	Detection 4	556.9	7.2	17.67	-95.2	4.23	0.51	5.9	<0.250	67	310	620	67	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	12/8/2020	Det/RESAMPLE	462.1	7.3	15.90	80.1	4.19	2.44	NA	NA	43	250	440	49	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
MW-2 (UG)	3/21/2018	Background	157.8	6.35	15.86	65.3	2.72	3.41	3.4	<0.250	16	110	28	16	<3.0	<1.0	130	<1.0	<1.0	<4.0	<2.0	<1.0	<10	<0.20	<1.0	<1.0	<1.0	0.896 (ND)
	4/15/2018	Background	159.8	6.36	14.04	64.7	0.87	4.05	2.3	0.335	18	63	23	14	<3.0	<1.0	120	<1.0	<1.0	<4.0	<2.0	<1.0	<10	<0.20	<1.0	<1.0	<1.0	0.483 (ND)
	5/23/2018	Background	175.3	6.18	17.40	121.7	0.58	1.72	4.2	<0.250	20	100	36	18	<3.0	<1.0	170	<1.0	<1.0	<4.0	<2.0	<1.0	<10	<0.20	<1.0	<1.0	<1.0	1.199 (ND)
	6/27/2018	Background	172.1	6.16	18.38	243.8	0.27	5.30	4.7	<0.250	18	87	42	19	<3.0	<1.0	180	<1.0	<1.0	<4.0	<2.0	<1.0	<10	<0.20	<1.0	1.4	<1.0	1.006 (ND)
	8/1/2018	Background	184.2	6.11	18.48	80.7	0.75	2.61	5.9	<0.250	19	140	43	20	<3.0	<1.0	200	<1.0	<1.0	<4.0	<2.0	<1.0	<10	<0.20	<1.0	2.0	<1.0	0.751(ND)
	9/5/2018	Background	187.9	6.09	19.26	83.8	0.68	2.58	6.8	<0.250	18	110	46	22	<3.0	<1.0	220	<1.0	<1.0	<4.0	<2.0	<1.0	<10	<0.20	<1.0	2.2	<1.0	1.734
	11/6/2018	Background	174.3	6.19	17.77	79.7	0.60	1.19	4.2	0.272	19	100	43	20	<3.0	<1.0	170	<1.0	<1.0	<4.0	<2.0	<1.0	<10	<0.20	<1.0	<1.0	<1.0	1.583
	12/12/2018	Background	186.3	6.13	16.78	82.3	0.67	5.78	5.5	0.254	21	140	48	21	<3.0	<1.0	210	<1.0	<1.0	<4.0	2.0	<1.0	<10	<0.20	<1.0	<1.0	<1.0	1.18 (ND)
	3/27/2019	Detection 1	165.9	6.25	15.87	70.4	0.72	2.60	3.3	<0.250	20	130	31	17	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	9/24/2019	Detection 2	189.4	6.1	18.75	71.3	0.61	1.16	6.6	<0.250	17	130	58	22	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	4/6/2020	Detection 3	148.7	6.3	16.04	58.2	1.36	4.70	2.1	0.336	16	140	34	15	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	5/21/2020	Det/RESAMPLE	168.1	6.2	16.47	-0.8	6.90	2.76	NA	0.374	NA	NA	36	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	9/22/2020	Detection 4	189.8	6.2	18.34	-9.6	6.52	0.62	4.8	<0.250	17	150	68	21	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	12/8/2020	Det/RESAMPLE	186.5	6.2	16.90	223.4	5.56	0.79	NA	NA	NA	NA	49	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

Sikeston Board of Municipal Utilities Sikeston Power Station Fly Ash Pond Scott County, Missouri CCR Groundwater Data Base

				Fie	d Param	neters				Appendix III M	onitoring C	onstituents (Detection)						Арр	endix IV Me	onitorin	g Const	ituents (Assessme	nt)			
Well	Date	Monitoring Purpose	Spec. Cond.	рН S.U.	Temp. °C	ORP mV	D.O. mg/L	Turbidity NTU	Chloride mg/L	Fluoride mg/L	Sulfate mg/L	TDS mg/L	Boron ug/L	Calcium mg/L	Antimony ug/L	Arsenic ug/L	Barium ug/L	Beryllium ug/L	Cadmium ug/L	Chromium ug/L	Cobalt uq/L	Lead ug/L	Lithium ug/L	Mercury ug/L	Molybdenum ug/L	Selenium ug/L	Thallium ug/L	Radium 226/228 (Combined) pCi/L
			µmmos/om	0.0.		IIIV	mg/∟	NIO	ing/∟	III9/L	IIIg/L	IIIg/L	ug/L	ing/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/∟	ug/L	uy/L	ug/L	ug/L	ug/L	ug/L	POI/E
MW-3 (UG)	3/21/2018	Background	220.7	6.57	15.22	40.7	0.38	14.88	1.4	0.274	18	120	17	19	<3.0	<1.0	96	<1.0	<1.0	<4.0	<2.0	<1.0	<10	<0.20	<1.0	<1.0	<1.0	1.240 (ND)
	4/15/2018	Background	224.7	6.48	14.05	39.2	0.45	10.81	1.5	0.386	20	120	25	18	<3.0	<1.0	100	<1.0	<1.0	<4.0	<2.0	<1.0	<10	<0.20	<1.0	<1.0	<1.0	1.475 (ND)
	5/23/2018	Background	221.3	6.49	17.77	43.2	0.39	13.39	1.4	<0.250	20	100	20	18	<3.0	<1.0	100	<1.0	<1.0	<4.0	<2.0	<1.0	<10	<0.20	<1.0	<1.0	<1.0	0.994 (ND)
	6/27/2018	Background	198.7	6.45	17.81	123.8	0.45	17.03	1.2	<0.250	17	110	27	18	<3.0	<1.0	100	<1.0	<1.0	<4.0	<2.0	<1.0	<10	<0.20	<1.0	<1.0	<1.0	0.214 (ND)
	8/1/2018	Background	209.2	6.55	16.74	41.4	0.43	10.96	1.3	<0.250	17	150	21	18	<3.0	<1.0	91	<1.0	<1.0	<4.0	<2.0	<1.0	<10	<0.20	<1.0	<1.0	<1.0	0.315(ND)
	9/5/2018	Background	196.8	6.51	17.62	56.8	0.46	6.21	1.2	0.308	15	100	22	17	<3.0	<1.0	98	<1.0	<1.0	<4.0	<2.0	<1.0	<10	<0.20	<1.0	<1.0	<1.0	0.860(ND)
	11/6/2018	Background	206.7	6.49	16.84	63.3	0.49	2.37	1.3	0.313	16	130	26	17	<3.0	<1.0	100	<1.0	<1.0	<4.0	<2.0	<1.0	<10	<0.20	<1.0	<1.0	<1.0	1.339
	12/12/2018	Background	195.6	6.50	15.39	48.7	0.40	3.10	1.4	0.334	18	160	28	17	<3.0	<1.0	99	<1.0	<1.0	<4.0	<2.0	<1.0	<10	<0.20	<1.0	<1.0	<1.0	0.8 (ND)
	3/27/2019	Detection 1	196.0	6.36	15.07	52.2	0.84	12.50	1.5	<0.250	19	140	22	16	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	9/24/2019	Detection 2	191.4	6.5	17.07	58.1	0.53	2.28	1.2	0.332	16	130	26	17	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	4/6/2020	Detection 3	198.4	6.4	14.94	61.3	1.17	7.37	1.8	0.371	20	380	29	16	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	5/21/2020	Det/RESAMPLE	205.5	6.4	15.25	14.9	13.48	7.29	1.5	NA	NA	130	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	9/22/2020	Detection 4	194.1	6.5	16.65	36.7	8.29	2.13	1.1	<0.250	17	120	31	17	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
MW-7 (DG)	3/21/2018	Background	901.8	7.30	14.85	41.8	0.58	1.61	12	0.752	190	440	1900	110	<3.0	<1.0	41	<1.0	<1.0	<4.0	<2.0	<1.0	25	<0.20	160	5.4	<1.0	0.883 (ND)
	4/15/2018	Background	936.4	7.24	14.04	40.0	0.51	0.96	12	0.794	210	420	1900	110	<3.0	<1.0	43	<1.0	<1.0	<4.0	2.0	<1.0	19	<0.20	170	2.3	<1.0	0.0619 (ND)
	5/23/2018	Background	899.1	7.25	18.05	46.5	0.38	0.25	11	0.650	220	480	1800	120	<3.0	<1.0	44	<1.0	<1.0	<4.0	<2.0	<1.0	22	<0.20	170	28	<1.0	0.896 (ND)
	6/27/2018	Background	891.4	7.22	17.91	66.4	0.22	5.84	11	0.592	220	500	2000	140	<3.0	<1.0	48	<1.0	<1.0	<4.0	2.1	<1.0	26	<0.20	160	53	<1.0	1.153 (ND)
	8/1/2018	Background	958.3	7.22	18.03	53.0	0.28	1.77	9.1	0.608	230	590	2300	140	<3.0	<1.0	47	<1.0	<1.0	<4.0	2.2	<1.0	30	<0.20	160	54	<1.0	0.884(ND)
	9/5/2018	Background	873.3	7.29	19.46	69.3	0.28	2.29	10	0.700	220	520	2100	130	<3.0	<1.0	47	<1.0	<1.0	<4.0	2.0	<1.0	27	<0.20	150	42	<1.0	0.652(ND)
	11/6/2018	Background	787.9	7.35	18.12	344.4	0.44	0.44	6.3	0.693	170	450	2000	120	<3.0	<1.0	43	<1.0	<1.0	<4.0	2.0	<1.0	26	<0.20	150	15	<1.0	1.478
	12/12/2018	Background	784.8	7.27	17.26	51.6	1.05	0.41	6.8	0.746	180	440	1800	120	<3.0	<1.0	44	<1.0	<1.0	<4.0	2.1	<1.0	26	<0.20	150	11	<1.0	0.975 (ND)
	3/27/2019	Detection 1	797.4	7.25	16.39	52.6	0.32	2.37	6.6	0.670	170	480	1800	110	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	9/24/2019	Detection 2	751.7	7.3	18.88	119.0	0.31	0.59	3.9	0.684	150	470	1900	120	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	4/6/2020	Detection 3	865.6	7.2	16.34	68.3	0.24	1.62	4.0	0.737	200	540	2200	120	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	9/22/2020	Detection 4	720.5	7.5	17.40	-80.8	3.63	0.50	3.1	0.628	110	460	1700	100	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	1/26/2021	Det/RESAMPLE	823.6	7.4	16.40	-49.2	0.27	0.41	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

Sikeston Board of Municipal Utilities Sikeston Power Station Fly Ash Pond Scott County, Missouri CCR Groundwater Data Base

				Fie	ld Param	neters				Appendix III M	onitoring C	onstituents	(Detection)						Арр	endix IV Mo	onitoring	g Const	ituents (Assessme	ent)			
Well	Date	Monitoring Purpose	Spec. Cond.	рН	Temp.	ORP	D.O.	Turbidity	Chloride	Fluoride	Sulfate	TDS	Boron	Calcium	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Lead	Lithium	Mercury	Molybdenum	Selenium	n Thallium	Radium 226/228 (Combined)
ID		. aipeee	µmhos/cm	S.U.	°C	mV	mg/L	NTU	mg/L	mg/L	mg/L	mg/L	ug/L	mg/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	pCi/L
MW-9 (DG)	3/21/2018	Background	979.8	7.35	14.98	25.1	0.52	1.60	17	0.929	230	480	4700	65	<3.0	<1.0	49	<1.0	<1.0	<4.0	<2.0	<1.0	19	<0.20	630	<1.0	<1.0	0.491 (ND)
	4/15/2018	Background	972.7	7.37	14.63	24.9	1.73	2.32	21	1.09	240	460	5100	57	<3.0	1.2	49	<1.0	<1.0	<4.0	<2.0	<1.0	11	<0.20	680	<1.0	<1.0	0.982 (ND)
	5/23/2018	Background	1020.5	7.34	18.70	25.9	0.48	0.64	17	1.05	240	520	5800	55	<3.0	<1.0	45	<1.0	<1.0	8.1	<2.0	<1.0	15	<0.20	840	<1.0	<1.0	0.359 (ND)
	6/27/2018	Background	902.9	7.32	19.33	25.2	0.42	4.97	15	0.910	220	520	4600	73	<3.0	<1.0	47	<1.0	<1.0	<4.0	<2.0	<1.0	15	<0.20	560	<1.0	<1.0	0.327 (ND)
	8/1/2018	Background	942.6	7.28	19.10	20.7	0.47	2.03	16	0.916	220	560	4500	76	<3.0	<1.0	47	<1.0	<1.0	<4.0	<2.0	<1.0	18	<0.20	500	<1.0	<1.0	0.418(ND)
	9/5/2018	Background	829.2	7.31	19.85	20.9	0.45	2.68	16	0.957	180	420	4400	80	<3.0	<1.0	48	<1.0	<1.0	<4.0	<2.0	<1.0	17	<0.20	460	<1.0	<1.0	0.707(ND)
	11/6/2018	Background	732.8	7.34	18.19	428.8	0.60	0.45	11	0.885	130	410	3800	79	<3.0	<1.0	47	<1.0	<1.0	<4.0	<2.0	<1.0	13	<0.20	420	<1.0	<1.0	1.473(ND)
	12/12/2018	Background	742.9	7.33	16.95	36.5	0.48	0.63	12	0.972	170	360	3700	78	<3.0	<1.0	53	<1.0	<1.0	<4.0	<2.0	<1.0	17	<0.20	420	<1.0	<1.0	1.232 (ND)
	3/27/2019	Detection 1	673.2	7.40	16.74	22.1	0.51	0.96	11	0.827	120	440	3100	70	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	9/24/2019	Detection 2	891.5	7.4	19.25	38.3	0.41	0.62	16	0.847	220	540	5000	87	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	4/6/2020	Detection 3	967.5	7.3	17.60	61.6	0.34	0.92	18	0.816	250	840	4900	92	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	5/21/2020	Det/RESAMPLE	1024.4	7.4	17.09	-51.1	4.95	0.59	NA	NA	NA	560	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	9/22/2020	Detection 4	891.9	7.5	17.59	-70.4	4.18	0.64	15	0.832	210	550	5000	80	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	1/26/2021	Det/RESAMPLE	971.7	7.5	16.07	-69.1	0.34	0.47	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

Notes:

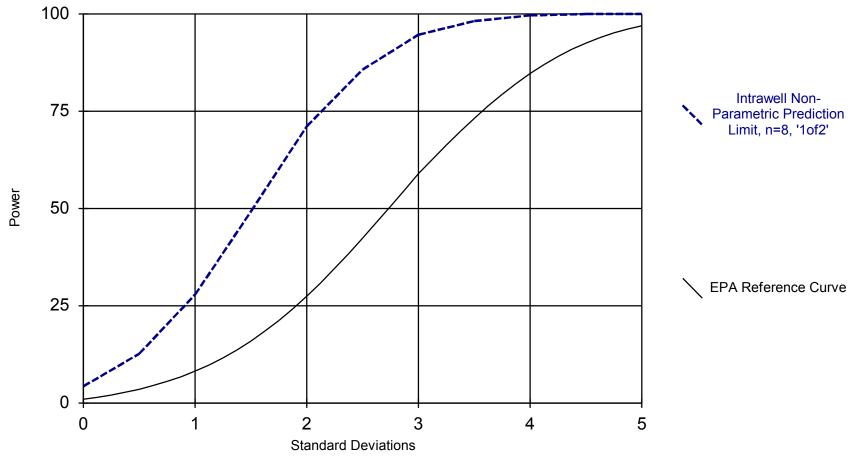
1. All data transcribed from analytical lab data sheets or field notes.

2. Less than (<) symbol denotes concentration below reportable limits.

3. (ND) denotes Radium 226 and 228 (combined) concentration not detected above Minimum Detectable Concentration.

4. (NA) denotes analysis not conducted, or not available at time of report.

5. Background monitoring per USEPA 40 CFR 257.93.

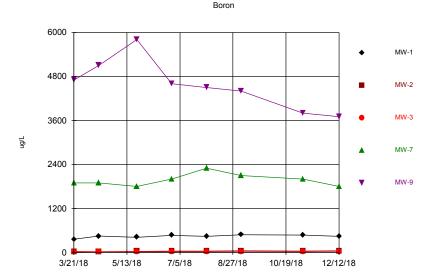

6. Detection monitoring per USEPA 40 CFR 257.94.

7. Assessment monitoring per USEPA 40 CFR 257.95.

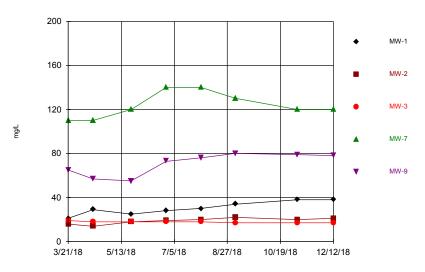
Appendix 5

Statistical Power Curve

Power Curve MW-1, 2, 3, 7 & 9

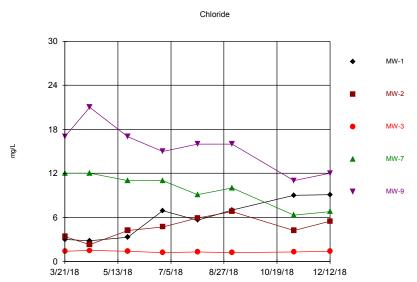

This report reflects annual total based on two evaluations per year.

Analysis Run 5/31/2019 2:59 PM SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background


Appendix 6

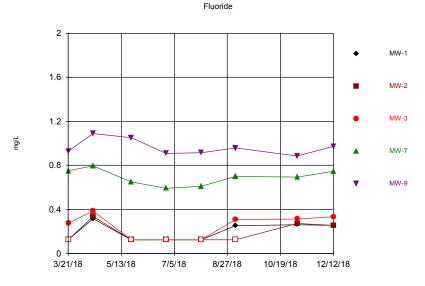
Time Series Plots

Sanitas™ v.9.6.18 Sanitas software licensed to GREDELL Engineering only. UG


Time Series Analysis Run 7/18/2019 8:57 AM View: AppIII SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background Sanitas™ v.9.6.18 Sanitas software licensed to GREDELL Engineering only. UG

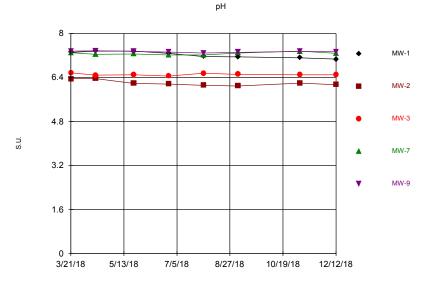
Calcium

 Time Series
 Analysis Run 7/18/2019 8:57 AM
 View: AppIII


 SBMU-Sikeston Power Station
 Client: GREDELL Engineering
 Data: SikestonFAP Background

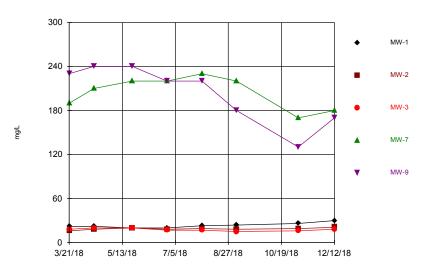
 Time Series
 Analysis Run 7/18/2019 8:57 AM
 View: AppIII

 SBMU-Sikeston Power Station
 Client: GREDELL Engineering
 Data: SikestonFAP Background


Sanitas[™] v.9.6.18 Sanitas software licensed to GREDELL Engineering only. UG Hollow symbols indicate censored values.

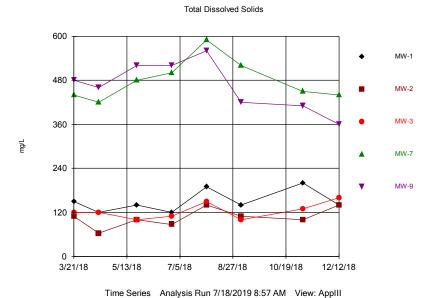
 Time Series
 Analysis Run 7/18/2019 8:57 AM
 View: AppIII

 SBMU-Sikeston Power Station
 Client: GREDELL Engineering
 Data: SikestonFAP Background


Sanitas[™] v.9.6.18 Sanitas software licensed to GREDELL Engineering only. UG

 Time Series
 Analysis Run 7/18/2019 8:57 AM
 View: AppIII

 SBMU-Sikeston Power Station
 Client: GREDELL Engineering
 Data: SikestonFAP Background



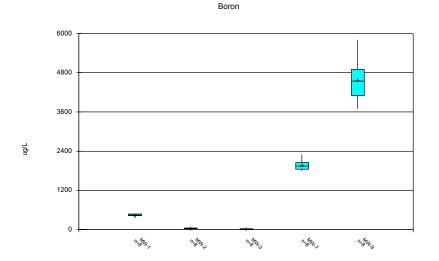
Sulfate

 Time Series
 Analysis Run 7/18/2019 8:57 AM
 View: AppIII

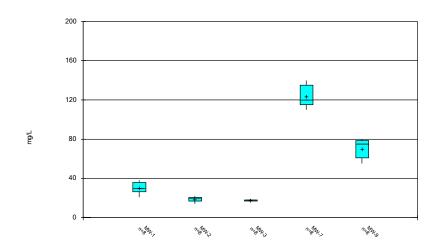
 SBMU-Sikeston Power Station
 Client: GREDELL Engineering
 Data: SikestonFAP Background

Sanitas™ v.9.6.18 Sanitas software licensed to GREDELL Engineering only. UG

SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background


Appendix 7

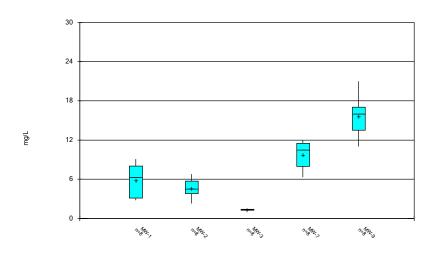
Box and Whiskers Plots


Box & Whiskers Plot (MW-1, 2, 3, 7, & 9)

	SBMU-Sikeston Power Station	Client: GR	EDELL Engineerii	ng Data: Sik	estonFAP Backgrou	und Printed 7/18	2019, 9:02 AM		
<u>Constituent</u>	Well	<u>N</u>	Mean	Median	Lower Q.	Upper Q.	<u>Min.</u>	Max.	<u>%NDs</u>
Boron (ug/L)	MW-1	8	443.8	445	430	475	360	490	0
Boron (ug/L)	MW-2	8	38.63	42.5	32	44.5	23	48	0
Boron (ug/L)	MW-3	8	23.25	23.5	20.5	26.5	17	28	0
Boron (ug/L)	MW-7	8	1975	1950	1850	2050	1800	2300	0
Boron (ug/L)	MW-9	8	4575	4550	4100	4900	3700	5800	0
Calcium (mg/L)	MW-1	8	30.38	29.5	26.5	36	21	38	0
Calcium (mg/L)	MW-2	8	18.75	19.5	17	20.5	14	22	0
Calcium (mg/L)	MW-3	8	17.75	18	17	18	17	19	0
Calcium (mg/L)	MW-7	8	123.8	120	115	135	110	140	0
Calcium (mg/L)	MW-9	8	70.38	74.5	61	78.5	55	80	0
Chloride (mg/L)	MW-1	8	5.838	6.25	3.15	8	2.8	9.1	0
Chloride (mg/L)	MW-2	8	4.625	4.45	3.8	5.7	2.3	6.8	0
Chloride (mg/L)	MW-3	8	1.338	1.35	1.25	1.4	1.2	1.5	0
Chloride (mg/L)	MW-7	8	9.775	10.5	7.95	11.5	6.3	12	0
Chloride (mg/L)	MW-9	8	15.63	16	13.5	17	11	21	0
Fluoride (mg/L)	MW-1	8	0.1983	0.1885	0.125	0.259	0.125	0.316	50
Fluoride (mg/L)	MW-2	8	0.1858	0.125	0.125	0.263	0.125	0.335	62.5
Fluoride (mg/L)	MW-3	8	0.2488	0.291	0.125	0.3235	0.125	0.386	37.5
Fluoride (mg/L)	MW-7	8	0.6919	0.6965	0.629	0.749	0.592	0.794	0
Fluoride (mg/L)	MW-9	8	0.9636	0.943	0.913	1.011	0.885	1.09	0
pH (S.U.)	MW-1	8	7.22	7.215	7.125	7.33	7.06	7.36	0
pH (S.U.)	MW-2	8	6.196	6.17	6.12	6.27	6.09	6.36	0
pH (S.U.)	MW-3	8	6.505	6.495	6.485	6.53	6.45	6.57	0
pH (S.U.)	MW-7	8	7.268	7.26	7.23	7.295	7.22	7.35	0
pH (S.U.)	MW-9	8	7.33	7.335	7.315	7.345	7.28	7.37	0
Sulfate (mg/L)	MW-1	8	23.38	22.5	21	25	20	30	0
Sulfate (mg/L)	MW-2	8	18.63	18.5	18	19.5	16	21	0
Sulfate (mg/L)	MW-3	8	17.63	17.5	16.5	19	15	20	0
Sulfate (mg/L)	MW-7	8	205	215	185	220	170	230	0
Sulfate (mg/L)	MW-9	8	203.8	220	175	235	130	240	0
Total Dissolved Solids (mg/L)	MW-1	8	150	140	130	170	120	200	0
Total Dissolved Solids (mg/L)	MW-2	8	106.3	105	93.5	125	63	140	0
Total Dissolved Solids (mg/L)	MW-3	8	123.8	120	105	140	100	160	0
Total Dissolved Solids (mg/L)	MW-7	8	480	465	440	510	420	590	0
Total Dissolved Solids (mg/L)	MW-9	8	466.3	470	415	520	360	560	0

Sanitas™ v.9.6.18 Sanitas software licensed to GREDELL Engineering only. UG

Box & Whiskers Plot Analysis Run 7/18/2019 9:00 AM View: AppIII SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

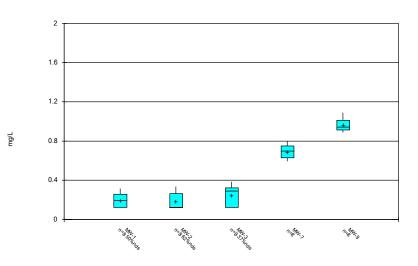


Calcium

Box & Whiskers Plot Analysis Run 7/18/2019 9:00 AM View: AppIII SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

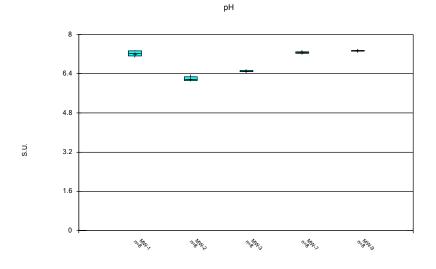
Sanitas™ v.9.6.18 Sanitas software licensed to GREDELL Engineering only. UG

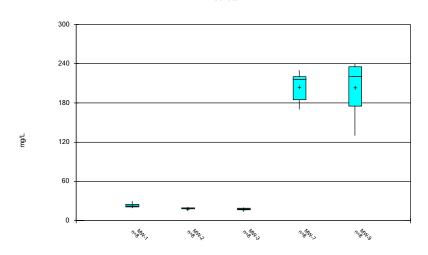
Chloride



 Box & Whiskers Plot
 Analysis Run 7/18/2019 9:00 AM
 View: AppIII

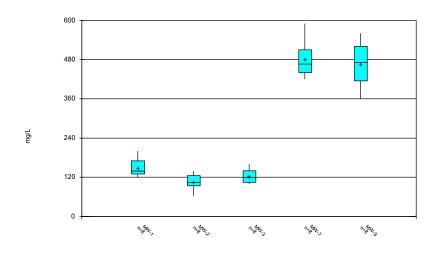
 SBMU-Sikeston Power Station
 Client: GREDELL Engineering
 Data: SikestonFAP Background


Sanitas™ v.9.6.18 Sanitas software licensed to GREDELL Engineering only. UG


Fluoride

Box & Whiskers Plot Analysis Run 7/18/2019 9:00 AM View: AppIII SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

Sanitas™ v.9.6.18 Sanitas software licensed to GREDELL Engineering only. UG



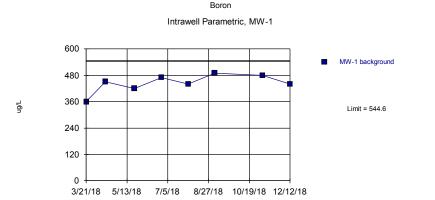
Box & Whiskers Plot Analysis Run 7/18/2019 9:00 AM View: AppIII SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

Box & Whiskers Plot Analysis Run 7/18/2019 9:00 AM View: AppIII SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

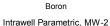
Sanitas™ v.9.6.18 Sanitas software licensed to GREDELL Engineering only. UG

Total Dissolved Solids

Box & Whiskers Plot Analysis Run 7/18/2019 9:00 AM View: AppIII SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background Sulfate

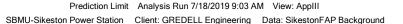

Appendix 8

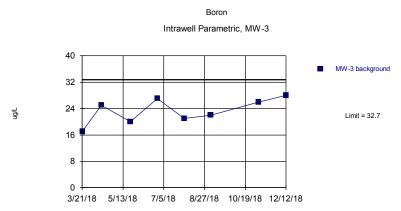
Prediction Limit Charts


Prediction Limits - (MW-1, 2, 3, 7, & 9)

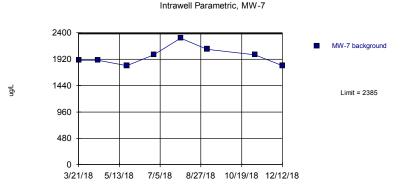
	SBMU-S	ikeston Power St	ation Client: G	REDELL Engi	neering	Data: Sike	stonFA	P Backgrou	Ind Printed 7/18	/2019, 9:05 AM	
Constituent	Well	Upper Lim.	Lower Lim.	Date	Observ.	<u>Sig.</u>	<u>Bg N</u>	<u>%NDs</u>	Transform	<u>Alpha</u>	Method
Boron (ug/L)	MW-1	544.6	n/a	n/a	1 future	n/a	8	0	No	0.002505	Param Intra 1 of 2
Boron (ug/L)	MW-2	60.53	n/a	n/a	1 future	n/a	8	0	No	0.002505	Param Intra 1 of 2
Boron (ug/L)	MW-3	32.7	n/a	n/a	1 future	n/a	8	0	No	0.002505	Param Intra 1 of 2
Boron (ug/L)	MW-7	2385	n/a	n/a	1 future	n/a	8	0	No	0.002505	Param Intra 1 of 2
Boron (ug/L)	MW-9	6236	n/a	n/a	1 future	n/a	8	0	No	0.002505	Param Intra 1 of 2
Calcium (mg/L)	MW-1	45.18	n/a	n/a	1 future	n/a	8	0	No	0.002505	Param Intra 1 of 2
Calcium (mg/L)	MW-2	25.29	n/a	n/a	1 future	n/a	8	0	No	0.002505	Param Intra 1 of 2
Calcium (mg/L)	MW-3	19.49	n/a	n/a	1 future	n/a	8	0	No	0.002505	Param Intra 1 of 2
Calcium (mg/L)	MW-7	152.9	n/a	n/a	1 future	n/a	8	0	No	0.002505	Param Intra 1 of 2
Calcium (mg/L)	MW-9	95.09	n/a	n/a	1 future	n/a	8	0	No	0.002505	Param Intra 1 of 2
Chloride (mg/L)	MW-1	12.2	n/a	n/a	1 future	n/a	8	0	No	0.002505	Param Intra 1 of 2
Chloride (mg/L)	MW-2	8.15	n/a	n/a	1 future	n/a	8	0	No	0.002505	Param Intra 1 of 2
Chloride (mg/L)	MW-3	1.598	n/a	n/a	1 future	n/a	8	0	No	0.002505	Param Intra 1 of 2
Chloride (mg/L)	MW-7	15.22	n/a	n/a	1 future	n/a	8	0	No	0.002505	Param Intra 1 of 2
Chloride (mg/L)	MW-9	23.28	n/a	n/a	1 future	n/a	8	0	No	0.002505	Param Intra 1 of 2
Fluoride (mg/L)	MW-1	0.313	n/a	n/a	1 future	n/a	8	50	No	0.002505	Param Intra 1 of 2
Fluoride (mg/L)	MW-2	0.335	n/a	n/a	1 future	n/a	8	62.5	n/a	0.02144	NP Intra (NDs) 1 of 2
Fluoride (mg/L)	MW-3	0.4083	n/a	n/a	1 future	n/a	8	37.5	No	0.002505	Param Intra 1 of 2
Fluoride (mg/L)	MW-7	0.8677	n/a	n/a	1 future	n/a	8	0	No	0.002505	Param Intra 1 of 2
Fluoride (mg/L)	MW-9	1.14	n/a	n/a	1 future	n/a	8	0	No	0.002505	Param Intra 1 of 2
pH (S.U.)	MW-1	7.5	6.9	n/a	1 future	n/a	8	0	No	0.001253	Param Intra 1 of 2
pH (S.U.)	MW-2	6.5	5.9	n/a	1 future	n/a	8	0	No	0.001253	Param Intra 1 of 2
pH (S.U.)	MW-3	6.6	6.4	n/a	1 future	n/a	8	0	No	0.001253	Param Intra 1 of 2
pH (S.U.)	MW-7	7.4	7.2	n/a	1 future	n/a	8	0	No	0.001253	Param Intra 1 of 2
pH (S.U.)	MW-9	7.4	7.3	n/a	1 future	n/a	8	0	No	0.001253	Param Intra 1 of 2
Sulfate (mg/L)	MW-1	31.57	n/a	n/a	1 future	n/a	8	0	No	0.002505	Param Intra 1 of 2
Sulfate (mg/L)	MW-2	22.33	n/a	n/a	1 future	n/a	8	0	No	0.002505	Param Intra 1 of 2
Sulfate (mg/L)	MW-3	21.97	n/a	n/a	1 future	n/a	8	0	No	0.002505	Param Intra 1 of 2
Sulfate (mg/L)	MW-7	259.2	n/a	n/a	1 future	n/a	8	0	No	0.002505	Param Intra 1 of 2
Sulfate (mg/L)	MW-9	301.1	n/a	n/a	1 future	n/a	8	0	No	0.002505	Param Intra 1 of 2
Total Dissolved Solids (mg/L)	MW-1	223.2	n/a	n/a	1 future	n/a	8	0	No	0.002505	Param Intra 1 of 2
Total Dissolved Solids (mg/L)	MW-2	169.4	n/a	n/a	1 future	n/a	8	0	No	0.002505	Param Intra 1 of 2
Total Dissolved Solids (mg/L)	MW-3	177.8	n/a	n/a	1 future	n/a	8	0	No	0.002505	Param Intra 1 of 2
Total Dissolved Solids (mg/L)	MW-7	617.2	n/a	n/a	1 future	n/a	8	0	No	0.002505	Param Intra 1 of 2
Total Dissolved Solids (mg/L)	MW-9	630.8	n/a	n/a	1 future	n/a	8	0	No	0.002505	Param Intra 1 of 2

Sanitas™ v.9.6.18 Sanitas software licensed to GREDELL Engineering only. UG


Background Data Summary: Mean=443.8, Std. Dev=41.04, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9079, critical = 0.749. Kappa = 2.458 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.005205. Assumes 1 future value.

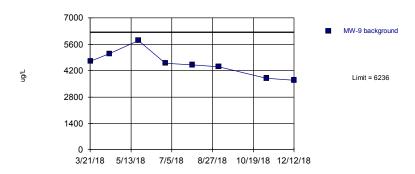


Background Data Summary: Mean=38.63, Std. Dev=8.911, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8787, critical = 0.749. Kappa = .2458 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.005205. Assumes 1 future value.

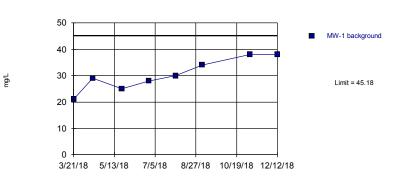

Prediction Limit Analysis Run 7/18/2019 9:03 AM View: AppIII SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

Sanitas™ v.9.6.18 Sanitas software licensed to GREDELL Engineering only. UG

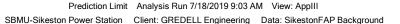
Background Data Summary: Mean=23.25, Std. Dev=3.845, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9492, critical = 0.749. Kappa = .2458 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.00505. Assumes 1 future value. Sanitas™ v.9.6.18 Sanitas software licensed to GREDELL Engineering only. UG


Boron

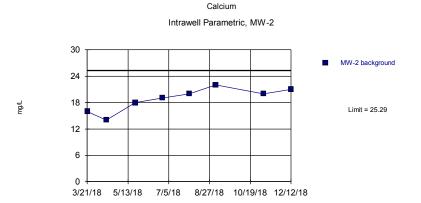
Background Data Summary: Mean=1975, Std. Dev.=166.9, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.907, critical = 0.749. Kappa = 2.458 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505. Assumes 1 future value.


Sanitas™ v.9.6.18 Sanitas software licensed to GREDELL Engineering only. UG

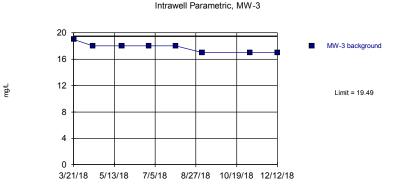
Background Data Summary: Mean=4575, Std. Dev.=675.6, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9478, critical = 0.749. Kappa = 2.458 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505. Assumes 1 future value.



Calcium


Intrawell Parametric, MW-1

Background Data Summary: Mean=30.38, Std. Dev=6.022, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9468, critical = 0.749. Kappa = .2458 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.005205. Assumes 1 future value.

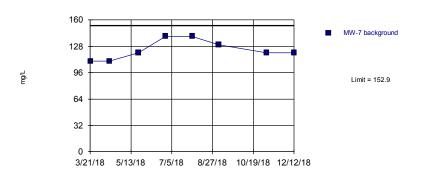

Prediction Limit Analysis Run 7/18/2019 9:03 AM View: AppIII SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

Sanitas™ v.9.6.18 Sanitas software licensed to GREDELL Engineering only. UG

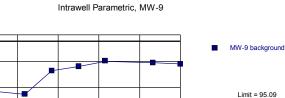
Background Data Summary: Mean=18.75, Std. Dev=2.659, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9419, critical = 0.749. Kappa = 2.458 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.00505. Assumes 1 future value. Sanitas™ v.9.6.18 Sanitas software licensed to GREDELL Engineering only. UG

Calcium

Background Data Summary: Mean=17.75, Std. Dev.=0.7071, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8268, critical = 0.749. Kappa = 2.458 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.00525. Assumes 1 future value.


Sanitas™ v.9.6.18 Sanitas software licensed to GREDELL Engineering only. UG

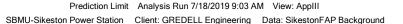
100


80

mg/L

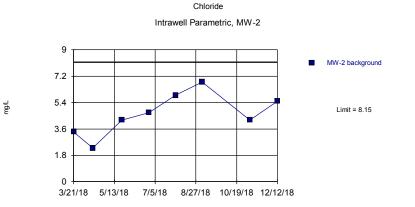
Calcium Intrawell Parametric, MW-7

Background Data Summary: Mean=123.8, Std. Dev=11.88, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8748, critical = 0.749. Kappa = 2.458 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.005205. Assumes 1 future value.


Calcium

Background Data Summary: Mean=70.38, Std. Dev=10.06, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8497, critical = 0.749. Kappa = .2458 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.005205. Assumes 1 future value.

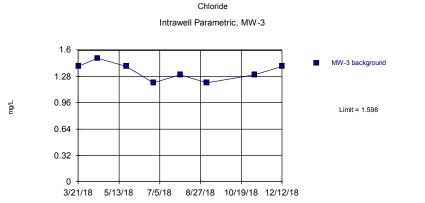
Prediction Limit Analysis Run 7/18/2019 9:03 AM View: AppIII SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background


Chloride

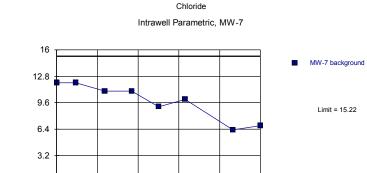
Sanitas™ v.9.6.18 Sanitas software licensed to GREDELL Engineering only. UG

Intrawell Parametric, MW-1

Background Data Summary: Mean=5.838, Std. Dev=2.588, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8813, critical = 0.749. Kappa = .2458 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.00505. Assumes 1 future value. Sanitas™ v.9.6.18 Sanitas software licensed to GREDELL Engineering only. UG

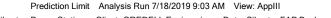

Background Data Summary: Mean=4.625, Std. Dev.=1.434, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9868, critical = 0.749. Kappa = .2458 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.00505. Assumes 1 future value.

Sanitas™ v.9.6.18 Sanitas software licensed to GREDELL Engineering only. UG


0

3/21/18 5/13/18 7/5/18

mg/L



Background Data Summary: Mean=1.338, Std. Dev.=0.1061, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9112, critical = 0.749. Kappa = 2.458 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.005205. Assumes 1 future value.

Background Data Summary: Mean=9.775, Std. Dev=2.215, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8753, critical = 0.749. Kappa = .2458 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.005205. Assumes 1 future value.

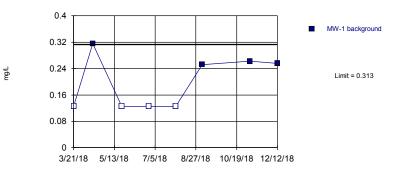
Prediction Limit Analysis Run 7/18/2019 9:03 AM View: AppIII SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

8/27/18 10/19/18 12/12/18

SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

Sanitas™ v.9.6.18 Sanitas software licensed to GREDELL Engineering only. UG

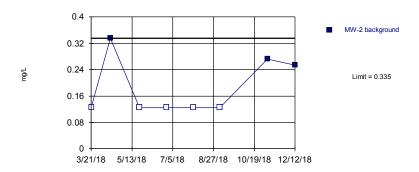
ng/L


Intrawell Parametric, MW-9

Chloride

Background Data Summary: Mean=15.63, Std. Dev=3.114, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9388, critical = 0.749. Kappa = .2458 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.00505. Assumes 1 future value. Sanitas[™] v.9.6.18 Sanitas software licensed to GREDELL Engineering only. UG Hollow symbols indicate censored values.

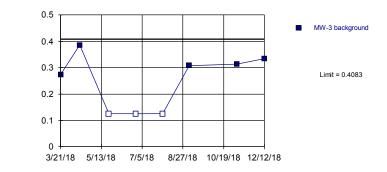
Fluoride



Background Data Summary (after Kaplan-Meier Adjustment): Mean=0.2608, Std. Dev.=0.02126, n=8, 50% NDs. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.7822, critical = 0.749. Kappa = 2.458 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505. Assumes 1 future value. Sanitas[™] v.9.6.18 Sanitas software licensed to GREDELL Engineering only. UG Hollow symbols indicate censored values.

Fluoride

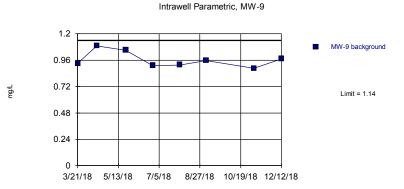
Intrawell Non-parametric, MW-2



Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 8 background values. 62.5% NDs. Well-constituent pair annual alpha = 0.04242. Individual comparison alpha = 0.02144 (1 of 2). Assumes 1 future value. Insufficient data to test for seasonality: data were not deseasonalized. Sanitas[™] v.9.6.18 Sanitas software licensed to GREDELL Engineering only. UG Hollow symbols indicate censored values.

mg/L

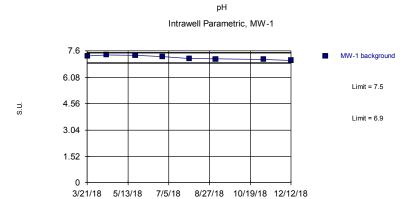
Fluoride

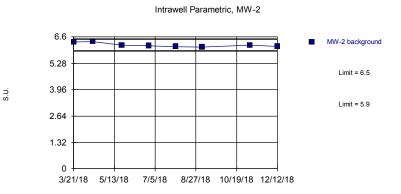

Background Data Summary (after Kaplan-Meier Adjustment): Mean=0.2956, Std. Dev.=0.04584, n=8, 37.5% NDs. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8336, critical = 0.749. Kappa = 2.458 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505. Assumes 1 future value.

Prediction Limit Analysis Run 7/18/2019 9:03 AM View: AppIII SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

Prediction Limit Analysis Run 7/18/2019 9:03 AM View: AppIII SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

Sanitas™ v.9.6.18 Sanitas software licensed to GREDELL Engineering only. UG


3/21/18 5/13/18 7/5/18 8/27/18 10/19/18 12/12/18 Background Data Summary: Mean=0.6919, Std. Dev=0.07152, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9552, critical = 0.749. Kappa = 2.458 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505. Assumes 1 future value. Sanitas[™] v.9.6.18 Sanitas software licensed to GREDELL Engineering only. UG


Fluoride

Background Data Summary: Mean=0.9636, Std. Dev=0.07178, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha=0.01, calculated = 0.8952, critical = 0.749. Kappa = 2.458 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505. Assumes 1 future value.

Sanitas™ v.9.6.18 Sanitas software licensed to GREDELL Engineering only. UG

Background Data Summary: Mean=7.22, Std. Dev.=0.1164, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.0974, critical = 0.749. Kappa = 2.458 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.05505. Assumes 1 future value.

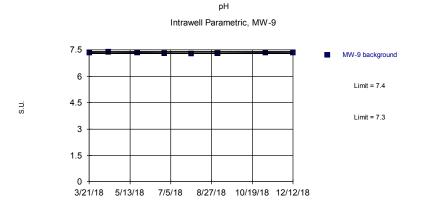
pН

Background Data Summary: Mean=6.196, Std. Dev.=0.1036, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.011, calculated = 0.80374, critical = 0.749, Kappa = 2.458 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.005205. Assumes 1 future value.

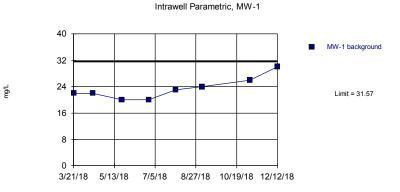
Prediction Limit Analysis Run 7/18/2019 9:03 AM View: AppIII SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

Prediction Limit Analysis Run 7/18/2019 9:03 AM View: AppIII

SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background


3/21/18 5/13/18 7/5/18 8/27/18 10/19/18 12/12/18 Background Data Summary: Mean=6.505, Std. Dev.=0.03854, n=8. Insufficient data to test for seasonality: data were

Background Data Summary: wean=5.50, Sto. Lev.=0.03854, n=8. Insumcient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.939, critical = 0.749. Kappa = 2.458 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505. Assumes 1 future value. Sanitas™ v.9.6.18 Sanitas software licensed to GREDELL Engineering only. UG


Background Data Summary: Mean=7.268, Std. Dev.=0.04464, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9288, critical = 0.749. Kappa = 2.458 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505. Assumes 1 future value.

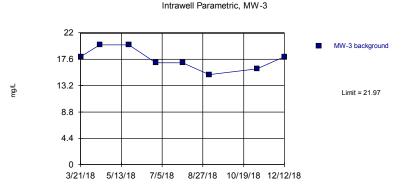
3/21/18 5/13/18 7/5/18 8/27/18 10/19/18 12/12/18

Sanitas™ v.9.6.18 Sanitas software licensed to GREDELL Engineering only. UG

Background Data Summary: Mean=7.33, Std. Dev.=0.02726, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.0741, critical = 0.749. Kappa = 2.458 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.005205. Assumes 1 future value.

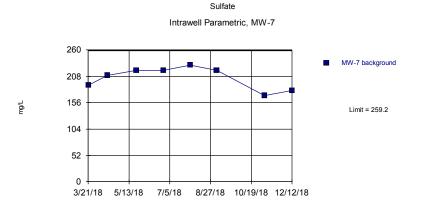
Sulfate

Background Data Summary: Mean=23.38, Std. Dev =3.335, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8864, critical = 0.749. Kappa = .2458 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.005205. Assumes 1 future value.

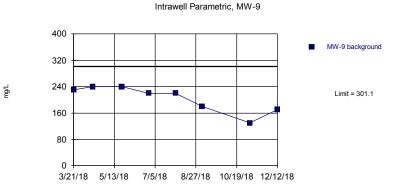

Prediction Limit Analysis Run 7/18/2019 9:04 AM View: AppIII SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

Prediction Limit Analysis Run 7/18/2019 9:04 AM View: AppIII SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

Sulfate

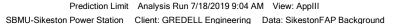

Sanitas™ v.9.6.18 Sanitas software licensed to GREDELL Engineering only. UG

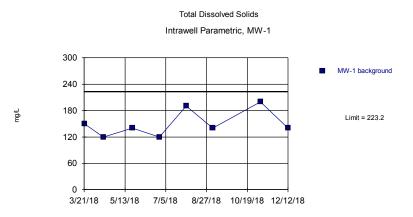
Background Data Summary: Mean-18.63, Std. Dev.=1.506, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9528, critical = 0.749. Kappa = 2.458 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.005205. Assumes 1 future value. Sanitas™ v.9.6.18 Sanitas software licensed to GREDELL Engineering only. UG



Background Data Summary: Mean=17.63, Std. Dev.=1.768, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9348, critical = 0.749. Kappa = .2458 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.00505. Assumes 1 future value.

Sanitas™ v.9.6.18 Sanitas software licensed to GREDELL Engineering only. UG

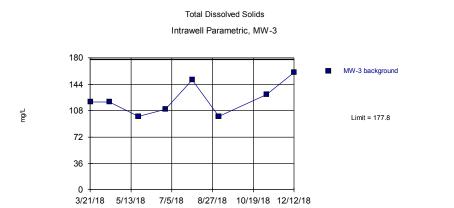

Background Data Summary: Mean=205, Std. Dev.=22.04, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8819, critical = 0.749. Kappa = 2.458 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505. Assumes 1 future value.


Sulfate

Background Data Summary: Mean=203.8, Std. Dev=39.62, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.864, critical = 0.749. Kappa = 2.458 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.005205. Assumes 1 future value.

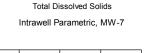
Prediction Limit Analysis Run 7/18/2019 9:04 AM View: AppIII SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

Sanitas™ v.9.6.18 Sanitas software licensed to GREDELL Engineering only. UG


Background Data Summary: Mean=150, Std. Dev.=29.76, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8433, critical = 0.749. Kappa = 2.458 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505. Assumes 1 future value. Sanitas™ v.9.6.18 Sanitas software licensed to GREDELL Engineering only. UG

ng/L

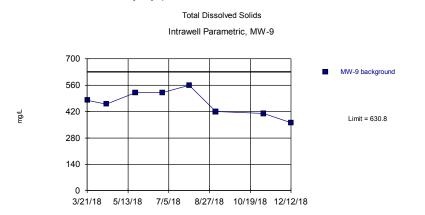
Total Dissolved Solids


Background Data Summary: Mean=106.3, Std. Dev.=25.71, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9324, critical = 0.749. Kappa = .2458 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.005205. Assumes 1 future value.

Sanitas™ v.9.6.18 Sanitas software licensed to GREDELL Engineering only. UG

Background Data Summary: Mean=123.8, Std. Dev.=22, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9132, critical = 0.749. Kappa = 2.458 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505. Assumes 1 future value. Sanitas™ v.9.6.18 Sanitas software licensed to GREDELL Engineering only. UG

mg/L



Background Data Summary: Mean=480, Std. Dev.=55.81, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9034, critical = 0.749. Kappa = 2.458 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505. Assumes 1 future value.

Prediction Limit Analysis Run 7/18/2019 9:04 AM View: AppIII SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

Prediction Limit Analysis Run 7/18/2019 9:04 AM View: AppIII SBMU-Sikeston Power Station Client: GREDELL Engineering Data: SikestonFAP Background

Sanitas™ v.9.6.18 Sanitas software licensed to GREDELL Engineering only. UG

Background Data Summary: Mean=466.3, Std. Dev=66.96, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.969, critical = 0.749. Kappa = 2.458 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.005205. Assumes 1 future value.

Appendix 9

Alternate Source Demonstrations

Appendix 9

Alternate Source Demonstration September 11, 2020 MW-1

1505 East High Street Jefferson City, Missouri 65101 Telephone (573) 659-9078 www.ger-inc.biz

GREDELL Engineering Resources, Inc.

Sikeston Board of Municipal Utilities Sikeston Power Station Detection Monitoring Program for Fly Ash Pond – Calcium, Sulfate, and Total Dissolved Solids in MW-1 Alternate Source Demonstration

Prepared for:

Sikeston Power Station 1551 West Wakefield Avenue Sikeston, MO 63801

September 2020

PROFESSIONAL ENGINEER'S CERTIFICATION

40 CFR 257.94(e)(2) Alternate Source Demonstration

I, Thomas R. Gredell, P.E., a professional engineer licensed in the State of Missouri, hereby certify in accordance with 40 CFR 257.94(e)(2) to the accuracy of the alternate source demonstration described in the following report for the Sikeston Board of Municipal Utilities, Sikeston Power Station, Fly Ash Pond CCR unit. The report demonstrates that the statistically significant increases of sulfate, total dissolved solids, and calcium in MW-1 resulted from a source other than the CCR unit. This demonstration successfully meets the requirements of 40 CFR 257.94(e) as found in federal regulation 40 CFR 257, Subpart D – Standards for the Disposal of Coal Combustion Residuals in Landfills and Surface Impoundments. In addition, the demonstration was made using generally accepted methods.

Name:	Thomas R. Gredell,	P.E.	James	1
Signature:	Anas	L	E OF MASS	OLS S
Date:	9-11-20	20+1	GREDELL	Ĭ*Į
	mber: PE-021137 ration: Missouri	PROFFE	NUMBER PE-021137 STONAL EN	CI III

Sikeston Board of Municipal Utilities Sikeston Power Station Detection Monitoring Program for Fly Ash Pond – Calcium, Sulfate, and Total Dissolved Solids in MW-1 Alternate Source Demonstration

September 2020

Table of Contents

1.0	INTRODUCTION	.1
2.0	OBSERVATIONS AND DATA COLLECTION	.2
3.0	SUMMARY OF DATA ANALYSIS AND FINDINGS	.5
4.0	CONCLUSIONS AND RECOMMENDATIONS	.7
5.0	LIMITATIONS	. 8
6.0	REFERENCES	.9

List of Figures

Figure 1 – Site Map and Sampling Locations
Figure 2 – MW-1 Hydrograph and Annual Precipitation
Figure 3 – Diversion Ditch Photo February 2020 - Looking West
Figure 4 – Diversion Ditch Photo February 2020 - Looking Northwest
Figure 5 – Diversion Ditch Photo November 2017 - Looking Northwest
Figure 6 – Piper Trilinear Plot

List of Tables

 Table 1 – MW-1 Detection Monitoring Results and Prediction Limits

 Table 2 – Alternate Source Demonstration Sampling Results Summary

1.0 INTRODUCTION

This Alternate Source Demonstration Report has been prepared to address the results of the semi-annual sampling event initiated on April 6, 2020 at the Sikeston Board of Municipal Utilities (SBMU) Sikeston Power Station's (SPS) Fly Ash Pond, a coal combustion residual (CCR) surface impoundment. Following receipt of final analytical data, statistical analysis was performed by GREDELL Engineering Resources, Inc. (Gredell Engineering) for the parameters listed in Appendix III to Part 257 – Constituents for Detection Monitoring. Following this analysis, it was determined that several reported concentrations exceeded their respective prediction limits for the well constituent pairs. These well constituent pairs were; Calcium, Sulfate, and Total Dissolved Solids (TDS) in sample MW-1, Fluoride in sample MW-2, Chloride and Boron in sample MW-3, and TDS in sample MW-9. Resampling for these well constituent pairs, and Boron in MW-2, was conducted on May 21, 2020. Following receipt of final analytical data from the resampling event, it was confirmed that Calcium, Sulfate, and TDS concentrations in sample MW-1, and Fluoride in sample MW-2 represent statistically significant increases (SSIs). As a consequence, SBMU-SPS requested that Gredell Engineering conduct an evaluation of the analytical results and develop an Alternate Source Demonstration (ASD) if warranted for Calcium, Sulfate, and TDS in MW-1. Fluoride in MW-2 is the subject of a separate report. Chloride and Boron in sample MW-3, and TDS in sample MW-9 were not confirmed by resampling and therefore are not SSIs.

As stated in §257.94(e)(2), an owner or operator may demonstrate that a source other than the CCR unit caused the apparent SSI over background levels for a constituent. The owner or operator must complete the written demonstration within 90 days of detecting an apparent SSI over background levels to include obtaining a certification from a qualified professional engineer verifying the accuracy of the information in the report. If a successful demonstration is completed within the 90-day period, the owner of the CCR unit may continue with a detection monitoring program. The owner or operator must also include the certified demonstration in the annual groundwater monitoring and corrective action report required by §257.90(e).

Gredell Engineering has completed an evaluation of the groundwater sampling event, analytical data results, and other potential factors, for the SBMU SPS Fly Ash Pond groundwater monitoring well system to determine if an alternate source is the cause of the apparent SSIs in MW-1. This report presents the results of that evaluation and includes supporting documentation.

2.0 OBSERVATIONS AND DATA COLLECTION

The Fly Ash Pond groundwater monitoring well system consists of five wells, designated MW-1, MW-2, MW-3, MW-7, and MW-9 (Figure 1). Monitoring wells MW-1, MW-2, and MW-3 were installed in April 2016. Monitoring well MW-7 was installed in April 2017. Monitoring well MW-9 was installed in November 2017. All five monitoring wells were sampled on an approximate monthly basis beginning in March 2018 and ending in December 2018 to establish a background data base. Additional information regarding these wells is available in the Groundwater Monitoring, Sampling and Analysis Plan for the site (Gredell Engineering, 2018).

The results of the eight independent background sampling events were evaluated in accordance with §257.93, and intra-well analysis using prediction limits was selected as the statistical analysis approach for detection monitoring (Gredell Engineering, 2018). Following receipt of final analytical data reports from the contract laboratory, the reported concentration for each detection monitoring constituent from each well is compared to its respective prediction limit. If a concentration exceeds the respective prediction limit for a particular constituent well pair, or is outside the predicted range (in the case of pH), SSI over background is suspected.

Monitoring well MW-1 is located west of the Fly Ash Pond and within the containment area of the coal storage area (Figure 1). The well is situated between the north edge of the coal pile and the coal pile runoff diversion ditch. MW-1 was originally installed in April 2016 as a piezometer for the hydrogeologic characterization of the uppermost aquifer flowing beneath the Fly Ash and Bottom Ash Ponds at the site (Gredell Engineering, 2017). This piezometer was converted to a downgradient monitoring well and retained for routine groundwater elevation monitoring and NPDES compliance sampling. Additional sampling locations were proposed, and two additional downgradient wells (MW-7 and MW-9) were installed for Fly Ash Pond monitoring in April 2017 and November 2017, respectively. Groundwater elevation monitoring since 2016 has consistently demonstrated that flow direction is to the west-southwest, as indicated on Figure 1.

The April 6, 2020 detection monitoring event was preceded by abnormally heavy precipitation during the months of January (5.32 inches), February (6.92 inches), and March (8.24 inches). The effects of this heavy precipitation on the local water table are apparent on Figure 2, which is a hydrograph of groundwater elevations in MW-1 overlaid on a bar graph of total annual precipitation for January 1, 2016 through May 31, 2020 (obtained from National Oceanic & Atmospheric Administration Station: Sikeston Power Station, MO US GHCND: US00237772). Note that the estimated annual precipitation plotted for 2020 (71.35 inches) is an extrapolation based on the precipitation received from January through May, 2020 In 2019, the SPS experienced a 30 to 45 percent increase in precipitation relative to the previous three years (2018, 44.39 inches; 2017, 39.78 inches, and; 2016, 41.50 inches. However, the total precipitation in 2020 as of May 31st (29.73 inches) represents an additional 3 percent increase over 2019 (28.75 inches in the same period). This abnormally heavy precipitation is manifested on the hydrograph (Figure 2) by April and May groundwater elevations in MW-1 that exceed all previously recorded measurements.

During periods of abnormally heavy rainfall, infiltration to an aquifer is increased and groundwater mounding may result. Rainfall that exceeds the infiltration capacity becomes surface runoff. Within the coal storage area, this surface runoff moves toward the unlined perimeter diversion ditch (Figure 1). Runoff concentrates in this unlined diversion and flows counterclockwise around the coal storage area within close proximity to MW-1. Because the diversion is unlined, additional infiltration and aquifer recharge is expected to occur. The excessive runoff in 2020 is illustrated by the photographs presented as Figures 3 and 4. They show considerable coal sediment in the diversion ditch, which is not apparent in a photograph dating from November 2017 (Figure 5), nor was it apparent during other field activities conducted by Gredell Engineering in 2016 through 2018.

The analytical data for Calcium, Sulfate, and TDS in MW-1 for the April sampling event, and subsequent resampling data are summarized on Table 1.

	Calcium (mg/L)	Sulfate (mg/L)	TDS (mg/L)
Detection Sampling 4-6-2020	48	39	230
Resample 5-21-20	60	63	260
Prediction Limit	45.18	31.57	223.2

Table 1 - MW-1 Detection Monitoring Results and Prediction Limits

Calcium, Sulfate, and TDS concentrations in the MW-1 sample from the April sampling event exceeded their respective prediction limits, as documented in the 2020 Annual Groundwater Monitoring Report, dated **August** 2020, and posted in the SPS operating record in compliance with USEPA Part 257.90(e) (Gredell Engineering, 2020). In May, a resampling event was conducted and, following receipt of final analytical data on June 15th, the apparent SSIs for Calcium, Sulfate, and TDS in the MW-1 sample were confirmed.

During the preparation of a previous alternate source demonstration for MW-1, additional sampling was conducted in February 2020 (Figure 1). Two temporary borings (ASD-1 and ASD-2) were advanced along the margin of the existing coal pile to allow sampling of the shallow groundwater between the coal pile and the underlying aquifer. Groundwater was also sampled at MW-1, along with a surface water sample collected from the Fly Ash Pond (FAP-SW). Each sample was analyzed for major anions and cations to conduct geochemical analysis. A Piper Trilinear Plot (Piper, 1944) was developed with Sanitas[™] Water (Version 9.6.24; 2019) to identify similarities/variations in hydrochemical facies (Freeze and Cherry, 1979). The reported concentrations are summarized on Table 2. These data were used to evaluate geochemical

relationships between the samples with the objective of identifying the most plausible source for the apparent SSIs at MW-1.

	ASD-1	ASD-2	MW-1	FAP-SW
Calcium (mg/L)	79.1	120	43.0	18.4
Sulfate (mg/L)	151	152	25	21
TDS (mg/L)	860	700	170	175
Magnesium (mg/L)	28.7	27.4	9.06	4.96
Potassium (mg/L)	9.74	9.46	1.72	18.7
Sodium (mg/L)	151	135	7.40	36.7
Bicarbonate (mg/L)	350	508	128	172
Carbonate (mg/L)	0	0	0	0
Chloride (mg/L)	35	20	5	5

Table 2 - Alternate Source Demonstration Sampling Results SummaryFebruary 2020

3.0 SUMMARY OF DATA ANALYSIS AND FINDINGS

The U.S. Environmental Protection Agency (USEPA) provides Unified Guidance for statistical analysis of groundwater monitoring data (USEPA, 2009). This Unified Guidance was reviewed to assess the validity of the apparent SSIs. Chapter 4 of the Unified Guidance discusses groundwater monitoring programs and statistical analysis of the associated data. A key component of statistical analysis is *"to determine whether or not the increase is actually due to a contaminant release"*. The following discussion is intended to assess the validity of apparent SSIs of Calcium, Sulfate, and TDS associated with MW-1 and demonstrate if they are the result of a contaminant release from the Fly Ash Pond or caused by an alternate source.

A release from a plausible source will contribute water with elevated concentrations of indicator constituents to the aquifer, where it mixes with, and is diluted by, the natural (un-impacted) groundwater, which is characterized by relatively low (background) concentrations of these indicator constituents. The data summarized in Table 2 demonstrate that the concentrations of Calcium, Sulfate, and TDS in samples collected from ASD-1 and ASD-2 are at least four times greater than reported for the sample from the Fly Ash Pond, and considerably higher than the sample from MW-1. This suggests that water from the coal storage area is a more plausible source for these constituents in MW-1 than water derived from the Fly Ash Pond.

The area of change in groundwater geochemistry as it flows away from a source is referred to as a mixing zone. A Piper Trilinear Plot is a common and convenient tool for showing the effects of mixing waters. The mixing zone will plot on a straight line joining the source to the receiving water (Freeze and Cherry, 1979).

The cation/anion data in Table 2 was used to produce the Piper Trilinear Plot in Figure 6. The concentrations presented in Table 2 for each constituent are first converted from mg/L to milliequivalents per liter (mEq/L) through a calculation based on their valence charge and molecular weight. The concentrations of these major anions and cations in mEq/L are then expressed in relative percentages on the trilinear plot to assess the geochemistry of the sample. Hydrochemical facies can be assessed based on the location of each point, or cluster of points, on the Piper Trilinear Plot.

Major anion data are summarized by the triangular plot on the right side of Figure 6, which indicates that all samples plot in a similar area or facies, with separation owing to minor differences in Bicarbonate concentrations (Carbonate was absent in all samples). Most notable, however, is that the anion fingerprint in MW-1 is more similar to ASD-1 and ASD-2 than it is to the sample from the Fly Ash Pond. The triangular plot on the left side summarizes the major cation data and indicates that the samples cluster in three different areas or facies (MW-1 in "Calcium-type", FAP-SW in "Sodium- or Potassium-type", and ASD-1 and ASD-2 in "No dominant type" (Freeze and Cherry, 1979)). The anion and cation data can be considered collectively with the diamond portion of the Piper Trilinear Plot to assess if all samples plot collinearly.

The Piper Trilinear Plot suggests three separate geochemical populations defined by the samples from the coal storage area (ASD-1 and ASD-2), the Fly Ash Pond (FAP-SW), and MW-1. A sample from a chemical source should plot collinear with samples associated with the mixing zone. ASD-1 and ASD-2 plot closer to MW-1 and are therefore more geochemically similar to MW-1. Conversely FAP-SW plots farther from MW-1 and is less geochemically similar to MW-1. Additionally, FAP-SW plots along a different straight line with MW-1 than ASD-1 and ASD-2. The hydrograph for MW-1 and annual precipitation data summarized on Figure 2 demonstrate that 2019 was considerably wetter than the previous three years, and 2020 is on pace to be even wetter than 2019. Moreover, this abnormal precipitation led to excessive runoff and sedimentation from the stockpiled coal into the perimeter diversion that flows near MW-1, as presented in Figures 1, 3, and 4. A photograph of the same area taken in November 2017 (Figure 5) shows no excessive sedimentation, suggesting that the atypically heavy precipitation is a changed condition resulting in increased infiltration of coal-impacted surface water downward into the groundwater environment.

4.0 CONCLUSIONS AND RECOMMENDATIONS

On the basis of the data presented in this demonstration, Gredell Engineering concludes that the apparent SSIs of Calcium, Sulfate, and TDS in MW-1, detected following the April 6, 2020 sampling event, are attributable to an alternate source originating in the coal storage area and not evidence of a release from the Fly Ash Pond. The following supports this conclusion:

- Groundwater samples collected from ASD-1 and ASD-2 in the coal storage area have elevated concentrations of Calcium, Sulfate, and TDS relative to MW-1 and the Fly Ash Pond.
- Calcium, Sulfate, and TDS concentrations derived from the Fly Ash Pond are not high enough to be mixed with (and diluted by) natural (un-impacted) groundwater and exceed their respective prediction limits for MW-1.
- Piper Trilinear Plot analysis demonstrates that groundwater from MW-1 is geochemically more similar to groundwater under the coal storage area than water in the Fly Ash Pond, and the groundwater under the coal storage area represents a different mixing zone than would result from waters in the Fly Ash Pond.
- Higher than normal precipitation preceding the groundwater monitoring resulted in excessive runoff from the coal storage area that was conveyed as surface runoff into the unlined diversion ditch that lies in close proximity to MW-1. This excessive runoff and coal sedimentation increases the likelihood that infiltration of coal impacted surface water into the groundwater environment had a deleterious effect on the sample results from MW-1. The abnormal precipitation and excessive runoff is viewed as a temporary changed condition, as evidenced by a comparison of the photographs of the perimeter diversion ditch presented as Figures 3, 4, and 5.

Based on these conclusions, Gredell Engineering recommends that semi-annual detection monitoring continue in accordance with §257.94. As subsequent analytical results are received for Calcium, Sulfate, and TDS concentrations in MW-1, they should be reviewed and appropriate steps taken if prediction limit values continue to be exceeded. Periodic inspection and maintenance of the diversion ditch enclosing the coal storage area would ensure excess sediment from the coal stockpiles is removed.

5.0 LIMITATIONS

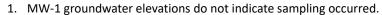
This report has been prepared for the exclusive use of the client and GREDELL Engineering Resources, Inc. for the specific project discussed in accordance with generally accepted environmental practices common to this locale at this time. The report is applicable only to this specific project and identified site conditions as they existed at the time of report preparation. The use of this report by others to develop independent interpretations of data or conclusions not explicitly stated in this report are the sole responsibility of those firms or individuals.

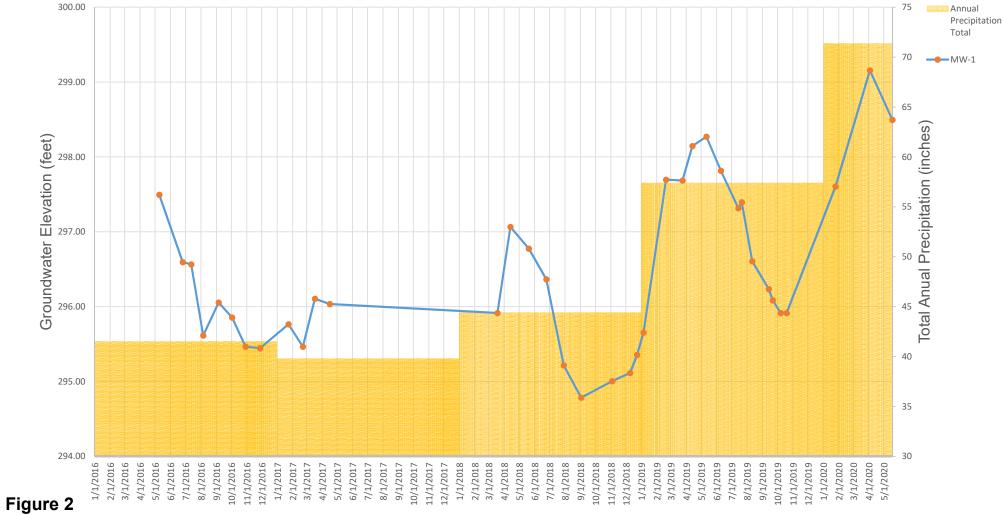
This report is not a guarantee of subsurface conditions. Variations in subsurface conditions may be present that were not identified during this or previous investigations. Interpretations of data and recommendations made in this report are based on observations of data that were available and referred to in this report unless otherwise noted. No other warranties, expressed or implied, are provided.

6.0 **REFERENCES**

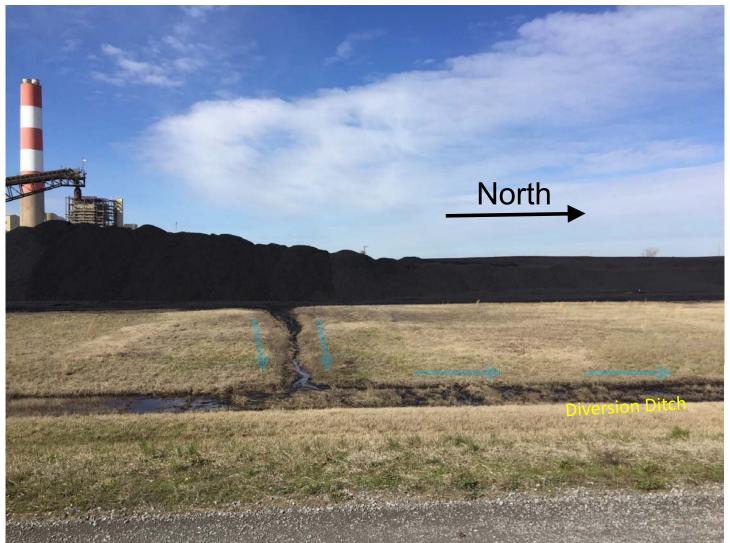
- Freeze, R.A. and Cherry J.A., 1979, *Groundwater*. Prentice-Hall, Inc. Englewood Cliffs, New Jersey, 604 p.
- GREDELL Engineering Resources, Inc., 2017, Sikeston Power Station Site Characterization for Compliance with Missouri State Operating Permit #MO-0095575. Prepared for Sikeston Board of Municipal Utilities, May 31, 2017.
- GREDELL Engineering Resources, Inc., 2020, Sikeston Power Station 2020 Annual Groundwater Monitoring Report for Fly Ash Pond for Compliance with USEPA 40 CFR 257.90(e). Prepared for Sikeston Board of Municipal Utilities, August 2020.
- Piper, A. M., 1944. A Graphical Procedure in the Geochemical Interpretation of Water Analyses. Trans. Amer. Geophys. Union, 25, pp 914-923.
- Sanitas Statistical Software, © 1992-2019 SANITAS TECHNOLOGIES, Alamosa Colorado 81101-0012.
- USEPA, 2009, Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities Unified Guidance: EPA 530/R-09-007, Office of Resource Conservation and Recovery, Program Implementation and Information Division, Washington, D.C.

Figures

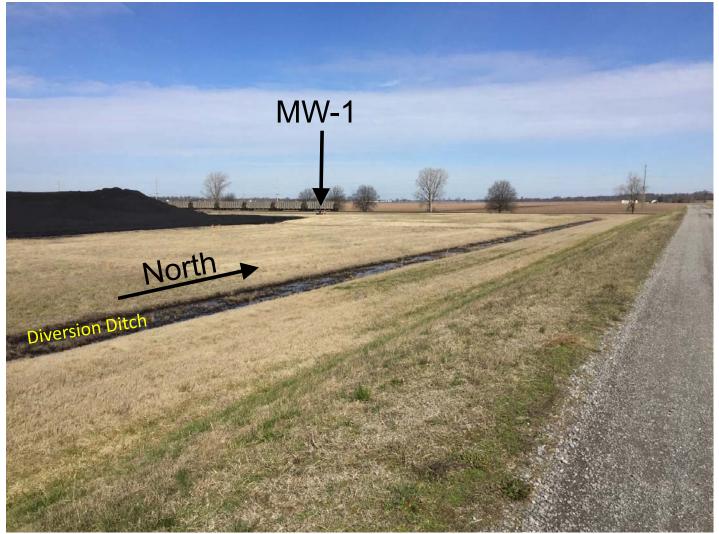


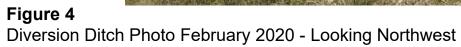

Prepared by: GREDELL Engineering Resources, Inc.

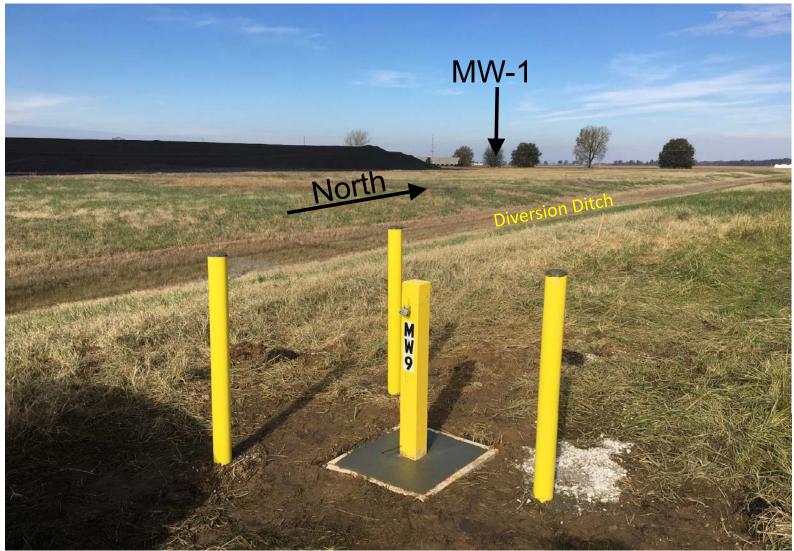
200'

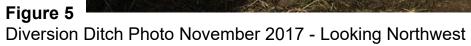

Notes:

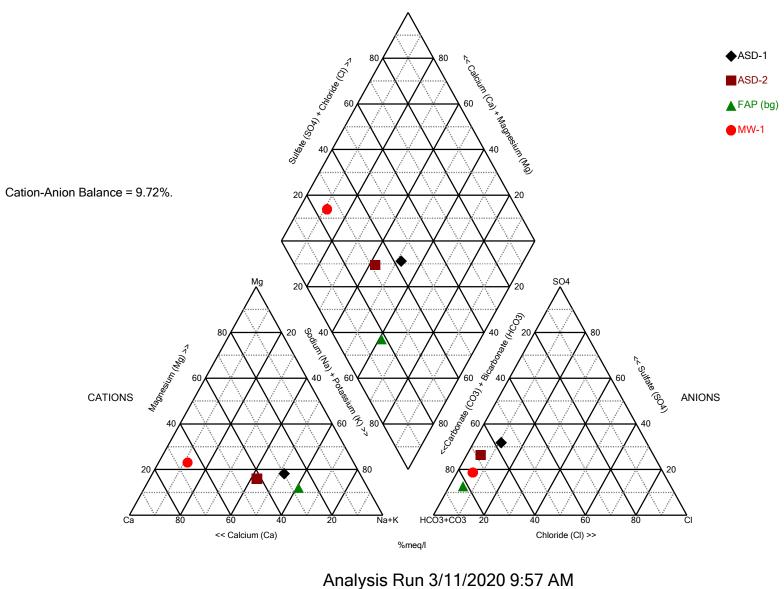


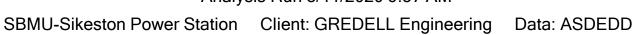

MW-1 Hydrograph and Annual Precipitation




2. 2020 annual precipitation extrapolated based on rainfall as of 5-31-2020.







Prepared by: GREDELL Engineering Resources, Inc.

11-13-2017

Appendix 9

Alternate Source Demonstration September 11, 2020 MW-2

1505 East High Street Jefferson City, Missouri 65101 Telephone (573) 659-9078 www.ger-inc.biz

GREDELL Engineering Resources, Inc.

Sikeston Board of Municipal Utilities Sikeston Power Station Detection Monitoring Program for Fly Ash Pond – Fluoride in MW-2 Alternate Source Demonstration

Sikeston Power Station 1551 West Wakefield Avenue Sikeston, MO 63801

September 2020

PROFESSIONAL ENGINEER'S CERTIFICATION

40 CFR 257.94(e)(2) Alternate Source Demonstration

I, Thomas R. Gredell, P.E., a professional engineer licensed in the State of Missouri, hereby certify in accordance with 40 CFR 257.94(e)(2) to the accuracy of the alternate source demonstration described in the following report for the Sikeston Board of Municipal Utilities, Sikeston Power Station, Fly Ash Pond CCR unit. The report demonstrates that the statistically significant increase of fluoride in MW-2 is not the result of a release from the Fly Ash Pond and is attributable to an alternate source. This demonstration successfully meets the requirements of 40 CFR 257.94(e) as found in federal regulation 40 CFR 257, Subpart D – Standards for the Disposal of Coal Combustion Residuals in Landfills and Surface Impoundments. In addition, the demonstration was made using EPA Unified Guidance (Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities Unified Guidance: EPA 530/R-09-007) and generally accepted methods.

Name:	Thomas R. Gredell,	P.E./	OF MISSO	D
Signature:	Dennest	Har	PROMAS R.	J St
Date:	9-11-200	2001	GREDELL)*8
	ımber: PE-021137 ration: Missouri	PROFIL	NUMBER PE-021137	NULLER CONTRACT

Sikeston Board of Municipal Utilities Sikeston Power Station Detection Monitoring Program for Fly Ash Pond - Fluoride in MW-2 Alternate Source Demonstration September 2020

Table of Contents

1.0	INTRODUCTION	1
2.0	OBSERVATIONS AND DATA COLLECTION	2
3.0	SUMMARY OF DATA ANALYSIS AND FINDINGS	3
4.0	CONCLUSIONS AND RECOMMENDATIONS	5
5.0	LIMITATIONS	6
6.0	REFERENCES	7

List of Figures

Figure 1 – Site Map and Sampling Locations

List of Tables

- Table 1 Fluoride Results 2020
- Table 2 Historical Groundwater Elevation Summary
- Table 3 Calculated Groundwater Velocity for Alluvial Aquifer Data Summary

List of Appendices

- Appendix 1a Laboratory Analytical Results and Quality Control Report, April 6, 2020 Sample Event
- Appendix 1b Laboratory Analytical Results and Quality Control Report, May 21, 2020 Resample Event
- Appendix 2 2019 Annual Water Quality Report for Sikeston Public Water System
- Appendix 3a 2020 Sikeston Public Well Assessment Reports (CARES)

Appendix 3b – 2014 Sikeston Public Well Assessment Reports (CARES)

1.0 INTRODUCTION

This Alternate Source Demonstration Report has been prepared to address the results of the semi-annual sampling event initiated on April 6, 2020 at the Sikeston Board of Municipal Utilities (SBMU) Sikeston Power Station's (SPS) Fly Ash Pond, a coal combustion residual (CCR) surface impoundment. Following receipt of final analytical data, statistical analysis was performed by GREDELL Engineering Resources, Inc. (Gredell Engineering) for the parameters listed in Appendix III to Part 257 – Constituents for Detection Monitoring. Following this analysis, it was apparent that several reported concentrations exceeded their respective prediction limits for the well constituent pairs. These well constituent pairs were; Fluoride in sample MW-2, Chloride and Boron in sample MW-3, Total Dissolved Solids (TDS) in sample MW-9, and Calcium, Sulfate, and TDS in sample MW-1. As a consequence, resampling for the aforementioned well constituent pairs, and Boron in MW-2, was conducted on May 21, 2020. Following receipt of final analytical data from the resampling event, it was confirmed that Calcium, Sulfate, and TDS concentrations in sample MW-1, and Fluoride in sample MW-2 represent statistically significant increases (SSIs). Because MW-2 is upgradient of the Fly Ash Pond, SBMU-SPS requested that Gredell Engineering conduct an evaluation of the analytical results and develop an Alternate Source Demonstration (ASD) if warranted. Calcium, Sulfate, and TDS in MW-1 is the subject of a separate report. Chloride and Boron in sample MW-3, and TDS in sample MW-9 were not confirmed by resampling and therefore are not SSIs.

As stated in §257.94(e)(2), an owner or operator may demonstrate that a source other than the CCR unit caused the apparent SSI over background levels for a constituent. The owner or operator must complete the written demonstration within 90 days of detecting an apparent SSI over background levels to include obtaining a certification from a qualified professional engineer verifying the accuracy of the information in the report. If a successful demonstration is completed within the 90-day period, the owner of the CCR unit may continue with a detection monitoring program. The owner or operator must also include the certified demonstration in the annual groundwater monitoring and corrective action report required by §257.90(e).

Gredell Engineering has completed an evaluation of the groundwater sampling events, analytical data results, and other potential factors, for the SBMU SPS Fly Ash Pond groundwater monitoring well system to determine if an alternate source is the cause of the apparent SSI in MW-2. This report presents the results of that evaluation and includes supporting documentation.

2.0 OBSERVATIONS AND DATA COLLECTION

The Fly Ash Pond groundwater monitoring well system consists of five wells, designated MW-1, MW-2, MW-3, MW-7, and MW-9 (Figure 1). Monitoring wells MW-1, MW-2, and MW-3 were installed in April 2016. Monitoring well MW-7 was installed in April 2017. Monitoring well MW-9 was installed in November 2017. All five monitoring wells were sampled on an approximate monthly basis beginning in March 2018 and ending in December 2018 to establish a background data base. Additional information regarding these wells is available in the Groundwater Monitoring, Sampling and Analysis Plan for the site (Gredell Engineering, 2018).

The results of the eight independent background sampling events were evaluated in accordance with §257.93, and intra-well analysis using prediction limits was selected as the statistical analysis approach for detection monitoring (Gredell Engineering, 2018). Following receipt of final analytical data reports from the contract laboratory, the reported concentration for each detection monitoring constituent from each well is compared to its respective prediction limit. If a concentration exceeds the respective prediction limit for a particular constituent well pair, or is outside the predicted range (in the case of pH), SSI over background is suspected.

The SPS initiated its semi-annual detection groundwater sampling event for the Fly Ash Pond on April 6, 2020. Final analytical results were received from the contract laboratory on April 16, 2020 (Appendix 1a). However, some results appeared elevated relative to their respective prediction limits (Fluoride in MW-2; Chloride and Boron in MW-3; TDS in MW-9; Calcium, Sulfate, and TDS in MW-1). Consequently, each constituent well pair with apparently elevated results was resampled on May 21, 2020. Final analytical results for these resamples were received from the contract laboratory on June 15, 2020 (Appendix 1b).

The following table summarizes the primary and duplicate sample Fluoride results for MW-2 during the April 6th sampling event and the May 21 resampling event. A duplicate sample was not collected from MW-2 during the May 21st resampling event.

	MW-2 Fluoride (mg/L)	MW-2 Duplicate Fluoride (mg/L)
April 6, 2020	0.336	0.287
May 21, 2020	0.374	N/A

N/A = Not Prepared or Analyzed

MW-2 Fluoride Prediction Limit = 0.335 mg/L

Table 1 indicates that the original and resampling results for Fluoride in MW-2 exceed the 0.335 mg/L prediction limit, but the duplicate sample collected in April did not exceed the prediction limit. Although the statistical method used to assess groundwater data for the Fly Ash Pond recognizes Fluoride as an SSI in MW-2, groundwater elevation data measured since May 2016 (Table 2) clearly demonstrate that MW-2 is an upgradient well with respect to the Fly Ash Pond. Therefore, the source of the Fluoride can only be attributable to a source upgradient of MW-2 and the Fly Ash Pond.

3.0 SUMMARY OF DATA ANALYSIS AND FINDINGS

The U.S. Environmental Protection Agency (USEPA) provides Unified Guidance for statistical analysis of groundwater monitoring data (USEPA, 2009). This Unified Guidance document was reviewed to assess the validity of the apparent SSI. Chapter 4 of the Unified Guidance discusses groundwater monitoring programs and statistical analysis of the associated data. A key component of statistical analysis is *"to determine whether or not the increase is actually due to a contaminant release"*. Two of these considerations are pertinent to the data associated with the Fly Ash Pond groundwater monitoring well system and for that reason are listed below.

- 1. Chapter 4, page 4-8: Did the test correctly identify an actual release of an indicator or hazardous constituent?
- 2. Chapter 4, page 4-9: Are any of these contaminants observed upgradient of the regulated units?

Each of these considerations were used to evaluate the background data and the validity of the apparent SSI for Fluoride in MW-2. The results of this evaluation are discussed below.

Unified Guidance Consideration 1

Monitoring well MW-2 was designed and located, and is monitored as an upgradient well in fulfillment of the requirement in §257.91(c)(1). Determination that MW-2 is a suitable location for monitoring upgradient groundwater in the "uppermost aquifer... passing the waste boundary of the CCR unit" was established following the completion of a year-long hydrogeologic characterization of the SPS site (Gredell Engineering, 2017). As documented in that report, 12 groundwater maps were developed showing the direction of flow and hydraulic gradient based on the monthly groundwater elevations. These groundwater maps demonstrate a consistent direction of flow showing minimal variation in hydraulic gradient over the 12 month time period extending from May 2016 to April 2017. Groundwater contours developed from the April 4, 2020 sampling event are presented for reference on Figure 1.

Since completion of the Gredell Engineering (2017) report, the piezometers installed for the hydrogeologic characterization were converted to monitoring wells MW-1 through MW-6 and have been consistently monitored since 2016. Moreover, additional monitoring wells (MW-7 through MW-9) were installed to ensure sufficient downgradient monitoring of the ash ponds at the SPS. In the five years of monitoring, the groundwater data demonstrate that MW-2 is consistently upgradient of the Fly Ash Pond (Table 2).

Based on the clear evidence that MW-2 was placed hydraulically upgradient from the Fly Ash Pond, the well is not positioned to detect a release from the pond. Therefore, it is concluded that the analytical results for MW-2 could <u>not</u> have correctly identified an actual release of Fluoride

from the Fly Ash Pond. Therefore, the conclusion to the first consideration question from Unified Guidance listed above is negative.

Unified Guidance Consideration 2

Relatively high concentrations of Fluoride have been observed from the public drinking water supply wells located east (upgradient) of the "regulated unit" (Fly Ash Pond). Data published by the Missouri Department of Natural Resources in their 2019 Annual Water Quality Report for the Sikeston Public Water System show Fluoride concentrations ranging from 0.61 to 0.86 mg/L (Appendix 2) and suggests that the source are "natural deposits". Similar concentrations were reported in historical Annual Water Quality Reports.

The Fluoride data pertains to the eight supply wells currently operated by the City of Sikeston. Three of these wells (W7, W8/W13, and W9) are located within one-half mile of the Fly Ash Pond (Appendices 3a and 3b). Wells W7 and W8 were drilled in 1976, whereas Well W9 was drilled in 1959. Well W8 may have been replaced by Well W13, which was drilled in 2013 (Appendices 3a and 3b). The drill data indicate that wells W7, W8/W13, and W9 all have total depths of less than 160 feet and yield water from alluvium. The alluvium is the same hydrologic unit monitored by the groundwater monitoring well system at the SPS, including MW-2.

Calculated groundwater velocities reported by Gredell Engineering (2017) for the uppermost (alluvial) aquifer at SPS range in value from 4.00 feet per day (ft/day) to 0.06 ft/day. The velocity data from that report are reproduced for reference as Table 3. When converted to feet per year and multiplied by the difference between the years 2020 and 1976, it is readily apparent that all but the lowest calculated groundwater velocities are sufficient to allow for relatively high concentrations of Fluoride to move approximately one-half mile downgradient and potentially influence the concentration of Fluoride reported at MW-2.

4.0 CONCLUSIONS AND RECOMMENDATIONS

Gredell Engineering concludes that the apparent SSI of Fluoride in MW-2 is not the result of a release from the Fly Ash Pond and is attributable to an alternate source. The following supports this conclusion:

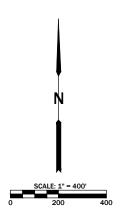
- Since inception of groundwater monitoring at the SPS, groundwater elevations measured in MW-2 have consistently demonstrated that it is an upgradient well with respect to the Fly Ash Pond and that it is higher in elevation than all other wells located at the site (Table 2).
- Groundwater flow direction is from the east-northeast to the west-southwest along a hydraulic gradient typically 0.001 to 0.0001 ft/ft, as documented during every monitoring event at the SPS.
- Fluoride is present in concentrations ranging from 0.61 to 0.86 mg/L in public water supply wells currently used by the City of Sikeston (Appendix 2). Three of these public wells are within one-half mile of the Fly Ash Pond and produce groundwater from the same alluvial aquifer that is monitored by MW-2 (Appendices 3a and 3b). Groundwater velocity data (Table 3) clearly indicate that travel times are sufficient to allow elevated concentrations of Fluoride to be detected in MW-2.

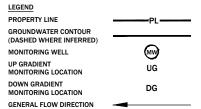
Based on these conclusions, Gredell Engineering recommends continuance of semi-annual detection monitoring in accordance with §257.94.

5.0 LIMITATIONS

This report has been prepared for the exclusive use of the client and GREDELL Engineering Resources, Inc. for the specific project discussed in accordance with generally accepted environmental practices common to this locale at this time. The report is applicable only to this specific project and identified site conditions as they existed at the time of report preparation. The use of this report by others to develop independent interpretations of data or conclusions not explicitly stated in this report are the sole responsibility of those firms or individuals.

This report is not a guarantee of subsurface conditions. Variations in subsurface conditions may be present that were not identified during this or previous investigations. Interpretations of data and recommendations made in this report are based on observations of data that were available and referred to in this report unless otherwise noted. No other warranties, expressed or implied, are provided.


6.0 **REFERENCES**


- Freeze, R.A. and Cherry J.A., 1979, *Groundwater*. Prentice-Hall, Inc. Englewood Cliffs, New Jersey, 604 p.
- GREDELL Engineering Resources, Inc., 2017, Sikeston Power Station Site Characterization for Compliance with Missouri State Operating Permit #MO-0095575. Prepared for Sikeston Board of Municipal Utilities, May 31, 2017.
- GREDELL Engineering Resources, Inc., 2018, Sikeston Power Station Groundwater Monitoring Sampling and Analysis Plan. Prepared for Sikeston Board of Municipal Utilities, September 10, 2018.
- GREDELL Engineering Resources, Inc., 2019, Sikeston Power Station 2018 Annual Groundwater Monitoring and Corrective Action Report for Bottom Ash Pond for Compliance with USEPA 40 CFR 257.90(e). Prepared for Sikeston Board of Municipal Utilities, January 30, 2019.
- Sanitas Statistical Software, © 1992-2019 SANITAS TECHNOLOGIES, Alamosa Colorado 81101-0012.
- USEPA, 2009, Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities Unified Guidance: EPA 530/R-09-007, Office of Resource Conservation and Recovery, Program Implementation and Information Division, Washington, D.C.

FIGURES

ΔA

- NOTES:
 IMAGE PROVIDED BY BING MAPS.
 MONITORING WELL LOCATIONS, CASING ELEVATIONS & UNDERGROUND CULVERT ELEVATIONS SURVEYED BY BOWEN ENGINEERING & SURVEYING.
 GROUNDWATER ELEVATIONS MEASURED BY SIKESTON POWER STATION STAFF ON APRIL 6, 2020.
 MAP DEVELOPMENT BASED ON CONTOURS GENERATED BY SURFER® SOFTWARE.
 RANGE OF GROUNDWATER FLOW GRADIENT AS DETERMINED BY SURFER® SOFTWARE 0.0001 FT./FT. TO 0.001 FT./FT.

WELL	GROUNDWATER ELEVATION (FEET)	CASING ELEVATION (FEET)	NORTHING	EASTING
	299.16	312.77	383119.51	1078467.90
	300.40	308.01	383207.42	1079751.30
	300.00	308.55	381130.00	1079946.62
	298.99	315.03	381584.50	1078847.00
	299.41	314.68	382429.94	1078825.60

	SHEET # TO OR INTENDED TO BE USED FOR ANY PART OR PARTS 1 OF 1 OF THE PROJECT TO WHICH THIS FIGURE REFERS.
FIGURE 1 SITE MAP AND SAMPLING LOCATIONS APRIL 4, 2020	HEXMED APPROVED DATE SCALE PROLECT NAME FLET # KE MCC 7/2020 AS NOTED SIMESTON/GWMAP/FAP GWCONTFAP 2020 1.0F.1.
	CALE PROJECT NAME VOTED SIKESTON/GWMAP/
POWER STATION ASH POND JRCE DEMONSTRATIOI 2-FLUORIDE	URVEYED DESIGNED DRAWN CHECKED APPROVED DATE SCALE NA NA CP KE MCC 7/2020 AS NOTED
FTON POWER ST [#] FLY ASH POND E SOURCE DEMON MW-2-FLUORIDE	CHECKED A
SIKESTON FLY NATE SOU MW-	ED DRAWN CP
SIM	URVEYED DESIGNED DRAWN NA NA CP
GREDELL Engineering Resources, Inc. SIKESTON POWER STATION Environmental Engineering Land - AIR - WATER ALTERNATE SOURCE DEMONSTRATION 1505 East High Street Telephone: (573) 659-9078 14400000000000000000000000000000000000	Jerrerson Urty, Missouri radointine: (313) 033-3079 5

Tables

Sikeston Board of Municipal Utilities Sikeston Power Station Detection Monitoring Program for Fly Ash Pond - Fluoride in MW-2 Alternate Source Demonstration

 Table 1

 Groundwater Monitoring Well Summary

Monitoring Well ID ^{1,2}	Northing Location ^{3,4}	Easting Location ^{3,4}	Ground Surface Elevation ^{3,4} (feet)	Top of Riser Elevation ^{3,4} (feet)	Well Depth ⁵ (feet)	Base of Well Elevation ⁶ (feet)	Screen Length ⁷ (feet)	Top of Screen Elevation (feet)
MW-1	383119.51	1078467.90	310.41	312.77	37.84	274.93	10	285.1
MW-2	383207.42	1079751.30	305.53	308.01	37.42	270.59	10	280.8
MW-3	381130.00	1079946.62	306.11	308.55	37.21	271.34	10	281.5
MW-7	381584.50	1078847.00	312.70	315.03	37.37	277.66	10	287.9
MW-9	382429.94	1078825.60	311.85	314.68	37.28	277.40	10	287.6

NOTES:

1. Refer to Figure 1 for monitoring well locations.

2. Refer to Sikeston Power Station On-Site Operating Record for well construction diagrams.

3. Monitoring well survey data provided by Bowen Engineering & Surveying, Inc.

4. Horizontal Datum: Missouri State Plane Coordinates - NAD 83 (Feet), Vertical Datum: NAVD 88 (Feet).

5. Depth measurements relative to surveyed point on top of well casing.

6. Sump installed at base of screen (0.2 feet length).

7. Actual screen length (9.7 feet) is the machine-slotted section of the 10-foot length of Schedule 40 PVC pipe.

Sikeston Board of Municipal Utilities Sikeston Power Station Detection Monitoring Program for Fly Ash Pond - Fluoride in MW-2 Alternate Source Demonstration

Table 2
Historical Groundwater Elevation Summary

Well ID	MW-1	MW-2	MW-3	MW-7	MW-9
Date		Groundwa	ater Elevation (feet MSL)	
05/12/16	297.50	298.66	298.13	NM	NM
06/28/16	296.60	298.01	297.58	NM	NM
07/15/16	296.57	297.86	297.37	NM	NM
08/08/16	295.62	297.06	297.05	NM	NM
09/08/16	296.06	297.27	296.76	NM	NM
10/05/16	295.86	296.96	296.40	NM	NM
11/01/16	295.47	296.66	296.10	NM	NM
11/30/16	295.45	296.60	296.03	NM	NM
01/26/17	295.77	296.76	296.35	NM	NM
02/24/17	295.47	296.40	296.00	NM	NM
03/20/17	296.11	296.96	296.45	NM	NM
04/19/17	296.04	296.86	296.35	NM	NM
03/21/18	295.92	296.96	296.65	295.83	296.13
04/15/18	297.07	297.86	297.60	296.95	297.18
05/23/18	296.78	298.01	297.62	296.66	296.98
06/27/18	296.37	297.61	297.21	296.26	296.56
08/01/18	295.22	296.60	296.15	295.08	295.48
09/05/18	294.79	296.11	295.68	294.71	295.01
11/06/18	295.01	296.21	295.74	294.85	295.17
12/12/18	295.12	296.21	295.79	295.06	295.36
01/08/19	295.66	296.72	296.38	295.53	295.80
02/22/19	297.70	298.67	298.35	297.59	297.84
03/27/19	297.69	298.93	298.51	297.58	297.93
04/16/19	298.15	299.29	298.93	298.01	298.38
05/14/19	298.27	299.66	299.25	298.15	298.52
06/12/19	297.82	299.24	298.82	297.76	298.10
07/17/19	297.32	298.77	298.38	297.25	297.55
07/24/19	297.40	298.80	298.41	297.33	297.65
08/14/19	296.61	298.15	297.80	296.65	296.96
09/16/19	296.24	297.70	297.22	296.14	296.50
09/24/19	296.09	297.53	297.05	295.98	296.33
10/10/19	295.92	297.29	296.84	295.80	296.13
10/22/19	295.92	297.24	296.80	295.74	296.12
01/28/20	297.61	298.73	298.34	297.42	297.80
04/06/20	299.16	300.40	300.00	298.99	299.41
05/21/20	298.50	300.02	299.55	NM	298.71

NOTES:

Maximum groundwater elevation.

Minimum groundwater elevation.

1. Refer to Figure 1 for monitoring well locations.

2. Refer to Sikeston Power Station On-Site Operating Record for well construction diagrams.

3. NM - Not Measured.

Sikeston Board of Municipal Utilities Sikeston Power Station Detection Monitoring Program for Fly Ash Pond - Fluoride in MW-2 Alternate Source Demonstration

Table 3 Calculated Groundwater Velocity for Alluvial Aquifer

Location	Sikeston Pond Area					
Hydraulic Conductivity (K)	K _{min} = 112 ft/day					
Hydraulic Gradient (<i>i</i>)	i _{min} = 0.000172 ft/ft i _{max} = 0.00136 ft/ft			ft/ft		
Effective Porosity (n)	0.10	0.20	0.30	0.10	0.20	0.30
Velocity (=Ki/n) (ft/day)	0.19	0.10	0.06	1.52	0.76	0.51
Velocity (=Ki/n) (ft/year)	70	35	23	556	278	185
Travel Distance (1976-2020) (ft)	3,094	1,547	1,031	24,463	12,231	8,154

Location	Sikeston Pond Area					
Hydraulic Conductivity (K)		K _{max} = 294 ft/day				
Hydraulic Gradient (<i>i</i>)	i _{min}	= 0.000172	ft/ft	i _{max} = 0.00136 ft/ft		
Effective Porosity (n)	0.10	0.20	0.30	0.10	0.20	0.30
Velocity (=Ki/n) (ft/day)	0.51	0.25	0.17	4.00	2.00	1.33
Velocity (=Ki/n) (ft/year)	185	92	62	1459	730	486
Travel Distance (1976-2020) (ft)	8,121	4,061	2,707	64,214	32,107	21,405

NOTES:

1. Hydraulic conductivity based on slug test results.

2. Hydraulic gradients based on calculated maximum and minimum values as determined by Surfer© Software.

3. Effective Porosity values represent estimated range. USEPA (2009) Unified Guidance indicates 0.20 is appropriate for sandy/gravelly granular material.

Appendices

Appendix 1a

Laboratory Analytical Results and Quality Control Reports April 6, 2020 Sample Event

April 16, 2020

Luke St Mary Sikeston BMU, Sikeston Power Station 1551 W Wakefield Sikeston, MO 63801

RE: Sikeston BMU-CCR Fly Ash Wells

Dear Luke St Mary:

Please find enclosed the analytical results for the **7** sample(s) the laboratory received on **4/8/20 10:00 am** and logged in under work order **0041811**. All testing is performed according to our current TNI accreditations unless otherwise noted. This report cannot be reproduced, except in full, without the written permission of PDC Laboratories, Inc.

If you have any questions regarding your report, please contact your project manager. Quality and timely data is of the utmost importance to us.

PDC Laboratories, Inc. appreciates the opportunity to provide you with analytical expertise. We are always trying to improve our customer service and we welcome you to contact the Director of Client Services, Lisa Grant, with any feedback you have about your experience with our laboratory at 309-683-1764 or Igrant@pdclab.com.

Sincerely,

Yert

Kurt Stepping Senior Project Manager (309) 692-9688 x1719 kstepping@pdclab.com

Sample: 0041811-01 Name: MW-1 Matrix: Ground Wat	er - Regular	Sample					Sampled: 04/06/2 Received: 04/08/2 PO #: 23574		
Parameter	Result	Unit	Qualifier	Prepared	Dilution	MRL	Analyzed	Analyst	Method
Anions - PIA									
Chloride	5.4	mg/L		04/14/20 10:34	1	1.0	04/14/20 10:34	LAM	EPA 300.0 REV 2.1
Fluoride	0.255	mg/L		04/14/20 10:34	1	0.250	04/14/20 10:34	LAM	EPA 300.0 REV 2.1
Sulfate	39	mg/L	Q4	04/14/20 11:29	5	5.0	04/14/20 11:29	LAM	EPA 300.0 REV 2.1
General Chemistry - PIA									
Solids - total dissolved solids (TDS)	230	mg/L		04/09/20 13:28	1	26	04/09/20 14:08	CPC	SM 2540C
<u> Total Metals - PIA</u>									
Boron	520	ug/L		04/14/20 08:45	5	10	04/16/20 08:49	JMW	EPA 6020A
Calcium	48000	ug/L		04/14/20 08:45	5	100	04/15/20 08:03	JMW	EPA 6020A
Sample: 0041811-02 Name: MW-2 Matrix: Ground Wat	er - Regular	Sample					Sampled: 04/06/2 Received: 04/08/2 PO #: 23574		
Parameter	Result	Unit	Qualifier	Prepared	Dilution	MRL	Analyzed	Analyst	Method
<u> Anions - PIA</u>									
Chloride	2.1	mg/L		04/14/20 11:47	1	1.0	04/14/20 11:47	LAM	EPA 300.0 REV 2.1
Fluoride	0.336	mg/L		04/14/20 11:47	1	0.250	04/14/20 11:47	LAM	EPA 300.0 REV 2.1
	0.550	mg/L		04/14/20 11.47	I	0.200	0 11 1 20 11111		
Sulfate	16	mg/L	Q4	04/14/20 12:41	5	5.0	04/14/20 12:41	LAM	EPA 300.0 REV 2.1
		-	Q4						
<u>General Chemistry - PIA</u> Solids - total dissolved		-	Q4						
General Chemistry - PIA Solids - total dissolved solids (TDS)	16	mg/L	Q4	04/14/20 12:41	5	5.0	04/14/20 12:41	LAM	EPA 300.0 REV 2.1
Sulfate <u>General Chemistry - PIA</u> Solids - total dissolved solids (TDS) <u>Total Metals - PIA</u> Boron	16	mg/L	Q4	04/14/20 12:41	5	5.0	04/14/20 12:41	LAM	EPA 300.0 REV 2.1

Sample: 0041811-03 Sampled: 04/06/20 08:22 Name: MW-3 Received: 04/08/20 10:00 Matrix: Ground Water - Regular Sample PO #: 23574											
Parameter	Result	Unit	Qualifier	Prepared	Dilution	MRL	Analyzed	Analyst	Method		
Anions - PIA											
Chloride	1.8	mg/L		04/13/20 19:38	1	1.0	04/13/20 19:38	KCC	EPA 300.0 REV 2.1		
Fluoride	0.371	mg/L		04/13/20 19:38	1	0.250	04/13/20 19:38	KCC	EPA 300.0 REV 2.1		
Sulfate	20	mg/L		04/13/20 20:33	10	10	04/13/20 20:33	KCC	EPA 300.0 REV 2.1		
General Chemistry - PIA											
Solids - total dissolved solids (TDS)	380	mg/L		04/09/20 13:28	1	26	04/09/20 14:08	CPC	SM 2540C		
<u> Total Metals - PIA</u>											
Boron	29	ug/L		04/14/20 08:45	5	10	04/16/20 09:12	JMW	EPA 6020A		
Calcium	16000	ug/L		04/14/20 08:45	5	100	04/15/20 08:10	JMW	EPA 6020A		
Sample: 0041811-04 Name: MW-7 Matrix: Ground Wa	1 ater - Regular	Sample					Sampled: 04/06/2 Received: 04/08/2 PO #: 23574				
Parameter	Result	Unit	Qualifier	Prepared	Dilution	MRL	Analyzed	Analyst	Method		
Anions - PIA											
Chloride	4.0	mg/L		04/13/20 20:51	1	1.0	04/13/20 20:51	KCC	EPA 300.0 REV 2.1		
Fluoride	0.737	mg/L		04/13/20 20:51	1	0.250	04/13/20 20:51	KCC	EPA 300.0 REV 2.1		
Sulfate	200	mg/L		04/13/20 21:09	25	25	04/13/20 21:09	KCC	EPA 300.0 REV 2.1		
General Chemistry - PIA											
Solids - total dissolved solids (TDS)	540	mg/L		04/09/20 13:28	1	26	04/09/20 14:08	CPC	SM 2540C		
<u> Total Metals - PIA</u>											
					_						
Boron	2200	ug/L		04/14/20 08:45	5	10	04/16/20 09:20	JMW	EPA 6020A		

Sample: 0041811-05 Sampled: 04/06/20 13:19 Name: MW-9 Received: 04/08/20 10:00 Matrix: Ground Water - Regular Sample PO #: 23574											
Parameter	Result	Unit	Qualifier	Prepared	Dilution	MRL	Analyzed	Analyst	Method		
Anions - PIA											
Chloride	18	mg/L	Q4	04/14/20 14:30	5	5.0	04/14/20 14:30	LAM	EPA 300.0 REV 2.1		
Fluoride	0.816	mg/L	Q3	04/14/20 12:59	1	0.250	04/14/20 12:59	LAM	EPA 300.0 REV 2.1		
Sulfate	250	mg/L	Q4	04/14/20 14:48	25	25	04/14/20 14:48	LAM	EPA 300.0 REV 2.1		
General Chemistry - PIA											
Solids - total dissolved solids (TDS)	840	mg/L		04/09/20 13:28	1	26	04/09/20 14:08	CPC	SM 2540C		
<u> Total Metals - PIA</u>											
Boron	4900	ug/L		04/14/20 08:45	5	10	04/16/20 09:23	JMW	EPA 6020A		
Calcium	92000	ug/L		04/14/20 08:45	5	100	04/15/20 08:18	JMW	EPA 6020A		
Sample: 0041811-06 Name: DUPLICATE Matrix: Ground Wa		Sample					Sampled: 04/06/2 Received: 04/08/2 PO #: 23574				
Parameter	Result	Unit	Qualifier	Prepared	Dilution	MRL	Analyzed	Analyst	Method		
Anions - PIA											
Chloride	2.0	mg/L		04/14/20 15:06	1	1.0	04/14/20 15:06	LAM	EPA 300.0 REV 2.1		
Fluoride	0.287	mg/L		04/14/20 15:06	1	0.250	04/14/20 15:06	LAM	EPA 300.0 REV 2.1		
Sulfate	16	mg/L		04/14/20 15:24	5	5.0	04/14/20 15:24	LAM	EPA 300.0 REV 2.1		
General Chemistry - PIA											
Solids - total dissolved solids (TDS)	160	mg/L		04/09/20 13:28	1	26	04/09/20 14:08	CPC	SM 2540C		
<u>Total Metals - PIA</u>											
Boron	80	ug/L		04/14/20 08:45	5	10	04/16/20 09:27	JMW	EPA 6020A		
Calcium	15000	ug/L		04/14/20 08:45	5	100	04/15/20 08:30	JMW	EPA 6020A		

Sample: 0041811 Name: FIELD BL/ Matrix: Ground V		Sample						/20 00:00 /20 10:00 I		
Parameter	Result	Unit	Qualifier	Prepared	Dilution	MRL	Analyzed	Analyst	Method	
Anions - PIA										
Chloride	< 1.0	mg/L		04/14/20 16:01	1	1.0	04/14/20 16:01	LAM	EPA 300.0 REV 2.1	
Fluoride	< 0.250	mg/L		04/14/20 16:01	1	0.250	04/14/20 16:01	LAM	EPA 300.0 REV 2.1	
Sulfate	< 1.0	mg/L		04/14/20 16:01	1	1.0	04/14/20 16:01	LAM	EPA 300.0 REV 2.1	
General Chemistry - PIA										
Solids - total dissolved solids (TDS)	< 17	mg/L		04/09/20 13:28	1	17	04/09/20 14:08	CPC	SM 2540C	
<u> Total Metals - PIA</u>										
Boron	23	ug/L		04/14/20 08:45	5	10	04/16/20 09:31	JMW	EPA 6020A	
Calcium	< 100	ug/L		04/14/20 08:45	5	100	04/15/20 08:33	JMW	EPA 6020A	

QC SAMPLE RESULTS

Parameter	Result	Unit	Qual	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limi
Batch B008447 - No Prep - SM 2540C									
Blank (B008447-BLK1)				Prepared &	Analyzed: 04	/09/20			
Solids - total dissolved solids (TDS)	< 17	mg/L							
LCS (B008447-BS1)				Prepared &	Analyzed: 04	/09/20			
Solids - total dissolved solids (TDS)	1000	mg/L		1000		100	67.9-132		
Duplicate (B008447-DUP1)	Sample: 004119	5-01		Prepared &	Analyzed: 04	/09/20			
Solids - total dissolved solids (TDS)	1310	mg/L	М		727			58	5
Duplicate (B008447-DUP2)	Sample: 004119	5-02		Prepared &	Analyzed: 04	/09/20			
Solids - total dissolved solids (TDS)	427	mg/L	М		360			17	5
<u> Batch B008764 - SW 3015 - EPA 6020A</u>									
Blank (B008764-BLK1)				Prepared: 0	4/14/20 Anal	yzed: 04/16/2	0		
Boron	< 10	ug/L							
Calcium	< 100	ug/L							
LCS (B008764-BS1)				Prepared: 0	4/14/20 Anal	yzed: 04/16/2	0		
Boron	574	ug/L		555.6		103	80-120		
Calcium	5060	ug/L		5556		91	80-120		
Matrix Spike (B008764-MS1)	Sample: 004181	1-07		Prepared: 0	4/14/20 Anal	yzed: 04/16/2	0		
Boron	591	ug/L		555.6	23.4	102	75-125		
Calcium	5170	ug/L		5556	86.3	92	75-125		
Matrix Spike Dup (B008764-MSD1)	Sample: 004181	1-07		Prepared: 0	0				
Boron	594	ug/L		555.6	23.4	103	75-125	0.5	20
Calcium	5420	ug/L		5556	86.3	96	75-125	5	20
<u> Batch B008794 - No Prep - EPA 300.0 REV 2.1</u>									
Calibration Blank (B008794-CCB1)				Prepared &	Analyzed: 04	/13/20			
Sulfate	0.0870	mg/L							
Fluoride	0.00	mg/L							
Chloride	0.297	mg/L							
Calibration Check (B008794-CCV1)				Prepared &	Analyzed: 04	/13/20			
Sulfate	5.03	mg/L		5.000		101	90-110		
Fluoride	5.13	mg/L		5.000		103	90-110		
Chloride	4.73	mg/L		5.000		95	90-110		
Batch B008886 - No Prep - EPA 300.0 REV 2.1									
Calibration Blank (B008886-CCB1)				Prepared &	Analyzed: 04	/14/20			
Fluoride	0.00	mg/L							
Chloride	0.457	mg/L							
Sulfate	0.00	mg/L							
Calibration Check (B008886-CCV1)				Prepared &	Analyzed: 04	/14/20			
Sulfate	5.20	mg/L		5.000		104	90-110		
Fluoride	5.18	mg/L		5.000		104	90-110		
	4.99	mg/L		5.000		100	90-110		
Chloride	4.55	0							
Chloride Matrix Spike (B008886-MS1)	4.99 Sample: 004181	-		Prepared &	Analyzed: 04	/14/20			

QC SAMPLE RESULTS

				Spike	Source		N/ DEO				
Parameter	Result	Unit	Qual	Level	Result	%REC	%REC Limits	RPD	RPC Limi		
Batch B008886 - No Prep - EPA 300.0 REV 2.1											
Matrix Spike (B008886-MS1)	Sample: 00418 ⁴	11-01		Prepared &	Analyzed: 04/	14/20					
Sulfate	1.00E9	mg/L	Q4	1.500	38.8	NR	80-120				
Fluoride	1.54	mg/L		1.500	0.255	86	80-120				
Matrix Spike (B008886-MS2)	Sample: 00418	11-02		Prepared &	Analyzed: 04/	14/20					
Fluoride	1.58	mg/L		1.500	0.336	83	80-120				
Sulfate	1.00E9	mg/L	Q4	1.500	16.1	NR	80-120				
Chloride	3.4	mg/L		1.500	2.1	84	80-120				
Matrix Spike (B008886-MS3)	Sample: 00418 ²	11-05		Prepared &	Analyzed: 04/	14/20					
Chloride	1.0E9	mg/L	Q4	1.500	18	NR	80-120				
Sulfate	1.00E9	mg/L	Q4	1.500	246	NR	80-120				
Fluoride	1.68	mg/L	Q1	1.500	0.816	58	80-120				
Matrix Spike Dup (B008886-MSD1)	Sample: 00418 ²	11-01		Prepared &	Analyzed: 04/	14/20					
Fluoride	1.51	mg/L		1.500	0.255	84	80-120	2	20		
Chloride	6.7	mg/L		1.500	5.4	87	80-120	0.7	20		
Sulfate	1.00E9	mg/L	Q4	1.500	38.8	NR	80-120	0	20		
Matrix Spike Dup (B008886-MSD2)	Sample: 00418	11-02		Prepared & Analyzed: 04/14/20							
Sulfate	1.00E9	mg/L	Q4	1.500	16.1	NR	80-120	0	20		
Fluoride	1.61	mg/L		1.500	0.336	85	80-120	2	20		
Chloride	3.4	mg/L		1.500	2.1	84	80-120	0.1	20		
Matrix Spike Dup (B008886-MSD3)	Sample: 00418 ²	11-05		Prepared &	Analyzed: 04/	14/20					
Chloride	1.0E9	mg/L	Q4	1.500	18	NR	80-120	0	20		
Sulfate	1.00E9	mg/L	Q4	1.500	246	NR	80-120	0	20		
Fluoride	2.14	mg/L	Q2	1.500	0.816	88	80-120	24	20		

NOTES

Specifications regarding method revisions and method modifications used for analysis are available upon request. Please contact your project manager.

* Not a TNI accredited analyte

Certifications

- CHI McHenry, IL 4314-A W. Crystal Lake Road, McHenry, IL 60050 TNI Accreditation for Drinking Water and Wastewater Fields of Testing through IL EPA Accreditation No. 100279 Illinois Department of Public Health Bacterial Analysis in Drinking Water Approved Laboratory Registry No. 17556
- PIA Peoria, IL 2231 W. Altorfer Drive, Peoria, IL 61615

TNI Accreditation for Drinking Water, Wastewater, Solid and Hazardous Material Fields of Testing through IL EPA Accreditation No. 100230 Illinois Department of Public Health Bacterial Analysis in Drinking Water Approved Laboratory Registry No. 17553

Drinking Water Certifications/Accreditations: Iowa (240); Kansas (E-10338); Missouri (870) Wastewater Certifications/Accreditations: Arkansas (88-0677); Iowa (240); Kansas (E-10338) Solid and Hazardous Material Certifications/Accreditations: Arkansas (88-0677); Iowa (240); Kansas (E-10338)

- SPIL Springfield, IL 1210 Capitol Airport Drive, Springfield, IL 62707 Illinois Department of Public Health Bacterial Analysis in Drinking Water Approved Laboratory Registry No. 17592
- SPMO Springfield, MO 1805 W Sunset Street, Springfield, MO 65807 USEPA DMR-QA Program
- STL Hazelwood, MO 944 Anglum Rd, Hazelwood, MO 63042

TNI Accreditation for Wastewater, Solid and Hazardous Material Fields of Testing through KS KDHE Certification No. E-10389 TNI Accreditation for Wastewater, Solid and Hazardous Material Fields of Testing through IL EPA Accreditation No. - 200080 Illinois Department of Public Health Bacterial Analysis in Drinking Water Approved Laboratory, Registry No. 171050 Missouri Department of Natural Resources - Certificate of Approval for Microbiological Laboratory Service - No. 1050

Qualifiers

- M Analyte failed to meet the required acceptance criteria for duplicate analysis.
- Q1 Matrix Spike failed % recovery acceptance limits. The associated blank spike recovery was acceptable.
- Q2 Matrix Spike Duplicate failed % recovery acceptance limits. The associated blank spike recovery was acceptable.
- Q3 Matrix Spike/Matrix Spike Duplicate both failed % recovery acceptance limits. The associated blank spike recovery was acceptable.
- Q4 The matrix spike recovery result is unusable since the analyte concentration in the sample is greater than four times the spike level. The associated blank spike was acceptable.

Certified by: Kurt Si

Kurt Stepping, Senior Project Manager

۰

PDC Laboratories, Inc. P.O. Box 9071 • Peoria, IL 61612-9071 (309) 692-9688 • (800) 752-6651 • FAX (309) 692-9689

DATA PACKAGE

CLIENT; Sikeston BMU PROJECT: Sikeston Power Station PDC LAB WORKORDER: 0041811 DATE ISSUED: April 16, 2020

CASE NARRATIVE –

PDC Work Order 0041811

PDC Laboratories, Inc. received 7 water samples on April 8, 2020 in good condition at our Peoria, IL facility. This sample set was designated as work order 0041811

Sample I	D's	Date					
Field	Lab ID	Collected	Received				
MW-1	0041811-01	4/6/20	4/8/20				
MW-2	0041811-02	4/6/20	4/8/20				
MW-3	0041811-03	4/6/20	4/8/20				
MW-7	0041811-04	4/6/20	4/8/20				
MW-9	0041811-05	4/6/20	4/8/20				
DUPLICATE WELL	0041811-06	4/6/20	4/8/20				
FIELD BLANK	0041811-07	4/6/20	4/8/20				

QC Summary:

All items met acceptance criteria with the following noted exceptions:

TDS batch QC samples flagged with M, RPD outside acceptance criteria

SO4, CL, Batch QC samples flagged with Q4, sample exceeds 4x spiked values

F, batch QC sample flagged with Q3, Q2, Q1, matrix spike and spike dup outside acceptance criteria.

Certification

Signature:

Yunt 2

Name: Kurt Stepping

Date:

April 16, 2020

Title: Senior Project Manager

-	REGULATORY PROGRAM (Check one:)	NPDES
	MORBCA	RCRA
	CCDD	TACO: RES OR IND/COMM

CHAIN OF CUSTODY RECORD

STATE WHERE SAMPLE COLLECTED MO

		GHLIGHTED ARE				CLIENT (PLE)	ASE PRINT)								
CLIENT SIKESTON BMU POWER STATION	PROJECT	PROJECT NUMBER PROJECT L FLYASH AP				TION PURCHASE ORDER			ANAL	YSIS RE	QUESTE	ED	(FOR LAB USE ONLY)		
ADDRESS 1551 W WAKEFIELD	рноне м 573.47	E-MAIL LSTMARY@SBMU.NET			DATE SH		٥	٨							
SIKESTON, MO 63801	SAMPLER (PLEASE PRINT Daniel Di	•					MATRIX TYPES: WW- WASTEWATER DW- DRINKING WATER GW- GROUND WATER WWSL - SLUDGE NAS- NON AQUEOUS SOLID LOTT-LEACHATE						CLIENT: SIKESTON BMU PROJECT: FLYASH APP III ONLY PROJ. MGR.: KURT		
LUKE ST MARY	SAMPLER'S SIGNATURE	a. a	and the second second	NAME AND ADDRESS OF TAXABLE PARTY.	CONTRACTOR OF THE OWNER OF THE OWNER	SO-SOIL SOL-SOLID		F, SO4,	A				CUSTODY SEAL #:		
2 (UNIQUE DESCRIPTION AS IT WILL APPEAR ON THE ANALYTICAL REPORT)			GRAB	COMP	MATRIX	COUNT	PRES CODE CLIENT PROVIDED	CL,	B, CA				REMARKS		
, MW-1	4-6-2020	1113	X		GW	2		\times	X						
×МW-2	4-6-2020	0904	X		GW	2		X	X						
MW-3	4-6-2020	0822	X		GW	2		X	X						
`MW-7	4-6-2020	1158	X		GW	2		X	X						
`MW-9	4-6-2020 1319		X		GW	2		X	X						
DUPLICATE WELL	4-6-2020		X		GW	2		X	X				· · ·		
FIELD BLANK	4-6-2020		X		GW	2		\times	X						
CHEMICAL PRESERVATION CODES: 1-HCL 2-H2SO4 3-	HNO3 4 - NA	OH 5-NA	25203	6 - LINPE	RESERVED	7 - OTHER									
TURNAROUND TIME REQUESTED (PLEASE CHECK) (RUSH TAT IS SUBJECT TO PDC LABS APPROVAL AND SURCHARGE)		RUSH	DATE RES NEEDE	ULTS	6	l understand	I that by initia sample confe	nat by initialing this box I give the lab permission to proceed with analysis, even though it may mple conformance requirements as defined in the receiving facility's Sample Acceptance					ceiving facility's Sample Acceptance		
	RUSH RESULTS VIA (PLEASE CIRCLE) EMAIL PHONE EMAIL IF DIFFERENT FROM ABOVE: PHONE # IF DIFFERENT FROM ABOVE:							ata will be qualified. Qualified data may <u>NOT</u> be acceptable to report to all regulatory auth							
	ELINQUISHED BY: (SIGNATURE) DATE 4-7-2020 TIME 0730						DATE		B COMMENTS: (FOR LAB USE ONLY)				S: (FOR LAB USE ONLY)		
RELINQUISHED BY: (SIGNATURE) DATE		RECEIVI	ED BY: (SIG	NATURE)			DATE			SAMP	LE TEM	PERATUR			
TIME TIME D RELINQUISHED BY: (SIGNATURE) DATE		ED BY: (SIG	NATURE)	1	X	TIME PATE/////			CHILL PROCESS STARTED PRIOR TO RECEIPT SAMPLE(S) RECEIVED ON ICE SAMPLE ACCEPTANCE NONCONFORMANT						
TIME		(b	H	/		THE			REPORT IS NEEDEDY OR DATE AND TIME TAKEN FROM SAMPLE BOTTLE					
Qualtrax ID #3219	Qualtrax ID #3219												Page <u>1</u> of <u>1</u>		

Appendix 1b

Laboratory Analytical Results and Quality Control Reports May 21, 2020 Resample Event

June 15, 2020

Luke St Mary Sikeston BMU, Sikeston Power Station 1551 W Wakefield Sikeston, MO 63801

RE: Sikeston Bottom Ash App III and App IV 2019

Dear Luke St Mary:

Please find enclosed the analytical results for the **6** sample(s) the laboratory received on **5/26/20 8:00 am** and logged in under work order **0054242**. All testing is performed according to our current TNI accreditations unless otherwise noted. This report cannot be reproduced, except in full, without the written permission of PDC Laboratories, Inc.

If you have any questions regarding your report, please contact your project manager. Quality and timely data is of the utmost importance to us.

PDC Laboratories, Inc. appreciates the opportunity to provide you with analytical expertise. We are always trying to improve our customer service and we welcome you to contact the Director of Client Services, Lisa Grant, with any feedback you have about your experience with our laboratory at 309-683-1764 or Igrant@pdclab.com.

Sincerely,

Kurt

Kurt Stepping Senior Project Manager (309) 692-9688 x1719 kstepping@pdclab.com

ANALYTICAL RESULTS

Sample: 0054242-01 Name: MW-1 Alias: RESAMPLE							Sampled: 05/21/2 Received: 05/26/2 Matrix: Ground PO #: 23573	0 08:00	gular Sample
Parameter	Result	Unit	Qualifier	Prepared	Dilution	MRL	Analyzed	Analyst	Method
Anions - PIA									
Sulfate	63	mg/L		06/02/20 00:17	10	10	06/02/20 00:17	KCC	EPA 300.0 REV 2.1
General Chemistry - PIA									
Solids - total dissolved solids (TDS)	260	mg/L		05/28/20 07:45	1	26	05/28/20 08:44	BMS	SM 2540C
<u>Total Metals - PIA</u>									
Calcium	60000	ug/L		06/09/20 13:19	5	200	06/11/20 08:51	JMW	EPA 6020A
Sample: 0054242-02 Name: DUPLICATE Alias: RESAMPLE							Sampled: 05/21/2 Received: 05/26/2 Matrix: Ground PO #: 23573	0 08:00	gular Sample
Parameter	Result	Unit	Qualifier	Prepared	Dilution	MRL	Analyzed	Analyst	Method
Anions - PIA									
Sulfate	16	mg/L		06/04/20 14:35	5	5.0	06/04/20 14:35	MGU	EPA 300.0 REV 2.1
General Chemistry - PIA									
Solids - total dissolved	100	mg/L	н	05/29/20 12:45	1	17	05/29/20 13:05	BMS	SM 2540C
solids (TDS) Solids - total dissolved solids (TDS)	90	mg/L	М, Х	05/28/20 07:45	1	17	05/28/20 08:44	BMS	SM 2540C
<u>Total Metals - PIA</u>									
Calcium	18000	ug/L		06/09/20 13:19	5	200	06/11/20 08:54	JMW	EPA 6020A

ANALYTICAL RESULTS

Sample: 0054242-03 Name: MW-2 Alias: RESAMPLE							Sampled: 05/21/ Received: 05/26/ Matrix: Groun	20 08:00	gular Sample
							PO #: 23573		
Parameter	Result	Unit	Qualifier	Prepared	Dilution	MRL	Analyzed	Analyst	Method
Anions - PIA									
Fluoride	0.374	mg/L		06/02/20 00:35	1	0.250	06/02/20 00:35	KCC	EPA 300.0 REV 2.1
<u>Total Metals - PIA</u>									
Boron	36	ug/L		06/09/20 13:19	5	10	06/11/20 08:58	JMW	EPA 6020A
Sample: 0054242-04 Name: MW-3 Alias: RESAMPLE							Sampled: 05/21/ Received: 05/26/ Matrix: Groun	20 08:00	gular Sample
							PO #: 23573		
Parameter	Result	Unit	Qualifier	Prepared	Dilution	MRL	Analyzed	Analyst	Method
Anions - PIA									
Chloride	1.5	mg/L	Q1	06/02/20 02:06	1	1.0	06/02/20 02:06	KCC	EPA 300.0 REV 2.1
General Chemistry - PIA									
Solids - total dissolved solids (TDS)	130	mg/L		05/28/20 07:45	1	26	05/28/20 08:44	BMS	SM 2540C
Sample: 0054242-05 Name: MW-9 Alias: RESAMPLE							Sampled: 05/21/ Received: 05/26/ Matrix: Groun	20 08:00	gular Sample
							PO # : 23573		
Parameter	Result	Unit	Qualifier	Prepared	Dilution	MRL	Analyzed	Analyst	Method
General Chemistry - PIA									
Solids - total dissolved solids (TDS)	560	mg/L		05/28/20 07:45	1	26	05/28/20 08:44	BMS	SM 2540C

ANALYTICAL RESULTS

Sample: 0054242 Name: FIELD BLA Matrix: Ground V		Sample					20 00:00 20 08:00	
Parameter	Result	Unit	Qualifier Pre	pared Dilution	MRL	Analyzed	Analyst	Method
Anions - PIA								
Chloride	< 1.0	mg/L	06/02/2	20 03:01 1	1.0	06/02/20 03:01	KCC	EPA 300.0 REV 2.1
Fluoride	< 0.250	mg/L	06/02/2	20 03:01 1	0.250	06/02/20 03:01	KCC	EPA 300.0 REV 2.1
Sulfate	< 1.0	mg/L	06/02/2	20 03:01 1	1.0	06/02/20 03:01	KCC	EPA 300.0 REV 2.1
<u>General Chemistry - PIA</u>								
Solids - total dissolved solids (TDS)	< 17	mg/L	05/28/2	20 07:45 1	17	05/28/20 08:44	BMS	SM 2540C
Total Metals - PIA								
Boron	< 10	ug/L	06/09/2	20 13:19 5	10	06/11/20 09:02	JMW	EPA 6020A
Calcium	220	ug/L	06/09/2	20 13:19 5	200	06/11/20 09:02	JMW	EPA 6020A

QC SAMPLE RESULTS

Parameter	Result	Unit	Qual	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch B012525 - No Prep - SM 2540C									
Blank (B012525-BLK1)				Prepared &	Analyzed: 05/	28/20			
Solids - total dissolved solids (TDS)	< 17	mg/L			-				
LCS (B012525-BS1)				Prepared &	Analyzed: 05/	28/20			
Solids - total dissolved solids (TDS)	947	mg/L		1000		95	67.9-132		
Duplicate (B012525-DUP2)	Sample: 005424	42-02RE1		Prepared &	Analyzed: 05/	28/20			
Solids - total dissolved solids (TDS)	110	mg/L	M, X		90.0			20	
Batch B012718 - No Prep - SM 2540C									
Blank (B012718-BLK1)				Prepared &	Analyzed: 05/	29/20			
Solids - total dissolved solids (TDS)	< 17	mg/L							
LCS (B012718-BS1)				Prepared &	Analyzed: 05/	29/20			
Solids - total dissolved solids (TDS)	947	mg/L		1000		95	67.9-132		
Duplicate (B012718-DUP1)	Sample: 005424	42-02		Prepared &	Analyzed: 05/	29/20			
Solids - total dissolved solids (TDS)	100	mg/L	Н		100			0	5
Batch B013015 - No Prep - EPA 300.0 REV 2.1									
Calibration Blank (B013015-CCB1)				Prepared &	Analyzed: 06	/01/20			
Fluoride	0.00	mg/L							
Chloride	0.552	mg/L							
Sulfate	0.00	mg/L							
Calibration Check (B013015-CCV1)				Prepared &	Analyzed: 06/	01/20			
Chloride	4.88	mg/L		5.000		98	90-110		
Fluoride	4.95	mg/L		5.000		99	90-110		
Sulfate	5.17	mg/L		5.000		103	90-110		
Matrix Spike (B013015-MS3)	Sample: 005424	42-03		Prepared &	Analyzed: 06/	02/20			
Fluoride	1.76	mg/L		1.500	0.374	92	80-120		
Matrix Spike (B013015-MS4)	Sample: 005424	42-04		Prepared &	Analyzed: 06/	02/20			
Chloride	2.6	mg/L	Q1	1.500	1.5	75	80-120		
Matrix Spike Dup (B013015-MSD3)	Sample: 005424	42-03		Prepared &	Analyzed: 06/	02/20			
Fluoride	1.78	mg/L		1.500	0.374	94	80-120	2	20
Matrix Spike Dup (B013015-MSD4)	Sample: 005424	42-04		Prepared &	Analyzed: 06/	02/20			
Chloride	3.1	mg/L		1.500	1.5	107	80-120	17	20
Batch B013404 - No Prep - EPA 300.0 REV 2.1									
Calibration Blank (B013404-CCB1)				Prepared &	Analyzed: 06/	04/20			
Sulfate	0.00	mg/L							
Calibration Check (B013404-CCV1)				Prepared &	Analyzed: 06/	/04/20			
Sulfate	5.07	mg/L		5.000		101	90-110		
Batch B013688 - SW 3015 - EPA 6020A									
Blank (B013688-BLK1)				Prepared: 0	6/09/20 Anal	/zed: 06/11/2	0		
Boron	< 10	ug/L							
Calcium	< 200	ug/L							
		-		D	6/09/20 Anal	- 1 00/11/0	•		

QC SAMPLE RESULTS

Parameter	Result	Unit	Qual	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch B013688 - SW 3015 - EPA 6020A									
LCS (B013688-BS1)				Prepared: 0)6/09/20 Analy	/zed: 06/11/2	D		
Boron	524	ug/L		555.6		94	80-120		
Calcium	5630	ug/L		5556		101	80-120		
Matrix Spike (B013688-MS1)	Sample: 005499	94-01		Prepared: 0	06/09/20 Analy	zed: 06/11/2	D		
Boron	1900	ug/L		555.6	1340	101	75-125		
Calcium	186000	ug/L	Q4	5556	183000	63	75-125		
Matrix Spike Dup (B013688-MSD1)	Sample: 005499	94-01		Prepared: 0	06/09/20 Analy	zed: 06/11/2	D		
Boron	1920	ug/L		555.6	1340	104	75-125	1	20
Calcium	185000	ug/L	Q4	5556	183000	42	75-125	0.6	20

NOTES

Specifications regarding method revisions and method modifications used for analysis are available upon request. Please contact your project manager.

* Not a TNI accredited analyte

Certifications

- CHI McHenry, IL 4314-A W. Crystal Lake Road, McHenry, IL 60050 TNI Accreditation for Drinking Water and Wastewater Fields of Testing through IL EPA Accreditation No. 100279 Illinois Department of Public Health Bacterial Analysis in Drinking Water Approved Laboratory Registry No. 17556
- PIA Peoria, IL 2231 W. Altorfer Drive, Peoria, IL 61615

TNI Accreditation for Drinking Water, Wastewater, Solid and Hazardous Material Fields of Testing through IL EPA Accreditation No. 100230

Illinois Department of Public Health Bacterial Analysis in Drinking Water Approved Laboratory Registry No. 17553 Drinking Water Certifications/Accreditations: Iowa (240); Kansas (E-10338); Missouri (870) Wastewater Certifications/Accreditations: Arkansas (88-0677); Iowa (240); Kansas (E-10338) Solid and Hazardous Material Certifications/Accreditations: Arkansas (88-0677); Iowa (240); Kansas (E-10338)

SPMO - Springfield, MO - 1805 W Sunset Street, Springfield, MO 65807 USEPA DMR-QA Program

STL - Hazelwood, MO - 944 Anglum Rd, Hazelwood, MO 63042

TNI Accreditation for Wastewater, Solid and Hazardous Material Fields of Testing through KS KDHE Certification No. E-10389 TNI Accreditation for Wastewater, Solid and Hazardous Material Fields of Testing through IL EPA Accreditation No. - 200080 Illinois Department of Public Health Bacterial Analysis in Drinking Water Approved Laboratory, Registry No. 171050 Missouri Department of Natural Resources - Certificate of Approval for Microbiological Laboratory Service - No. 1050

Qualifiers

- H Test performed after the expiration of the appropriate regulatory/advisory maximum allowable hold time.
- M Analyte failed to meet the required acceptance criteria for duplicate analysis.
- Q1 Matrix Spike failed % recovery acceptance limits. The associated blank spike recovery was acceptable.
- Q4 The matrix spike recovery result is unusable since the analyte concentration in the sample is greater than four times the spike level. The associated blank spike was acceptable.
- X Sample did not meet weighback criteria established in the method. Reset out of hold for confirmation of result. Both sets of data to be reported. H flagged data is to confirm the validity of the initial data in spite of the weigh back criteria.

Certified by: Kurt Stepping, Senior Project Manager

۰

PDC Laboratories, Inc. P.O. Box 9071 • Peoria, IL 61612-9071 (309) 692-9688 • (800) 752-6651 • FAX (309) 692-9689

DATA PACKAGE

CLIENT: Sikeston BMU PROJECT: Sikeston Power Station PDC LAB WORKORDER: 0054242 DATE ISSUED: June 15, 2020

CASE NARRATIVE –

PDC Work Order 0054242

PDC Laboratories, Inc. received 6 water samples on May 26, 2020 in good condition at our Peoria, IL facility. This sample set was designated as work order 0054242

Sample	ID's	Date					
Field	Lab ID	Collected	Received				
MW-1	0054242-01	5/21/20	5/26/20				
DUPLICATE	0054242-02	5/21/20	5/26/20				
MW-2	0054242-03	5/21/20	5/26/20				
MW-3	0054242-04	5/21/20	5/26/20				
MW-9	0054242-05	5/21/20	5/26/20				
FIELD BLANK	0054242-06	5/21/20	5/26/20				

QC Summary:

All items met acceptance criteria with the following noted exceptions:

Ca, batch QC sample flagged with Q4, sample exceeds 4x spiked values

Cl, batch QC sample flagged with Q1, matrix spike outside acceptance criteria.

Initial analysis for TDS on sample 0054242-02 was below method criteria for weigh back and also was done in duplicate with an RPD greater than 5%. Flagged with X and M. See LIMS report for full X qualifier description.

TDS on sample 0054242-02 was repeated in duplicate out of hold time to confirm initial analysis. Re-analysis RPD was 0%, weigh back was acceptable. Re-analysis flagged with H for hold time.

Certification

Signature:

Yunt S

Name: Kurt Stepping

Date:

June 15, 2020

Title: Senior Project Manager

 REGULATORY PROGRAM (Check one	e:) NPDES
 MORBCA	RCRA
CCDD	TACO: RES OR IND/COMM

CHAIN OF CUSTODY RECORD

STATE WHERE SAMPLE COLLECTED MO

	PROJEC	T NUMBER	EAS MUS	T BE COM	PLETED BY)	and the second se					
	١			SAMP		PURCHAS	E ORDER #	3) AN	ALYS	IS REC	QUEST	TED	(FOR LAB USE ONLY)
1551 W WAKEFIELD	573.47	NUMBER 75.3131	LSTMA	E-MAIL ARY@SE			HIPPED	Đ	÷	Ð	Đ	H		LOGIN # 0054747
SIKESTON, MO 63801	SAMPLER (PLEASE PRIN		lugh	am		MATRIX WW- WASTEWAT DW- DRINKING W GW- GROUND W/ WWSL- SLUDGE	TER VATER							CLIENT: SIKESTON BMU PROJECT: RESAMPLES MAY 2020 PROJ. MGR.: KURT
	SAMPLER'S SIGNATURE	1 0:11.				NAS- NON AQUEC LCHT-LEACHATE OIL-OIL SO-SOIL SOL-SOLID	ous solid !		ATE	CALCIUM	FLUORIDE	NO	CHLORIDE	CUSTODY SEAL #:
(UNIQUE DESCRIPTION AS IT WILL APPEAR ON THE ANALYTICAL REPORT)			GRAB	COMP	MATRIX TYPE	BOTTLE	PRES CODE CLIENT PROVIDED	TDS	SULFATE	CALC		BORON	SHLO	REMARKS
MW-1	05-21-20	1216	×		GW	2	PROVIDED	X		X				
DUPLICATE	05-21-20		\times		GW	2		X		X				
MW-2	05-21-20	the second se	\times		GW	2					X	X		
MW-3	05-21-20		X		GW	1		\times					X	
MW-9 FIELD BLANK	05-21-20	1424	X		GW	1		\times						
	05-21-20		Х		GW	2		\times	X	\times	X	X	Х	
									_					
										_		_		
										_		_		
										_			-	
	1NO3 4 - NAO	H 5 - NA2S	203	6 – UNPR	ESERVED	7 – OTHER								
RUSH RESULTS VIA (PLEASE CIRCLE) EMAIL PHONE EMAIL IF DIFFERENT FROM ABOVE: PHONE # IF DIFFERENT FROM ABOVE:		USH D	ATE RESU NEEDED		6	l understand th not meet all sa Policy and the PROCEED WI	data will be q	ualified	d. Qual	ified da	ata ma	y <u>NO1</u>	[be ac	o proceed with analysis, even though it may receiving facility's Sample Acceptance cceptable to report to all regulatory authorities.
PFINOLISHED BY ISION THE	د بر د.	RECEIVED	BY: (SIGN	ATURE)			DATE			8	-	-		ITS: (FOR LAB USE ONLY)
		RECEIVED					DATE							
DATE 10 0 10 10 10 10 10 10 10 10		RECEIVED	BY: (SIGN)	ATURE)			DATES	126	70 D	SAM	PLE(S PLE A ORT IS	CCEP	EIVED TANC DED	RTED PRIOR TO RECEIPT DO NICE E NONCONFORMANT EN FROM SAMPLE BOTTLE
Qualtrax ID #3219	2	A						y l						Page 1 of 1

Appendix 2

2019 Annual Water Quality Report For Sikeston Public Water System SIKESTON PWS Public Water System ID Number: MO4010743 2019 Annual Water Quality Report

(Consumer Confidence Report)

This report is intended to provide you with important information about your drinking water and the efforts made to provide safe drinking water. Attencion!

Este informe contiene información muy importante. Tradúscalo o prequntele a alguien que lo entienda bien.

[Translated: This report contains very important information. Translate or ask someone who understands this very well.]

What is the source of my water?

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and groundwater wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Our water comes from the following source(s):

Source Name	Туре
PLANT 1 – WELL 11	GROUND WATER
PLANT 2 WELLS 1, 6, 7, 12	GROUND WATER
PLANT 3 – WELLS 8, 9, 13	GROUND WATER

Source Water Assessment

The Department of Natural Resources conducted a source water assessment to determine the susceptibility of our water source to potential contaminants. This process involved the establishment of source water area delineations for each well or surface water intake and then a contaminant inventory was performed within those delineated areas to assess potential threats to each source. Assessment maps and summary information sheets are available on the internet at https://drinkingwater.missouri.edu/. To access the maps for your water system you will need the State-assigned identification code, which is printed at the top of this report. The Source Water Inventory Project maps and information sheets provide a foundation upon which a more comprehensive source water protection plan can be developed.

Why are there contaminants in my water?

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency's Safe Drinking Water Hotline (800-426-4791).

Contaminants that may be present in source water include:

A. <u>Microbial contaminants</u>, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.

B. <u>Inorganic contaminants</u>, such as salts and metals, which can be naturallyoccurring or result from urban stormwater runoff, industrial, or domestic wastewater discharges, oil and gas production, mining, or farming.

C. <u>Pesticides and herbicides</u>, which may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses.

D. <u>Organic chemical contaminants</u>, including synthetic and volatile organic chemicals, which are byproducts of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, and septic systems.

E. <u>Radioactive contaminants</u>, which can be naturally-occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, the Department of Natural Resources prescribes regulations which limit the amount of certain contaminants in water provided by public water systems. Department of Health regulations establish limits for contaminants in bottled water which must provide the same protection for public health.

Is our water system meeting other rules that govern our operations?

The Missouri Department of Natural Resources regulates our water system and requires us to test our water on a regular basis to ensure its safety. Our system has been assigned the identification number MO4010743 for the purposes of tracking our test results. Last year, we tested for a variety of contaminants. The detectable results of these tests are on the following pages of this report. Any violations of state requirements or standards will be further explained later in this report.

How might I become actively involved?

If you would like to observe the decision-making process that affect drinking water quality or if you have any further questions about your drinking water report, please call us at <u>573-380-3996</u> to inquire about scheduled meetings or contact persons.

Do I need to take any special precautions?

Some people may be more vulnerable to contaminants in drinking water than the general population. Immunocompromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/CDC guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Drinking Water Hotline (800-426-4791).

Terms and Abbreviations

Population: 16393. This is the equivalent residential population served including non-bill paying customers.

90th percentile: For Lead and Copper testing. 10% of test results are above this level and 90% are below this level.

AL: Action Level, or the concentration of a contaminant which, when exceeded, triggers treatment or other requirements which a water system must follow.

HAA5: Haloacetic Acids (mono-, di- and tri-chloracetic acid, and mono- and dibromoacetic acid) as a group.

LRAA: Locational Running Annual Average, or the locational average of sample analytical results for samples taken during the previous four calendar quarters. **MCLG**: Maximum Contaminant Level Goal, or the level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

MCL: Maximum Contaminant Level, or the highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

n/a: not applicable.nd: not detectable at testing limits.

NTU: Nephelometric Turbidity Unit, used to measure cloudiness in drinking water.

ppb: parts per billion or micrograms per liter.

ppm: parts per million or milligrams per liter. **RAA**: Running Annual Average, or the average of sample analytical results for samples taken during the previous four calendar quarters.

Range of Results: Shows the lowest and highest levels found during a testing period, if only one sample was taken, then this number equals the Highest Test Result or Highest Value.

SMCL: Secondary Maximum Contaminant Level, or the secondary standards that are non-enforceable guidelines for contaminants and may cause cosmetic effects (such as skin or tooth discoloration) or aesthetic effects (such as taste, odor or color) in drinking water. EPA recommends these standards but does not require water systems to comply TT: Treatment Technique, or a required process intended to reduce the level of a contaminant in drinking water.

TTHM: Total Trihalomethanes (chloroform, bromodichloromethane, dibromochloromethane, and bromoform) as a group.

SIKESTON PWS

Public Water System ID Number: MO4010743

2019 Annual Water Quality Report

(Consumer Confidence Report)

Contaminants Report

SIKESTON PWS will provide a printed hard copy of the CCR upon request. To request a copy of this report to be mailed, please call us at <u>573-380-3996</u>. The CCR can also be found on the internet at <u>www.dnr.mo.gov/ccr/MO4010743.pdf</u>.

The state has reduced monitoring requirements for certain contaminants to less often than once per year because the concentrations of these contaminants are not expected to vary significantly from year to year. Records with a sample year more than one year old are still considered representative. No data older than 5 years need be included. If more than one sample is collected during the monitoring period, the Range of Sampled Results will show the lowest and highest tested results. The Highest Test Result, Highest LRAA, or Highest Value must be below the maximum contaminant level (MCL) or the contaminant has exceeded the level of health based standards and a violation is issued to the water system.

Regulated Contaminants

Regulated Contaminants	Collection Date	Highest Test Result	Range of Sampled Result(s) (low – high)	Unit	MCL	MCLG	Typical Source
BARIUM	5/29/2018	0.42	0.149 - 0 <mark>.4</mark> 2	ppm	2	2	Discharge of drilling wastes; Discharge from metal refineries; Erosion of natural deposits
FLUORIDE	5/29/2018	0.86	0.61 - 0.86	ppm	4	4	Natural deposits: Water additive which promotes strong teeth
NITRATE- NITRITE	8/27/2019	0.012	0 - 0.012	ppm	10	10	Runoff from fertilizer use; Leaching from septic tanks, sewage; Erosion of natural deposits

Disinfection Byproducts	Sample Point	Monitoring Period	Highest LRAA	Range of Sampled Result(s) (low – high)	Unit	MCL	MCLG	Typical Source
(HAA5)	DBPDUAL-01	2019	16	15.6 - 15.6	ppb	60	0	Byproduct of drinking water disinfection
(HAA5)	DBPDUAL-03	2019	16	16.2 - 16.2	ppb	60	0	Byproduct of drinking water disinfection
TTHM	DBPDUAL-01	2019	16	16.2 - 16.2	ppb	80	0	Byproduct of drinking water disinfection
TTHM	DBPDUAL-03	2019	24	23.7 - 23.7	ppb	80	0	Byproduct of drinking water disinfection

Lead and Copper	Da	te	90th Percentile: 90% of your water utility levels were less than	Range of Sampled Results (low – high)	Unit	AL	Site Over		Typical Source
COPPER	2017 -	2019	0.113	0.0197 - 0.138	ppm	1.3	0		Corrosion of household plumbing systems
Microbiolog			Result		м	CL		MCLG	Typical Source
COLIFORM (TCR)	In the r	month of July, 1 sample(s)	returned as positive	Trea	Itment		0	Naturally present in the environment
					Technique Trigger		ger		

Violations and Health Effects Information

During the 2019 calendar year, we had the below noted violation(s) of drinking water regulations.

Compliance Period	Analyte	Туре
No Violations Occurred in the Calendar Year of	2019	

Special Lead and Copper Notice:

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. SIKESTON PWS is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline (800-426-4791) or at http://water.epa.gov/drink/info/lead/index.cfm

You can also find sample results for all contaminants from both past and present compliance monitoring online at the Missouri DNR Drinking Water Watch website http://dnr.mo.gov/DWW/indexSearchDNR.jsp. To find Lead and Copper results for your system, type your water system name in the box titled Water System Name and select *Find Water Systems* at the bottom of the page. The new screen will show you the water system name and number, select and click the Water System Number. At the top of the next page, under the *Help* column find, *Other Chemical Results by Analyte*, select and click on it. Scroll down alphabetically to Lead and click the blue Analyte Code (1030). The Lead and Copper locations will be displayed under the heading Sample Comments. Scroll to find your location and click on the Sample No. for the results. If your house was selected by the water system and you assisted in taking a Lead and Copper sample from your home but cannot find your location in the list, please contact SIKESTON PWS for your results.

SIKESTON PWS

Public Water System ID Number: MO4010743 2019 Annual Water Quality Report (Consumer Confidence Report)

Optional Monitoring (not required by EPA) Optional Contaminants

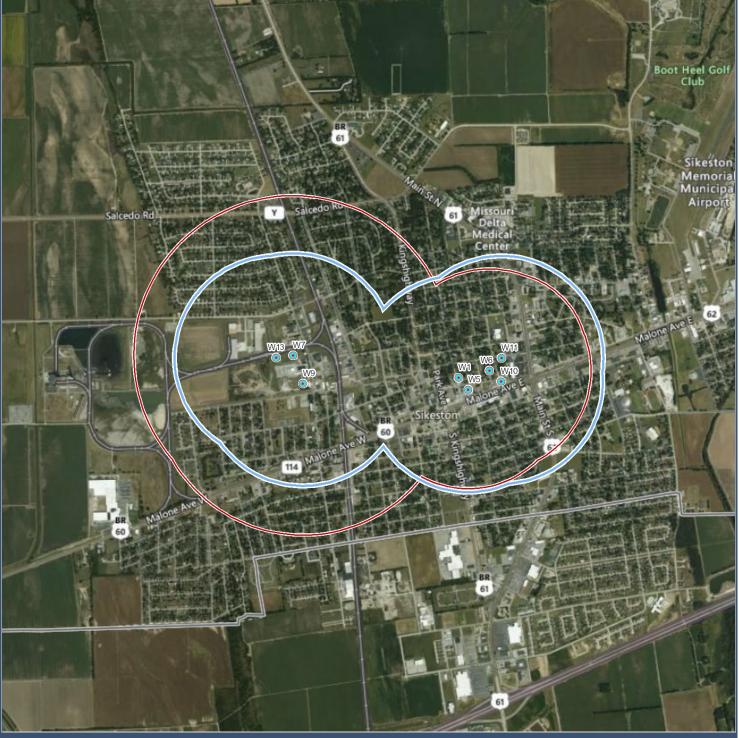
Monitoring is not required for optional contaminants.

Secondary Contaminants	Collection Date	Your Water System Highest Sampled Result	Range of Sampled Result(s) (low - high)	Unit	SMCL
ALKALINITY, CACO3 STABILITY	5/29/2018	224	196 - 224	MG/L	
CALCIUM	5/29/2018	63	39.8 - 63	MG/L	
CHLORIDE	5/29/2018	21	10.1 - 21	MG/L	250
HARDNESS, CARBONATE	5/29/2018	207	133 - 207	MG/L	
IRON	5/29/2018	0.0116	0 - 0.0116	MG/L	0.3
MAGNESIUM	5/29/2018	12	8.14 - 12	MG/L	
MANGANESE	5/29/2018	0.002	0.0019 - 0.002	MG/L	0.05
PH	5/29/2018	7.55	7.5 - 7.55	PH	8.5
POTASSIUM	5/29/2018	2.08	1.54 - 2.08	MG/L	
SODIUM	5/29/2018	8.77	8.17 - 8.77	MG/L	
SULFATE	5/29/2018	32	14.5 - 32	MG/L	250
TDS	5/29/2018	290	174 - 290	MG/L	500
ZINC	5/29/2018	0.0252	0.0124 - 0.0252	MG/L	5

Secondary standards are non-enforceable guidelines for contaminants that may cause cosmetic effects (such as skin or tooth discoloration) or aesthetic effects (such as taste, odor or color) in drinking water. EPA recommends these standards but does not require water systems to comply.

Appendix 3a

2020 Sikeston Public Well Assessment Reports (CARES)


General System Information PWSS No. 4010743

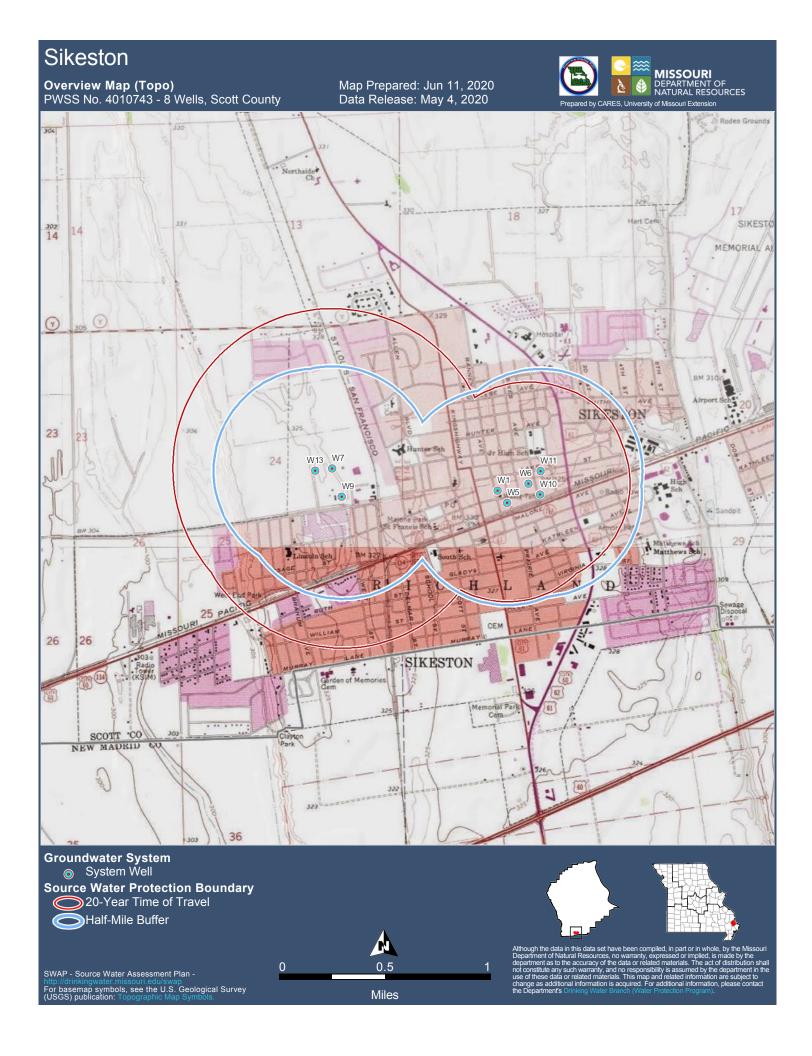
PVVSS NO. 4010743	Prepared by CARES, University of Missouri Extension
Name	Sikeston
PWSSID	MO4010743
Population Served	16,393
Primary County Served	Scott
Service Connections	7,908
Source(s) of Water	Southeast Missouri Lowlands Groundwater Province
System Classification	Community (C)
Primary Source Type	Groundwater (GW)
System Type	Municipality
System Treatment	4-log Treatment of Viruses, Fluoridation, Greensand Filtration, Sedimentation, Gaseous Pre-Chlorination, Permanganate, Slat Tray Aeration, Gaseous Post-Chlorination, Diffused Aeration, (Pre) pH Adjustment, pH Adjustment, Rapid Sand Filtration
DNR Region of Operations	Southeast Regional Office
Source Water/Wellhead Protection Plan	No
Drinking Water Watch	Drinking Water Watch
Reference Maps	
Although the data in this data a accuracy of the data or related materials. This map and relate Protection Program).	set have been compiled, in part or in whole, by the Missouri Department of Natural Resources, no warranty, expressed or implied, is made by the department as to the d materials. The act of distribution shall not constitute any such warranty, and no responsibility is assumed by the department in the use of these data or related d information are subject to change as additional information is acquired. For additional information, please contact the Department's Drinking Water Branch (Water

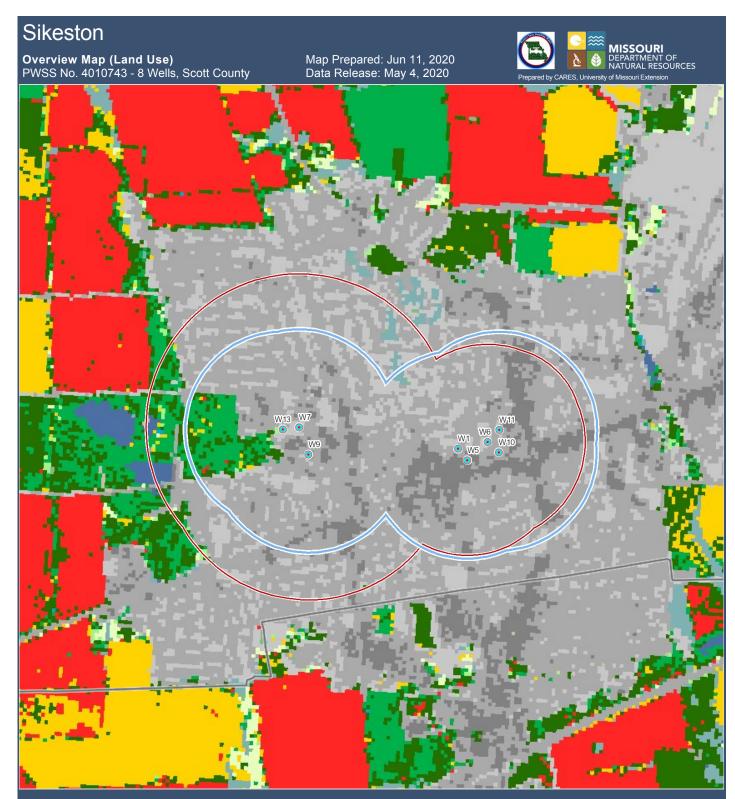
Overview Map (Aerial) PWSS No. 4010743 - 8 Wells, Scott County Map Prepared: Jun 11, 2020 Data Release: May 4, 2020

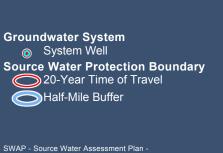
Groundwater System System Well Source Water Protection Boundary 20-Year Time of Travel Half-Mile Buffer

SWAP - Source Water Assessment Plan http://drinkingwater.missouri.edu/swap Aerial Photos: Bing Maps, Microsoft. Jun 11, 2020.

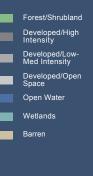
Miles


0.5


 \cap



Although the data in this data set have been compiled, in part or in whole, by the Missouri Department of Natural Resources, no warranty, expressed or implied, is made by the department as to the accuracy of the data or related materials. The act of distribution shall not constitute any such warranty, and no responsibility is assumed by the department in the use of these data or related materials. This map and related information are subject to change as additional information is acquired. For additional information, please contact the Department's Drinking Water Branch (Water Protection Program).



http://drinkingwater.missouri.edu/swap Aerial Photos: Bing Maps, Microsoft. Jun 11, 2020. Land Use

0

Corn
Cotton
Rice
Soybeans
Other Crop
Other Hay/Non Alfalfa
Grassland/Pasture

Although the data in this data set have been compiled, in part or in whole, by the Missouri Department of Natural Resources, no warranty, expressed or implied, is made by the department as to the accuracy of the data or related materials. The act of distribution shal not constitute any such warranty, and no responsibility is assumed by the department in the use of these data or related materials. This map and related information are subject to change as additional information is acquired. For additional information, please contact the Department's Dinking Water Branch (Water Protection Program).

Miles

0.5

Sikeston				· · · · · · · · · · · · · · · · · · ·
Land Use Statistics PWSS No. 4010743		Map Prepared: Jun 11, 2020 Data Release: May 4, 2020	Prepared by CARES, U	MISSOURI DEPARTMENT OF NATURAL RESOURCES
Land Use	% Land Area, 2017	% Land Area, 2018	% Land Area, 2019	Avg. % Land Area
Corn	0	0	0	0
Cotton	0	0	0	0
Rice	0	0	0	0
Soybeans	0	0.04	0	0.01
Other Crop	0	0	0	0
Other Hay/Non-Alfalfa	0	0	0	0
Grassland/Pasture	0	0	0	0
Forest/Shrubland	0	0	0	0
Developed/High Intensity	23.04	22.78	23.04	22.95
Developed/Low-Med Intensity	62.14	61.83	61.3	61.76
Developed/Open Space	14.82	15.35	15.66	15.27
Open Water	0	0	0	0
Wetlands	0	0	0	0
Barren	0	0	0	0
Although the data in this data set have been con accuracy of the data or related materials. The a materials. This map and related information are	mpiled, in part or in whole, by the N act of distribution shall not constitu subject to change as additional inf	Missouri Department of Natural Resources, te any such warranty, and no responsibility formation is acquired. For additional informa	no warranty, expressed or implied, is assumed by the department in th tion, please contact the Departmen	is made by the department as to the e use of these data or related t's Drinking Water Branch (Water

Sikeston					SOURI
Well/Intake Data - PW Scott County, Sheet 1 c		Sheet Prepared	d: Jun 11, 2020	DEPA	ARTMENT OF JRAL RESOURCES
Well Number Local Well Name Well ID # DGLS ID #	W1 Well #1, Plant #2 13051 0011630	W5 Well #6, Plant #2 13049 0019120	W6 Well #7, Plant #2 13048 0026235	W7 Well #8, Plant #3 13047	W9 Well #10, Plant #3 13045
Status	Active	Active	Active	Active	Emergency
Latitude	36.879040	36.878180	36.879540	36.880623	36.878620
Longitude	-89.586450	-89.585580	-89.583700	-89.601124	-89.600250
12-Digit Hydrologic Unit	080202010305	080202010305	080202010305	080202040604	080202040604
County	Scott	Scott	Scott	Scott	Scott
MoDNR Region	Southeast	Southeast	Southeast	Southeast	Southeast
Groundwater Province ¹	Southeast Missouri Lowlands Gr	Southeast Missouri Lowlands Gr	Southeast Missouri Lowlands Gr	Southeast Missouri Lowlands Gr	Southeast Missouri Lowlands Gr
Source Aquifer(s) ²	Wilcox aquifer	Wilcox aquifer	Wilcox aquifer	Alluvial aquifer	Alluvial aquifer
Confined/Unconfined ³	Unconfined	Unconfined	Unconfined	Unconfined	Unconfined
Regional Drilling Area ⁴	Area 5	Area 5	Area 5	Area 5	Area 5
Total Dissolved Solids ⁵	undetermined	undetermined	undetermined	undetermined	undetermined
Date Drilled (year)	1951	1960	1969	1976	1959
Material (C/U)	Unconsolidated	Unconsolidated	Unconsolidated	Unconsolidated	Unconsolidated
Casing Base Formation	Wilcox	Wilcox	Wilcox	Alluvium	Alluvium
Total Depth Formation	Midway	Wilcox	Midway	Alluvium	Alluvium
Total Depth	421	401	404	145	142
Ground Elevation (ft)	327	326	326	325	325
Casing Depth (ft)	331	307	309	108	119
Casing Size (in) Casing Type	12	18	18	18 Steel	12 Steel
Screen Length (ft)	81	80	80	30	21
Screen Size (in)	8	12	12	12	12
Static Water Level (ft)		66	65	27	30
Well Yield (gpm)	600	1100	1450	1300	1000
Head (ft)	90	69	105	57	34
Draw Down (ft)	60	54	59	33	
Pump Test Date (year)	1975	1960	1992	1976	1987
Pump Type Pump Manufacturer	Vertical Turbine	Vertical Turbine	Vertical Turbine	Vertical Turbine	Vertical Turbine
Pump Depth (ft)	150	135	170	84	64
Pump Capacity (gpm)	863	1500	1600	1350	1150
Pump Meter (Y/N)					
GWUDISW (Y/N)					
Surface Drainage State Approved (Y/N)					
Liquefaction Risk	High	– High	– – – – – – – – – – – – – – – – – – –	High	High
Landslide Risk	Low	Low	Low	Low	Low
Collapse Risk	Low	Low	Low	Low	Low
Flood Risk	Low	Low	Low	Low	Low
Surface Contamination Risk	Low	Low	Low	Moderate	Moderate
Conduit Flow Risk ⁶	K6	K6	K6	K6	K6

Although the data in this data set have been compiled, in part or in whole, by the Missouri Department of Natural Resources, no warranty, expressed or implied, is made by the department as to the accuracy of the data or related materials. The act of distribution shall not constitute any such warranty, and no responsibility is assumed by the department in the use of these data or related materials. This map and related information are subject to change as additional information is acquired. For additional information, please contact the Department's Drinking Water Branch (Water Branch (Water Branch))

Well/Intake Data - PWSS No. 4010743 Scott County, Sheet 2 of 2

Sheet Prepared: Aug 12, 2020

Well WunberW10W11W13Uccal Well RamWell #11, Plant #3Well #13 Plant #3DGLS ID #StatusActiveActiveLatitude36, 87877036, 88044036, 87047036, 880459Longitude49, 526260-89, 6263012-Digt Hydrologic Unit080202010305080202040604CountySoutheastSoutheastGroundwater ProvincelSoutheastSoutheastGroundwater ProvincelSoutheastSoutheastGroundwater ProvincelUnconfinedUnconfinedUnconfinedUnconfinedUnconfinedGroundwater ProvincelUnconfinedUnconfinedGroundwater Provincel19871991Coaling State (n)100100Ground Elevation (f)30391Ground Elevation (f)30301<	Scott County, Sheet 2 of 2				Prepared by CARES, University of Missouri Extension
Well D# DCLS D #130441304318782DCLS D #StatusActiveActiveActiveLatitude36.87877036.8044036.80459Longfuide49.582680-89.56261500201030512-Digit Hydrologic Unit080202010305080202010305080202040604CountyScottScottScottGroundwater Province1SoutheastSoutheastSoutheastGroundwater Province1ConfinedUnconfinedUnconfinedConfinedUnconfinedUnconfinedUnconfinedRegional Drilling AreafArea 5Area 5Area 5Area 5Area 5Area 5Area 5Area 5Area 5Area 5Areaf 5Area 5Area 5Areaf 5Area 5Area 5Area 5Area 5Area 5Areaf 5Area 5Area 5Areaf 5Area 5Area 5Areaf 5Area 5Area 5Areaf 7MicoxAlterial (Vino1987Cota 100001000C	Well Number	W10	W11	W13	
DGLS ID #ActiveActiveStatusActiveActiveLatitude36.87377036.880459Longitude-99.582680-99.60261512-Digit Hydrologic UI08020201030508020204604CountyScottScottGroundwster ProvingSoutheastSoutheastSource Aquifer(s)2WilcoxAlluviaConfined/LongingAreadInconfinedUnconfinedIorolingAreadInconfinedUnconfinedDate Drilling AreadParsArea 5Total Dissolved SolidsUndeterminedUnconfinedDate Drilling AreadInconsolidatedUnconsolidatedDate Drilling AreadInconsolidatedUnconsolidatedDate Drilling AreadInconsolidatedUnconsolidatedDate Drilling AreadInconsolidatedUnconsolidatedDate Drilling AreadInconsolidatedUnconsolidatedConfined/LocalityUnconsolidatedUnconsolidatedDate Drilling AreadInfo1991Date Drilling AreadInfoSource Aquifer(s)2UnconsolidatedDate Drilling AreadInfoSource Aquifer(s)2UnconsolidatedDate Drilling AreadInfoDate Drilling AreadInfoSource Aquifer(s)2UnconsolidatedDate Drilling AreadInfoDate Drilling AreadInfoDate Drilling AreadInfoDate Drilling AreadInfoDate Drilling AreadInfoDate Drilling AreadInfo	Local Well Name	Well #11, Plant #1	Well #12	Well #13 Plant #3	
StatusActiveActiveActiveActiveLatitude36.87877036.8044036.86459Longitude95.9268095.92620180.920210305802020160412-Digit Hydrologic UniScottScottScottBoundesterSoutheastSoutheastSoutheastGrundwater ProvincelSoutheastSoutheastSoutheastSource Aquifer(s) ² WilcoxWilcoxAlluvialConfinedUnconfinedUnconfinedUnconfinedRegional Drilling AreafArea 5Area 5Total Dissolve SourceMilcoxMilcoxAlluvianDaterilled (year)19871991O13Material (C/U)UnconsolidatedUnconsolidatedUnconsolidatedCostal Basel SourceWilcoxMilcoxAlluviumTotal Depth FormatioWilcoxWilcoxAlluviumTotal Depth (1)300292111Casing Base FormatioVilcoxSteelSteelCasing Save (1)10012	Well ID #	13044	13043	18782	
Latitude36.87877036.88044036.880459Longitude-89.582680-89.582630-89.602615CourtyScottScottScottCourtyScottScottScottGroundwater ProvinelSutheastSoutheast MissouriCourhards MissouriCourdigrif(s)2WilcoxWilcoxAluvialConfined/Unconfined3UnconfinedUnconfinedUnconfinedConfined/Unconfined4UnconfinedUnconfinedUnconfinedDate Drilled (year)198719912013Casing Base FormationWilcoxMiloxAluviantTotal Disolve Soligs4undet erminedUnconsolidatedCosing Date FormationWilcoxAluviantTotal Depth FormationWilcoxAluviantTotal Depth formationWilcoxAluviantTotal Depth formationYilcoxWilcoxAluviantTotal Depth formation102222Casing Dapth (ft)300292111Casing Size (in)161816Casing TypeSteelSteelSteelScreen Size (in)101210Pump Test Date (year)19971991Pump Test Date (year)19971991Pump Test Date (year)16010Pump Test Date (year)16010Pump Test Date (year)16010Pump Test Date (year)19971991Pump Test Date (year)160100Pump Depth (ft)<	DGLS ID #				
Longitude99.58268069.58268069.6021512-bigt Hydrologic UN6020201030508020204064CountyScottScottScottMoDNR RegionSoutheastSoutheastSoutheastGroundwater Province1SoutheastSoutheast MissouriConfined7WilcoxMilcoxAlluvialConfined7WilcoxMilcoxAlluvialConfined7UnconfinedUnconfinedUnconfinedRegion1D/Illing AreaArea 5Area 5Area 5Total Dissolved Solids5undeterminedUnconsolidatedUnconsolidatedMaterial (CV)UnconsolidatedUnconsolidatedUnconsolidatedMaterial (CV)UnconsolidatedUnconsolidatedUnconsolidatedGround Elevation (ff)30039116Ground Elevation (ff)30029211Casing Sase FormationWilcoxXileviumTotal Depth FormationWilcoxXileviumGround Elevation (ff)30029211Casing Size (ff)1616Casing Size (ff)162301State Water Level (ff)658031Pump Text Devis (ff)1991	Status	Active	Active	Active	
12-Digit Hydrologic Unit080202010305080202010305080202040604CourtyScottScottScottMoDNR RegionSoutheastSoutheastSoutheastGroundwater ProvincelCowlandsCowlandsCowlandsSource Aquifer(s)2WilcoxWilcoxAlluvialConfined/Unconfined3UnconfinedUnconfinedUnconfinedRegional Drilling Area4Area 5Area 5Area 5Total Disolved Solids5undeterminedundeterminedUndeterminedDate Drilled (year)198719912013Material (C/U)UnconsolidatedUnconsolidatedUnconsolidatedCasing Base FormationWilcoxAlluviumMicoxTotal Depth FormationWilcoxWilcoxAlluviumTotal Depth FormationWilcoxVilcoAlluviumTotal Depth FormationWilcoxVilcoxAlluviumTotal Depth FormationWilcoxVilcoxAlluviumTotal Depth Formation161816Casing Size (in)161816Casing Size (in)1012	Latitude	36.878770	36.880440	36.880459	
CountyScottScottScottScottMaDNR RegionSoutheastSoutheastSoutheastSoutheastGroundwater ProvincelSoutheast MissouriSoutheast MissouriSoutheast MissouriSource Aquifer(s)2WilcoxAlluvialConfined/UnconfinedUnconfinedUnconfinedRegional Drilling Area4Area 5Area 5Area 5Area 5Area 5Total Dissolved Solids ⁵ undeterminedundeterminedDate Drilled (year)198719912013Material (C/U)UnconsolidatedUnconsolidatedCasing Base FormationWilcoxWilcoxAlluviumTotal Depth FormationWilcoxWilcoxAlluviumTotal Depth FormationWilcoxWilcoxAlluviumCasing Size (in)161816Casing Size (in)161810Screen Length (ff)808011Screen Length (ff)10628352400Head (ff)1099469Draw Down (ff)174174100Pump TypeVertical TurbineVertical TurbinePump TypeVertical Turbine	Longitude	-89.582680	-89.582630	-89.602615	
MoDNR RegionSoutheastSoutheast MissouSoutheast MissouSoutheast MissouGroundwater ProvinedSoutheast MissouSoutheast MissouSoutheast MissouSource Aquifer(s)2WiloxWiloxAlluvialConfined/UnconfinedUnconfinedUnconfinedUnconfinedRegional Drilling Area4Area 5Area 5Area 5Total Dissolved Solids5UndeterminedUndeterminedDate Drilled (year)198719912013Casing Base FormationWiloxWiloxAlluviumTotal Depth FormationWiloxWiloxAlluviumTotal Depth FormationWiloxWiloxAlluviumTotal Depth formationSoutheast255252Casing Base formationSoutheastSteelSteelScreen Length (ft)300292111Casing Size (in)161816Casing TypeSteelSteelSteelScreen Size (in)10012	12-Digit Hydrologic Unit	080202010305	080202010305	080202040604	
MoDNR RegionSoutheastSoutheast MissouSoutheast MissouSoutheast MissouGroundwater ProvinedSoutheast MissouSoutheast MissouSoutheast MissouSource Aquifer(s)2WiloxWiloxAlluvialConfined/UnconfinedUnconfinedUnconfinedUnconfinedRegional Drilling Area4Area 5Area 5Area 5Total Dissolved Solids5UndeterminedUndeterminedDate Drilled (year)198719912013Casing Base FormationWiloxWiloxAlluviumTotal Depth FormationWiloxWiloxAlluviumTotal Depth FormationWiloxWiloxAlluviumTotal Depth formationSoutheast255252Casing Base formationSoutheastSteelSteelScreen Length (ft)300292111Casing Size (in)161816Casing TypeSteelSteelSteelScreen Size (in)10012	County	Scott	Scott	Scott	
Groundwater Provine-alSoutheast MissouiSoutheast MissouiSoutheast MissouiSoutheast MissouiSource Aquifer(s)2WilcoxWilcoxAlluvialConfined/Unconfined3UnconfinedUnconfinedUnconfinedRegional Drilling Area4Area 5Area 5Area 5Total Dissolved Solid5undeterminedundeterminedDate Drilled (year)198719912013Material (C/U)UnconsolidatedUnconsolidatedUnconsolidatedUnconsolidatedUnconsolidatedTotal Depth FormationWilcoxAlluviumTotal Depth Formation391160Ground Elevation (ft)325325Casing Depth (ft)300292111Casing Size(in)1618Casing TypeSteelSteelScreen Size (in)1012Static Water Level (ft)6580Daw Down (ft)43	•	Southeast	Southeast	Southeast	
Construct quark Construct quark Regional Drilling Area ⁴ UnconfinedUnconfinedUnconfinedRegional Drilling Area ⁴ Area 5Area 5Area 5Total Dissolved Solids ⁵ undeterminedundeterminedundeterminedDate Drilled (year)198719912013Material (C/U)UnconsolidatedUnconsolidatedUnconsolidatedCasing Base FormationWilcoxWilcoxAlluviumTotal Depth FormationWilcoxWilcoxAlluviumTotal Depth FormationWilcoxWilcoxAlluviumTotal Depth Ground Elevation (ft)325325325Casing Base formation161816Casing Size (in)161816Casing TypeSteelSteelSteelScreen Length (ft)8080110Screen Length (ft)10628352400Head (ft)1099469Draw Down (ft)43	-		Southeast Missouri Lowlands	Southeast Missouri Lowlands	
Confined/UnconfinedUnconfinedUnconfinedUnconfinedRegional Drilling Area4Area 5Area 5Area 5Total Dissolved Solids5undeterminedundeterminedUnconsolidatedDate Drilled (year)198719912013Material (CV)UnconsolidatedUnconsolidatedUnconsolidatedCasing Base FormationWilcoxWilcoxAlluviumTotal Depth FormationWilcoxWilcoxAlluviumTotal Depth formation (ft)325325325Casing Size (in)161816Casing Size (in)161816Casing Size (in)1012	Source Aquifer(s) ²	Wilcox	Wilcox	Alluvial	
National bining Netal Note of the instant of the insten tof the instant of the instant of the instent of the instant		Unconfined	Unconfined	Unconfined	
Number of the second	Regional Drilling Area ⁴	Area 5	Area 5	Area 5	
Material (C/U)UnconsolidatedUnconsolidatedUnconsolidatedCasing Base FormationWilcoxWilcoxAlluviumTotal Depth FormationWilcoxWilcoxAlluviumTotal Depth390391160Ground Elevation (ti)325325325Casing Depth (ft)300292111Casing Size (in)161816Casing TypeSteelSteelSteelScreen Length (ft)8080110Screen Size (in)1012	Total Dissolved Solids ⁵	undetermined	undetermined	undetermined	
Casing Base Formation Wilcox Wilcox Alluvium Total Depth Formation Wilcox Wilcox Alluvium Total Depth 390 391 160 Ground Elevation (ft) 325 325 325 Casing Depth (ft) 300 292 111 Casing Size (in) 16 18 16 Casing Type Steel Steel Steel Screen Length (ft) 80 80 110 Screen Size (in) 10 12	Date Drilled (year)	1987	1991	2013	
Casing Base Formation Wilcox Wilcox Alluvium Total Depth Formation Wilcox Wilcox Alluvium Total Depth 390 391 160 Ground Elevation (ft) 325 325 325 Casing Depth (ft) 300 292 111 Casing Size (in) 16 18 16 Casing Type Steel Steel Steel Screen Length (ft) 80 80 110 Screen Size (in) 10 12		Unconsolidated	Unconsolidated	Unconsolidated	
Total Depth Wilcox Alluvium Total Depth 390 391 160 Ground Elevation (ft) 325 325 325 Casing Depth (ft) 300 292 111 Casing Size (in) 16 18 16 Casing Type Steel Steel Steel Screen Length (ft) 80 80 110 Screen Ligth (ft) 65 80 31 Vell Yield (gpm) 1062 835 2400 Head (ft) 109 94 69 Draw Down (ft) 43	· · ·	Wilcox	Wilcox	Alluvium	
Total Depth 390 391 160 Ground Elevation (ft) 325 325 325 Casing Depth (ft) 300 292 111 Casing Size (in) 16 18 16 Casing Type Steel Steel Steel Screen Length (ft) 80 80 110 Screen Size (in) 10 12	•	Wilcox	Wilcox	Alluvium	
Ground Elevation (ft) 325 325 325 Casing Depth (ft) 300 292 111 Casing Size (in) 16 18 16 Casing Type Steel Steel Steel Screen Length (ft) 80 80 110 Screen Size (in) 10 12		390	391	160	
Casing Depth (ft) 300 292 111 Casing Size (in) 16 18 16 Casing Type Steel Steel Steel Screen Length (ft) 80 80 110 Screen Light (ft) 65 80 31 Well Yield (gpm) 1062 835 2400 Head (ft) 109 94 69 Draw Down (ft) 43		325	325	325	
Casing Size (in) 16 18 16 Casing Type Steel Steel Steel Screen Length (ft) 80 110 Screen Size (in) 10 12 Static Water Level (ft) 65 80 31 Well Yield (gpm) 1062 835 2400 Head (ft) 109 94 69 Draw Down (ft) 43	· · /				
Casing Type Steel Steel Steel Screen Length (ft) 80 110 Screen Size (in) 10 12 Static Water Level (ft) 65 80 31 Well Yield (gpm) 1062 835 2400 Head (ft) 109 94 69 Draw Down (ft) 43					
Screen Length (ft) 80 80 110 Screen Size (in) 10 12	- , ,				
Screen Size (in) 10 12 Static Water Level (ft) 65 80 31 Well Yield (gpm) 1062 835 2400 Head (ft) 109 94 69 Draw Down (ft) 43		80			
Static Water Level (ft) 65 80 31 Well Yield (gpm) 1062 835 2400 Head (ft) 109 94 69 Draw Down (ft) 43	- · · /				
Well Yield (gpm) 1062 835 2400 Head (ft) 109 94 69 Draw Down (ft) 43				31	
Head (ft) 109 94 69 Draw Down (ft) 43					
Draw Down (ft)43					
Pump Test Date (year)19871991Pump TypeVertical TurbineVertical TurbinePump Manufacturer	. ,				
Pump TypeVertical TurbineVertical TurbineVertical TurbinePump Manufacturer	()		1991		
Pump Depth (ft)174174100Pump Capacity (gpm)100010001000Pump Meter (Y/N)GWUDISW (Y/N)Surface DrainageState Approved (Y/N)Liquefaction RiskHighHighLandslide RiskLowLowLowCollapse RiskLowLowLowFlood RiskLowLowLowSurface Contamination RiskLowLowModerate			Vertical Turbine	Vertical Turbine	
Pump Capacity (gpm)100010001000Pump Meter (Y/N)	Pump Manufacturer				
Pump Meter (Y/N)	Pump Depth (ft)	174	174	100	
GWUDISW (Y/N)	Pump Capacity (gpm)	1000	1000	1000	
Surface DrainageState Approved (Y/N)Liquefaction RiskHighLandslide RiskLowLowLowCollapse RiskLowLowLowFlood RiskLowLowLowSurface Contamination RiskLowLowLowNoterate	Pump Meter (Y/N)				
State Approved (Y/N)Liquefaction RiskHighHighLandslide RiskLowLowCollapse RiskLowLowFlood RiskLowLowSurface Contamination RiskLowLowModerateNoterate	GWUDISW (Y/N)				
Liquefaction RiskHighHighHighLandslide RiskLowLowLowCollapse RiskLowLowLowFlood RiskLowLowLowSurface Contamination RiskLowLowModerate	Surface Drainage				
Landslide RiskLowLowLowCollapse RiskLowLowLowFlood RiskLowLowLowSurface Contamination RiskLowLowModerate	State Approved (Y/N)				
Collapse RiskLowLowLowFlood RiskLowLowLowSurface Contamination RiskLowLowModerate	Liquefaction Risk	High	High	High	
Flood RiskLowLowLowSurface Contamination RiskLowLowModerate	Landslide Risk	Low	Low	Low	
Surface Contamination Low Low Moderate	Collapse Risk	Low	Low	Low	
Risk Low Moderate	Flood Risk	Low	Low	Low	
Conduit Flow Risk ⁶ K6 K6 K6	Surface Contamination Risk	Low	Low	Moderate	
	Conduit Flow Risk ⁶	K6	K6	K6	

Contaminant Summary

Sheet Prepared: Jun 11, 2020

PWS	S No. 4010743		ropuro	a. ouri 11, 2020	Prepared by C	ARES, University of Missouri Extension
57 pr	otential contaminant sources in the listed database	es (mult	tiple da	tabases may list the sa		
- P	Database			Database		
V	ACRES (Assessment, Cleanup And Redevelopment Exchange System)			MN-TEMPO (Minnesota - Permit	ting Compliance	& Enforcement)
~	AIR (Integrated Compliance Information System-Air)		V	MO-DNR (Missouri Department		
~	AIRS/AFS (Air Facility System)		~	NCDB (National Compliance Da		1003)
	AIRS/AQS (Air Quality System)		V	NPDES (National Pollutant Discl		System)
	BR (Biennial Reporters)		•	OTAQREG (Office Of Transporta	•	
	BRAC (Base Realignment And Closure)			RADINFO (Radiation Informatio		
V	CAMDBS (Clean Air Markets Division Business Systems)			RBLC (Ract/Bact/Laer Clearingh	•	
•	CEDRI (Compliance And Emissions Data Reporting Interface)		V	RCRAINFO (Resource Conserv		very Act Information System)
	ECRM (Enforcement Criminal Records Management)		•	RFS (Renewable Fuel Standard)		
	E-GGRT (Electronic Greenhouse Gas Reporting Tool)			RMP (Risk Management Plan)		
	EGRID (Emissions & Generation Resource Integrated Database)		1	SEMS (Superfund Enterprise Ma	inagement System	m)
V	EIA-860 (Energy Information Administration-860 Database)		~	SFDW (Safe Drinking Water Inf		
V	EIS (Emission Inventory System)		•	SSTS (Section Seven Tracking S		.,
•	FFDOCKET (Federal Facility Hazardous Waste Compliance Docket)			STATE (State Systems)	5,000,000	
~				TRIS (Toxics Release Inventory	System)	
•	LMOP (Landfill Methane Outreach Program)			TSCA (Toxic Substances Control		
		nd				antony and holow)
	LUST-ARRA (Leaking Underground Storage Tank - American Recovery An Reinvestment Act)		~	SWIP (Source Water Inventory I	-roject Field Inve	entory - see Delow)
60 pr	otential contaminant sources in the SWIP Field Inv	/entory:				
count	Site Type	,	Count	Site Type		
0	Airport or abandoned airfield		0	Laundromat		
0	Animal feedlot			Livestock auction		
0	Apartments and condominiums			Machine or metalworking shop		
0	Asphalt plant			Manufacturing (general)		
6	Auto repair shop		0	Material stockpile (industrial)		
8	Automotive dealership		0	Medical institution		
0	Barber and beauty shop		0	Metal production facility		
0	Boat yard and marina		0	Mining operation		
0	CAFO		7	Other		
0	Campground		1	Paint store		
2	Car wash			Park land		
0	Cement Plant			Parking lot		
0	Cemetery		1	Petroleum production or storage		
0	Communication equipment mfg		0	Pharmacies		
0	Country club		0	Photography shop or processing	lah	
3	Dry cleaner		0	Pit toilet	180	
1	Dumping and/or burning site		0	Plastic material and synthetic m	ifα	
0	Electric equipment mfg or storage		1	Print shop		
0	Electric substation		0	Railroad yard		
0	Farm machinery storage		0	Recycling/reduction facility		
3	Feed/Fertilizer/Co-op		0	Research lab		
3 2	Fire station		0	Restaurant		
2	Funeral service and crematory		1	Sawdust pile		
2 1	Funiture manufacturer		0	Sawdust pile		
0	Furniture repair or finishing shop		0	Sports and hobby shop		
0	Garden and/or nursery		0	Swimming pool		
0	Garden, nursery, and/or florist		0	Tailing pond		
0	Gasoline service station					
0	Golf courses		5	Tank (above-ground fuel) Tank (other)		
0	Government office		0	Tank (pesticide)		
0	Grain bin		6	Tank (underground fuel)		
3	Hardware and lumber store		0	Trucking terminal		
0	Hardware and lumber store Hazardous waste (Federal facility)		1	Veterinary service		
1			-			
0	Highway maintenance facility		0	Wastewater treatment facility		
0	Jewelry or metal plating shop		2	Well (abandoned)		
0	Junk yard or salvage yard		1	Well (domestic)		
0	Lagoon (commercial)		0	Well (irrigation)		
0	Lagoon (industrial)		0	Well (livestock)		
-	Lagoon (municipal)		0	Well (monitoring)		
0				147 H / H H		
0	Lagoon (residential)		0	Well (public water supply)		
-			0 0	Well (public water supply) Well (unknown)		

Although the data in this data set have been compiled, in part or in whole, by the Missouri Department of Natural Resources, no warranty, expressed or implied, is made by the department as to the accuracy of the data or related materials. The act of distribution shall not constitute any such warranty, and no responsibility is assumed by the department in the use of these data or related materials. This map and related information are subject to change as additional information is acquired. For additional information, please contact the Department's Drinking Water Branch (Water materials. This map and related information are subject to change as additional information is acquired. For additional information, please contact the Department's Drinking Water Branch (Water

Susceptibility Determination PWSS No. 4010743

Sheet Prepared: Jun 11, 2020

Date containing numeric values correspond to the number of individual wells or surface water intakes. S # S # E # S CROUND WATER Celogical and Hydrogeological Assessment Criteria Are any system wells deemed by the Public Drinking Water Branch to be under the direct influence of surface water? O	The Missouri Department of Natural Resources (MoDNR) has assembled this information to assess the susceptibility of drinking water sources to contamination. There are many unforseen and unpredictable factors that may cause a source to be contaminated. MoDNR routinely monitors all public supplies to ensure public health is protected. Public water systems and local communities are encouraged to take all measures possible to reduce the susceptibility of their drinking water source to chemical contamination. For more information, call 1-800-361-4827.	Minimally Susceptible	Moderately Susceptible	Highly Susceptible	Undetermined
Geological and Hydrogeological Assessment Criteria Are any system wells deemed by the Public Drinking Water Branch to be under the direct influence of surface water? Are any system wells draw water from a source with high total dissolved solids (TDS)? Are any system wells located proximal to known subsurface or groundwater contamination? Do any system wells located proximal to known subsurface or groundwater contamination? Do any system wells located proximal to known subsurface or groundwater contamination? Do any system wells stoated proximal to known subsurface or groundwater contamination? Do any system wells stoated proximal to known subsurface or groundwater contamination from surface sources is: Based on known stratigraphic relationships for each well, the risk of contamination from surface sources is: O any system wells exhibit stouctural defects, construction deficiencies, or other conditions that might allow contamination to enter the well at the wellhead? Are security measures in place to provent nutulhorized tampering with all system wells? Does the system have back-up, emergency power available? Monitoring Assessment Criteria Have any system wells behibited consistent detections for any of the following parameters in raw water? Volatie Organic Chemicals (VOC): Nitrates/Nitrice: Rationuclides: Bacteria/Viruses/Microbial Pathogens: Natural Hazard Assessment Criteria <td></td> <td>SC</td> <td>ы S</td> <td>SL</td> <td>2</td>		SC	ы S	SL	2
Are any system wells deemed by the Public Drinking Water Branch to be under the direct influence of surface water? Are any system wells potentially prone to karst conditions or solution flow? Do any system wells forw aware from a succer with high total dissolved solids (TDS)? Are any system wells forwawre from a nuconfined aquife? Based on known stratigraphic relationships for each well, the risk of contamination from surface sources is: Well Construction and Maintenance Assessment Criteria Are all system wells state-approved? Do any system wells atta-approved? Do any system wells atthe structural defects, construction deficiencies, or other conditions that might allow contamination to enter the well at the wellhead? Are security measures in place to prevent unautorized tampering with all system wells? Does the system have back-up, emergency power available? Montoring Assessment Criteria Have any system wells exhibited consistent detections for any of the following parameters in raw water? Volatie Organic Chemicals (VOC): Synthetic Organic Chemicals (VOC): Synthetic Organic Chemicals (SOC): Inorganic Compounds (IOC): Nitrates/Nitrites: Radionuclides: Bacteria/Viruses/Microbial Pathogens: Natural Hazard Assessment Criteria The number of system wells located in a region prone to flooding. The number of system wells located in a region that may experience the following conditions in the event of a large-scale arthiquake. Potential laudiside risk: Potential laudiside risk	GROUND WATER				
Are any system wells potentially prone to karst conditions or solution flow? Do any system wells draw water from a source with high total dissolved solids (TDS)? Are any system wells draw water from an unconfined aquifer? Based on known stratigraphic relationships for each well, the risk of contamination? Well Construction and Maintenance Assessment Criteria Are all system wells state-approved? Do any system wells exhibit structural defects, construction deficiencies, or other conditions that might allow Ontamination to enter the well at the wellhened? Are security measures in place to prevent unauthorized tampering with all system wells? Does the system have back-up, emergency power available? Monitoring Assessment Criteria Have any system (Corpanic Chemicals (SOC): Inorganic Compounds (IOC): Nitrates/Nitrites: Radionuclides: Bacteria/Viruses/Microbial Pathogens: Natural Hazer Assessment Criteria The number of system wells located in a region prone to flooding. The number of system wells located in a region prone to flooding. The number of system wells located in a region that may experience the following conditions in the event of a large-scale earthylaxe. Potential landslide risk: Potential sources of contamination sits within the wellhead protection	Geological and Hydrogeological Assessment Criteria				
Do any system wells located proximal to known subsurface or groundwater contamination? Do any system wells located proximal to known subsurface or groundwater contamination? Do any system wells located proximal to known subsurface or groundwater contamination? Do any system wells located proximal to known subsurface or groundwater contamination? Do any system wells located proximal to known subsurface or groundwater contamination? Based on known stratigraphic relationships for each well, the risk of contamination from surface sources is: Well Construction and Maintenance Assessment Criteria Are all system wells state-approved? Do any system wells state-approved? Do any system wells exhibit structural defects, construction deficiencies, or other conditions that might allow contamination to enter the well at the wellhead? Are security measures in place to prevent unauthorized tampering with all system wells? Does the system have back-up, emergency power available? Monitoring Assessment Criteria Have any system wells exhibited consistent detections for any of the following parameters in raw water? Volatile Organic Chemicals (SOC): Inorganic Compounds (IQC); Nitrates/Nitrites: Radionuclides: Bacteria/Viruses/Microbial Pathogens: Patential Inquefaction risk: Potential Inquefaction risk: P	Are any system wells deemed by the Public Drinking Water Branch to be under the direct influence of surface water?	\bigcirc	\bigcirc	\bigcirc	
Are any system wells located proximal to known subsurface or groundwater contamination? Image: Contamination of the risk of contamination from surface sources is: Image: Contamination of the risk of contamination from surface sources is: Based on known stratigraphic relationships for each well, the risk of contamination from surface sources is: Image: Contamination to enter file well at the well ead? Are all system wells state-approved? Image: Contamination to enter file well at the wellhead? Image: Contamination to enter file well at the wellhead? Are serving measures in place to prevent unauthorized tampering with all system wells? Image: Contamination to enter file well at the wellhead? Monitoring Assessment Criteria Image: Contamination to enter file well at the well ead? Have any system wells exhibited consistent detections for any of the following parameters in raw water? Image: Contamination (VOC): Synthetic Organic Chemicals (SOC): Image: Contamination to enter file wells at the well so contamination to a large-scale Bacteria/Viruses/Microbial Pathogens: Image: Contamination to enter file wells the aregion prone to flooding. The number of system wells located in a region that may experience the following conditions in the event of a large-scale earthquake. Image: Contamination exist within the well head protection area: Potential landslide risk: Image: Contamination exist within the well head protection area: Potential subsurface	Are any system wells potentially prone to karst conditions or solution flow?		\bigcirc	\bigcirc	
Do any system wells draw water from an unconfined aquifer? Based on known stratigraphic relationships for each well, the risk of contamination from surface sources is: Well Construction and Maintenance Assessment Criteria Are all system wells state-approved? Do any system wells subtriate-approved? Do any system wells construction deficiencies, or other conditions that might allow contamination to enter the well at the wellhead? Are security measures in place to prevent unauthorized tampering with all system wells? Does the system wells exhibited consistent detections for any of the following parameters in raw water? Volatile Organic Chemicals (VOC): Synthetic Organic Chemicals (SOC): Inorganic Compounds (IOC): Nitrates/Nitrites: Radionuclides: Batcria/Viruses/Microbial Pathogens: Natural Hazer dassessment Criteria The number of system wells located in a region prone to flooding. The number of system wells located in a region prone to flooding. The number of system wells located in a region that may experience the following conditions in the event of a large-scale earthquake. Potential liquefaction risk: Potential liquefaction risk: Potential liquefaction risk: Potential liquefaction risk: Potential source collapse/instability risk: Are any system wells hocated in a region drone to flooding aprolonged drought? Do all system wells hocated in an area with a high density of transportation corrifors: A system well is located in an area that may have improperly maintained or faulty on-site septic systems: Additional Assessment Criteria Does the system have a memergency interconnection with a neighboring public water system? O O O O O O O O O O O O O O O O O O O	Do any system wells draw water from a source with high total dissolved solids (TDS)?		\bigcirc	\bigcirc	
Based on known stratigraphic relationships for each well, the risk of contamination from surface sources is: 	Are any system wells located proximal to known subsurface or groundwater contamination?	\bigcirc	\bigcirc	\bigcirc	
Well Construction and Maintenance Assessment Criteria Are all system wells state-approved? Do any system wells exhibit structural defects, construction deficiencies, or other conditions that might allow contamination to enter the well at the wellhead? Are security measures in place to prevent unauthorized tampering with all system wells? Does the system have back-up, emergency power available? Monitoring Assessment Criteria Have any system wells exhibited consistent detections for any of the following parameters in raw water? Volatile Organic Chemicals (VOC): Synthetic Organic Chemicals (SOC): Inorganic Compounds (ICC): Nitrates/Nitrites: Radionuclides: Bacteria/Vinses/Microbial Pathogens: Natural Hazard Assessment Criteria The number of system wells located in a region prone to flooding. The number of system wells located in a region that may experience the following conditions in the event of a large-scale earthquake. Potential liquefaction risk: 0 Potential subsurface collapse/instability risk: 0 Are any system wells prone to declining water levels during a prolonged drought? 0 Do all system wells incated in an rea with in the wellhead protection area: 0 0 A system wells incated in an area with a high density of transportation corridors:	Do any system wells draw water from an unconfined aquifer?		\bigcirc	\bigcirc	
Are all system wells state-approved? Image: Construction deficiencies, or other conditions that might allow contamination to enter the well at the wellhead? Are security measures in place to prevent unauthorized tampering with all system wells? Image: Construction of the well at the wellhead? Does the system have back-up, emergency power available? Image: Construction of the well at the wellhead? Montoring Assessment Criteria Image: Construction of the following parameters in raw water? Volatile Organic Chemicals (VOC): Image: Construction of the following parameters in raw water? Volatile Organic Chemicals (VOC): Image: Construction of the following parameters in raw water? Nitrates/Nitrites: Image: Construction of the following parameters in raw water? Natural Hazard Assessment Criteria Image: Construction of system wells located in a region prone to flooding. The number of system wells located in a region that may experience the following conditions in the event of a large-scale earthquake. Image: Construction? Potential luquefaction risk: Image: Construction? Image: Construction? Potential sources of contamination exist within the wellead protection area: Image: Construction? Image: Construction? Potential sources of contamination exist within the wellead protection area: A system well is located in an area that may have improperly maintaind or faulty on-site septic systems: Image: Constru	Based on known stratigraphic relationships for each well, the risk of contamination from surface sources is:	6	3	\bigcirc	
Do any system wells exhibit structural defects, construction deficiencies, or other conditions that might allow contamination to enter the well at the wellhead? Are security measures in place to prevent unauthorized tampering with all system wells? Does the system have back-up, emergency power available? Monitoring Assessment Criteria Have any system wells exhibited consistent detections for any of the following parameters in raw water? Volatile Organic Chemicals (VOC): Synthetic Organic Chemicals (SOC): Inorganic Compounds (IOC): Nitrates/Nitrites: Radionuclides: Bacteria/Nitrises: Bacteria/Nitrises: Bacte	Well Construction and Maintenance Assessment Criteria				
contamination to enter the well at the wellhead? Image: Contamination to enter the well at the wellhead? Are security measures in place to prevent unauthorized tampering with all system wells? Image: Contamination to enter the wellhead? Monitoring Assessment Criteria Image: Contamination to enter the well to envious the total to	Are all system wells state-approved?	\bigcirc	\bigcirc	\bigcirc	0
Does the system have back-up, emergency power available? Image: Comparison of the following parameters in raw water? Have any system wells exhibited consistent detections for any of the following parameters in raw water? Image: Comparison of the following parameters in raw water? Volatile Organic Chemicals (VOC): Image: Compounds (IOC): Image: Compounds (IOC): Synthetic Organic Chemicals (SOC): Image: Compounds (IOC): Image: Compounds (IOC): Nitrates/Nitrites: Image: Compounds (IOC): Image: Compounds (IOC): Natural Hazard Assessment Criteria Image: Compounds (IOC): Image: Compounds (IOC): The number of system wells located in a region prone to flooding. Image: Compounds (IOC): Image: Compounds (IOC): Potential liquefaction risk: Image: Compounds (IOC): Image: Compounds (IOC): Image: Compounds (IOC): Potential liquefaction risk: Potential liquefaction risk: Image: Compounds (IOC): Image: Compounds (IOC): Potential subsurface collapse/instability risk: Image: Compounds (IOC): Image: Compounds (IOC): Image: Compounds (IOC): Potential subsurface collapse/instability risk: Image: Compounds (IOC): Image: Compounds (IOC): Image: Compounds (IOC): Do all system wells prone to declining water levels during a prolonged drought? Image: Compounds (IOC):	Do any system wells exhibit structural defects, construction deficiencies, or other conditions that might allow contamination to enter the well at the wellhead?				0
Monitoring Assessment Criteria Have any system wells exhibited consistent detections for any of the following parameters in raw water? Volatile Organic Chemicals (VOC): Synthetic Organic Chemicals (SOC): Inorganic Compounds (IOC): Nitrates/Nitrites: Radionuclides: Bacteria/Viruses/Microbial Pathogens: Natural Hazard Assessment Criteria The number of system wells located in a region prone to flooding. The number of system wells located in a region that may experience the following conditions in the event of a large-scale earthquake. Potential liquefaction risk: Potential landslide risk: Potential landslide risk: Potential loussurface collapse/instability risk: Are any system wells prone to declining water levels during a prolonged drought? Do all system wells have lighthing surge protection? Potential Contamination exist within the wellhead protection area: A system well is located in an area with a high density of transportation corridors: A system well is located in an area that may have improperly maintained or faulty on-site septic systems: Asystem well is located in an area that may have improperly maintained or faulty on-site septic systems: A system well is located in an area that may have improperly maintained or faulty on-site septic systems:	Are security measures in place to prevent unauthorized tampering with all system wells?		\bigcirc	\bigcirc	
Have any system wells exhibited consistent detections for any of the following parameters in raw water? Image: Compounds (IOC): Synthetic Organic Chemicals (SOC): Image: Compounds (IOC): Inorganic Compounds (IOC): Image: Compounds (IOC): Nitrates/Nitrites: Image: Compounds (IOC): Radionuclides: Image: Compounds (IOC): Bacteria/Viruses/Microbial Pathogens: Image: Compounds (IOC): Natural Hazard Assessment Criteria Image: Compounds (IOC): The number of system wells located in a region prone to flooding. Image: Compounds (IOC): The number of system wells located in a region prone to flooding. Image: Compounds (IOC): Potential liquefaction risk: Image: Compounds (IOC): Potential liquefaction risk: Image: Compounds (IOC): Potential liquefaction risk: Image: Compounds (IOC): Potential subsurface collapse/instability risk: Image: Compounds (IOC): Are any system wells prone to declining water levels during a prolonged drought? Image: Compounds (IOC): Do all system wells have lightning surge protection? Image: Compounds:	Does the system have back-up, emergency power available?	\bigcirc	\bigcirc	\bigcirc	0
Volatile Organic Chemicals (VOC):Image: Compounds (IOC):Synthetic Organic Chemicals (SOC):Image: Compounds (IOC):Nitrates/Nitrites:Image: Compounds (IOC):Nitrates/Nitrites:Image: Compounds (IOC):Radionuclides:Image: Compounds (IAC):Bacteria/Viruses/Microbial Pathogens:Image: Compounds (IAC):Natural Hazard Assessment CriteriaImage: Compounds (IAC):The number of system wells located in a region prone to flooding.Image: Compounds (IAC):The number of system wells located in a region that may experience the following conditions in the event of a large-scale earthquake.Image: Compounds (IAC):Potential liquefaction risk:Image: Compounds (IAC):Image: Compounds (IAC):Potential liquefaction risk:Image: Compounds (IAC):Image: Compounds (IAC):Potential subsurface collapse/instability risk:Image: Compounds (IAC):Image: Compounds (IAC):Are any system wells prone to declining water levels during a prolonged drought?Image: Compound (IAC):Image: Compound (IAC):Do all system wells have lightning surge protection?Image: Compound (IAC):Image: Compound (IAC):Image: Compound (IAC):Potential Contamination exist within the wellhead protection area:Image: Compound (IAC):Image: Compound (IAC):Image: Compound (IAC):Potential is located in an area with a high density of transportation corridors:Image: Compound (IAC):Image: Compound (IAC):Image: Compound (IAC):Asystem well is located in an area that may have improperly maintained or faulty on-site septic systems:Image: Compound (IAC):Image: Com	Monitoring Assessment Criteria				
Volatile Organic Chemicals (VOC):Image: Compounds (IOC):Synthetic Organic Chemicals (SOC):Image: Compounds (IOC):Nitrates/Nitrites:Image: Compounds (IOC):Nitrates/Nitrites:Image: Compounds (IOC):Radionuclides:Image: Compounds (IAC):Bacteria/Viruses/Microbial Pathogens:Image: Compounds (IAC):Natural Hazard Assessment CriteriaImage: Compounds (IAC):The number of system wells located in a region prone to flooding.Image: Compounds (IAC):The number of system wells located in a region that may experience the following conditions in the event of a large-scale earthquake.Image: Compounds (IAC):Potential liquefaction risk:Image: Compounds (IAC):Image: Compounds (IAC):Potential liquefaction risk:Image: Compounds (IAC):Image: Compounds (IAC):Potential subsurface collapse/instability risk:Image: Compounds (IAC):Image: Compounds (IAC):Are any system wells prone to declining water levels during a prolonged drought?Image: Compound (IAC):Image: Compound (IAC):Do all system wells have lightning surge protection?Image: Compound (IAC):Image: Compound (IAC):Image: Compound (IAC):Potential Contamination exist within the wellhead protection area:Image: Compound (IAC):Image: Compound (IAC):Image: Compound (IAC):Potential is located in an area with a high density of transportation corridors:Image: Compound (IAC):Image: Compound (IAC):Image: Compound (IAC):Asystem well is located in an area that may have improperly maintained or faulty on-site septic systems:Image: Compound (IAC):Image: Com					
Synthetic Organic Chemicals (SOC): Inorganic Compounds (IOC): Nitrates/Nitrites: Radionuclides: Bacteria/Viruses/Microbial Pathogens:Image: Compounds (IOC): Image: Compounds (IOC): Nitrates/Nitrites: Radionuclides: Bacteria/Viruses/Microbial Pathogens:Image: Compounds (IOC): Image: Compounds (IOC): Image: Compounds (IOC): Natrates/Nitrites: Radionuclides: Bacteria/Viruses/Microbial Pathogens:Image: Compounds (IOC): Image: Compounds (IOC): Image: Compounds (IOC): Image: Compounds (IOC): Natrates/Nitrites: Natrates/Nitrites: Natrates/Nitrites: Pathon: Potential Iquefaction risk: Potential Industified risk: Potential Industified risk: Potential Subsurface collapse/instability risk: Are any system wells prone to declining water levels during a prolonged drought? Do all system wells have lightning surge protection? Potential Contamination exist within the wellhead protection area: A system well is located in an area with a high density of transportation corridors: A system well is located in an area that may have improperly maintained or faulty on-site septic systems: Additional Assessment Criteria Does the system have a wellhead/source water protection plan endorsed by the Department of Natural Resources? Does the system have a mergency interconnection with a neighboring public water system? Image: Composite on the system?Image: Composite on the system?			\bigcirc		
Inorganic Compounds (IOC): Nitrates/Nitrites: Radionuclides: Bacteria/Viruses/Microbial Pathogens:Image: Compounds (IOC): Natural Hazard Assessment CriteriaImage: Compounds (IOC): Natural Hazard Assessment Criteria <td></td> <td>Ŏ</td> <td>Ŏ</td> <td>Õ</td> <td>ŏ</td>		Ŏ	Ŏ	Õ	ŏ
Nitrates/Nitrites: Radionuclides: Bacteria/Viruses/Microbial Pathogens:Image: Content of		ŏ	ŏ	ŏ	ŏ
Bacteria/Viruses/Microbial Pathogens: Image: Content in the example of the examp		ŏ	ŏ	ŏ	ŏ
Bacteria/Viruses/Microbial Pathogens: Image: Content in the example of the examp	Radionuclides:	ŏ	ŏ	ŏ	ŏ
The number of system wells located in a region prone to flooding. Image: Control in the event of a large-scale of the event event event event event event event event ev	Bacteria/Viruses/Microbial Pathogens:	Ŏ	ŏ	ŏ	ŏ
The number of system wells located in a region that may experience the following conditions in the event of a large-scale earthquake. Image: State in the image: State in the event of a large-scale earthquake. Potential liquefaction risk: Image: State in the event of a large-scale earthquake. Image: State in the event of a large-scale earthquake. Potential landslide risk: Image: State in the event of a large-scale earthquake. Image: State in the event of a large-scale earthquake. Potential landslide risk: Image: State in the event of a large-scale earthquake. Image: State in the event of a large-scale earthquake. Potential subsurface collapse/instability risk: Image: State in the event of a large-scale earthquake. Image: State in the event of a large-scale earthquake. Are any system wells prone to declining water levels during a prolonged drought? Image: State in the event of a large protection? Image: State in the event of a large-scale earthquake. Image: State in the event of a large-scale earthquake. Image: State in the event of the event event of the event event event of the event of the event of the event event event event event of the event of the event ev	Natural Hazard Assessment Criteria				
The number of system wells located in a region that may experience the following conditions in the event of a large-scale earthquake. Image: State in the image: State in the event of a large-scale earthquake. Potential liquefaction risk: Image: State in the event of a large-scale earthquake. Image: State in the event of a large-scale earthquake. Potential landslide risk: Image: State in the event of a large-scale earthquake. Image: State in the event of a large-scale earthquake. Potential landslide risk: Image: State in the event of a large-scale earthquake. Image: State in the event of a large-scale earthquake. Potential subsurface collapse/instability risk: Image: State in the event of a large-scale earthquake. Image: State in the event of a large-scale earthquake. Are any system wells prone to declining water levels during a prolonged drought? Image: State in the event of a large protection? Image: State in the event of a large-scale earthquake. Image: State in the event of a large-scale earthquake. Image: State in the event of the event event of the event event event of the event of the event of the event event event event event of the event of the event ev	The number of system wells located in a region prone to flooding.	8	\bigcirc	\bigcirc	\bigcirc
Potential landslide risk: Potential subsurface collapse/instability risk:Image: Collapse instability risk:Image: Collapse instability risk:Are any system wells prone to declining water levels during a prolonged drought? Do all system wells have lightning surge protection?Image: Collapse instability risk:Potential Contaminant Inventory Assessment CriteriaImage: Collapse instability risk:Image: Collapse instability risk:Potential Sources of contamination exist within the wellhead protection area: A system well is located in an area with a high density of transportation corridors: A system well is located in an area that may have improperly maintained or faulty on-site septic systems:Image: Collapse instability risk:Additional Assessment CriteriaImage: Collapse instability risk: Image: Collapse instability risk:Image: Collapse instability risk:Does the system have a wellhead/source water protection plan endorsed by the Department of Natural Resources? Does the system have an emergency interconnection with a neighboring public water system?Image: Collapse instability risk:	The number of system wells located in a region that may experience the following conditions in the event of a large-scale			Ŭ	
Potential subsurface collapse/instability risk: Are any system wells prone to declining water levels during a prolonged drought?Do all system wells have lightning surge protection? Potential Contaminant Inventory Assessment Criteria Potential sources of contamination exist within the wellhead protection area: A system well is located in an area with a high density of transportation corridors: A system well is located in an area that may have improperly maintained or faulty on-site septic systems: Does the system have a wellhead/source water protection plan endorsed by the Department of Natural Resources? Does the system have an emergency interconnection with a neighboring public water system?	Potential liquefaction risk:		\bigcirc	8	
Are any system wells prone to declining water levels during a prolonged drought? Image: Contential System wells have lightning surge protection? Do all system wells have lightning surge protection? Image: Contential System Vells have lightning surge protection? Potential Contaminant Inventory Assessment Criteria Image: Contential System Vells Is located in an area with a high density of transportation corridors: A system well is located in an area that may have improperly maintained or faulty on-site septic systems: Image: Contential System Vells Is Isocated in an area that may have improperly maintained or faulty on-site septic systems: Additional Assessment Criteria Image: Contential System have a wellhead/source water protection plan endorsed by the Department of Natural Resources? Image: Contential System Isocated in a mergency interconnection with a neighboring public water system?	Potential landslide risk:	8	\bigcirc	\bigcirc	\bigcirc
Do all system wells have lightning surge protection? Image: Contaminant Inventory Assessment Criteria Potential Contaminant Inventory Assessment Criteria Image: Contamination exist within the wellhead protection area: Potential sources of contamination exist within the wellhead protection area: Image: Contamination exist within the wellhead protection area: A system well is located in an area with a high density of transportation corridors: Image: Contamination exist within the wellhead protection area: A system well is located in an area that may have improperly maintained or faulty on-site septic systems: Image: Contamination exist within the wellhead protection plan endorsed by the Department of Natural Resources? Does the system have a wellhead/source water protection plan endorsed by the Department of Natural Resources? Image: Contamination exist with a neighboring public water system?	Potential subsurface collapse/instability risk:	8	\bigcirc	\bigcirc	\bigcirc
Potential Contaminant Inventory Assessment Criteria Potential sources of contamination exist within the wellhead protection area: A system well is located in an area with a high density of transportation corridors: A system well is located in an area that may have improperly maintained or faulty on-site septic systems: A dditional Assessment Criteria Does the system have a wellhead/source water protection plan endorsed by the Department of Natural Resources? Does the system have an emergency interconnection with a neighboring public water system?	Are any system wells prone to declining water levels during a prolonged drought?	\bigcirc	\bigcirc	\bigcirc	0
Potential sources of contamination exist within the wellhead protection area: Image: Contamination exist within the wellhead protection area: A system well is located in an area with a high density of transportation corridors: Image: Contamination exist within the wellhead protection area: A system well is located in an area with a high density of transportation corridors: Image: Contamination exist within the wellhead protection corridors: A system well is located in an area that may have improperly maintained or faulty on-site septic systems: Image: Contamination exist within the wellhead protection plan endorsed by the Department of Natural Resources? Does the system have a wellhead/source water protection plan endorsed by the Department of Natural Resources? Image: Contamination exist water system?	Do all system wells have lightning surge protection?		\bigcirc	\bigcirc	
A system well is located in an area with a high density of transportation corridors: A system well is located in an area that may have improperly maintained or faulty on-site septic systems: Additional Assessment Criteria Does the system have a wellhead/source water protection plan endorsed by the Department of Natural Resources? Does the system have an emergency interconnection with a neighboring public water system?	Potential Contaminant Inventory Assessment Criteria				
A system well is located in an area that may have improperly maintained or faulty on-site septic systems: Additional Assessment Criteria Does the system have a wellhead/source water protection plan endorsed by the Department of Natural Resources? Image: Comparison of the system have an emergency interconnection with a neighboring public water system?	Potential sources of contamination exist within the wellhead protection area:	\bigcirc		\bigcirc	\bigcirc
A system well is located in an area that may have improperly maintained or faulty on-site septic systems: Additional Assessment Criteria Does the system have a wellhead/source water protection plan endorsed by the Department of Natural Resources? Image: Comparison of the system have an emergency interconnection with a neighboring public water system?	A system well is located in an area with a high density of transportation corridors:	\bigcirc	1	7	
Does the system have a wellhead/source water protection plan endorsed by the Department of Natural Resources?	A system well is located in an area that may have improperly maintained or faulty on-site septic systems:	\bigcirc	\bigcirc	\bigcirc	0
Does the system have a wellhead/source water protection plan endorsed by the Department of Natural Resources?			_		
Does the system have an emergency interconnection with a neighboring public water system?				\bigcirc	\bigcirc
		Õ	Ő	Õ	Õ
		by the de	partme	nt as to	the

Map Prepared: Jun 11, 2020 Data Release: May 4, 2020

Notes PWSS No. 4010743

> For additional information about Missouri's regional groundwater provinces, please visit the Missouri Department of Natural Resources' Water Resources Center Web page or contact the Missouri Geological Survey.

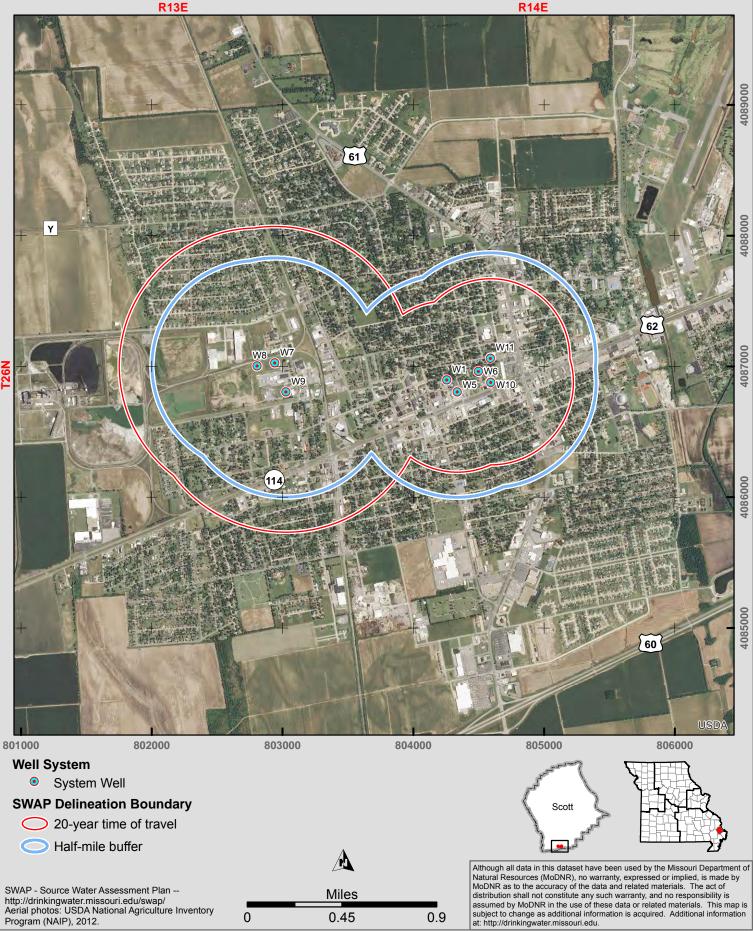
² Source aquifers are determined from well log information, where available, and on general water quality characteristics for the regional groundwater province within which each well is located. Source aquifers for wells with little or no well log information are inferred based on best available information.

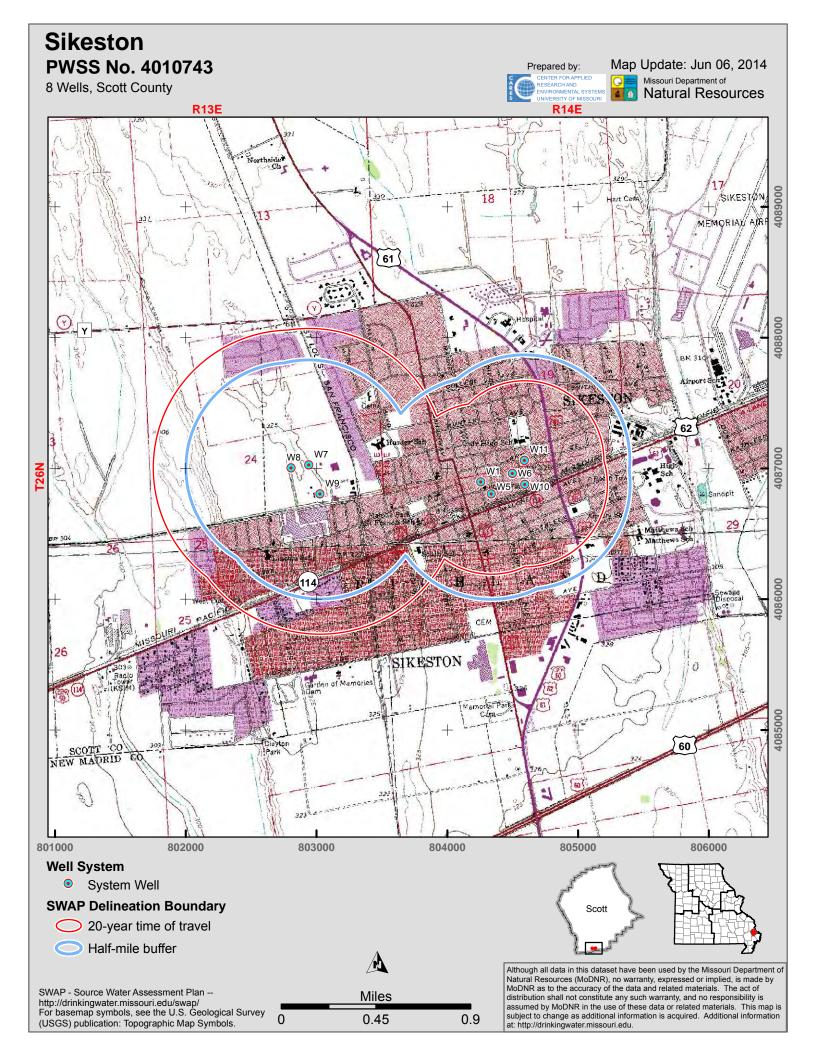
Additional Source Aquifer Notes:

- Water sources labeled "Cincinnatian, Pennsylvanian, or Devonian/Silurian" are not regionally extensive aquifer systems in Missouri. These represent isolated, localized water-bearing formations. Broad water quality descriptions are Not currently available for these sources. "Precambrian" water sources exhibit water quality characteristics similar to the St. Francois aquifer.
- The Springfield Plateau aquifer is regionally extensive only in southwest and west-central Missouri. Aquifers labeled "Mississippian" or "Springfield Plateau (equivalent)" refer to wells that draw water from the same geological formations that comprise the Springfield Plateau aquifer, but are located in areas of the state not hydraulically connected to the regional aquifer system. Broad water quality generalizations are not available for these isolated, localized water-bearing units.
- ³ Unconfined aquifers are generally more vulnerable to surface or shallow subsurface contamination and warrant additional protections around the wellhead. Confined aquifers are not as vulnerable to surface or shallow subsurface contamination, but may exhibit naturally elevated levels of dissolved minerals, radionuclides, or variations in other water quality parameters such as dissolved oxygen and pH.
- 4 Please refer to 10 CSR 23-3.090 and 10 CSR 23-3.100 for additional information about well construction standards for Missouri's regional well drilling areas.
- ⁵ TDS1 Total dissolved solids information is currently only available for the Ozark and Springfield Plateau aquifers. Information is based on broad, regional groundwater quality trends, rather than on well-specific monitoring.
- ⁶ K6 This well is not constructed in materials prone to conduit or solution flow.

Although the data in this data set have been compiled, in part or in whole, by the Missouri Department of Natural Resources, no warranty, expressed or implied, is made by the department as to the accuracy of the data or related materials. The act of distribution shall not constitute any such warranty, and no responsibility is assumed by the department in the use of these data or related materials. This map and related information are subject to change as additional information is acquired. For additional information, please contact the Department's Drinking Water Branch (Water

Appendix 3b


2014 Sikeston Public Well Assessment Reports (CARES)


Sikeston PWSS No. 4010743

8 Wells, Scott County

Missouri Department of Natural Resources

Sikeston PWSS No. 4010743 Sheet Update: Jun 09, 2014 Prepared by: Scott County, sheet 1 of 2 Missouri Department of AND ONMENTAL SYSTEM Natural Resources 4 8 8 wells VERSITY OF MISSOURI Well Number W1 W5 W6 W7 W8 Extended PWS # 4010743101 4010743105 4010743106 4010743107 4010743108 Local Well Name Well #1, Plant #2 Well #6, Plant #2 Well #7, Plant #2 Well #8, Plant #3 Well #9, Plant #3 Well ID # 13051 13049 13048 13047 13046 DGLS ID # 0011630 0019120 0026235 Facility Type City City City City City Active Active Active Active Active Status Latitude 36.87904 36.87818 36.87954 36.8806231803 36.880473182 Longitude -89.58645 -89.58558 -89.5837 -89.6011240613 -89.6026440566 GPS GPS GPS GPS GPS Location Method Method Accuracy (ft) 38 43 43 43 39 USGS 7.5 Quadrangle Sikeston North Sikeston North Sikeston North Sikeston North Sikeston North Scott County Scott Scott Scott Scott MoDNR Region Southeast Southeast Southeast Southeast Southeast Date Drilled (year) 1951 1960 1969 1976 1976 Material (C/U) Unconsolidated Unconsolidated Unconsolidated Unconsolidated Unconsolidated Base of Casing Formation Wilcox Wilcox Wilcox Alluvium Alluvium **Total Depth Formation** Midway Wilcox Midway Alluvium Alluvium Total Depth 421 401 404 145 143 Ground Elevation (ft) Top Seal Bottom Seal Casing Depth (ft) 331 307 309 108 108 Casing Size (in) 12 18 18 18 18 Steel Steel Casing Type Elev. of Casing Top (ft) Outer Casing Depth (ft) Outer Casing Size (in) 81 80 80 30 30 Screen Length (ft) Screen Size (in) 8 12 12 12 12 Static Water Level (ft) 60 65 27 27 66 Well Yield (gpm) 600 1100 1450 1300 1300 Head (ft) 60 54 59 33 34 Draw Down (ft) Pump Test Date (year) 1975 1960 1992 1976 Vertical Turbine Pump Type Vertical Turbine Vertical Turbine Vertical Turbine Vertical Turbine **Pump Manufacturer** 170 84 84 Pump Depth (ft) 150 135 863 1500 1600 1350 1350 Pump Capacity (gpm) Pump Meter (Y/N) Ν Ν Ν Ν Ν VOC Detection (Y/N) Nitrate Detection (Y/N) Ν Ν Ν Ν Ν Chlorination (Y/N) Υ Y Y Y Y Filtration (Y/N) Υ Υ Y Υ Υ GWUDISW (Y/N) Surface Drainage State Approved(Y/N) Date Abandoned (year) Date Plugged (year)

PWSS No. 4010743

Scott County, sheet 2 of 2

8 wells

Q

Sheet Update: Jun 09, 2014

Missouri Department of **Matural Resources**

Well Number	W9	W10	W11
Extended PWS #	4010743109	4010743110	4010743111
Local Well Name	Well #10, Plant #3	Well #11, Plant #1	Well #12
Well ID #	13045	13044	13043
DGLS ID #	100-10	10077	100-10
Facility Type	City	City	City
Status	Active	Active	Active
Latitude	36.87862	36.87877	36.88044
Longitude	-89.60025	-89.58268	-89.58263
•			
Location Method	GPS	GPS	GPS
Method Accuracy (ft)	65 Olivester North	44 Oileantara Narrth	45 Olivertary North
USGS 7.5 Quadrangle	Sikeston North	Sikeston North	Sikeston North
County	Scott	Scott	Scott
MoDNR Region	Southeast	Southeast	Southeast
Date Drilled (year)	1959	1987	1991
Material (C/U)	Unconsolidated	Unconsolidated	Unconsolidated
Base of Casing Formation	Alluvium	Wilcox	Wilcox
Total Depth Formation	Alluvium	Wilcox	Wilcox
Total Depth	142	390	382
Ground Elevation (ft)	<u></u>		
Top Seal			
Bottom Seal			
Casing Depth (ft)	119	300	292
Casing Size (in)	12	16	18
Casing Type	Steel	Steel	Steel
Elev. of Casing Top (ft)			
Outer Casing Depth (ft)			
Outer Casing Size (in)		· · · · · · · · · · · · · · · · · · ·	
Screen Length (ft)	21	80	80
Screen Size (in)	12	10	12
Static Water Level (ft)	30	65	
Well Yield (gpm)	1000	1062	
Head (ft)	1000	1002	
		43	
Draw Down (ft) Pump Test Date (year)	1097	•	
	1987	1987	Vertical Turbine
Pump Type	Vertical Turbine	Vertical Turbine	venical turbine
Pump Manufacturer			
Pump Depth (ft)	64	174	174
Pump Capacity (gpm)	1150	1000	1000
Pump Meter (Y/N)			
VOC Detection (Y/N)	Ν	Ν	Ν
Nitrate Detection (Y/N)	Ν	Ν	Ν
Chlorination (Y/N)	Y	Υ	Y
Filtration (Y/N)	Y	Y	Y
GWUDISW (Y/N)			
Surface Drainage		. <u> </u>	
State Approved(Y/N)			
Date Abandoned (year)			
Date Plugged (year)			
		• • • • • • • • • • • • • • • • • • • 	

PWSS No. 4010743

Scott County, sheet 1 of 4

162 potential contaminant sources

Sheet Update: Jun 09, 2014

G

Missouri Department of Natural Resources 4 9

Map C.No.	CARES ID	Site Name	Туре	Locatio Code	n Accuracy Code	Method Code	Database Code
C1	140966	Elanco Products		UN	NV	UN	Dealcov
C2	108627	Scott-New Madrid Electric Coop		UN	NV	UN	Chemcov
C3	108628	Coleman Plant		UN	NV	UN	Chemcov
C4	108630	Sikeston Bd of Municipal Utilities		UN	NV	UN	Chemcov
C5	110225	Board Of Municipal Utilities		UN	NV	UN	Tanks
C6	110226	Board Of Municipal Utilities		UN	NV	UN	Tanks
C7	110379	Boyer Construction Company		UN	NV	UN	Tanks
C8	110498	Bridger Equipment Company		UN	NV	UN	Tanks
C9	110543	Brown Sand & Gravel Co, Inc		UN	NV	UN	Tanks
C10	111299	Charles Terrell		UN	NV	UN	Tanks
C11 C12	111413	City Garage		UN	NV	UN	Tanks
C12 C13	111527 111831	City Of Miner		UN UN	NV NV	UN	Tanks Tanks
C13	111964	Community Shelter Workshop Cooney Equipment Company		UN	NV	UN	Tanks
C14	112305	Dekalb Ag Research		UN	NV	UN	Tanks
C16	112309	Dekalb-pfizer Genetics		UN	NV	UN	Tanks
C17	112488	Don King Equipment		UN	NV	UN	Tanks
C17	112466	Ferrell Excavating		UN	NV	UN	Tanks
C18	113947	Hale Auction Company		UN	NV	UN	Tanks
C20	114303	Holiday 66 Service		UN	NV	UN	Tanks
C21	114332	Home Oil Co		UN	NV	UN	Tanks
C22	114397	Hucks #139		UN	NV	UN	Tanks
C23	114828	Joe Williams		UN	NV	UN	Tanks
C24	115060	Kellett Oil Co.		UN	NV	UN	Tanks
C25	115145	Kimo's Office Building		UN	NV	UN	Tanks
C26	115609	Lewis Bros Bakeries, Inc		UN	NV	UN	Tanks
C27	115921	Malone & Hyde Drug Dist-never Owned		UN	NV	UN	Tanks
C28	116354	Mhtd Dist Garage		UN	NV	UN	Tanks
C29	116376	Mid South Tractor Parts		UN	NV	UN	Tanks
C30	117395	Par Gas (sinclair)		UN	NV	UN	Tanks
C31	117520	Pepsi Cola		UN	NV	UN	Tanks
C32	118701	Santie Wholesale Oil Co		UN	NV	UN	Tanks
C33	118714	Saunders System Inc		UN	NV	UN	Tanks
C34	118760	Scott Co R-v School Dist		UN	NV	UN	Tanks
C35	118765	Scott-new Madrid-mississippi El Cor		UN	NV	UN	Tanks
C36	118815	Semo Motor Company		UN	NV	UN	Tanks
C37	118816	Semo Nursing Center Inc		UN	NV	UN	Tanks
C38	119100	Sikeston		UN	NV	UN	Tanks
C39	119102	Sikeston Coca-cola Bottling Co		UN	NV	UN	Tanks
C40	119103	Sikeston Concrete Prods Co, Inc		UN	NV	UN	Tanks
C41	119104	Sikeston General Oil Co		UN	NV	UN	Tanks
C42	119106	Sikeston Maint Shed		UN	NV	UN	Tanks
C43	119107	Sikeston Pepsi Cola		UN	NV	UN	Tanks
C44	119381	Southwestern Bell		UN	NV	UN	Tanks
C45	120481	Todd Corporation		UN	NV	UN	Tanks
C46	120611	Trigg Shell		UN	NV	UN	Tanks
C47	120622	Troop E Satellite		UN	NV	UN	Tanks
C48 C49	120761 120798	Union Pacific		UN UN	NV	UN UN	Tanks Tanks
C49 C50	120798	United Parcel Service, Inc		UN	NV NV	UN UN	
0.00	120040	Uptown Shell					Tanks
Code A2 A3 A4 A5 A6 A0 Z1	Block/Gr Street Co Nearest Primary 3 Digitizati Other Ad ZIP Code Census - 19	enterline G2 Kinematic Mode Street Intersection G3 Differential Post Processing Street Name G4 Precise Positioning Service on G5 Signal Averaging dress Matching G6 Real Time Differential Processi e Centroid Interpolation 90 I1 Topo Map	Code Other P1 Land Survey S2 Quarter Description UN Unknown	Location Cd BL Building CF Center of Facili IN Intersection LS Lagoon or Pon MG Main Access P MA Main Office OT Other PL Pile RD Road	ty J bint (Gate)	Ac Code m km ft yd mi UN NF	ccuracy Codes Metric Meters Kilometers English Feet Yards Miles Unknown Site not found at
C1 C2 C3	Block Ce Block/Gr Tract Ce	pup Centroid I3 Satellite Imagery		TK Tank, Standpip WL Well UN Unknown	e, or Tower	NV	database position Site position not verified

PWSS No. 4010743

Scott County, sheet 2 of 4

162 potential contaminant sources

G

Sheet Update: Jun 09, 2014

Missouri Department of Natural Resources 4 9

Map C.No.	CARES ID	Site Name Type		Location Code	Accuracy Code	Method Code	Database Code
C51	120845	U-pump-it		UN	NV	UN	Tanks
C52	121651	Woodtruss		UN	NV	UN	Tanks
C53	121750	Quality Plating		UN	NV	UN	SMARS
C54	122606	Jerry James Trailers Inc.		UN	NV	UN	HW Gen
C55	123286	Scott-new Madrid-mississippi Electric		UN	NV	UN	HW Gen
C56	123833	Cooney Equipment Co.		UN	NV	UN	HW Gen
C57	123835	Semo Motor Co.		UN	NV	UN	HW Gen
C58	123836	Sikeston Dry Cleaners		UN	NV	UN	HW Gen
C59	123890	Todd, Inc.		UN	NV	UN	HW Gen HW Gen
C60	124108	Satterfield Body Shop Hazar Entry		CF	33 ft NV	I2 UN	HW Gen
C61 C62	124665 124814	Missouri Delta Community Hospital Auto Tire & Parts		UN	NV	UN	HW Gen
C63	125054	Stricker Body Shop		UN	NV	UN	HW Gen
C64	125343	At&t		UN	NV	UN	HW Gen
C65	125753	King Cleaners		UN	NV	UN	HW Gen
C66	125930	Mid-south Tractor Parts		UN	NV	UN	HW Gen
C67	126133	Carnell's Body Shop		UN	NV	UN	HW Gen
C68	126233	Mo Dept Of Transportation		UN	NV	UN	HW Gen
C69	126406	Heritage American Homes		UN	NV	UN	HW Gen
C70	127163	One Day Cleaners		UN	NV	UN	HW Gen
C71	127545	Kelpro, Inc.		UN	NV	UN	HW Gen
C72	127758	Chamberlain's Amoco		UN	NV	UN	HW Gen
C73	127798	Canedy Sign Co., Inc.		UN	NV	UN	HW Gen
C74	127851	Faultless Cleaners		UN	NV	UN	HW Gen
C75	128391	Don King Salvage		UN	NV	UN	HW Gen
C76	128417	Bootheel Diesel Fuel Injection		UN	NV	UN	HW Gen
C77	128903	Sikeston Light And Water		UN	NV	UN	HW Gen
C78	128972	Missouri Highway & Transportation Dept.		UN	NV	UN	HW Gen
C79	129213	Media Press		UN	NV	UN	HW Gen
C80	129679	Dekalb Plant Genetics		UN	NV	UN	HW Gen
C81	129840	Quality Plating % Usepa Region Vii		UN	NV	UN	HW Gen
C82	130016	Central States Coca-cola		UN	NV	UN	HW Gen
C83	130088	Curtis H. Cline		UN	NV	UN	HW Gen
C84	130731	Dekalb Corp		UN	NV	UN	HW Gen
C85	132505	HANDY STREET CALCIUM ARSENATE SITE		UN	NV	UN	CERCLIS
C86	132606	MRM INDUSTRIES		UN	NV	UN	CERCLIS
C87	135413	Dekalb Agresearch Inc		UN	NV	UN	APCP
C88	136492	Mcmullin Gin Co Inc		UN	NV	UN	APCP
C89	136493	Sikeston Cotton Oil Mill Inc		UN	NV	UN	APCP
C90	136501	Missouri Delta Community Hospital		UN	NV	UN	APCP
C91	136502	Old Coal-fired Generator		UN	NV	UN	APCP
C92	136503	Sikeston Power Station		UN	NV	UN	APCP
C93 C94	136505 136506	Hendrick Concrete Products Corp Sikeston Woodworking		UN UN	NV NV	UN UN	APCP APCP
C94 C95	136506	Daily Standard		UN	NV	UN	APCP
C95	136510	Crowder Gin Company, Inc		UN	NV	UN	APCP
C90	136514	Marnor Aluminum Processing Inc		UN	NV	UN	APCP
C97	136521	Mrm Industries Inc		UN	NV	UN	APCP
C99	136528	Faultless Cleaners Inc		UN	NV	UN	APCP
C100	136537	Sikeston		UN	NV	UN	APCP
Code A2 A3		Method Codes tching (Geocoding) Code Global Positioning System Code Other pup G1 Static Mode P1 Land Survey	CF	Location Cod Building Center of Facility Intersection			curacy Codes Metric Meters Kilometers
A3 A4 A5	Nearest	Street Intersection G3 Differential Post Processing UN Unknown	LS	Lagoon or Pond Main Access Poir	t (Cate)		English Feet
A6	Digitizati	on G5 Signal Averaging	MA	Main Office	it (Gale)	ft yd	Yards
AO Z1	ZIP Code	Centroid Interpolation	PL	Other Pile		mi UN	Miles Unknown
C1 C2 C3	Census - 19 Block Ce	90 I1 Topo Map ntroid I2 Aerial Photography (DOQQ) sup Centroid I3 Satellite Imagery	RD TK WL	Road Tank, Standpipe, Well Unknown	or Tower	NF NV	Site not found at database position Site position not verified

PWSS No. 4010743

Scott County, sheet 3 of 4

162 potential contaminant sources

G

Sheet Update: Jun 09, 2014

Missouri Department of Natural Resources 4 9

Map C.No.	CARES ID	Site Name	Туре	Location Code	Accuracy Code	Method Code	Database Code
C101	136539	King Laundry And Dry Cleaners		UN	NV	UN	APCP
C102	136540	Sikeston Dry Cleaners		UN	NV	UN	APCP
C103	385324	Magic Car Wash	Car wash	BL	33 ft	12	CARES
C104	385325	Williams Auto Sales	Auto repair shop	BL	33 ft	12	CARES
C105	385326	Rogers Auto Sales	Automotive dealership	BL	33 ft	12	CARES
C106	385327	The House of Color	Paint store	BL	33 ft	12	CARES
C107	385328	Drakes Auto Sales	Automotive dealership	BL	33 ft	12	CARES
C108	385329	Hucks	Tank (underground fuel)	BL	33 ft	12	CARES
C109	385330	Jim's Auto Sales	Automotive dealership	BL	33 ft	12	CARES
C110	385331	Cox's Car Wash	Car wash	BL	33 ft	12 12	CARES
C111 C112	385332 385333	Sinclair Gas Midtown Motors	Tank (above-ground fuel) Automotive dealership	BL CF	33 ft 33 ft	12	CARES CARES
C112	385334	C&C Motors	Automotive dealership	BL	33 ft	12	CARES
C113	385335	Moll Priniting Company	Print shop	BL	33 ft	12	CARES
C115	385336	Feeders Supply	Feed/Fertilizer/Co-op	BL	33 ft	12	CARES
C116	385338	Meeks Print Shop	Other	BL	33 ft	12	CARES
C117	385339	Cornell's Collision Repair	Auto repair shop	BL	33 ft	12	CARES
C118	385340	FG Convienience Store	Tank (underground fuel)	BL	33 ft	12	CARES
C119	385341	Rhodes Convienience Store	Tank (underground fuel)	BL	33 ft	12	CARES
C120	385342	Animal Health Center	Veterinary service	BL	33 ft	12	CARES
C121	385343	Elite Car Wash	Other	BL	33 ft	12	CARES
C122	385344	Sikeston Fire Department	Fire station	BL	33 ft	12	CARES
C123	385345	Allsops Woodworking	Furniture manufacturer	BL	33 ft	12	CARES
C124	385346	Sonny's Solid Waste	Tank (above-ground fuel)	CF	33 ft	12	CARES
C125	385349	Auto Repair	Auto repair shop	BL	33 ft	12	CARES
C126	385350		Well (domestic)	WL	33 ft	12	CARES
C127	385351	Riggs Building Supplies and Home Center	Hardware and lumber store	BL	33 ft	12	CARES
C128	385352	Sabona Mfg.	Manufacturing (general)	BL	33 ft	12	CARES
C129	385353	Janitrol/Janitor Supply	Other	BL	33 ft	12	CARES
C130	385354	Patriot/Heritage Homes	Manufacturing (general)	BL	33 ft	12	CARES
C131	385355	Sheltered Workshop	Sawdust pile	CF	33 ft	12	CARES
C132	385356	Aramark	Dry cleaner	BL	33 ft	12	CARES
C133	385357		Other	ТК	33 ft	12	CARES
C134	385358	Riggs Wholesale Co.	Hardware and lumber store	BL	33 ft	12	CARES
C135	385359	Electric Substation	Other	CF	33 ft	12	CARES
C136	385440	Sikeston Auto Service	Auto repair shop	BL	33 ft	12	CARES
C137	385441	Sinclair Service Station	Tank (above-ground fuel)	BL	33 ft	12	CARES
C138	385442	Phillips 66	Tank (underground fuel)	BL	33 ft	12	CARES
C139	385443	Sikeston Laundry and Drycleaners	Dry cleaner	BL	33 ft	12	CARES
C140	385444	C & K Building Materials	Hardware and lumber store	BL	33 ft	12	CARES
C141	385445	King Laudry and Cleaners	Dry cleaner	BL	33 ft	12	CARES
C142	385446	Moll Printing Co.	Other	BL	33 ft	12	CARES
C143	385447	Premier Motor	Automotive dealership Tank (underground fuel)	BL	33 ft	12	CARES
C144	385448 385449	Amoco Criffe Auto Sales	Automotive dealership	BL BL	33 ft 33 ft	12 12	CARES CARES
C145 C146	385449	Griffs Auto Sales	Other	TK	33 ft 33 ft	12	CARES
C146 C147	385450 385451	Beaver Janitor Supply Blanchard Funeral Parlor	Funeral service and crematory		33 ft	12	CARES
C147 C148	385451 385452	Service Station	Tank (underground fuel)	y BL BL	33 ft	12	CARES
C140 C149	385452 385453	Cargill	Feed/Fertilizer/Co-op	CF	33 ft	12	CARES
C150	385454	odigin	Tank (above-ground fuel)	тк	33 ft	12	CARES
		Method Codes	lank (above-ground fuel)	Location Coc			curacy Codes
Code A2	Block/Gr		Code Other P1 Land Survey	BL Building CF Center of Facility		Code m	Metric Meters
A3 A4	Street Ce Nearest	enterline G2 Kinematic Mode Street Intersection G3 Differential Post Processing	S2 Quarter Description	IN Intersection LS Lagoon or Pond		km	Kilometers English
A5 A6		Street Name G4 Precise Positioning Service	UN Unknown	MG Main Access Poir MA Main Office	nt (Gate)	ft yd	Feet Yards
AO	Other Ad	dress Matching G6 Real Time Differential Processing		OT Other		mi	Miles
Z1	Census - 19	Centroid Interpolation 90 I1 Topo Map		PL Pile RD Road	- -	UN NF	Unknown Site not found at
C1 C2		oup Centroid I3 Satellite Imagery		TK Tank, Standpipe, WL Well	or lower	NV	database position Site position not
C3	Tract Ce			UN Unknown			verified

PWSS No. 4010743

Scott County, sheet 4 of 4

162 potential contaminant sources

G

Sheet Update: Jun 09, 2014

Missouri Department of Natural Resources 4 0

Map C.No.	CARES ID	Site Name Type		Location Code	Accuracy Code	Method Code	Database Code
C151	385455	Sikeston Seed Co., Inc.	Feed/Fertilizer/Co-op	BL	33 ft	12	CARES
C152	385456	H & H Small Engine Repair	Auto repair shop	BL	33 ft	12	CARES
C153	385457	Auto Repair	Auto repair shop	BL	33 ft	12	CARES
C154	385458	J J Auto Sales	Automotive dealership	BL	33 ft	12	CARES
C155	385459	Sikeston City Dump	Dumping and/or burning site	CF	33 ft	12	CARES
C156	385460	William Farr and Purnell Funeral Home	Funeral service and crematory	BL	33 ft	12	CARES
C157	385461		Well (abandoned)	BL	33 ft	12	CARES
C158	385462		Well (abandoned)	BL	33 ft	12	CARES
C159	385463	Sikeston Fire Station	Fire station	BL	33 ft	12	CARES
C160	385464		Tank (above-ground fuel)	ТК	33 ft	12	CARES
C161	385465	Sikeston Highway Maintenence Facility	Highway maintenance facility	CF	33 ft	12	CARES
C162	385466	Shell	Petroleum production or storage	BL	33 ft	12	CARES

			Method Codes				Location Codes	Ac	curacy Codes
Code A2 A3 A4 A5 A6 AO Z1	Address Matching (Geocoding) Block/Group Street Centerline Nearest Street Intersection Primary Street Name Digitization Other Address Matching ZIP Code Centroid	Code G1 G2 G3 G4 G5 G6	Global Positioning System Static Mode Kinematic Mode Differential Post Processing Precise Positioning Service Signal Averaging Real Time Differential Processing Interpolation	Code P1 S2 UN	Other Land Survey Quarter Description Unknown	BL CF IN LS MG OT PL	Building Center of Facility Intersection Lagoon or Pond Main Access Point (Gate) Main Office Other Pile	Code m km ft yd mi UN	Metric Meters Kilometers English Feet Yards Miles Unknown
C1	Census - 1990 Block Centroid	11	Topo Map Aerial Photography (DOQQ)			RD TK	Road Tank, Standpipe, or Tower	NF	Site not found at database position
C2	Block/Group Centroid	13	Satellite Imagery			WL	Well	NV	Site position not
C2	Tract Controld					LINI	Linknown	1	worified

PWSS No. 4010743

Contaminant Summary Sheet

162 potential contaminant sources

Q

Sheet Update: Jun 09, 2014

Missouri Department of **a** Natural Resources

162	2 Potential Contaminant Sources in the Listed Databa	Ses.									
102											
	AFS (EPA AIRS Facility Sites)		Perchlo (MoDNR Perchlorate Sites in Missouri)								
16	APCP (MoDNR Air Pollution Control Program Sites)		Pest Ap (MDA Licensed Pesticide Applicators)								
	APF (MoDNR Active Permitted Landfills & Transfer Stations)		RCRIS (EPA Resource Conservation and Recovery Information System								
2	CERCLIS (EPA CERCLIS)		Silos (USGS Minuteman II Missile Silos)								
3	Chemcov (VA Selected Chemical Sites)	1	SMARS (MoDNR Superfund Management and Registry System)								
1	Dealcov (MDA Pesticide Dealer Locations)	48	Tanks (MoDNR Petroleum Tank Database)								
	Dioxin (MoDNR Confirmed Dioxin List)		Tier 2 (MERC Tier II Reports)								
	Grain B (USDA Former Grain Bin Sites)		Tire D (MoDNR Resolved and Unresolved Waste Tire Dumps)								
21											
31	HW Gen (MoDNR Hazardous Waste Generators)		TRI (EPA Toxic Release Inventory)								
	HW Tran (MoDNR Hazardous Waste Transporters)		VCP (MoDNR Voluntary Cleanup Program Sites)								
	LUST (MoDNR Leaking Underground Storage Tanks)		WQIS (MoDNR Water Quality Information System)								
	MoDOT (MoDOT Highway Maintenance Facilities)										
	PADS (EPA PCB Activity Data Base System)	60	SWIP Field Inventory (see below)								
60 Potential Contaminant Sources in the SWIP Field Inventory:											
0	Airport or abandoned airfield	0	Machine or metalworking shop								
0	Animal feedlot	2	Manufacturing (general)								
0	Apartments and condominiums	0	Material stockpile (industrial)								
0	Asphalt plant	0	Medical institution								
6	Auto repair shop	0	Metal production facility								
8	Automotive dealership	0	Mining operation								
0	Barber and beauty shop	7	Other								
0	Boat yard and marina	1	Paint store								
0	CAFO	0	Park land								
0	Campground	0	Parking lot								
2	Car wash	1	Petroleum production or storage								
0	Cement Plant	0	Pharmacies								
0	Cemetery	0	Photography shop or processing lab								
0	Communication equipment mfg	0	Pit toilet								
0	Country club	0	Plastic material and synthetic mfg								
3	Dry cleaner	1	Print shop								
1	Dumping and/or burning site	0	Railroad yard								
0	Electric equipment mfg or storage	0	Recycling/reduction facility								
0	Electric substation	0	Research lab								
0	Farm machinery storage	0	Restaurant								
3	Feed/Fertilizer/Co-op	1	Sawdust pile								
2	Fire station	0	School								
2	Funeral service and crematory	0	Sports and hobby shop								
1	Furniture manufacturer	0	Swimming pool								
0	Furniture repair or finishing shop	0	Tailing pond								
0	Garden and/or nursery	5	Tank (above-ground fuel)								
0	Garden, nursery, and/or florist	0	Tank (other)								
0	Gasoline service station	0	Tank (pesticide)								
0	Golf courses	6	Tank (underground fuel)								
0	Government office	0	Trucking terminal								
0	Grain bin	1	Veterinary service								
3	Hardware and lumber store	0	Wastewater treatment facility								
0	Hazardous waste (Federal facility)	2	Well (abandoned)								
1	Highway maintenance facility	1	Well (domestic)								
0	Jewelry or metal plating shop	0	Well (irrigation)								
0	Junk yard or salvage yard	0	Well (livestock)								
	Lagoon (commercial)	0	Well (monitoring)								
0			Well (public water supply)								
0 0	Lagoon (industrial)	0									
0 0 0	Lagoon (municipal)	0	Well (unknown)								
0 0 0 0	Lagoon (municipal) Lagoon (residential)										
0 0 0	Lagoon (municipal)										

PWSS No. 4010743

Susceptibility Determination Sheet

Q

Sheet Update: Mar 14, 2014

Missouri Department of

The Missouri Department of Natural Resources (MoDNR) has assembled this information to assess the				
susceptibility of drinking water sources to contamination. There are many unforseen and unpredictable factors that may cause a source to be contaminated. MoDNR routinely monitors all public supplies to ensure public health is protected. Public water systems and local communities are encouraged to take all measures possible to reduce the susceptibility of their drinking water source to chemical contamination. For more information, call 1-800-361-4827.	Not Susceptible	Moderately Susceptible	Highly Susceptible	Incomplete Data
A system is highly susceptible because of construction deficiencies if:				
A well was not constructed according to plans approved by MoDNR-PDWB,				Х
A well was not cased to a depth approved by MoDNR,				X
A well casing is not of sufficient weight,				X
A well is not sufficiently sealed (grouted) around the casing, or A well has developed holes in the casing or other flaws that compromise its integrity.				х
A system is highly susceptible due to direct influence of surface water if:				
A well has tested positive for surface water indicators such as algae or high turbidity.				Х
A system is highly susceptible to surface contaminants if:				
A well casing does not extend 12 inches above the well house floor, or 18 inches above the ground surface,				х
A well casing does not extend four feet above the 100-year flood level, or four feet above the highest known flood elevation,				х
A well is not provided with a properly screened vent, or				X
All openings in a well casing are not properly sealed.				X
A system is highly susceptible based on detection histories if:				
Volatile Organic Chemicals (VOCs) have been detected in a well,	Х			
Synthetic Organic Chemicals (SOCs) have been detected in a well,				Х
Inorganic Chemicals (IOCs) have been detected in a well above naturally occurring levels,				Х
Nitrates have been detected at or above one-half the MCL,	Х			
Bacteria has been consistently detected in a well, or				X
Viruses or microbiological contaminants are detected in a well.				X
A system is highly susceptible to weather, vandalism, and sabotage if:				
A well is not in a locked well house of adequate construction.				X (1)
A system is moderately susceptible due to local geology if:				
A producing aquifer is less than 100 feet below the surface,	X			
A producing aquifer has conduit flow conditions due to surficial karst topography,				X
A producing aquifer is not overlain by an impermeable confining layer,				X
A producing aquifer is overlain by a conductive (>5X10e-4) formation (including soil), or				Х
A producing aquifer is confined, but there are open wells nearby penetrating that layer.				X
A system is moderately susceptible to contaminants if:				
Any contaminants listed in Appendix F-a are found in the source water area,		X (2)		
Septic systems are present in the source water area,				Х
A well is indirectly connected to a surface water body,				Х
A submersible well pump cannot be ruled out from containing PCBs or PHAs, or				Х
There is a high density of transportation corridors in the source water area.				Х
A system is highly susceptible to contamination if:				
Any contaminant sites identified in the source water area are known to have contaminated groundwater that may migrate toward a well.				х
(1) This system was not assessed to determine if adequate security devices such as padlocks, gates, and lighting are in place to deter vandals an have this type of protection in place. (2) A well (or wells) serving this system has been determined to be susceptible due to the presence of potential contaminant sources. The water is team should take extra care to ensure that all potential contaminants in the source water area are handled properly to avoid contamination of the or should take extra care to ensure that all potential contaminants in the source water area are handled properly to avoid contamination of the or should take extra care to ensure that all potential contaminants of the source water area are handled properly to avoid contamination of the or should take extra care to ensure that all potential contaminants of the source water area are handled properly to avoid contamination of the or should take extra care to ensure that all potential contaminants of the source water area are handled properly to avoid contamination of the or should take extra care to ensure that all potential contaminants of the source water area are handled properly to avoid contamination of the or should take extra care to ensure that all potential contaminants of the source water area are handled properly to avoid contamination of the or should take extra care to ensure that all potential contaminants of the source water area are handled properly to avoid contamination of the or should take extra care to ensure that all potential contaminants of the source water area are handled properly to avoid contamination of the or should take extra care to ensure that all potential contaminants of the source water area are handled properly to avoid contamination of the or should be avoid to the source water area area.	system and drinking wa	the wellh	ead prote	ction

Appendix 9

Alternate Source Demonstration March 10, 2021 MW-1

1505 East High Street Jefferson City, Missouri 65101 Telephone (573) 659-9078 www.ger-inc.biz

GREDELL Engineering Resources, Inc.

Sikeston Board of Municipal Utilities Sikeston Power Station Detection Monitoring Program for Fly Ash Pond – Calcium, Sulfate, and Total Dissolved Solids in MW-1 Alternate Source Demonstration

Sikeston Power Station 1551 West Wakefield Avenue Sikeston, MO 63801

March 2021

PROFESSIONAL ENGINEER'S CERTIFICATION

40 CFR 257.94(e)(2) Alternate Source Demonstration

I, Thomas R. Gredell, P.E., a professional engineer licensed in the State of Missouri, hereby certify in accordance with 40 CFR 257.94(e)(2) to the accuracy of the alternate source demonstration described in the following report for the Sikeston Board of Municipal Utilities, Sikeston Power Station, Fly Ash Pond CCR unit. The report demonstrates that the statistically significant increases of sulfate, total dissolved solids, and calcium in MW-1 resulted from a source other than the CCR unit. This demonstration successfully meets the requirements of 40 CFR 257.94(e) as found in federal regulation 40 CFR 257, Subpart D – Standards for the Disposal of Coal Combustion Residuals in Landfills and Surface Impoundments. In addition, the demonstration was made using generally accepted methods.

Name:	Thom	as R. Grede	<u>II, P.E</u>	A MI	and
Signature:	J.	MARIC	P#	Store Mark	<u>zes</u> l
Date:	arch	10,8,00		GREDE	1-21*H
Registration N	lumber:	PE-021137	ST P	NUMB PE-021	ER 137
State of Regis	stration:	Missouri	A.	PESSIONA	LENGING
				Olice .	SSS

Sikeston Board of Municipal Utilities Sikeston Power Station Detection Monitoring Program for Fly Ash Pond – Calcium, Sulfate, and Total Dissolved Solids in MW-1 Alternate Source Demonstration

March 2021

Table of Contents

1.0	INTRODUCTION	1
2.0	OBSERVATIONS AND DATA COLLECTION	2
3.0	SUMMARY OF DATA ANALYSIS AND FINDINGS	5
4.0	CONCLUSIONS AND RECOMMENDATIONS	8
5.0	LIMITATIONS	10
6.0	REFERENCES	11

List of Figures

Figure 1 – Site Map and Sampling Locations
Figure 2 – Fly Ash Pond Monitoring Well Hydrographs
Figure 3 – Diversion Ditch Photo February 2020 - Looking West
Figure 4 – Diversion Ditch Photo February 2020 - Looking Northwest
Figure 5 – Diversion Ditch Photo November 2017 - Looking Northwest
Figure 6 – Piper Trilinear Plot

List of Tables

Table 1 – MW-1 Detection Monitoring Results and Prediction Limits	
Table 2 – Alternate Source Demonstration Sampling Results Summary	,

1.0 INTRODUCTION

This Alternate Source Demonstration (ASD) Report has been prepared to address the results of the semi-annual sampling event initiated on September 22, 2020 at the Sikeston Board of Municipal Utilities (SBMU) Sikeston Power Station's (SPS) Fly Ash Pond, a coal combustion residual (CCR) surface impoundment. Following receipt of final data on October 16, 2020, statistical analysis was performed by GREDELL Engineering Resources, Inc. (Gredell Engineering) for the parameters listed in Appendix III to Part 257 – Constituents for Detection Monitoring. Following this analysis, it was determined that several reported concentrations exceeded their respective prediction limits for the well constituent pairs. These well constituent pairs were; Boron, Calcium, Sulfate, and Total Dissolved Solids (TDS) in sample MW-1; Boron in sample MW-2, and; pH in samples MW-7 and MW-9. Resampling for these well constituent pairs was conducted on December 8, 2020 (MW-1 and MW-2), and January 26, 2021 (MW-7 and MW-9). Following receipt of final data from the resampling events, it was confirmed that Calcium, Sulfate, and TDS concentrations in sample MW-1, and pH in sample MW-9 represent statistically significant increases (SSIs). As a consequence, SBMU-SPS requested that Gredell Engineering conduct an evaluation of the results and develop ASDs if warranted for Calcium, Sulfate, and TDS in MW-1 and pH in MW-9. The apparent increase of pH in MW-9 is the subject of a separate ASD report. Boron in sample MW-2, and pH in sample MW-7 were not confirmed by resampling and therefore are not SSIs.

As stated in §257.94(e)(2), an owner or operator may demonstrate that a source other than the CCR unit caused the apparent SSI over background levels for a constituent. The owner or operator must complete the written demonstration within 90 days of detecting an apparent SSI over background levels to include obtaining a certification from a qualified professional engineer verifying the accuracy of the information in the report. If a successful demonstration is completed within the 90-day period, the owner of the CCR unit may continue with a detection monitoring program. The owner or operator must also include the certified demonstration in the annual groundwater monitoring and corrective action report required by §257.90(e).

Gredell Engineering has completed an evaluation of the groundwater sampling event, the associated data, and other potential factors, for the SBMU SPS Fly Ash Pond groundwater monitoring well system to determine if an alternate source is the cause of the apparent SSIs of Calcium, Sulfate, and TDS in MW-1. This report presents the results of that evaluation and includes supporting documentation.

2.0 OBSERVATIONS AND DATA COLLECTION

The Fly Ash Pond groundwater monitoring well system consists of five wells, designated MW-1, MW-2, MW-3, MW-7, and MW-9 (Figure 1). Monitoring wells MW-1, MW-2, and MW-3 were installed in April 2016. Monitoring well MW-7 was installed in April 2017. Monitoring well MW-9 was installed in November 2017. All five monitoring wells were sampled on an approximate monthly basis beginning in March 2018 and ending in December 2018 to establish a background data base. Additional information regarding these wells is available in the Groundwater Monitoring, Sampling and Analysis Plan for the site (Gredell Engineering, 2018).

The results of the eight independent background sampling events were evaluated in accordance with §257.93, and intra-well analysis using prediction limits was selected as the statistical analysis approach for detection monitoring (Gredell Engineering, 2018). Following receipt of final analytical data reports from the contract laboratory, the reported result for each detection monitoring constituent from each well is compared to its respective prediction limit. If a result exceeds the respective prediction limit for a particular constituent well pair, or is outside the predicted range (in the case of pH), SSI over background is suspected.

Monitoring well MW-1 is located west of the Fly Ash Pond and within the containment area of the coal storage area (Figure 1). The well is situated between the north edge of the coal pile and the coal pile runoff diversion ditch. MW-1 was originally installed in April 2016 as a piezometer for the hydrogeologic characterization of the uppermost aquifer flowing beneath the Fly Ash and Bottom Ash Ponds at the site (Gredell Engineering, 2017). This piezometer was converted to a downgradient monitoring well and retained for routine groundwater elevation monitoring and NPDES compliance sampling. Additional sampling locations were proposed, and two additional downgradient wells (MW-7 and MW-9) were installed for Fly Ash Pond monitoring in April 2017 and November 2017, respectively. Groundwater elevation monitoring since 2016 has consistently demonstrated that flow direction is to the west-southwest, as indicated on Figure 1.

The September 22, 2020 detection monitoring event was preceded by abnormally heavy precipitation and elevated water table conditions in 2019 and 2020 as discussed in previous reports (Gredell Engineering, 2020), and illustrated on Figure 2. The long-term changes in water table elevation are apparent on a hydrograph of groundwater elevations in all Fly Ash Pond monitoring wells (Figure 2). This figure also indicates the range in groundwater elevations during the background sampling period and each year since completion of background sampling. As is evident on this figure, there is a cyclic seasonal variance in water levels in the aquifer characterized by elevated water table conditions in the spring and lower water table in the fall. However, also evident on this figure is a multi-year trend in the groundwater elevation data characterized by progressively higher annual maximum and minimum water table elevations since inception of Part 257 Fly Ash Pond monitoring in March 2018.

During periods of abnormally heavy rainfall, infiltration to a shallow unconfined aquifer (recharge) is increased and groundwater mounding may result. Rainfall that exceeds the infiltration capacity becomes surface runoff. Within the coal storage area, this surface runoff moves toward the

unlined perimeter diversion ditch (Figure 1). Runoff concentrates in this unlined diversion and flows counterclockwise around the coal storage area within close proximity to MW-1. Because the diversion is unlined, additional infiltration and aquifer recharge is expected to occur. The excessive runoff in 2020 is illustrated by the photographs presented as Figures 3 and 4 taken in early 2020. They show considerable coal sediment in the diversion ditch, which is not apparent in a photograph from November 2017 (Figure 5).

Increased infiltration and recharge to a shallow, unconfined aquifer will cause a rise in water table elevation. As a consequence, formerly unsaturated alluvium becomes saturated and additional geochemical interactions will occur between pore waters and the newly saturated materials. These additional interactions have the potential to affect groundwater geochemistry and result in observations not previously documented for the chronically saturated (and deeper) alluvium.

The analytical data for Boron, Calcium, Sulfate, and TDS in MW-1 for the September 2020 sampling event, and subsequent resampling data are summarized on Table 1.

	Boron (mg/L)	Calcium (mg/L)	Sulfate (mg/L)	TDS (mg/L)
Detection Sampling September 22, 2020	620	67	67	310
Resample December 8, 2020	440	49	43	250
Prediction Limit	544.6	45.18	31.57	223.2

Table 1 - MW-1 Detection Monitoring Results and
Prediction Limits

Boron, Calcium, Sulfate, and TDS concentrations in the MW-1 sample from the September sampling event exceeded their respective prediction limits. A resampling event was conducted and, following receipt of final analytical data on December 23, 2020, the apparent SSIs for Calcium, Sulfate, and TDS in the MW-1 sample were confirmed. However, the analytical data for Boron did not confirm an SSI in the MW-1 sample.

During the preparation of a previous ASD for MW-1 (Gredell Engineering, 2020), additional sampling was conducted in February 2020 (Figure 1). Two temporary borings (ASD-1 and ASD-2) were advanced along the margin of the existing coal pile to allow sampling of the shallow groundwater between the coal pile and the underlying aquifer. Groundwater was also sampled at MW-1, along with a surface water sample collected from the Fly Ash Pond (FAP-SW). Each sample was analyzed for major anions and cations to conduct geochemical analysis. A Piper Trilinear Plot (Piper, 1944) was developed with Sanitas[™] Water (Version 9.6.24; 2019) to identify similarities/variations in hydrochemical facies (Freeze and Cherry, 1979). The reported concentrations are summarized on Table 2. These data were used to evaluate geochemical

relationships between the samples with the objective of identifying the most plausible source for the apparent SSIs at MW-1.

	ASD-1	ASD-2	MW-1	FAP-SW
Calcium (mg/L)	79.1	120	43.0	18.4
Sulfate (mg/L)	151	152	25	21
TDS (mg/L)	860	700	170	175
Magnesium (mg/L)	28.7	27.4	9.06	4.96
Potassium (mg/L)	9.74	9.46	1.72	18.7
Sodium (mg/L)	151	135	7.40	36.7
Bicarbonate (mg/L)	350	508	128	172
Carbonate (mg/L)	0	0	0	0
Chloride (mg/L)	35	20	5	5

Table 2 - Alternate Source Demonstration Sampling Results SummaryFebruary 2020

3.0 SUMMARY OF DATA ANALYSIS AND FINDINGS

The U.S. Environmental Protection Agency (USEPA) provides Unified Guidance for statistical analysis of groundwater monitoring data (USEPA, 2009). This Unified Guidance was reviewed to assess the validity of the apparent SSIs. Chapter 4 of the Unified Guidance discusses groundwater monitoring programs and statistical analysis of the associated data. A key component of statistical analysis is *"to determine whether or not the increase is actually due to a contaminant release"*. Several of these considerations are pertinent to the data associated with the Fly Ash Pond groundwater monitoring well system and for that reason are listed below.

- 1. <u>Chapter 4, page 4-8</u>: Is the result a false positive? That is, were the data tested simply an unusual sample of the underlying population triggering an SSI? Generally, this can be evaluated with repeat sampling.
- 2. <u>Chapter 4, page 4-8</u>: Could observed SSIs for naturally occurring analytes be due to longer-term (i.e., seasonal or multi-year) variation? Seasonal or other cyclical patterns should be observable in upgradient wells. Is this change occurring in both upgradient and downgradient wells? Depending on the statistical test and frequency of sampling involved, an observed SSI may be entirely due to temporal variation not accounted for in the sampling scheme.
- 3. <u>Chapter 4, page 4-9</u>: Is there hydrologic evidence of any migration of contaminants from off-site sources or from other non-regulated units? Are any of these contaminants observed upgradient of the regulated units?

Each of these considerations were used to evaluate the background data and the validity of the apparent SSIs of Boron, Calcium, Sulfate, and TDS in MW-1. The results of this evaluation are discussed below.

Unified Guidance Consideration 1

The suspicion that the September 22, 2020 results are a false positive was considered and, as suggested by Unified Guidance, was evaluated with repeat sampling. In this case, re-sampling was conducted at MW-1 on December 8, 2020 to assess the validity of the apparent SSIs. The results of the primary sampling and re-sampling event are presented in Table 1.

These data suggest that the primary sampling event data resulted in a false positive for Boron in sample MW-1. However, the following questions remain: *were the data tested simply an unusual sample of the underlying population triggering an SSI?*, or could other causative factors be present that result in unusual or elevated concentrations of Calcium, Sulfate, and TDS that trigger false positive SSIs?

Unified Guidance Consideration 2

The background sampling period for well MW-1 spans a timeframe of less than nine months. A short background sampling period may not be representative of longer-term natural variations in groundwater quality. Natural seasonal and multi-year (temporal) variations are apparent in this unconfined alluvial aquifer. These natural variations may result in changes in concentrations of detection monitoring parameters that appear to be SSIs. However, these SSIs may be *due to longer-term (i.e., seasonal or multi-year) variation* that is *not accounted for in the sampling scheme* that was intended to represent natural variations in the aquifer.

Seasonal variation characterized by higher groundwater elevations beginning in the spring followed by lower elevations beginning in the fall have been evident during each year since monitoring for Part 257 began for the Fly Ash Pond (Figure 2). The background monitoring period of the Fly Ash Pond monitoring system spanned March 2018 to December 2018, which did not include a complete cycle of seasonal variations, or a sample representative of the winter season when the resampling event occurred (January).

A three-year long increasing trend in minimum and maximum annual groundwater elevations is also evident on Figure 2. This figure is a hydrograph of groundwater elevations in all Fly Ash Pond monitoring wells. Note that Figure 2 also summarizes the range in groundwater elevations during the background sampling period and each year since background sampling was completion. This multi-year increase in groundwater elevations is the aquifer's natural response to increased recharge. Because these groundwater elevation increases are observed in all wells, including those located hydraulically upgradient of the pond, they are not attributed changes in site conditions, but rather larger-scale natural changes in the aquifer. As a result, formerly unsaturated alluvium becomes saturated and additional geochemical interactions will occur between pore waters and the newly saturated materials. These additional interactions have the potential to affect groundwater geochemistry and result in observations not previously documented for the chronically saturated (and deeper) alluvium.

In summary, there are natural seasonal and multi-year variations in the alluvial aquifer at the site that were not observed during the background monitoring period. The apparent SSIs of Calcium, Sulfate, and TDS in MW-1 may be due to temporal variation in the aquifer not accounted for in the background sampling scheme, which lead to overly-restrictive prediction limits.

Unified Guidance Consideration 3

A release from a plausible source will contribute water with elevated concentrations of indicator constituents to the aquifer. This water with elevated concentrations mixes with, and is diluted by, the natural (un-impacted) groundwater, which is characterized by relatively low (background) concentrations of these indicator constituents. The data summarized in Table 2 demonstrate that the concentrations of Calcium, Sulfate, and TDS in samples collected from ASD-1 and ASD-2 are at least four times greater than reported for the sample from the Fly Ash Pond, and considerably higher than

the sample from MW-1. This suggests that water from the coal storage area is a more plausible source for these constituents in MW-1 than water derived from the Fly Ash Pond.

The area of change in groundwater geochemistry as it flows away from a source is referred to as a mixing zone. A Piper Trilinear Plot is a common and convenient tool for showing the effects of mixing waters. The mixing zone will plot on a straight line joining the source to the receiving water (Freeze and Cherry, 1979).

The cation/anion data in Table 2 was used to produce the Piper Trilinear Plot in Figure 6. The concentrations presented in Table 2 for each constituent are first converted from mg/L to milliequivalents per liter (mEq/L) through a calculation based on their valence charge and molecular weight. The concentrations of these major anions and cations in mEq/L are then expressed in relative percentages on the trilinear plot to assess the geochemistry of the sample. Hydrochemical facies can be assessed based on the location of each point, or cluster of points, on the Piper Trilinear Plot.

Major anion data are summarized by the triangular plot on the right side of Figure 6, which indicates that all samples plot in a similar area or facies, with separation owing to minor differences in Bicarbonate concentrations (Carbonate was absent in all samples). Most notable, however, is that the anion fingerprint in MW-1 is more similar to ASD-1 and ASD-2 than it is to the sample from the Fly Ash Pond. The triangular plot on the left side summarizes the major cation data and indicates that the samples cluster in three different areas or facies (MW-1 in "Calcium-type", FAP-SW in "Sodium- or Potassium-type", and ASD-1 and ASD-2 in "No dominant type" (Freeze and Cherry, 1979)). The anion and cation data can be considered collectively with the diamond portion of the Piper Trilinear Plot to assess if all samples plot collinearly.

The Piper Trilinear Plot suggests three separate geochemical populations defined by the samples from the coal storage area (ASD-1 and ASD-2), the Fly Ash Pond (FAP-SW), and MW-1. A sample from a chemical source should plot collinear with samples associated with the mixing zone. ASD-1 and ASD-2 plot closer to MW-1 and are therefore more geochemically similar to MW-1. Conversely FAP-SW plots farther from MW-1 and is less geochemically similar to MW-1. Additionally, FAP-SW plots along a different straight line with MW-1 than ASD-1 and ASD-2. The hydrograph for MW-1 on Figure 2 illustrates the increase in groundwater elevations in the past three years resulting from abnormal precipitation. Moreover, this abnormal precipitation has led to excessive runoff and sedimentation from the stockpiled coal into the perimeter diversion that flows near MW-1, as presented in Figures 1, 3, and 4. A photograph of the same area taken in November 2017 (Figure 5) shows no excessive sedimentation, suggesting that the atypically heavy precipitation is a changed condition resulting in increased infiltration of coal-impacted surface water downward into the groundwater environment.

4.0 CONCLUSIONS AND RECOMMENDATIONS

On the basis of the data presented in this demonstration, Gredell Engineering concludes that the apparent SSIs of Calcium, Sulfate, and TDS in MW-1, detected following the September 22, 2020 sampling event, are attributable to false positive prediction limit exceedances of Calcium, Sulfate, and TDS at MW-1 resulting from naturally occurring variation and an alternate source originating in the coal storage area. None of these causes are attributed to or result from a release from the Fly Ash Pond. The following supports this conclusion:

- The background sampling period was completed in less than 9 months and therefore does not encompass natural seasonal or multi-year variations in groundwater chemistry.
- Natural seasonal and multi-year variation in the aquifer is demonstrated on hydrographs for each well, including wells upgradient of the ash pond. This variation leads to geochemical interactions between groundwater and previously unsaturated alluvium that did not occur during background data acquisition.
- Groundwater samples collected in the coal storage area (Gredell Engineering, 2020) have elevated concentrations of Calcium, Sulfate, and TDS relative to MW-1 and the Fly Ash Pond.
- Calcium, Sulfate, and TDS concentrations derived from the Fly Ash Pond are not high enough to be mixed with (and diluted by) natural (un-impacted) groundwater and exceed their respective prediction limits for MW-1.
- Piper Trilinear Plot analysis demonstrates that groundwater from MW-1 is geochemically more similar to groundwater under the coal storage area than water in the Fly Ash Pond, and the groundwater under the coal storage area represents a different mixing zone than would result from waters in the Fly Ash Pond.
- Higher than normal precipitation preceding the groundwater monitoring resulted in excessive runoff from the coal storage area that was conveyed as surface runoff into the unlined diversion ditch that lies in close proximity to MW-1. This excessive runoff and coal sedimentation increases the likelihood that infiltration of coal impacted surface water into the groundwater environment had a deleterious effect on the sample results from MW-1. The abnormal precipitation and excessive runoff is viewed as a temporary changed condition, as evidenced by a comparison of the photographs of the perimeter diversion ditch presented as Figures 3, 4, and 5.

Based on these conclusions, Gredell Engineering recommends that semi-annual detection monitoring continue in accordance with §257.94. Gredell Engineering also recommends the following:

- Periodic inspection and maintenance of the diversion ditch enclosing the coal storage area would ensure excess sediment from the coal stockpiles is removed.
- Update background data sets for the Fly Ash Pond groundwater monitoring system wells to included data representative of the effects resulting from multi-year variation in groundwater elevation.

• Monitoring well MW-1 should be relocated closer to the Fly Ash Pond to reduce influence of the coal storage area on groundwater monitoring results for Part 257 compliance.

5.0 LIMITATIONS

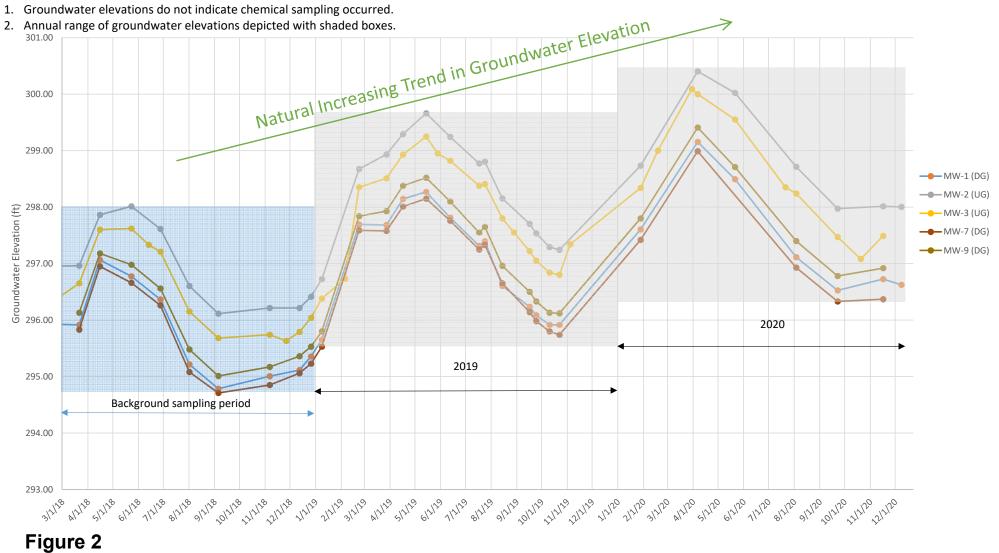
This report has been prepared for the exclusive use of the client and GREDELL Engineering Resources, Inc. for the specific project discussed in accordance with generally accepted environmental practices common to this locale at this time. The report is applicable only to this specific project and identified site conditions as they existed at the time of report preparation. The use of this report by others to develop independent interpretations of data or conclusions not explicitly stated in this report are the sole responsibility of those firms or individuals.

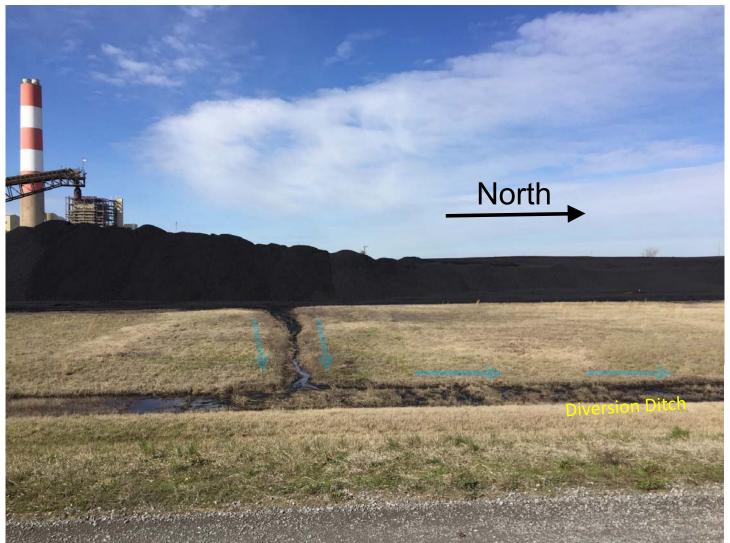
This report is not a guarantee of subsurface conditions. Variations in subsurface conditions may be present that were not identified during this or previous investigations. Interpretations of data and recommendations made in this report are based on observations of data that were available and referred to in this report unless otherwise noted. No other warranties, expressed or implied, are provided.

6.0 **REFERENCES**

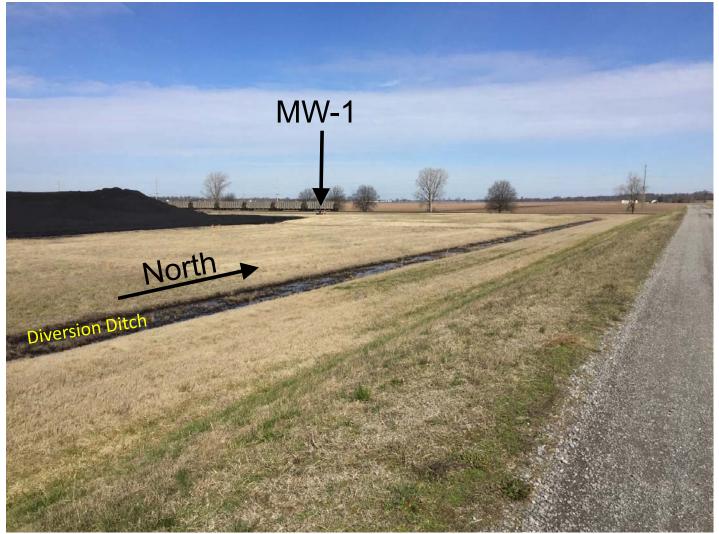
- Freeze, R.A. and Cherry J.A., 1979, *Groundwater*. Prentice-Hall, Inc. Englewood Cliffs, New Jersey, 604 p.
- GREDELL Engineering Resources, Inc., 2017, Sikeston Power Station Site Characterization for Compliance with Missouri State Operating Permit #MO-0095575. Prepared for Sikeston Board of Municipal Utilities, May 31, 2017.
- GREDELL Engineering Resources, Inc., 2018, Sikeston Power Station Groundwater Monitoring and Sampling Plan for Compliance with Missouri State Operating Permit #MO-0095575. Prepared for Sikeston Board of Municipal Utilities, October 1, 2018.
- GREDELL Engineering Resources, Inc., 2020, Sikeston Power Station 2020 Annual Groundwater Monitoring Report for Fly Ash Pond for Compliance with USEPA 40 CFR 257.90(e). Prepared for Sikeston Board of Municipal Utilities, August 2020.
- Piper, A. M., 1944. A Graphical Procedure in the Geochemical Interpretation of Water Analyses. Trans. Amer. Geophys. Union, 25, pp 914-923.
- Sanitas Statistical Software, © 1992-2021 SANITAS TECHNOLOGIES, Alamosa Colorado 81101-0012.
- USEPA, 2009, Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities Unified Guidance: EPA 530/R-09-007, Office of Resource Conservation and Recovery, Program Implementation and Information Division, Washington, D.C.

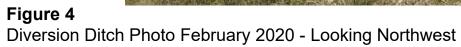
Figures

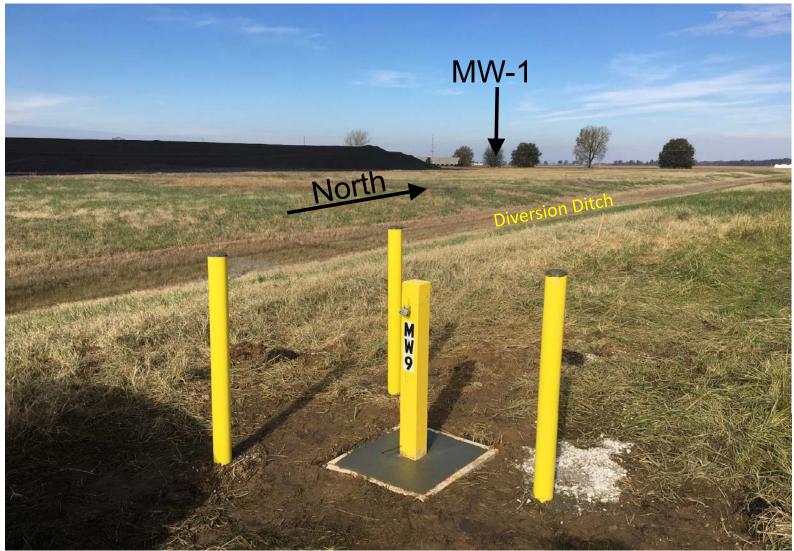


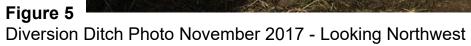

Prepared by: GREDELL Engineering Resources, Inc.

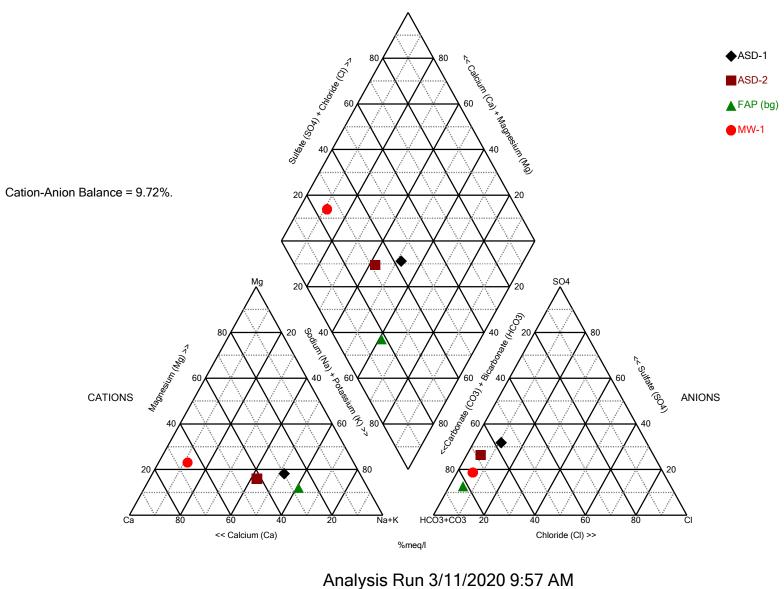

200'

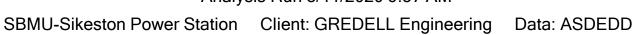

Notes:




Fly Ash Pond Monitoring Well Hydrographs







Prepared by: GREDELL Engineering Resources, Inc.

11-13-2017

Appendix 9

Alternate Source Demonstration March 10, 2021 MW-9

1505 East High Street Jefferson City, Missouri 65101 Telephone (573) 659-9078 www.ger-inc.biz

GREDELL Engineering Resources, Inc.

Sikeston Board of Municipal Utilities Sikeston Power Station Detection Monitoring Program for Fly Ash Pond – pH in MW-9 Alternate Source Demonstration

Sikeston Power Station 1551 West Wakefield Avenue Sikeston, MO 63801

March 2021

PROFESSIONAL ENGINEER'S CERTIFICATION

40 CFR 257.94(e)(2) Alternate Source Demonstration

I, Thomas R. Gredell, P.E., a professional engineer licensed in the State of Missouri, hereby certify in accordance with 40 CFR 257.94(e)(2) to the accuracy of the alternate source demonstration described in the following report for the Sikeston Board of Municipal Utilities, Sikeston Power Station, Fly Ash Pond CCR unit. The report demonstrates that the statistically significant increases of pH in MW-9 resulted from a source other than the CCR unit. This demonstration successfully meets the requirements of 40 CFR 257.94(e) as found in federal regulation 40 CFR 257, Subpart D – Standards for the Disposal of Coal Combustion Residuals in Landfills and Surface Impoundments. In addition, the demonstration was made using generally accepted methods.

			Maria	
Name:	Thomas R. Gredell, P.E		FOF MISS	
Signatu	ire: <u>Ranalls</u>	Be	THOMAS R.	
Date:	March 10, 2021	8*	03-10-2	1)*8
Registra	ation Number: PE-021137	ANO:	NUMBER PE-021137	
State of	f Registration: Missouri	Ŷ	SSIONAL EN	S' A

Sikeston Board of Municipal Utilities Sikeston Power Station Detection Monitoring Program for Fly Ash Pond – pH in MW-9 Alternate Source Demonstration

March 2021

Table of Contents

1.0	INTRODUCTION	.1
2.0	OBSERVATIONS AND DATA COLLECTION	.2
3.0	SUMMARY OF DATA ANALYSIS AND FINDINGS	.4
4.0	CONCLUSIONS AND RECOMMENDATIONS	.7
5.0	LIMITATIONS	.8
6.0	REFERENCES	.9

List of Figures

Figure 1 – Site Map and Sampling Locations Figure 2 – Fly Ash Pond Monitoring Well Hydrographs

List of Tables

Table 1 – Fly Ash Pond Monitoring System Historical pH Database

Table 2 – pH Data and Field Meter Drift Summary

1.0 INTRODUCTION

This Alternate Source Demonstration (ASD) Report has been prepared to address the results of the semi-annual sampling event initiated on September 22, 2020 at the Sikeston Board of Municipal Utilities (SBMU) Sikeston Power Station's (SPS) Fly Ash Pond, a coal combustion residual (CCR) surface impoundment. Following receipt of final data on October 16, 2020, statistical analysis was performed by GREDELL Engineering Resources, Inc. (Gredell Engineering) for the parameters listed in Appendix III to Part 257 – Constituents for Detection Monitoring. Following this analysis, it was determined that several reported concentrations exceeded their respective prediction limits for the well constituent pairs. These well constituent pairs were; Boron, Calcium, Sulfate, and Total Dissolved Solids (TDS) in sample MW-1; Boron in sample MW-2, and; pH in samples MW-7 and MW-9. Resampling for these well constituent pairs was conducted on December 8, 2020 (MW-1 and MW-2), and January 26, 2021 (MW-7 and MW-9). Following receipt of final data from the resampling events, it was confirmed that Calcium, Sulfate, and TDS concentrations in sample MW-1, and pH in sample MW-9 represent statistically significant increases (SSIs). As a consequence, SBMU-SPS requested that Gredell Engineering conduct an evaluation of the results and develop ASDs if warranted for Calcium, Sulfate, and TDS in MW-1 and pH in MW-9. The apparent increases of Calcium, Sulfate, and TDS in MW-1 relative to the background data set are the subject of a separate ASD report. Boron in sample MW-2, and pH in sample MW-7 were not confirmed by resampling and therefore are not SSIs.

As stated in §257.94(e)(2), an owner or operator may demonstrate that a source other than the CCR unit caused the apparent SSI over background levels for a constituent. The owner or operator must complete the written demonstration within 90 days of detecting an apparent SSI over background levels to include obtaining a certification from a qualified professional engineer verifying the accuracy of the information in the report. If a successful demonstration is completed within the 90-day period, the owner of the CCR unit may continue with a detection monitoring program. The owner or operator must also include the certified demonstration in the annual groundwater monitoring and corrective action report required by §257.90(e).

Gredell Engineering has completed an evaluation of the groundwater sampling event, the associated data, and other potential factors, for the SBMU SPS Fly Ash Pond groundwater monitoring well system to determine if an alternate source is the cause of the apparent SSI in pH at MW-9. This report presents the results of that evaluation and includes supporting documentation.

2.0 OBSERVATIONS AND DATA COLLECTION

The Fly Ash Pond groundwater monitoring well system consists of five wells, designated MW-1, MW-2, MW-3, MW-7, and MW-9 (Figure 1). Monitoring wells MW-1, MW-2, and MW-3 were installed in April 2016. Monitoring well MW-7 was installed in April 2017. Monitoring well MW-9 was installed in November 2017. All five monitoring wells were sampled on an approximate monthly basis beginning in March 2018 and ending in December 2018 to establish a background data base. Additional information regarding these wells is available in the Groundwater Monitoring, Sampling and Analysis Plan for the site (Gredell Engineering, 2018).

The results of the eight independent background sampling events were evaluated in accordance with §257.93, and intra-well analysis using prediction limits was selected as the statistical analysis approach for detection monitoring (Gredell Engineering, 2018). Following receipt of final analytical data reports from the contract laboratory, the reported result for each detection monitoring constituent from each well is compared to its respective prediction limit. If a result exceeds the respective prediction limit for a particular constituent well pair, or is outside the predicted range (in the case of pH), SSI over background is suspected.

All monitoring wells in the Fly Ash Pond groundwater monitoring system are monitored in the field for pH. All other Part 257 Appendix III detection monitoring constituents are reported following laboratory analysis. Table 1 summarizes the background and detection monitoring pH results. The bottom two rows of Table 1 summarize the Upper and Lower Prediction Limit (UPL and LPL, respectively) for pH in each well. The UPL and LPL represent the acceptable pH range in each well based on the background monitoring data.

The pH in samples MW-7 and MW-9 exceeded the UPL on September 22, 2020. These wells were resampled on January 26, 2021 to assess validity of the suspected change in conditions. The pH in sample MW-7 did not confirm a statistically significant change on January 26, 2021, but the apparent pH SSI associated with MW-9 was confirmed and is the subject of this ASD.

The September 22, 2020 detection monitoring event was preceded by abnormally heavy precipitation and elevated water table conditions in 2019 and 2020 as discussed in previous reports (Gredell Engineering, 2020), and illustrated on Figure 2. The long-term changes in water table elevation are apparent on a hydrograph of groundwater elevations in all Fly Ash Pond monitoring wells (Figure 2). This figure also indicates the range in groundwater elevations during the background sampling period and each year since completion of background sampling. As is evident on this figure, there is a cyclic seasonal variance in water levels in the aquifer characterized by elevated water table conditions in the spring and lower water table in the fall. However, also evident on this figure is a multi-year trend in the groundwater elevation data characterized by progressively higher annual maximum and minimum water table elevations since inception of Part 257 Fly Ash Pond monitoring in March 2018.

	Monitoring		pH (S.U.)					
Date	Purpose	MW-1 (DG)	MW-2 (UG)	MW-3 (UG)	MW-7 (DG)	MW-9 (DG)		
3/21/2018	Background	7.31	6.35	6.57	7.30	7.35		
4/15/2018	Background	7.36	6.36	6.48	7.24	7.37		
5/23/2018	Background	7.35	6.18	6.49	7.25	7.34		
6/27/2018	Background	7.27	6.16	6.45	7.22	7.32		
8/1/2018	Background	7.16	6.11	6.55	7.22	7.28		
9/5/2018	Background	7.14	6.09	6.51	7.29	7.31		
11/6/2018	Background	7.11	6.19	6.49	7.35	7.34		
12/12/2018	Background	7.06	6.13	6.50	7.27	7.33		
3/27/2019	Detection 1	7.13	6.25	6.36	7.25	7.40		
9/24/2019	Detection 2	7.0	6.1	6.5	7.3	7.4		
4/6/2020	Detection 3	7.1	6.3	6.4	7.2	7.3		
9/22/2020	Detection 4	7.2	6.2	6.5	7.5	7.5		
1/26/2021	RESAMPLE	(NA)	(NA)	(NA)	7.4	7.5		
Upper Pre	diction Limit	7.5	6.5	6.6	7.4	7.4		
Lower Pre	diction Limit	6.9	5.9	6.4	7.2	7.3		

Table 1 – Fly Ash Pond Monitoring System Historical pH Database

Notes

- 1. All data transcribed from field notes.
- 2. (NA) denotes analysis not conducted.
- 3. Field pH reporting protocol changed in mid-2019 resulting in reporting fewer significant digits.

3.0 SUMMARY OF DATA ANALYSIS AND FINDINGS

The U.S. Environmental Protection Agency (USEPA) provides Unified Guidance for statistical analysis of groundwater monitoring data (USEPA, 2009). This Unified Guidance was reviewed to assess the validity of the apparent SSIs. Chapter 4 of the Unified Guidance discusses groundwater monitoring programs and statistical analysis of the associated data. A key component of statistical analysis is *"to determine whether or not the increase is actually due to a contaminant release"*. The following discussion is intended to assess the validity of the apparent pH SSI associated with MW-9 and demonstrate if it is the result of a contaminant release from the Fly Ash Pond or caused by an alternate source.

- 1. <u>Chapter 4, page 4-8</u>: Is the result a false positive? That is, were the data tested simply an unusual sample of the underlying population triggering an SSI? Generally, this can be evaluated with repeat sampling.
- <u>Chapter 4, page 4-8</u>: Could observed SSIs for naturally occurring analytes be due to longer-term (i.e., seasonal or multi-year) variation? Seasonal or other cyclical patterns should be observable in upgradient wells. Is this change occurring in both upgradient and downgradient wells? Depending on the statistical test and frequency of sampling involved, an observed SSI may be entirely due to temporal variation not accounted for in the sampling scheme.
- 3. <u>Chapter 4, page 4-9</u>: Was there incorrect calibration or drift in the field instrumentation? This effect should be observable in both upgradient and downgradient data and possibly over a number of sample events. The data itself may be compromised or useless.

Each of these considerations were used to evaluate the background data and the validity of the apparent pH SSI in MW-9. The results of this evaluation are discussed below.

Unified Guidance Consideration 1

The suspicion that the September 22, 2020 pH (in both MW-7 and MW-9) results are a false positive was considered and, as suggested by Unified Guidance, was evaluated with repeat sampling. In this case, re-sampling was conducted at both wells on January 26, 2021 to assess the validity of the apparent SSIs. The results of the primary sampling and re-sampling event are presented in Table 1.

These data suggest that the primary sampling event data resulted in a false positive pH SSI in MW-7, and may have resulted in a false positive for MW-9. However, other factors discussed below warrant consideration before a false positive pH result at MW-9 can be eliminated from consideration.

Unified Guidance Consideration 2

The background sampling period for well MW-9 spans a timeframe of less than nine months. A short background sampling period may not be representative of longer-term natural variations in groundwater quality. Natural seasonal and multi-year (temporal) variations are apparent in this unconfined alluvial aquifer. These natural variations may result in changes in pH that appear to be SSIs. However, these SSIs may be *due to longer-term (i.e., seasonal or multi-year) variation* that is *not accounted for in the sampling scheme* that was intended to represent natural variations in the aquifer.

Seasonal variation characterized by higher groundwater elevations beginning in the spring followed by lower elevations beginning in the fall have been evident during each year since monitoring for Part 257 began for the Fly Ash Pond–(Figure 2). The background monitoring period of the Fly Ash Pond monitoring system spanned March 2018 to December 2018 which did not include a complete cycle of seasonal variations, or a sample representative of the winter season when the resampling event occurred (January).

A three-year long increasing trend in minimum and maximum annual groundwater elevations is also evident on Figure 2. This figure is a hydrograph of groundwater elevations in all Fly Ash Pond monitoring wells. Note that Figure 2 also summarizes the range in groundwater elevations during the background sampling period and each year since background sampling was completion. This multi-year increase in groundwater elevations is the aquifer's natural response to increased recharge. Because these groundwater elevation increases are observed in all wells, including those located hydraulically upgradient of the pond, they are not attributed changes in site conditions, but rather larger-scale natural changes in the aquifer. As a result, formerly unsaturated alluvium becomes saturated and additional geochemical interactions will occur between pore waters and the newly saturated materials. These additional interactions have the potential to affect groundwater geochemistry and result in observations not previously documented for the chronically saturated (and deeper) alluvium.

In summary, there are natural seasonal and multi-year variations in the alluvial aquifer at the site that were not observed during the background monitoring period. The apparent pH SSI in MW-9 may be due to temporal variation in the aquifer not accounted for in the background sampling scheme, which lead to overly-restrictive prediction limits.

Unified Guidance Consideration 3

Field Instrument Calibration Logs were reviewed to assess if instrument drift occurred that could account for elevated pH reporting. The pH drift as reported on the Field Instrument Calibration

Logs is summarized below on Table 2. A procedural change implemented in mid-2019 resulted in a change to the way SBMU field sampling staff report pH readings as indicated on Table 1. It was determined that the field instrument accuracy, as reported by manufacturer, is 0.1 S.U. and therefore SBMU field sampling staff adopted a procedure based on the accuracy as reported by the manufacturer of rounding the values to 0.1 S.U. in the field. Prior to this change, values were reported to 0.01 S.U. as displayed by the field meter.

	pH (Field Meter Drift	
Date	MW-7 (DG)	MW-9 (DG)	@ pH = 7.00 S.U
9/22/2020	7.5	7.5	0.0
1/26/2021	7.4	7.5	+0.1
Upper Prediction Limit	7.4	7.4	
Lower Prediction Limit	7.2	7.3	

 Table 2 - pH Data and Field Meter Drift Summary.

Calibration Logs from the September 22, 2020 sampling event do not indicate instrument drift occurred during the sampling event (Table 2). Note, drift is assessed with comparison of a post-calibration reading of a 7.00 S.U. standard to a post-sampling reading of the same 7.00 S.U. standard.

Calibrations logs from the re-sampling event indicate +0.1 S.U. instrument drift (Table 2). This measurement error potentially resulted in field readings being over-reported by 0.1 S.U. However, it is not precisely known when this instrument drift occurred during the re-sampling event. Regardless, according to field records, sample MW-9 pH was monitored immediately prior to observing and documenting the +0.1 S.U. meter drift. Therefore, the pH value reported for MW-9 on January 26, 2021 (7.5 S.U.) is likely over-reported by 0.1 S.U.

4.0 CONCLUSIONS AND RECOMMENDATIONS

On the basis of the data presented in this demonstration, Gredell Engineering concludes that the apparent pH SSI in MW-9, detected during the September, 2020 sampling event, is attributable to a false positive UPL exceedance resulting from naturally occurring variation and field instrument drift. None of these causes are attributed to or result from a release from the Fly Ash Pond. The following supports this conclusion:

- The background sampling period was completed in less than nine months and therefore does not encompass seasonal or multi-year pH variations.
- Natural seasonal and multi-year variation in the aquifer is demonstrated on hydrographs for each well, including wells upgradient of the ash pond. This variation leads to geochemical interactions between groundwater and previously unsaturated alluvium that were not occurring during background data acquisition.
- Documented pH meter drift during the sampling event was larger than the reported pH range in the background data set in MW-9.
- The documented upward pH drift is large enough to have resulted in the false positive pH UPL exceedance in MW-9.

Based on these conclusions, Gredell Engineering recommends that semi-annual detection monitoring continue in accordance with §257.94. Gredell Engineering also recommends the following:

- Field data should be transcribed exactly as reported by the instruments (do not round data in the field).
- Field equipment should be checked by the manufacturer to ensure proper operation and minimize drift errors.
- Field equipment should be frequently checked to assess drift periodically during sampling events and corrected as warranted.
- Update background data sets for the Fly Ash Pond groundwater monitoring system wells to included data representative of the effects resulting from multi-year variation in groundwater elevation.

5.0 LIMITATIONS

This report has been prepared for the exclusive use of the client and GREDELL Engineering Resources, Inc. for the specific project discussed in accordance with generally accepted environmental practices common to this locale at this time. The report is applicable only to this specific project and identified site conditions as they existed at the time of report preparation. The use of this report by others to develop independent interpretations of data or conclusions not explicitly stated in this report are the sole responsibility of those firms or individuals.

This report is not a guarantee of subsurface conditions. Variations in subsurface conditions may be present that were not identified during this or previous investigations. Interpretations of data and recommendations made in this report are based on observations of data that were available and referred to in this report unless otherwise noted. No other warranties, expressed or implied, are provided.

6.0 **REFERENCES**

- Freeze, R.A. and Cherry J.A., 1979, *Groundwater*. Prentice-Hall, Inc. Englewood Cliffs, New Jersey, 604 p.
- GREDELL Engineering Resources, Inc., 2017, Sikeston Power Station Site Characterization for Compliance with Missouri State Operating Permit #MO-0095575. Prepared for Sikeston Board of Municipal Utilities, May 31, 2017.
- GREDELL Engineering Resources, Inc., 2018, Sikeston Power Station Groundwater Monitoring and Sampling Plan for Compliance with Missouri State Operating Permit #MO-0095575. Prepared for Sikeston Board of Municipal Utilities, October 1, 2018.
- GREDELL Engineering Resources, Inc., 2020, Sikeston Power Station 2020 Annual Groundwater Monitoring Report for Fly Ash Pond for Compliance with USEPA 40 CFR 257.90(e). Prepared for Sikeston Board of Municipal Utilities, August 2020.
- Sanitas Statistical Software, © 1992-2021 SANITAS TECHNOLOGIES, Alamosa Colorado 81101-0012.
- USEPA, 2009, Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities Unified Guidance: EPA 530/R-09-007, Office of Resource Conservation and Recovery, Program Implementation and Information Division, Washington, D.C.

Figures

Σ

LEGEND	
PROPERTY LINE	PL
GROUNDWATER CONTOUR	
MONITORING WELL	MW
UP GRADIENT	UG
MONITORING LOCATION	
DOWN GRADIENT MONITORING LOCATION	DG
GENERAL FLOW DIRECTION	-

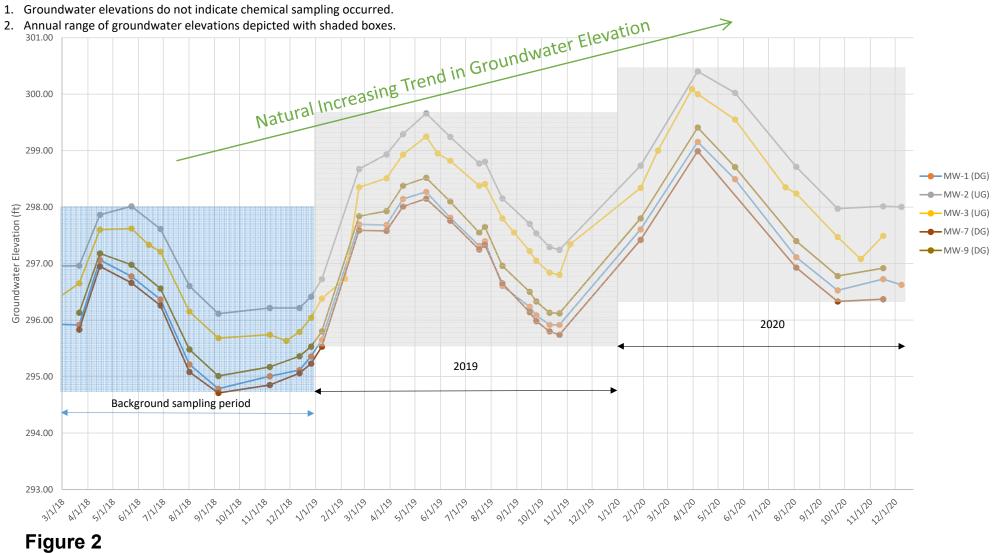

- NOTES:

 IMAGE PROVIDED BY BING MAPS.
 MONITORING WELL LOCATIONS, CASING ELEVATIONS & UNDERGROUND CULVERT ELEVATIONS SURVEYED BY BOWEN ENGINEERING & SURVEYING.
 GROUNDWATER ELEVATIONS MEASURED BY SIKESTON POWER STATION STAFF ON SEPTEMBER 22, 2020.
 MAP DEVELOPMENT BASED ON CONTOURS GENERATED BY SURFER SOFTWARE
 RANGE OF GROUNDWATER FLOW GRADIENT AS DETERMINED BY SURFER SOFTWARE 0.0001 FT./FT. TO 0.001 FT./FT.

WELL	GROUNDWATER ELEVATION (FEET)	CASING ELEVATION (FEET)	NORTHING	EASTING
	296.53	312.77	383119.51	1078467.90
	297.97	308.01	383207.42	1079751.30
	297.47	308.55	381130.00	1079946.62
	296.33	315.03	381584.50	1078847.00
	296.78	314.68	382429.94	1078825.60

	SIKESTON POWER STATION FLY ASH POND ALTERNATE SOURCE DEMONSTRATION	FIG SITE MAP AND SA SEPTEMB	FIGURE 1 SITE MAP AND SAMPLING LOCATIONS SEPTEMBER 22, 2020	THE GEOLOGIST WHO REVIEWED AND APPROVED THIS REPORT ASSUMES REPONSIBILITY ONLY FOR GEOLOGIC INTERPRETATIONS OF DATA APPLARING ON THE PARE AND DISCLAIMS PURSUANT TO SECTION 256.456 RSM0. ANY RESPONSIBILITY OR ALL OTHER PLANS, SPECIFICATIONS, ESTIMATES, REPORTS OR OTHER DOCUMENTS OR INSTRUMENTS ON PERPARED UNDER THE SUPERVISION OF THE GEOLOGIST FREATING
Jefferson City, Missouri racsimile: (573) 659-9079 Mo Core, Engineering License No. E-2001001669-0	SURVEYED DESIGNED DRAWN CHECKED APPROVED DATE SCALE PROJECT NAME NA NA CP KE MCC 111/2020 AS NOTED SIKESTON/GWMAP/FAP C	HECKED APPROVED DATE SCALE PROJECT NAME FILE NAME FILE NAME FILE NAME RUCC 11/2020 AS NOTED SINKESTON/GWMAP/FAP GWCONT FAP 2021 10F1	FILE NAME SHEET # GWCONT FAP 2021 1 0F 1	TO OR INTENDED TO BE USED FOR ANY PART OR PARTS OF THE PROJECT TO WHICH THIS FIGURE REFERS.

Notes:

Fly Ash Pond Monitoring Well Hydrographs